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2. Abstract 50 

Understanding how biotic interactions and environmental filtering mediated by soil 51 

properties shape plant community assembly is a major challenge in ecology, especially when 52 

studying complex and hyper-diverse ecosystems like tropical forests. To shed light on the 53 

influence of both factors, we examined how the edaphic optimum of species (their niche 54 

position) relates to their edaphic range (their niche breadth) along different environmental 55 

gradients, and how this translates into functional strategies.  56 

Here we test four scenarios describing the shape of the niche breadth – niche position 57 

relationship, including one neutral scenario and three scenarios proposing different relative 58 

influences of abiotic and biotic factors on community assembly along a soil resource gradient. 59 

To do so, we used soil concentration data for five key nutrients (N, P, Ca, Mg and K), along 60 

with accurate measurements of 14 leaf, stem and root traits for 246 tree species inventoried in 61 

101 plots located across Eastern (French Guiana) and Western (Peru) Amazonia.  62 

We found that species niche breadth increased linearly with species niche position along 63 

each soil nutrient gradient. This increase was associated with more resource acquisitive traits 64 

in the leaves and the roots for soil N, Ca, Mg and K concentration, while it was negatively 65 

associated with wood density for soil P concentration. These observations agreed with one of 66 

our hypothetical scenarios in which species with resource conservation traits are confined to 67 

the most nutrient-depleted soils (abiotic filter), but they are outperformed by faster-growing 68 

species on more fertile conditions (biotic filter). Our results refine and strengthen support for 69 

niche theories of species assembly, while providing an integrated approach to improve forest 70 

management policies.  71 



3. Main text 72 

Introduction 73 

A major interest among plant community and evolutionary biologists is to better 74 

understand how environmental filtering and biotic interactions shape community assembly. 75 

Many studies examining the determinants of plant β-diversity have emphasized the role of 76 

abiotic conditions, such as soil properties, through filtering processes related to species resource 77 

acquisition strategies and tolerance to drought and toxicity (Condit et al. 2013, Kraft et al. 2015, 78 

Vleminckx et al. 2017, Van Breugel et al. 2019). Several theories have suggested that 79 

hyperdiverse communities such as tropical forests also experience strong biotic interactions, 80 

mediated by intense inter-specific competition for resources and enemy attacks (Schemske 81 

2009, Fine 2006, 2013). Over time, these biotic interactions would have resulted in the local 82 

coexistence of species displaying narrower species niches (Dobzhansky 1950, Pianka 1966, 83 

MacArthur 1969).  84 

Habitat heterogeneity remains a major determinant of species turn-over in tropical 85 

forests. In the Amazon, for instance, white-sand habitats show extremely nutrient-depleted 86 

conditions that select for species investing into costly but well-defended tissues (e.g. thick 87 

leaves, hard wood), which render these species less competitive on relatively more fertile 88 

conditions (the growth-defense trade-off; Fine et al. 2006, 2010). Species relative investment 89 

in costly tissues should therefore reflect their optimum along a resource availability gradient. 90 

This optimum should correlate well with the range of resource availability a species can 91 

tolerate, under the assumption that poor-soil specialists are poor competitors in fertile 92 

conditions and are thereby confined to more restricted niches than faster-growing, rich-soil 93 

specialists. Therefore, comparing the range and optimum of species along a steep resource 94 

availability gradient would help to determine whether conservative species with a high degree 95 

of specialization for poor soil conditions exhibit narrower niches than acquisitive species that 96 



grow faster and are more competitive in fertile soils (assuming that no other processes are 97 

becoming important across a broad gradient in soil fertility). Such a comparison would address 98 

a major concern that most studies may overstate the role of abiotic filtering as a community 99 

assembly rule because they fail to consider the potential influence of biotic processes (Kraft et 100 

al. 2014). Additionally, examining how species range and optimum align with different 101 

functional strategies may help to identify adaptive trade-offs that delimit species' niches. 102 

Despite the rapid accumulation of plant functional trait data from diverse ecosystems, few 103 

studies have attempted to link tree species range, optimum, and functional traits (but see 104 

Treurnicht et al. [2019] for Fynbos plant communities of the Cape Floristic Region).  105 

Species niche range and optimum relate to the two fundamental parameters proposed by 106 

Hutchinson in his hypervolume model (1957), which has provided one of the most successful 107 

mechanistic constructs of the ecological niche concept. The niche range is commonly referred 108 

to as “niche breadth”, “niche width”, “niche size”, or “ecological amplitude” (Carscadden et al. 109 

2020). Following the Hutchinson’s concept of the niche, the niche breadth determines the range 110 

of environmental conditions that a species can tolerate and the range of resources that it uses 111 

(the potential, or fundamental niche), a range that in reality is more contracted due to 112 

antagonistic interactions mediated by competition for resources, natural enemies, or dispersal 113 

barriers (the realized, or observed niche) (Malanson, Westman & Yan 1992; McGill et al. 2006; 114 

Kraft et al. 2014). The niche optimum represents the set of environmental conditions where the 115 

fitness of a species is highest, as reflected by growth rate, reproduction success, survival, 116 

population size or distribution range (Sexton et al. 2017). This parameter can be assessed by 117 

calculating the niche position, which can be defined as the average, or median value of an 118 

environmental variable where the species occurs, or sometimes as the marginality of this 119 

average value compared to the community mean (Roughgarden 1974). The niche position is 120 

generally used as a proxy for the niche optimum, since the “true” optimal conditions for a 121 



species is generally unknown (as its “true” niche breadth) or only estimated via habitat 122 

suitability models (Zuquim et al. 2019). Most studies examine species distributions across only 123 

a portion of their geographic and environmental ranges (Sheth et al. 2020), with sampling 124 

protocols that are rarely explicitly designed to cover an exhaustive representation of the habitat 125 

heterogeneity occurring within a study area, or to provide an equilibrated sampling effort across 126 

contrasted habitat conditions.  127 

We can propose at least four hypothetical scenarios predicting the shape of niche 128 

breadth-position relationships along a gradient of soil nutrient availability (Fig. 1). The 129 

relationship between realized species niche breadth and niche position, as well as with their 130 

traits, can be illustrated using Gaussian-like curves for simplicity, as in the classic resource 131 

utilization model of McArthur (1958) (Fig. 1a), even though actual distributions may follow 132 

other forms (Le Bagousse-Pinguet et al. 2017). These curves can be translated into values 133 

describing the relationship of niche breadth plotted against niche position (Fig. 1b).  134 

