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ARTICLE

A versatile active learning workflow for
optimization of genetic and metabolic networks
Amir Pandi 1,9✉, Christoph Diehl1,9, Ali Yazdizadeh Kharrazi2, Scott A. Scholz 1, Elizaveta Bobkova1,

Léon Faure3, Maren Nattermann1, David Adam1, Nils Chapin1, Yeganeh Foroughijabbari1, Charles Moritz1,

Nicole Paczia4, Niña Socorro Cortina1,5, Jean-Loup Faulon3,6,7 & Tobias J. Erb 1,8✉

Optimization of biological networks is often limited by wet lab labor and cost, and the lack of

convenient computational tools. Here, we describe METIS, a versatile active machine learning

workflow with a simple online interface for the data-driven optimization of biological targets

with minimal experiments. We demonstrate our workflow for various applications, including

cell-free transcription and translation, genetic circuits, and a 27-variable synthetic CO2-

fixation cycle (CETCH cycle), improving these systems between one and two orders of

magnitude. For the CETCH cycle, we explore 1025 conditions with only 1,000 experiments to

yield the most efficient CO2-fixation cascade described to date. Beyond optimization, our

workflow also quantifies the relative importance of individual factors to the performance of a

system identifying unknown interactions and bottlenecks. Overall, our workflow opens the

way for convenient optimization and prototyping of genetic and metabolic networks with

customizable adjustments according to user experience, experimental setup, and laboratory

facilities.
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The understanding and engineering of biological systems
require practical and efficient experimental and computa-
tional approaches1–5. Machine learning algorithms hold a

big promise for the study, design, and optimization of different
biological systems6–9, including genomics studies10–12, protein,
enzyme and metabolic engineering4,13,14, prediction and optimi-
zation of CRISPR sequences and proteins15–18, as well as complex
genetic circuits design and optimization19–21. Yet, applying
machine learning is limited by the need for informatics expertise
and large user-labeled datasets, which are typically time-, labor-
and cost-intensive.

Active learning, sometimes called optimal experimental
design22,23, is a type of machine learning that interactively sug-
gests a next set of experiments after being trained on previous
results24. This makes active learning valuable for wet-lab scien-
tists, especially when dealing with a limited number of user-
labeled data25. Active learning approaches reduce experimental
time, labor and cost and have been used in cellular imaging26,
systems biology27, biochemistry28–30, and synthetic biology31.
Despite these examples, a challenge in applying active learning
methods for experimental biologists is the lack of customizable
programs and workflows.

Here, aimed at democratization and standardization, we
describe METIS (Machine-learning guided Experimental Trials
for Improvement of Systems, named after the ancient goddess of
wisdom and crafts Μῆτις, lit. “wise counsel”), a modular and
versatile active machine learning workflow for data-driven opti-
mization of a biological objective function (an output/target that
depends on multiple factors) with minimal datasets. Note that,
active learning for optimizing a system is also known as Bayesian
optimization. We created METIS for experimentalists with no
experience in programming, who can use the entire process of
personalized active learning, experimental setup, data analysis
and visualization without any advanced computational skills.
METIS runs on Google Colab, a free online platform to write and
execute Python codes developed for education, data science, and
machine learning purposes32. The open platform does not need
any installation/registration and local computational power and
can be simply used via a personal copy of the respective notebook.

To establish the workflow, we first assessed the performance of
different machine learning algorithms on a minimal training
dataset and experimentally validated the best performing algo-
rithm (XGBoost) by optimization of an in vitro cell-free tran-
scription-translation (TXTL) system of Escherichia coli that is
commonly used in cell-free synthetic biology for a variety of
applications33, including biosensor development34, metabolic
pathway prototyping35, and gene circuit design36. We then
developed the modular architecture of METIS for user-defined
applications through the customization of different parameters
and factors.

We showcase the versatility of METIS on various biological
systems, starting with an in vitro gene circuit. Cell-free gene
circuits have recently received attention (e.g., as biosensors), but
are still limited in their applicability due to their poor
performance34,37. Applying our workflow, we could improve the
activity of a recently reported LacI-based multi-level controller38 by
two orders of magnitude, notably by identifying and overcoming a
fundamental bottleneck (i.e., resource competition) in the design of
the system. We further demonstrate ten-fold improved protein
production from an optimized transcription & translation unit,
demonstrating that our workflow can be used for biological
sequences based on categorical factors (i.e., combinatorial variants
of a T7 promoter, ribosome binding site (RBS), N- and C-terminal
amino acids). Finally, we use METIS to improve a complex
metabolic network, the so-called crotonyl-CoA/ethylmalonyl-CoA/
hydroxybutyryl-CoA (CETCH)39 cycle, a new-to-nature synthetic

CO2-fixation cycle, comprising 17 different enzymes plus 10 dif-
ferent cofactors and components, which was shown to be (ther-
modynamically) more efficient compared to natural
photosynthesis. Yet, the network’s full kinetic potential had not
been exploited, as efficient strategies to explore its combinatorial
space had been lacking so far. Using METIS allowed us to improve
productivity of the CETCH cycle by ten-fold with (only) 1,000
experiments, resulting in the most efficient CO2-fixing in vitro
system described to date. Overall, these results demonstrate the
ability of our workflow for the optimization of various complex
biological networks with minimal experimental efforts, providing
multiple opportunities for the study and engineering of different
biological systems in the future.