In the first scenario, species niche breadth varies randomly across species, regardless of 135 

their niche position along a gradient of soil resource availability. This pattern would arise if 136 

species were competitively equivalent on any level of that specific soil resource availability, 137 

i.e. if species edaphic distribution is only driven by stochastic and dispersal processes. In that 138 

sense, this scenario is consistent in its outcome with Hubbell’s neutral theory (2001). In the 139 

second scenario, poor soil resources select for species investing in protection against physical 140 

and biological damages, to the detriment of growth, which would render these species 141 

increasingly less competitive when soil fertility increases. In this case, niche breadth should 142 

increase with niche position, and the strength (slope) of this relationship should reflect how 143 

much the cost of adaptation to nutrient-poor soils restricts the ability of conservative species to 144 

compete with more acquisitive species and establish in more fertile habitats. This scenario is 145 

consistent with previous studies showing that poor-soil specialists exhibit resource conservation 146 



strategies (e.g. durable tissues with slow turnover), whereas species preferring more fertile soils 147 

are characterized by resource acquisitive traits (e.g. cheap tissues with high turnover) (Fine et 148 

al. 2006, Pinho et al. 2017, Poorter et al. 2018). Scenario 3 is similar to the second scenario, 149 

except that the soil nutrient is not limiting for any species beyond a certain threshold, above 150 

which the nutrient availability does not impact fitness anymore. Niche breadth therefore tends 151 

to reach a plateau. Such a pattern has rarely been emphasized but see Steidinger (2015) for soil 152 

calcium concentration optimum in Panama, which stabilizes and shows a trend consistent with 153 

scenario 3. In the fourth scenario, the increase of potential niche breadth as soil resource 154 

availability becomes less limiting is counter-balanced by a greater “species packing”, i.e. a 155 

constriction of species’ realized niches (MacArthur 1969) resulting from stronger competition 156 

for resources. In this scenario, niche breadth increases with soil resource availability optima, 157 

up to a certain intermediate level of soil fertility, then decreases as a consequence of species 158 

packing, forming a bell-shaped curve.  159 

 To further shed light on the goodness-of-fit of each scenario to real species assemblages, 160 

we may also inquire whether niche breadth-position relationships show consistent patterns 161 

along decoupled environmental gradients, and whether the same functional trade-offs align 162 

along each gradient. Environmental axes may covary, or vary independently from each other, 163 

either because they are spatially structured at different spatial scales (e.g. climate vs 164 

microhabitat variables), or in the case of soil properties because they are influenced by different 165 

pedological or biogeochemical processes. For instance, some key soil nutrients like base cation 166 

(e.g. calcium, magnesium, potassium) are known to covary, as their concentrations depend on 167 

common chemical and geological conditions (e.g. soil acidity, nature of the bedrock). Other 168 

soil variables, notably anionic nutrients (e.g. PO4
3-, NO3

2-), may display decoupled spatial 169 

variations, as they undergo different chemical constraints (e.g. P immobilization) or different 170 

biogeochemical processes (e.g. N-fixation, nitrification) (Hedin et al. 2009, Vleminckx et al. 171 



2015, Quesada et al. 2010). Whether we observe similar niche breadth-position relationships 172 

along decoupled environmental dimensions, or whether niche breadth and niche position are 173 

influenced by the same resource use traits along those environmental dimensions, are key 174 

questions to improve our understanding of community assembly mechanisms. However, these 175 

questions remain poorly examined (Futuyma and Moreno 1988, Sultan et al. 1998, Carscadden 176 

et al. 2020).  177 

 The “world-wide plant economics spectrum hypothesis” (Reich 2014) suggests that fast-178 

slow economics spectra would be consistently observed along decoupled soil fertility gradients, 179 

with resource conservation traits being selected on nutrient-depleted soils in general. Although 180 

some evidence has supported this hypothesis (Poorter et al. 2018), previous studies have also 181 

shown that tree communities display decoupled trait syndromes across leaf, stem and roots 182 

(Baraloto et al. 2010, Fortunel et al. 2012, Laughlin 2014, Vleminckx et al. 2021, Asefa et al. 183 

2022). These decoupled wood and leaf economic traits have been shown to respond to similar 184 

fertility gradients in tropical forests (Fortunel et al 2014, Vleminckx et al. 2021). Yet, to date 185 

there has been no attempt to integrate niche breadth data to examine how individual nutrient 186 

availability gradients potentially determine species edaphic ranges, and whether decoupled 187 

traits align with the same fertility gradients.  188 

Here, we address these questions using a unique dataset of 246 tree species inventoried 189 

in 101 plots located across Eastern (French Guiana) and Western (Peru) Amazonia, together 190 

with accurate measurements of 14 leaf, stem and root traits. We first examine whether species 191 

niche breadth and niche position, taken separately, are aligned or decoupled among five soil 192 

nutrient availability gradients (N, P, Ca, Mg and K). Second, we examine how well the four 193 

scenarios presented in Fig. 1  match the observed niche breadth-position relationship along each 194 

soil gradient. We address the following specific questions:  195 



(1) How are species niche breadth and position associated among the different soil 196 

nutrient gradients?  197 

(2) How well do our four scenarios (Fig. 1) fit the niche breadth-position relationship? 198 