Results
Assessing the performance of different algorithms for our
workflow. We first tested which machine learning algorithm
would perform best with a limited number of experimental data
typical for a standard research lab setup. To that end, we took
advantage of an existing dataset from a recent optimization of an
E. coli extract-based in vitro TXTL system31. In their study,
Borkowski et al. optimized cell-free protein production in E. coli
lysate by varying 12 different factors including salts, energy mix,
amino acids, and tRNAs, and measuring production yield of Gfp
(produced by a plasmid expressing Gfp) as output. Altogether, the
dataset encompassed around 1000 data points. We fitted the
dataset to obtain a standard as a gold regressor (a reference model
fitted on pre-existing experimental data to evaluate new algo-
rithms) and divided it further into test and training sets, with 20%
and 80% of data, respectively. While the latter set was used to
train the model, the test set was used to validate the gold regressor
(Methods).

We used the gold regressor to assess the performance of four
different machine learning algorithms over 10 rounds of active
learning (Fig. 1a). The tested algorithms included deep neural
networks (DNN), multilayer perceptrons (MLP), linear regres-
sors, and XGBoost gradient boosting, which all show different
capabilities for a given problem set and its data sample size. Over
10 rounds of active learning with 100 data points in each round,
XGBoost and linear regressors showed better performance
(Fig. 1b) compared to DNN and MLP, which generally need
larger datasets for training40. XGBoost outperformed linear
regressors when fewer data points per round were used
(Supplementary Fig. 1).

XGBoost is an improved random forest-type algorithm,
working through gradient boosted decision trees41 by aggregating
and compiling sets of models. This algorithm is a sparsity-aware,
fast, scalable as well as versatile model for handling tabular data
with complex non-linear interactions41. These features make
XGBoost a promising algorithm for machine learning applica-
tions on different biological systems with limited datasets. For our
workflow, we therefore selected XGBoost, which has also been
used for different biological applications previously18,42,43. To
determine the minimum dataset required for optimization, we
compared active learning rounds with 5, 10, 25, and 100 data
points. Notably, a sample size as low as 10 data points still
allowed sufficient yield optimization (i.e., in the scale of the
original study31) within 10 learning cycles (Fig. 1b).

Testing the workflow with minimal experimental work. Having
validated the workflow with an existing data set, we next sought
to test it in a real-world experimental setup, simulating a situation
in which the number of combinations that can be tested is limited
by available equipment, readout and experimental cost. We chose
(again) to optimize relative Gfp production (yield) in an E. coli
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lysate TXTL system (Fig. 1c) that consists of 13 variable factors
(components).

To optimize composition of the TXTL system, we defined a
concentration range for each of the 13 factors (Code availability),
and performed an active learning process over 10 rounds
with only 20 experiments per round (Fig. 1d, see Supplementary
Note 1 for details) quantifying Gfp yield (i.e., Gfp fluorescence
reported from each composition normalized by the Gfp
fluorescence of the standard composition33), as objective func-
tion. Over 10 rounds of active learning, the relative yield
increased up to 20 and the median increased from zero to over
10 in the 9th round (Fig. 1e, see also Supplementary Fig. 2). Note

that low-yield data points (even those observed in the late
learning cycles) are equally informative as high-yield ones,
because they allow to explore the landscape around and beyond
local maxima, as defined by the exploration to exploitation ratio
of our workflow that we fully discuss in Supplementary Note 2.

Beyond the simple optimization of a given system, our
workflow can also quantify the contribution of different factors
during optimization. Figure 1f represents feature importance, i.e.,
the effect of each individual factor on the objective function. The
importance is given as a relative fraction (or percentage) in the
prediction of the values of the objective function by the model,
with the sum of all factors set to 100%. Our analysis showed that
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tRNA mix and Mg-glutamate were the most important
components in optimizing Gfp yield, while cAMP and NAD
were the least important contributors. Figure 1g shows the
distribution of Gfp yield at different concentrations of individual
factors (see also Supplementary Fig. 3). Decreasing concentra-
tions of tRNA and NTP mixes correlated with high yield, while
PEG 8000, Mg-glutamate, 3-PGA, folinic acid, and spermidine
showed similar effects at increasing concentrations. Together,
these data did not only result in an optimized TXTL system but
also allowed to identify the most crucial components during
system optimization, providing the basis for a deeper under-
standing of the system itself. All combinations and yields are
provided as results files for each experimental round (Data
availability), and the Google Colab notebook with all analyses
and visualization modules are also accessible (Code availability).