(3) Are decoupled niche breadth and position dimensions associated with different plant 199 

functional strategies? 200 

Methods 201 

Study areas 202 

We established a nested experimental design with replicated plots in habitats displaying 203 

contrasting soil conditions, characteristic of lowland Amazonian forests – white-sand (WS), 204 

Terra Firme (TF) and seasonally flooded forests (SF) (Fortunel et al. 2014, Baraloto et al. 2021) 205 

– at both regional (c.100 km) and basin-wide (2500 km) distances. A total of 101 0.1-ha plots 206 

were inventoried between 2008 and 2018 in ten subregions of tropical moist forest in French 207 

Guiana (hereafter FG; 63 plots) and between 2008 and 2011 in three subregions in Peru (38 208 

plots) (Fig. 2). French Guiana forests stand on an old Precambrian tableland, with old, highly 209 

weathered and nutrient-depleted soils (Gourlet-Fleury et al. 2004). Mean annual rainfall across 210 

inventory subregions ranges between 2160 and 3130 mm (http://www.worldclim.com/) and is 211 

distributed seasonally throughout the year. The wet season stretches from December to July and 212 

is usually interrupted in February or March by a short dry period, while the dry season occurs 213 

from August to November with monthly rainfall never exceeding 100 mm. Mean temperature 214 

oscillates between 23.0 and 26.6°C with low seasonal variation (Gourlet-Fleury et al. 2004). 215 

Elevation among subregions ranged from 42 to 529 m. Forests from the Western Amazon in 216 

Peru cover heterogeneous soil conditions consequent to the combined impact of marine 217 

incursions, the Andean uplift, and the weathering of volcanic sediments (Hoorn et al. 2010). 218 

Mean annual rainfall varies between 2405 and 2750 mm, whereas mean temperature ranges 219 



from 26.3°C to 26.7°C (http://www.worldclim.com/), and elevation from 95 to 173 m. The 220 

study areas are further detailed in Baraloto et al. (2021). 221 

Tree species inventories 222 

Trees were inventoried following a modified version of the Gentry plots proposed by Phillips 223 

et al. (2003) and described by Baraloto et al. (2013). Each plot consisted of ten parallel 50 m-224 

long transects departing perpendicularly from a main 180 m-long central line, successively in 225 

alternate directions every 20 m along the line (a schematic illustration of a plot is provided in 226 

Appendix S1: Figure S1). All stems with a circumference ≥ 8 cm at 1.3 m above the ground 227 

(2.5 cm DBH) were inventoried over a two-meter width along each transect. At least one 228 

individual of every putatively-distinct taxon encountered was collected in the field to create 229 

plot-level voucher collections. In rare cases (0.2% of all stems sampled), no identification was 230 

achieved nor could vouchers be collected due to lack of leaves or obstructed canopies. The plot 231 

level vouchers were meticulously sorted so that independent distinct taxa had at least one 232 

collection in each plot. Further sorting resulted in standardized project type collections for all 233 

distinct taxa which were identified at regional herbaria for the Peru (AMAZ) and French Guiana 234 

(CAY) collections. We then further standardized and resolved vouchers from both these 235 

collections during a five-month period at the herbarium of the Missouri Botanical Garden (MO), 236 

such that any unnamed, putative novel species was compared to other congeners from the other 237 

region (Baraloto et al. 2021). At the end, we provided a full detail of all project vouchers 238 

describing our standardized inventories (vouchers and/or photos are available for loan upon 239 

request). Species diversity was characterized in each subregion using species richness, as well 240 

as the effective number of species expected from 1000 random samplings of 2 individuals to 241 

weight for species abundance (Dauby & Hardy 2011) (Table 1). 242 



Soil data 243 

We collected bulked soil cores at 0–15 cm depth at ten regularly spaced positions along the 244 

central line of the plot (Appendix S1: Figure S1). The ten cores were mixed into a 500 g sample 245 

that was dried to constant mass (at 25°C) and sieved (2 mm mesh). Samples from were shipped 246 

to the University of California, Davis DANR laboratory for physical and chemical analyses (see 247 

Baraloto et al. 2011 for full protocol details). The bioavailability of three base cations (Ca, Mg, 248 

K) and P, and the total soil nitrogen concentration (N) were then quantified for each soil sample, 249 

following a protocol described in details Baraloto et al. (2011). We lack data on other soil 250 

variables like soil pH and soil Al, Mn and Fe concentration to evaluate the impact of soil acidity 251 

and toxicity on species niches. The mean and the standard deviation of each soil variable in 252 

each habitat and each study region (Peru and French Guiana, separately) is shown in Table 2. 253 

The distribution of plot values for each soil variable within each edaphic habitat (SF, TF and 254 

WS), and a test of comparison (Wilcoxon-Mann-Withney) of these values across habitats for 255 

each soil variable are shown in supplementary information (Appendix S2: Figure S1). As a 256 

complementary information, we also show the projection of plots and soil variables in a 257 

Principal Component Analysis (PCA) (see details in Appendix S3: Figure S1). 258 

Functional trait data 259 

We used data for 14 chemical and morphological traits related to resource use and structural 260 

defense, comprising ten leaf, two stem and two fine root traits: Leaf thickness and toughness, 261 

SLA, Leaf C, N, P, Ca, Mg and K concentration, leaf 13C, sapwood-specific gravity, trunk bark 262 

thickness, fine root tissue density and fine root specific root length (SRL). The unit and 263 

functional role of each trait, along with additional information on trait sampling locations are 264 

provided as online supplementary information (Vleminckx et al. 2023). These functional data 265 

were obtained from accurate trait measurements from Peruvian and French Guianan samples 266 

collected for 8345 individuals from 1625 species in 371 genera, 78 families and 26 orders 267 



covering the Rosidae, Asteridae and early eudicots (Baraloto et al. 2010, Fortunel et al. 2012, 268 

Vleminckx et al. 2021). Missing trait data ranged from 34.96% for leaf thickness up to 74.17% 269 

for root SRL (see Table S2 in Vleminckx et al. 2021). Missing values were imputed using a 270 

Bayesian hierarchical matrix factorization method (BHMF), based on taxonomic information 271 

and co-variation among traits (Fazayeli et al. 2014; see Vleminckx et al. 2021 for details). All 272 

these traits reflect species economics spectrum potentially associated to soil nutrient availability 273 

levels, or intrinsic water-use efficiency (Leaf 13C) (Baraloto et al. 2010). 274 

 275 

Data analysis 276 

Niche breadth and niche position data 277 

Species abundance at the plot level was calculated after weighting each tree by the 278 

logarithm of its basal area, to take into account that later life stages are likely to be more 279 

representative of the influence of habitat conditions on species distributions, whereas the 280 

assembly rules of younger trees can be more stochastic (Vleminckx et al. 2015). We then 281 

calculated the niche breadth and the niche position of each of the 246 species that were present 282 

in at least three subregions (i.e., areas comprising plots), across each of the five soil nutrients 283 

(N, P, Ca, Mg and K). For each soil variable, the niche position of each species corresponded 284 

to the median of the soil variable calculated among plots where the species was found 285 

(weighting each plot according to the abundance of the species). The niche breadth was 286 

calculated as the interquartile range (25-75%) of values for the soil variable. The 25-75% range 287 

was chosen to provide robust niche breadth values that were weakly sensitive to outliers 288 

(Steidinger 2015). Calculations using a 20-80% and a 15-85% range provided highly consistent 289 

results that did not modify our interpretations. Prior to any subsequent analysis, niche breadth 290 

and niche position values were normalized (using a Box-Cox transformation) and standardized 291 

(z-score transformation). We then detrended niche breadth values to remove any potential 292 



biased inflation of these values induced by the effects of: (i) the total abundance of each species 293 

across all plots, (ii) the number of subregions and (iii) plots in which each species is present, 294 

and (iv) their regional distribution (i.e. dummy variable columns indicating whether each 295 

species is present in one region, i.e. Western or Eastern Amazon, or both regions). This 296 

detrending was performed by using the residuals of a linear regression of niche breadth against 297 

these effects (see details in Appendix S4). 298 

Niche breadth and niche position correlations among soil variables 299 

To specifically address question 1, we performed a PCA on the species niche breadth 300 

values corresponding to the different soil nutrients, and the same PCA for species niche position 301 

values. We then tested whether the Pearson correlations of niche breadth and niche position 302 

among the five soil nutrients were statistically significant. Correlations were considered 303 

significant when they were lower or higher than the 2.5-97.5% quantiles of correlation values 304 

obtained after randomizing each nutrient concentration values at the plot level and recalculating 305 

niche breadth and niche position, while preserving the multi-scale spatial structure of each 306 

nutrient within each study region (Peru and French Guiana), independently. To do so, we used 307 

Moran Spectral Randomization (MSR, Wagner and Dray 2015), a procedure that allows 308 

considering multiscale spatial autocorrelation structures for any type of quantitative variable, 309 

based on spatially weighted connectivity information among sampling points (i.e. the 101 plots 310 

in our case). This information was obtained from an optimized procedure used to choose a 311 

spatial weighted matrix and select a subset of Moran’s eigenvector maps (MEMs, Dray et al. 312 

2006), following Bauman et al. (2018a,b), using the R package ‘adespatial’ (Dray et al. 2022). 313 

MEMs are spatial eigenvectors that model multi-scale spatial structures in any type of 314 

numerical variable. We tested a minimum spanning tree configuration and a Gabriel’s graph to 315 

model connectivity among plots, which have been shown appropriate to accurately modeling 316 

structures even when dealing with nested and irregular sampling designs such as ours (Bauman 317 



et al. 2018a). The spatial weighted connectivity information from the best MEM model (i.e., 318 

the eigenvector combination that best described the spatial structures in the soils nutrients’ 319 

concentration, based on a forward selection with double stopping criterion) is then used in a 320 

spatially constrained randomization algorithm in the MSR method to reproduce variables that 321 

accurately mimic the observed spatial structures of the randomized variable(s).  322 

Species in each PCA graph were also characterized by their affinity for each of the three 323 

habitats, by calculating and testing their indicator value (indval), following Dufrêne & Legendre 324 

(1997). This allowed combining quantitative soil information with qualitative visualization of 325 

three well-defined and contrasted habitats of the Amazon region (white-sand, terra firme and 326 

seasonally flooded). 327 

Relationship between niche optimum, niche breadth and traits for each soil nutrient 328 

To address question 2, we plotted the niche breadth of species against their niche 329 

position values, for each soil variable. The linear and non-linear relationships between niche 330 

breadth and niche position were fitted using Bayesian regression models. The posterior 331 

distributions of the slope coefficients of interest were summarized through the median and 95% 332 

posterior credibility interval. The linear and non-linear (quadratic) slope coefficient 333 

distributions were fitted (Bayesian updating) using a quadratic approximation (McElreath 334 