Development of METIS, a user-friendly, versatile modular
workflow. After demonstrating that our workflow is capable of
working efficiently with minimal datasets, we sought to build
METIS, a modular architecture that can be easily applied for the
optimization of different biological objective functions. We
implemented our workflow in Google Colab Python notebooks
that can be accessed by the user—without installation or regis-
tration—simply through a personal copy of the notebook from a
web browser. Defining the objective function and the variable
factors (Fig. 2a), the user can simply open the link of Google
Colab notebook and directly use the workflow as shown in
Fig. 2a, b, Supplementary Figs. 4–6.

In Supplementary Note 2, we provide a detailed description of
all features of METIS. The modular workflow enables the use of
factors with numerical values (examples in Figs. 1, 3 and 5),
categories (examples in Fig. 4, Supplementary Fig. 19), or both
(example in Figs. 3 and 5). Active learning can be initialized by
random combinations generated by the workflow in the first
round (example in Figs. 1, 3 and 4). Alternatively, pre-existing
datasets can be imported and used for optimization or
simulations (examples in Supplementary Figs. 18 and 19).
Although our workflow is designed as an active learning approach
over iterative experimental rounds, it can be also used in a
classical machine learning setup, when only using one round of
experiments. Multiple data analysis and visualization modules are
available that can be used in each round of active learning as
shown in example applications (Fig. 2b, Supplementary Note 2).
The workflow is able to generate a pipetting table output
(exemplified for the experiments in Figs. 1 and 3), which
alongside our table-to-speech virtual assistant tool, improves the
speed and accuracy of manual pipetting (Supplementary Note 1,
2). For more complex experiments where multiple components in
different volumes are required, the workflow can be interfaced

with lab automation (e.g., an EchoⓇ acoustic liquid handling
robot, see optimization of the CETCH cycle in Fig. 5).

Application of METIS for optimization of a LacI gene circuit.
Next, we aimed to apply METIS for optimization of LacI-based
gene circuits that were described recently38. Greco et al. devel-
oped a strategy for stringent gene expression by engineering
transcriptional and/or translational small RNA inhibitors
upstream of a Gfp reporter gene under the control of the pTAC
promoter (Fig. 3a). Starting from a standard pTAC architecture, a
so-called single-level controller (SLC), Greco et al. constructed
three different multi-level controllers (MLC): pTHS (toehold
switch; translational control), pSTAR (small transcription acti-
vating RNA; transcriptional control), and pDC (double con-
troller; transcriptional and translational control)38. Notably, the
authors could improve the rate of in vitro protein production by
35-fold with different MLC designs. Yet in these efforts, the fold-
change in total protein production remained low (Supplementary
Fig. 7), which was likely the result of leaky repressor-regulated
promoters in the OFF state, as noted earlier34,37. A high fold-
change in protein production, however, would be strongly desired
for application of gene circuits, e.g., as diagnostic sensors, where a
high signal-to-noise ratio is important. Additional to the high
fold-change (FC), a desired circuit should have a high level of
protein production, a feature that can be quantified by the
dynamic range (DR) (Fig. 3a).

Here, we aimed at using our workflow to optimize the SLC and
MLC LacI circuits. We performed 10 rounds of active learning
with the objective function of FC × DR, to score those composi-
tions that result in not only high fold-changes but also total Gfp
productions. The fold-change can be improved by supplying an
additional plasmid expressing LacI (under the control of a T7
promoter transcribed by purified T7 RNA polymerase) and the
dynamic range can be improved through alternative selection of
SLC and MLC circuits and through tuning TXTL composition.
The active learning cycle received input from several factors in
the E. coli cell-free system; amino acids and tRNAs, which are
important when extra DNA is added, DTT as reducing reagent,
spermidine for DNA-protein binding, and PEG 8000 as crowding
agent (Fig. 3b), and four LacI circuits (one SLC and three MLC)
were considered as one categorical feature with four alternatives.
While the objective function improved during the active learning
cycle (bottom plot in Fig. 3c), we did not observe a substantial
improvement in fold-change of Gfp production alone (upper plot
in Fig. 3c). Feature importance analysis identified the concentra-
tion of the PT7-LacI plasmid as strong contributor (Fig. 3d, e,
Supplementary Fig. 8), indicating deleterious LacI protein-DNA
interactions or resource limitation of the TXTL system through
production of the lacI protein44.