2020). The shape of the niche breadth-position associations and the importance of the linear 335 

and quadratic coefficients were used to verify which scenario in Fig. 1 best fits the observed 336 

niche breadth-position relationship, for each soil nutrient. Coefficient values were considered 337 

as clearly positive or negative whenever at least 95% of their posterior mass probability was 338 

positive or negative (i.e., did not encompass zero). Scenarios 2 and 3 predict positive values for 339 

the linear coefficient and non-important values for scenarios 1 and 4. Scenarios 3 and 4 predict 340 

negative values for the quadratic coefficient, while the latter is expected to be non-important 341 

for scenarios 1 and 2. 342 



To address question 3, we performed a variation partitioning to quantify, for each soil 343 

variable, the fraction (adjusted R²) of species niche breadth variation explained purely by their 344 

niche position and by their functional traits. We then tested the significance of each fraction by 345 

testing whether the observed fraction (adjusted R² values) was higher than 95% of null values 346 

obtained with the MSR method described above. If the observed adjusted R² value quantifying 347 

the effect of all traits combined was higher than 95 % of the 4999 adjusted R² values obtained 348 

with the MSR procedure, than we performed a forward selection to identify the traits that 349 

significantly explained niche breadth variation (Blanchet et al. 2008). 350 

Prior to the variation partitioning, we verified whether niche breadth values were 351 

influenced by phylogeny. Phylogeny was modelled using a matrix of dummy variables 352 

assigning “1” for each species (lines) in their corresponding genus and family (in columns), and 353 

“0” for non-matching taxa. The phylogenetic effect was then tested using a residuals 354 

permutation test (Anderson and Legendre 1999), which showed no significant effect for any 355 

soil variable (Appendix S5: Table S1).  356 

All analyses described in the methods were performed in the R statistical environment 357 

(R Development Core Team, 2022). We provide the soil, tree inventory and trait data, along 358 

with our R script in the online repository folder: https://doi.org/10.7910/DVN/VWAJYR. 359 

References for the R packages used are detailed in the R code. 360 

Results 361 

Correlation of niche breadths and positions among soil variables 362 

The two PCAs performed on niche breadth and niche position values showed highly 363 

consistent patterns of variables’ projection, revealing a strong relationship between these two 364 

niche parameters (Procrustes correlation = 0.587; P <= 0.001; MSR test; Fig. 3). There was a 365 

strong coordination of species niche breadth and position for soil cations (Ca, Mg and K) and 366 

to a lesser extent for N. Increasing niche breadth and position values for N, Ca, Mg and K 367 



aligned well with increasingly acquisitive functional traits such as higher leaf N concentration 368 

(Fig. 3). Soil P concentration showed a clear decoupling of niche breadth and position values 369 

compared to the other nutrients (Fig. 3). Species significantly indicative of seasonally flooded 370 

and terra firme habitats displayed significantly higher niche breadth and niche position, as well 371 

as higher leaf N and P concentration for soil N, Ca, Mg and K concentration, compared to white-372 

sand specialists, (Appendix S6: Figure S1, and Appendix S7: Figure S1; for sample size details, 373 

see Appendix S8: Figure S1). The following analyses examine in more details the relationship 374 

between niche breadth, niche position and functional traits for each soil nutrient. 375 

 376 

Functional strategies associated with niche breadth and position 377 

Species niche breadth was positively associated with niche position for each of the five 378 

soil nutrients (Fig. 4). No clear negative quadratic term was detected for niche position, 379 

indicating that relationships were mostly linear and consistent with scenario 2 (Fig. 1). The 380 

niche breadth-position linear relationship was the strongest for soil Ca concentration (R² value 381 

= 45.1%), followed by soil N (40.2%), P (26.2%) and K (18.2%) concentration. The effect of 382 

functional traits on niche breadth nearly entirely co-varied with the effect of niche position. In 383 

other words, we did not observe any trait explaining species niche breadth alone. Niche breadth 384 

and position values were not significantly explained by the genus and family identity of species 385 

for any soil variable (R² < 1%; Appendix S5: Table S1). 386 

Functional traits contributed to species niche breadth (P ≤ 0.05; MSR test) for soil N 387 

(R² = 3.7%) and Ca (12.4%) concentration, with high niche breadth values for these two soil 388 

nutrients being associated with more resource acquisitive strategies among species, in particular 389 

higher SLA, Leaf N and Ca concentrations, and higher fine root SRL (Fig. 4). The Pearson 390 

correlations between each individual trait and species niche breadth for soil N, Ca, Mg and P 391 

concentration are shown in supplementary material (Appendix S9: Figure S1). Species niche 392 



breadth for soil K concentration was not significantly explained by functional traits (Fig. 4). 393 

Results obtained with soil Mg concentration were consistent with the ones obtained with soil 394 

Ca concentration (Appendix S10: Figure S1). Functional traits less clearly explained the niche 395 

breadth of soil P (R²=1.9%), although sapwood density was retained by the forward selection 396 

procedure, with species distributed on the most P-depleted soils showing denser wood than on 397 

less P-limiting conditions. 398 

Discussion 399 

Niche properties, characterized by species range (niche breadth) and optimum (niche position) 400 

along soil nutrient gradients, were coordinated among soil N, Ca, Mg and K, but not soil P 401 

(Fig. 3). The decoupling of species niches between soil P concentration and the other nutrients 402 

was associated with different functional strategies (Fig. 4). Our results suggest that species 403 

undergo increasing abiotic constraints that favor costly resource conservation strategies when 404 

soil fertility decreases. These abiotic constraints decrease with increasing soil fertility, 405 

allowing species exhibiting more resource acquisitive traits to occupy increasingly larger 406 

niches, in line with scenario 2 (Fig. 1). 407 

Costly poor-soil adaptations limit species edaphic ranges 408 

We found a strong positive and linear increase of species niche breadth with their niche 409 

position, for each soil nutrient (Fig. 3, 4), in contrast with predictions from scenario 1. The 410 

quadratic term of the niche breadth-position relationship was never clearly different from zero 411 

and always positive, which invalidated scenarios 3 and 4 and provided support for scenario 2. 412 