Fig. 1 Assessing the performance of different algorithms and testing the active learning workflow with minimal data points. a An existing dataset of
cell-free gene expression compositions composed of 1000 data points was used to build a gold standard regressor and assess the performance of different
machine learning algorithms in 10 rounds of active learning. b Top panel: performance of 4 algorithms, multilayer perceptrons (MLP), deep neural networks
(DNN), linear regressors, and XGBoost gradient boosting in 10 rounds of active learning (100 data points per round). Bottom panel: performance of the
XGBoost gradient boosting algorithm as the selected algorithm with different sample sizes. The boxplots with whisker length of 1.5, represent the
minimum, 25th percentile (bottom bound of box), median (center of box), 75th percentile (upper bound of box), and maximum. c An in vitro or cell-free
transcription-translation (TXTL) system (based on E. coli lysate) to test the workflow with 20 data points per round. A plasmid expressing sfGfp was added
to TXTL reaction mix along with 13 components of reaction buffer and energy mix. d Overview of the active learning cycle. 13 components are varied
starting with random compositions and over 10 rounds of results are imported to the model, which learns and suggests new compositions for improvement
of the objective function. e The plot presenting the average of triplicates (n= 3 independent experiments) of the objective function (yield) for compositions
in 10 rounds (days) of active learning. The gray lines show the median. f Feature importance percentages show the effect of each factor on the model’s
decision to calculate yields for the suggested compositions. g Distribution of different concentrations of each factor within the measured yields. The Google
Colab Python notebook and all active learning data (combinations and yields) in this figure are available at https://github.com/amirpandi/METIS.
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By performing a titration experiment with PT7-LacI, we could
show that addition of the LacI plasmid has indeed a strong
negative effect on the optimal LacI circuit (i.e., with pTHS)
(Fig. 3f) and in an independent TXTL protein production
(Fig. 3g) (see also Supplementary Note 3 for details of the active
learning cycle and titration experiments). To further investigate
this effect, we titrated the LacI plasmid with either T7 or a
constitutive promoter against a fixed concentration of the Gfp

expressing plasmid under control of either T7 or a constitutive
promoter. While increasing concentrations of the plasmid with
constitutive LacI expression did only slightly affect Gfp expression
from the T7 promoter, increasing concentrations of LacI plasmid
under T7 control strongly affected Gfp production, especially
when Gfp was expressed from the constitutive promoter (Fig. 3h).
These results indicated a resource competition between the two
plasmids, according to which the T7 promoter wins competition

Fig. 2 A representation of METIS, a modular active machine learning workflow for biological systems. a The first step is choosing an objective function
(an output/target that depends on multiple factors), then continuing with the Google Colab Python notebook, performing experiments, and visualizing and
analyzing results. b Users should define active learning parameters depending on the application, equipment, and the size of the combinatorial space.
Factors’ ranges/categories are conditions that are varied to explore the behavior of the objective function. In each round of active learning, while the users
perform experiments and label the suggested combinations with measured objective function values (parameters and factors’ conditions can be readjusted
at any round), the data can be analyzed and visualized using the workflow’s modules. See Supplementary Note 2 and Supplementary Figs. 4–6 for a
detailed explanation and guide for each step.
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at the transcriptional and consequently the translational level.
Quantifying the levels of Gfp and LacI mRNA by qPCR
confirmed a direct correlation between mRNA and Gfp
production levels, further supporting the resource competition
hypothesis (Fig. 3i).

To overcome resource competition, we tested purified LacI
protein instead of the LacI plasmid in the TXTL system, which
resulted in improved Gfp productivity (Supplementary Fig. 9).
Thus, we sought to optimize Gfp fold-change with using purified
LacI protein instead of a LacI expressing plasmid. Using a module
of METIS called “K most informative combinations” (with the
number K to be defined by the user), we extracted the 20 most
informative combinations of the active learning cycle and

repeated these 20 setup by replacing PT7-LacI plasmid with
purified LacI protein (Fig. 3j), resulting in a strong improvement
in the objective function, and in particular Gfp fold-change
(Fig. 3k). Note that among these 20 combinations were again
all four SLC and MLC circuits. All of them improved upon
providing external LacI, clearly demonstrating that resource
competition had been limiting performance of the SLC and MLC
circuits. Continuing with only one additional round of active
learning using this dataset, we were able to improve the fold-
change to up to 123 (Fig. 3k), which is 15-fold improvement
compared to that of 10 rounds of active learning with the
PT7-LacI plasmid and 34-fold improvement compared to the
initial setup.
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Overall, these experiments demonstrated how our workflow can
be used to improve the signal-to-noise-ratio of an existing in vitro
gene circuit by two orders of magnitude. Notably, the feature
importance module of METIS, which identified apparent bottle-
necks (i.e., resource competition by the LacI plasmid) and the K
most informative combinations module of the workflow were
crucial for success. A Google Colab notebook and all combinations
and results are provided through Code and Data availability.

Application of METIS on a transcription & translation unit. To
demonstrate that our workflow can also be used with categorical
factors such as biological sequences, we tested METIS for the
optimization of a transcription & translation unit. This unit is
composed of six variants of a T7 promoter45, six ribosome
binding sites (RBS)46, as well as 15 variations of N-terminal
amino acids 3 to 547, and 20 variations of the last two C-terminal
amino acids48, which is in line with two recent studies that

Fig. 3 Application of METIS for optimization of a LacI gene circuit. a LacI gene circuits characterized by dynamic range (DR) and fold-change (FC) of the
output (Gfp fluorescence) between 0 and 10mM IPTG. b Active learning by varying components of E. coli TXTL, 4 lacI circuit plasmids as alternatives, T7
RNA polymerase and a T7-lacI plasmid. c The objective function (FC × DR) and fold change (FC) values, average of triplicates (n= 3 independent
experiments) in 10 rounds of active learning. The gray lines show the median. d The distribution yield values within the range of each factor. e Feature
importance percentages showing the effect of each factor on the objective function. f Titration of PT7-LacI plasmid and T7 RNA polymerase with the
optimal composition (from active learning that achieved with pTHS circuit). The heatmaps show FC × DR (left) and FC (right) values (average of triplicates,
n= 3 independent experiments) of the titration. g Fluorescence values (average of triplicates, n= 3 independent experiments) of the similar titration as in
f but instead of the pTHS circuit, a Gfp expressing plasmid was used). h Titration of LacI plasmids with constitutive/T7 promoter in combination with a Gfp
plasmid with constitutive/T7 promoter. i The RT-qPCR results of the relative level of LacI and Gfp mRNAs after 10 h. Relative log2 resource share between
LacI and Gfp mRNA in each sample is reported to account for RNA purification efficiency variability. In h and i bars are the average of triplicates (n= 3
independent experiments) and error bars are standard deviation. j Usage of the METIS module, K most informative combinations for further LacI circuit
optimization. k Objective function FC × DR and FC (average of triplicates, n= 3 independent experiments) of 20 most informative combinations with
purified LacI (Day 0) followed by Day 1 experiments suggested by METIS. The gray lines show the median. The Google Colab Python notebook and all
active learning data (combinations and yields) in this figure are available at https://github.com/amirpandi/METIS. Source data for f–i are provided as a
Source Data file.

Fig. 4 Application of METIS for optimization of a transcription & translation unit. a The cell-free expression of sfGfp (super-folder Gfp) using plasmid,
linear DNA (PCR) and linear DNA plus GamS protein, a nuclease inhibitor that protects linear DNA from degradation. The bars and the error bars are the
average and standard deviation of triplicates (n= 3 independent experiments), respectively. b Design of a transcription & translation unit controlled by
variants of a T7 promoter, ribosome binding site (RBS), N-terminal amino acids 3, 4, and 5, and the last two C-terminal amino acids. The combinatorial
transcription & translation units are expressed from linear DNA in the TXTL system consisting of the E. coli lysate, buffer and energy mix, as well as purified
GamS and T7 RNA polymerase. c The plot representing the average of triplicates (n= 3 independent experiments) as the result of 4 rounds of active
learning, with 50 transcription & translation units tested per round. The yield is the Gfp fluorescence readout after 6 hours at 30 °C normalized by the same
value from the reference constructs commonly used in the lab (Methods). The gray lines show the median. d A list of 20 most informative combinations of
4-day active learning performed in the cell-free system (c) was downloaded and the combinations were cloned in a vector and transformed into E. coli
DH10β harboring a plasmid expressing auto-regulated T7 RNA polymerase (Methods). e Cell-free versus in vivo yields (average and standard deviation of
triplicates, n= 3 independent experiments) for the 20 most informative combinations. f In vivo yield results (average of triplicates, n= 3 independent
experiments) of Day 0 (20 most informative combinations) and Day 1 (suggested by the workflow). The gray lines show the median. The Google Colab
Python notebook and all active learning data (combinations and yields) in this figure are available at https://github.com/amirpandi/METIS. Source data for
a, e are provided as a Source Data file.
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reported the importance of N- and C-terminal amino acids on
mRNA translation47,48.