Although our sampling may not have captured the full edaphic distribution for every species, 413 

the gradients that we measured and the care with which we effected taxonomic determinations, 414 

represent a nearly complete picture for most of these species' distributions (Quesada et al. 2010, 415 

Baraloto et al. 2021), such that additional sampling would be unlikely to change the present 416 

results. It is also worth noting that the way we accounted for spatial distribution disparities 417 



among species in the analyses strongly limited the potential influences of spatial biases related 418 

to the statistical design (Taylor 1961).  419 

Species distributed on the most N and Ca-depleted soils had lower leaf nutrient 420 

concentrations, in particular N and Ca, while also showing relatively low SLA (Fig. 4, 421 

Appendix S7: Figure S1), indicating resource conservation strategies (Fortunel et al. 2014). 422 

These species also displayed relatively low niche breadth values, which may suggest that their 423 

resource conservation traits confine them to these poor soil conditions (generally white-sands), 424 

and exclude them from the more fertile terra firme and seasonally flooded soils.  425 

The positive association between species niche breadth for soil Ca concentration and 426 

SRL may reflect the existence of a fast-slow trade-off associated with soil fertility conditions, 427 

with poor soils occupied by species investing in longer roots with lower tissue quality, possibly 428 

associated with higher uptake capacity in more competitive environments. Our results may 429 

suggest that soil Ca limitation has had more influence than the four other soil nutrients studied 430 

here on fine root evolutionary history and is consistent with previous manipulative studies in 431 

tropical Amazonian forests (Wurzburger & Wright 2015). Nevertheless, root traits were 432 

generally poor predictors of niche breadth, possibly because of the multiple alternatives that 433 

plants use for nutrient capture, including investments in mycorrhizal associations, that make 434 

possible a wide spectrum of trait syndromes in the same soil conditions (Valverde-Barrantes et 435 

al. 2017). 436 

The niche breadth-position relationship was significantly positive but relatively weaker 437 

for soil K concentration (R² = 18.2%) than for soil Ca, N and P concentration (≥ 26.2%; Fig. 438 

4). Yet, niche position and niche breadth for soil K concentration did not show any significant 439 

association with any functional trait, contrary to the three other soil nutrients. Thus, while our 440 

results suggest that K may indeed limit primary productivity, which is consistent with previous 441 

studies in lowland tropical forests (Wright et al. 2011, Baribault et al. 2012, Santiago et al. 442 



2012), they also nuance the idea that single functional traits reflect edaphic adaptations among 443 

tree species. The decoupling of fast-slow economic spectra reported among Amazonian tree 444 

communities (Baraloto et al. 2010, Fortunel et al. 2012, Vleminckx et al. 2021) may partly 445 

introduce statistical noise when testing a signal between a single trait and a soil variable, and 446 

thus partly explains the weak predictive power of traits on species niche breadth.  447 

The marked niche breadth-position relationship observed for soil P (R² = 26.2%) was 448 

highly decoupled from the other four soil nutrients (Fig. 3, 4). This pattern was consistent with 449 

the orthogonality between soil P variation and the four other soil nutrients (Appendix S3: Figure 450 

S1). This orthogonality supports previous evidence that soil P availability often varies 451 

independently from cationic nutrients (Ca, Mg, K) or can even be higher on cation-poor sandy 452 

soils, due to the immobilization of P into Al oxyhydroxide complex forms in more fertile, 453 

clayey tropical soils (Walker & Syers 1976, Vleminckx et al. 2015, Turner 2018, Cunha et al. 454 

2022). In fact, P availability was even higher on white-sand forests than on the other edaphic 455 

habitats in Peru (Table 2), whereas the reverse pattern was observed in French Guiana. Yet, the 456 

overall niche breadth-position correlation remained strongly positive, even when considering 457 

the disparities of habitat differences for P availability across regions. 458 

The decoupling of niche dimensions between soil P and the other four soil nutrients was 459 

associated with different functional dimensions. More specifically, species preferences for terra 460 

firme and seasonally flooded soils, which contained the highest soil N and cation 461 

concentrations, were mostly reflected by acquisitive traits in the leaves, whereas species whose 462 

optimum was on low P availability soils tended to have denser wood. The latter signal was 463 

weak but nevertheless significant (Fig. 4), and while further studies are needed to verify 464 

consistent patterns, it may partly explain the decoupling of traits that has previously been 465 

reported among leaf and woody aboveground organs when measured across broad edaphic 466 

gradients (Baraloto et al. 2010, Fortunel et al. 2014, Vleminckx et al. 2021).  467 



In parallel with using combinations of forward-selected traits in the variation 468 

partitioning, we also followed the approach of previous studies which examined the association 469 

between functional strategies and species niche parameters by using multivariate functional 470 

variables (Kraft et al. 2015, Muscarella et al. 2016, Pistón et al. 2019). This multivariate trait 471 

approach was generally less predictive than the forward-selected trait approach shown in Fig. 472 

4 (for more details, see Appendix S11: Figure S1 and Figure S2).  473 

The overall effect of functional traits on niche breadth variation co-varied with the effect 474 

of niche position (Fig. 4). This suggests that the resource use traits studied here mostly reflect 475 

species edaphic optima and not their range of resource use. It is also worth noting that intra-476 

specific trait variation may have partly limited the detection of niche-trait association at the 477 

species level (Zuleta et al. 2022), but we lack enough trait measurements across habitats for 478 

each species to have more accurate insights. 479 

Finally, the absence of genus or family-level signal on niche breadth and position 480 