To establish a convenient cell-free screening system, we sought
to use linear DNA (i.e., a PCR product)49 as template in
combination with GamS, a small, 136 amino acid-long nuclease
inhibitor from phage λ50 that binds and protects linear DNA

from degradation. First, we validated that addition of linear DNA
with GamS resulted in gene expression levels comparable to that
of plasmid DNA (Fig. 4a), which allowed the fast and efficient
assembly of DNA templates through PCR primers without
extensive cloning, transformation, and plasmid preparation steps
(Fig. 4b).
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We then optimized the transcription & translation unit that
theoretically consists of 6 (PT7) × 6 (RBS) × 15 (N-terminal) × 20
(C-terminal) = 10,800 potential conditions (i.e., combinations)
through screening of only 200 combinations in 4 rounds of active
learning (Fig. 4b). As the objective function, we defined the yield
of the Gfp fluorescence readout of each transcription &
translation unit normalized by a construct comprising wild-type
T7 promoter, B0032 RBS and sfGfp. Yields were quantified after
6 hours of incubation of the different transcription & translation
units at 30 °C in the E. coli cell-free system supplemented with
purified GamS and T7 polymerase. Over 4 rounds of active
learning, yield of the transcription & translation unit improved
up to 12-fold on Day 3. Using a high exploration rate on Day 3
resulted in a wide distribution of yields, but no further
improvement, indicating that an optimum had been reached
(Fig. 4c). The distribution of alternative factors within the yield of
200 combinations and a representation of the feature importance
are shown in Supplementary Fig. 10. Altogether, our experiments
demonstrated again, how METIS can be used to improve a
described genetic unit by more than an order of magnitude with
minimal experimental efforts.

After having rapidly explored the combinatorial space of the
sequence controlling the transcription & translation unit in a cell-
free setup, we additionally investigated the effect of the 20 most
informative combinations in vivo (Fig. 4d). Surprisingly, however,
the cell-free and in vivo yields for the 20 combinations showed a
relatively low correlation of 0.41 (Day 0, Fig. 4e, Supplementary
Fig. 11). This indicated that although cell-free systems offer rapid
prototyping solutions, the optimal candidates are not necessarily
directly transferable in vivo. To investigate whether we can
further improve the performance of the transcription &
translation unit in vivo, we used the data from Day 0 and
continued with one more round of experiments guided by our
workflow (Day 1, Fig. 4f). This resulted in an improvement by
130% for the highest yield in vivo.

Application of METIS for optimization of the CETCH cycle.
Finally, we aimed at assessing the performance of METIS for the
optimization of complex metabolic networks. The collection of
thousands of different enzymes and recent progress in enzyme
engineering has opened the way for the design and construction
of synthetic metabolic networks with new-to-nature
properties35,51,52. One recent example is the CETCH cycle
(Fig. 5a), a synthetic in vitro metabolic network consisting of 17
different enzymes that was built around a highly efficient CO2-
fixing enzyme, Crotonyl-CoA carboxylase/reductase (Ccr), con-
verting CO2 into the C2-compound glyoxylate39 or glycolate53.
Notably, the CETCH cycle is more efficient than natural

occurring CO2-fixing pathways like the Calvin-Benson-Bassham
(CBB) cycle39. However, since the enzymes used for its con-
struction derive from different organisms and thus metabolic
backgrounds, several rounds of rational optimization were needed
to harmonize the enzyme reactions and cofactors used in the
cycle; and even though the kinetic parameters of the individual
enzymes are known, their interactions in such a complex setup
are non-linear, hardly predictable and basically impossible to
disentangle with pure rational approaches. Hence, we sought to
use our active learning workflow to improve the CETCH cycle’s
productivity further.

The setup of the CETCH cycle consists of 27 components
encompassing 13 core enzymes, as well as four accessory
enzymes, and nine other components such as magnesium
chloride, CoA, NADPH, ATP and the starting substrate
propionyl-CoA (see all components in Fig. 5 and their
concentration range in the Code availability). To minimize
handling errors and automate the experimental setup of
individual CETCH assays, we used an ECHO® 525 acoustic
liquid handler with a minimal pipetting volume of 25 nL.
Miniaturizing the assay to 10 µl of total volume allowed us to
work with 384-well plates and assay 125 different conditions in
triplicates per active learning round (Fig. 5b). To determine the
CETCH cycle’s productivity (i.e., formation of glycolate from
CO2), we developed an LC-MS (liquid chromatography-mass
spectrometry) method using 13C2-glycolic acid as an internal
standard (Methods).

For the first five rounds of optimization, we used product yield
(glycolate) as objective function (for a description of the used
parameters see Supplementary Note 4). After four iterative
rounds, we reached a final concentration of 2.87 ± 0.09 mM
glycolate in the best performing condition starting from 100 µM
propionyl-CoA (Fig. 5c). This yield translates into 57.4 fixed
CO2-equivalents per acceptor (propionyl-CoA) and is >10 times
more productive compared to the originally reported,
already rationally optimized version 5.4 of the CETCH cycle39.