(Appendix S5: Table S1) may suggest that various edaphic niches have evolved multiple times 481 

within many different genera and families, which is consistent with recent reports (Fine and 482 

Baraloto 2016, Baraloto et al. 2021).  483 

Our results provide further support for the determinant role of soil properties in shaping 484 

tree species assembly in tropical forests (Russo et al. 2005, Condit et al. 2013, Vleminckx et al. 485 

2017, Wright et al. 2019, Umaña et al. 2021), while they also provide indirect support to the 486 

hypothesis that the strength of abiotic filtering, here mediated by soil nutrient contents, 487 

determines the degree of species habitat specialization, i.e. to what extent species are confined 488 

to smaller niches because of their costly investments in resource conservation that would 489 

potentially make them less competitive in more fertile habitats. Definitive evidence of 490 

competitive exclusion would further require adding a temporal dimension to these analyses – 491 

i.e. tree demography –, for instance relating tree growth or mortality responses to the interplay 492 



of soil, traits, and the functional similarity of the neighborhood (Fortunel et al. 2016, Muledi et 493 

al. 2020, Rozendaal et al. 2020). Such dynamics data unfortunately remain too scarce in the 494 

tropics for accurate characterization of demographic parameters for many species across the 495 

breadth of their distribution ranges, emphasizing the need for continued efforts towards 496 

establishing and monitoring long-term permanent sample plots in the tropics (Blundo et al. 497 

2021, Davies et al. 2021). 498 

Here, we did not investigate the possibility that the steep nutrient gradient occurring 499 

across habitat may overlap with a gradient of forest dynamics. Canopy disturbance and forest 500 

turnover rate are likely greater in the most fertile habitats (Baraloto et al. 2011, Baker et al. 501 

2014), with more productive tree communities exhibiting more acquisitive traits (e.g., high 502 

SLA, low leaf thickness…) for soil nutrients and light (Fortunel et al. 2014, Vleminckx et al. 503 

2020, 2021). A greater light extinction profile is also expected on fertile soils (Russo et al. 504 

2012), which may limit the competitiveness of fast-growing species in the understory, although 505 

this effect might be compensated by lower air evaporative demand and thermal constraints 506 

(Vinod et al. 2022) in the more shaded vegetation strata. Accurate gap dynamics history and 507 

light availability data will need to be better studied to further examine how light and soil nutrient 508 

gradients interact to influence niche parameters. 509 

 510 

Implications regarding forest conservation and tree responses to climate change  511 

Species adapted to poor soil conditions likely have large potential edaphic niches 512 

compared to their realized one, as they could in theory thrive on a much wider range of soil 513 

fertilities in the absence of faster-growing competitors, unlike species with higher niche fertility 514 

optimum whose realized and fundamental niches are expected to be more packed. The costly 515 

resource conservation traits displayed by poor-soil specialists are likely to exclude them from 516 

more fertile habitats, explaining the disparities between their realized and fundamental niches. 517 



These adaptations might also allow these species to extend their tolerance to other 518 

environmental constraints such as water deficiency (Baraloto et al. 2010), which occurs more 519 

frequently on highly drained white-sands than on terra firme or seasonally flooded soils. This 520 

would potentially render white-sand tree communities more resilient to more prolonged dry 521 

seasons and temperature increases predicted by climate models, predictions that are particularly 522 

threatening in the North-Eastern Amazon (Fortunel et al. 2014, Guevara et al. 2016, Esquivel-523 

Muelbert et al. 2018, IPCC 2022). These results could also pave the way for developing more 524 

evidence-based forest restoration management plans, for instance by improving the selection of 525 

tree species that would be able to establish in a wide range of environmental conditions. Further 526 

investigations of the interplay of species niche breadth, niche position and functional strategies 527 

for complementary key edaphic and climatic niche dimensions and across different tropical 528 

regions and spatial scales will be urgently needed to better predict how the current context of 529 

rapid environmental changes is likely to affect tropical forest species composition and 530 

associated ecosystem functions.  531 
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9. Tables 789 

Table 1. Summary of key descriptors of study regions, subregions and habitats. NrP = Number 790 

of plots; AR = Altitudinal Range (in m); MAR = Mean Annual Rainfall (in mm); MAT = Mean 791 

Annual Temperature (in °C). NrSp = mean number of species per plot; ENS2 = mean (calculated 792 

at the plot level) Effective Number of Species expected from 1000 random samplings (with 793 

replacement) of two individuals. The three last lines of each region represent the same 794 

information for each habitat. Numbers in parenthesis correspond to the standard deviation of 795 

the mean. 796 

 NrP AR MAR MAT NrSp ENS2 

French Guiana 64 42-529 
2157-
3129 

23.0-
26.6 

80.3 (3.6) 48.6 (5.2) 

  Saül-Limonade 12 196-253 2421 24.6 66.1 (4.2) 24.4 (4.5) 
  Trinité 6 126-320 2671 25.1 112.8 (11.7) 77.8 (14.0) 
  Itoupé 3 521-529 2530 23.0 79.7 (6.9) 30.1 (7.0) 
  Mitaraka 9 317-347 2157 24.9 70.8 (10.7) 66.1 (17.2) 
  Laussat 10 49-57 2402 26.2 74.1 (3.7) 28.0 (4.0) 
  Nouragues 8 108-345 3328 24.8 86.9 (14.0) 68.0 (20.5) 
  Petite montagne Tortue 9 47-136 3729 25.4 95.0 (10.5) 66.3 (17.0) 
  Centre Spatial Guyanais 4 43-63 2932 25.8 76.0 (9.2) 25.3 (5.1) 
  Kaw 2 254-282 3720 24.5 96.0 (6.0) 73.9 (18.5) 
  Suriname 2 196-229 2241 26.6 38.5 (3.5) 10.1 (6.3) 
  Terra Firme 20 45-347 2775 25.2 95.5 (4.4) 70.8 (7.6) 
  Seasonally Flooded 35 43-529 2723 24.9 64.7 (5.2) 24.5 (4.2) 
  White Sand 10 39-345 2908 25.7 59.5 (5.6) 21.1 (4.7) 