As we had not restricted the component resources during
optimization, most of the superior conditions used more enzymes
(compared to CETCH 5.4) to increase glycolate production
(Supplementary Fig. 12). Next, we aimed at increasing specific
productivity of the CETCH cycle. To that end, we took the data
from the initial five rounds of unrestricted optimization and
divided the glycolate yield values by the total concentration of
enzymes used for each combination. This data was fed back to
METIS and three additional rounds of active learning were
performed with the new objective function, called “efficiency”
(Fig. 5d). Optimization of efficiency identified one condition in
round seven that is about six times more efficient than CETCH
5.4 and 14% more efficient than the best condition from the

Fig. 5 Application of METIS for optimization of an in vitro CO2-fixation pathway (CETCH cycle). a Reaction sequence of the CETCH cycle (see Methods
for enzyme names and information). b Active learning with 125 conditions tested in each round. ECHO® liquid handler pipetted the combinations and the
reactions were started with 100 µM propionyl-CoA and stopped after 3 h. The glycolate content was measured by LC-MS. c Optimization of the CETCH
cycle with glycolate yield. d Summary of the optimization and the switch of the objective function. e Transformed data of c (glycolate yield divided by the
total amount of enzymes = efficiency) for rounds 1–5, shaded region, and the data of three additional rounds of optimization with efficiency as the objective
function (rounds 6–8). The yields in c and e are average of triplicates, (n= 3 independent experiments) and the gray lines show the median. f, g Feature
importance of factors for active learning in c and e, respectively. h–l Manually pipetted experiments for seven conditions, three highest glycolate yields
(blue, orange and red), a control (black) and three randomly picked underperformed conditions (green, lavender, burgundy) color coded the same in
h–l and circled in c and/or e. These plots show glycolate production over 8 h (h) and its first 15 min with slopes (i), initial production rate versus the final
glycolate yield (j), total amount of measured CoA esters after 8 h versus the final glycolate yield (k), and quantified CoA esters over 8 h (l). The plotted
values in h–k are the average of triplicates (n= 3 independent experiments), and the error bars represent the standard deviation. In (l), bars are the
average of triplicates (n= 3 independent experiments), each compound is plotted with error bars in Supplementary Fig. 17. In l the amount of propionyl-
CoA within the zero samples is the added amount (100 µM) to start the reaction and was not measured by LC-MS. The Google Colab Python notebook and
all active learning data (combinations and yields) in this figure are available at https://github.com/amirpandi/METIS. Source data for h–l are provided as a
Source Data file.
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unrestricted optimization achieved in round four (Fig. 5e, see also
Supplementary Figs. 12 and 13).

To learn more about the possible bottlenecks of the CETCH
cycle, we used the feature importance module of the METIS
workflow along with plots visualizing the yield distribution over
the range of each factor (Supplementary Figs. 14, 15). One of the
most important contributors for both optimization efforts is the
enzyme Methylsuccinyl-CoA dehydrogenase (Mco) (Fig. 5f, g).
The enzyme’s low activity of 0.1 U/mg and its unstable substrate
methylsuccinyl-CoA, which is prone to spontaneous hydrolysis,
likely require large amounts of Mco to preserve flux through the
cycle54. During efficiency optimization, the two most important
components were 4-hydroxybutyryl-CoA synthetase (Hbs) and
coenzyme B12 (Fig. 5g). Analysis of the top 10% best performing
conditions (Supplementary Figs. 12 and 13) revealed that the
concentrations of Hbs and B12 were significantly lower compared
to the control (CETCH 5.4). To verify that high concentrations of
Hbs have a negative impact on the cycle, we tested our control
assay with ten times less and with five times more of the enzyme.
Indeed, increasing Hbs concentration in the original assay
decreased yield by 40%, while decreasing Hbs by one order of
magnitude did not lower glycolate yield (Supplementary Fig. 16).
Regarding the negative impact of higher concentrations of B12, we
reasoned that cobalt released from damaged cofactor could
inhibit enzymes. Similar to high concentrations of Hbs, addition
of cobalt to the original assay led to a decrease in glycolate yield
(Supplementary Fig. 16).

To understand the dynamic behavior of the different CETCH
cycle variants, we manually repeated the top three conditions
(highest glycolate yields), a control (see Supplementary Note 4) and
three underperforming conditions, taking time point samples for
eight hours. The yield from this manual approach reflected the yield
from the previous automated, miniaturized experiments, validating
the results of our optimization efforts (Supplementary Table 3).
Interestingly, the final glycolate yield after eight hours (Fig. 5h) and
the initial glycolate formation rates of these conditions over the first
15minutes (Fig. 5i) were highly correlated (Fig. 5j), indicating that
total flux and not improved enzyme/cofactor stability (or life-time)
was responsible for the observed increased productivity of the
system. This trend was further confirmed by a detailed analysis of 9
CoA-ester intermediates at different time points (Fig. 5k, l).
Quantification of the CoA-ester intermediates did not show
accumulation of single metabolites in the underperforming condi-
tions or the control, indicative of specific bottlenecks (Fig. 5l,
Supplementary Fig. 16). Instead, the underperforming conditions
showed overall a faster depletion of intermediates, in line with the
hypothesis that high flux through the cycle is important to prevent
the loss of intermediates towards side reactions or hydrolysis.