Peru 38 95-173 
2405-
2750 

26.3-
26.7 

101.4 (4.99) 61.2 (6.7) 

  Morona 6 143-173 2405 26.7 108.2 (6.0) 89.4 (17.2) 
  North Loreto 18 105-149 2750 26.3 101.6 (8.7) 59.9 (10.5) 
  South Loreto 14 95-139 2499 26.8 98.3 (7.5) 50.7 (9.0) 
  Terra Firme 11 95-158 2597 26.6 128.8 (5.6) 101.6 (9.6) 
  Seasonally Flooded 13 106-156 2636 26.5 87.7 (6.1) 53.4 (9.2) 
  White Sand 14 106-173 2625 26.6 86.7 (7.8) 29.8 (5.0) 
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Table 2. Mean (± standard deviation) of each soil variable in each habitat (SF = Seasonally 799 

Flooded; TF = Terra Firme; WS = White-Sand) and each study region (French Guiana and 800 

Peru). 801 

 French Guiana Peru 

Habitat SF TF WS SF TF WS 

TN (%) 2.29 (3.25) 
1.65 
(1.35) 

0.17 
(0.22) 

0.23 
(0.09) 

0.14 
(0.05) 

0.07 
(0.06) 

Avail. P 
(mg/kg) 

10.78 
(15.51) 

5.07 
(5.81) 

3.67 
(4.11) 

7.4 (5.75) 
2.25 
(1.54) 

8.4 (8.01) 

Ca (mg/kg) 1.26 (2.37) 
0.53 
(1.02) 

0.16 
(0.17) 

5.96 
(7.23) 

0.84 
(2.58) 

0.04 
(0.03) 

Mg (mg/kg) 0.81 (0.92) 
0.32 
(0.31) 

0.22 
(0.24) 

1.35 
(1.45) 

0.31 (0.6) 
0.05 
(0.04) 

K (mg/kg) 0.13 (0.11) 0.1 (0.04) 
0.05 
(0.05) 

0.18 
(0.07) 

0.06 
(0.02) 

0.06 
(0.03) 
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10. Figure captions 805 

Figure.1 (a) Hypothetical scenarios describing species frequency distributions (realized niches) 806 

along a gradient of increasing soil nutrient availability, using Gaussian curves for simplicity. 807 

(b) Translation of these scenarios into niche breadth – niche positions graphs, showing species 808 

and predicted functional strategies with symbols.  809 

Figure 2. Geographical distribution of the 13 subregions in the Amazon (red rectangles), 810 

showing the position of the plots (yellow cross symbols) within the two study regions (Peru and 811 

French Guiana). 812 

Figure 3. Projection of species and soil variables on axes 1-2 of a principal component analysis 813 

(PCA) performed on niche breadth (a) and niche position (b) values. The grey rectangle that 814 

connects both PCA graphs shows the Procrustes correlation quantifying the matching of soil 815 

variables and species projections between the two PCAs (P ≤ 0.001; MSR test). The histograms 816 

show the relative eigenvalues of each PCA axis (only the first axis in each PCA expressed more 817 

variation than expected under a broken stick model). Symbols in the graphs indicate whether 818 

species are significantly indicative of one of the three habitats (seasonally flooded, terra firme, 819 

or white-sand specialist) or not (generalist). Tables at the bottom show the Pearson correlations 820 

of niche breadth (c) and niche position (d) values among soil variables. The significant 821 

correlations (t-test of Pearson’s moment correlation) are indicated in blue (grey values were not 822 

significant). 823 

Figure 4. Niche breadth–niche position relationship among the 246 species, for each of four 824 

soil nutrients. Values indicated along x and y axes corresponded to back-transformed niche 825 

breadth and niche position values, respectively. Traits significantly explained niche breadth 826 

variation for N, Ca, and P. For these three nutrients, the Venn diagram on the right of the niche 827 

breadth-position graph shows the relative linear contribution (adjusted R² from a variation 828 

partitioning analysis) of niche position alone, traits alone, and the joint influence of niche 829 



position and traits. Individual traits that significantly explained niche breadth variation (i.e., the 830 

traits selected from a forward selection procedure, which was performed if the overall effect of 831 

traits was significant when using the MSR testing procedure; see methods for details) were 832 

indicated on the right of the Venn diagram, with colors indicating whether correlations were 833 

positive (blue) or negative (red) between niche breadth and the trait. Symbols indicate whether 834 

species are significantly indicative (significant indval) of one of the three habitats (see the 835 

legend panel at the bottom right of the figure). The two grey regions in each graph represent 836 

two different 95% Bayesian plausible intervals for predicted niche breadth values. The narrow 837 

interval shows the distribution of estimated mean niche breadth values, while the wide interval 838 

corresponds to the region in which the non-linear model expects to find 95% of actual niche 839 

breadth values at each niche position value. The equation in each graph shows the median of 840 

the Bayesian credibility interval for the linear and quadratic coefficients and the intercept. 841 

Significant coefficients (i.e., at least 95% of estimated posterior coefficient values being 842 

positive) were emphasized in bold. No significant quadratic effects were found for traits. 843 

Asterisks in the Venn diagrams indicate significant adjusted R² values quantifying the relative 844 

effect of niche position alone, traits alone and the co-variation of both niche position and traits, 845 

according to the MSR testing procedure (see methods): ***P≤0.001; **P≤0.01; *P≤0.05.  846 
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