In summary, our optimization efforts of the CETCH cycle
resulted in variants that showed more than ten-fold productivity
and almost six-fold improved efficiency, representing to the best
of our knowledge the most efficient in vitro CO2-fixing system
described to date.

Discussion
In this work, we describe METIS, a versatile, modular active
learning workflow for the optimization of various biological
objective functions, such as genetic and metabolic networks. This
study democratizes machine learning applications for experi-
mentalists without any programming skills or sophisticated lab
equipment. We provide Google Colab notebooks (see Code
availability) that can be adapted to different optimization appli-
cations (also known as Bayesian optimization) and even used for
data-driven predictions (for use of the latter see Supplementary
Table 1, Supplementary Note 5, Supplementary Fig. 18).

For tailoring the workflow, the number of rounds and experi-
ments per round need to be defined, which should take into account
the number of different factors and their conditions, complexity of
the objective function, as well as experimental throughput. For
applications with a larger combinatorial space, more combinations
need to be tested (Fig. 5). However, if the number of experiments is
limited by cost, effort, or lab equipment, performing active learning
in more rounds can be used to compensate for a lower number of
total combinations tested. To explore a system beyond a local
optimum, it is advised to adapt the exploration to exploitation ratio
for each round individually (fully discussed in Supplementary
Note 2). Users should apply their knowledge on the system and
implicitly check whether the value of a given factor is fixed too early,
probably indicating a low exploration to exploitation ratio. On the
other hand, a high exploration to exploitation ratio might push the
model towards random combinations, asking for a proper balance to
enable explorative as well as exploitation sampling. In our empirical
experience, the exploration to exploitation ratio should gradually
decrease towards the late rounds of active learning to enable more
explorative combinations in early rounds and more exploitation in
late rounds for efficient optimization (Supplementary Note 2).

Workflows can be started either from scratch (random com-
bination as initialization) or using existing datasets (then per-
forming active learning). Although our workflow is designed as
an active learning approach (over multiple rounds of experi-
ments), it can also be used as a classical machine learning with
only one round of experiments. Factors of a given objective
function can be numerical and/or categorical. Active learning
parameters can be further customized using a detailed explana-
tion in Supplementary Note 2.

METIS provides a variety of choices for visualization and analysis
of results. Most importantly, our workflow can quantify importance
of individual features and provide a number of most informative
combinations, which has both proven particularly useful during LacI
gene circuit optimization (Fig. 3). Using these features of the
workflow allowed us to not only to improve the fold-change of the
circuit, but also spot and, using additional experiments, verify a
major bottleneck in the further optimization of the system (i.e., the
LacI expression plasmid). After replacing the LacI expression plas-
mid with purified LacI protein, we were able to improve the circuit
by more than two orders of magnitude compared to the original
system. Notably, we did not have to re-perform active learning when
switching to purified LacI instead of the LacI plasmid. The 20 most
informative combinations generated through our workflow offered a
short and quick path toward optimization.

Applying METIS onto different biological systems, we
demonstrate that our workflow is able to optimize several com-
plex genetic and metabolic networks of medium to large com-
binatorial space with minimal experimental efforts. As example,
we improved the CETCH cycle a system of 27 variable factors
including enzymes, cofactors, and buffer composition, spanning a
theoretical combinatorial space of ~1025 different conditions.
Performing only 1,000 (triplicate) assays over 8 rounds of active
learning yielded a system with ten-fold improved productivity
and six-fold increased efficiency, representing the most efficient
in vitro CO2-fixation system described to date.

The development and application of complex genetic and
metabolic networks in synthetic biology is dramatically increasing
and require new tools for their data-driven analysis. Efficient
explorative approaches are needed not only for the optimization
of existing biological networks, but also for the design and rea-
lization of new-to-nature genetic and metabolic networks for
which sampling the entire combinatorial space becomes practi-
cally impossible. Apart from network optimization with minimal
experimental datasets, METIS can simultaneously help to dis-
cover so far unknown interactions and bottlenecks in these
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networks, which paves the way for their hypothesis-driven
improvement. In the LacI circuit optimization, we showed how
a bottleneck (i.e., resource competition) can be identified, tar-
geted, and finally overcome, which allowed us to improve the
system by 34-fold. Similarly, during optimization of the CETCH
cycle, we identified Mco, Hbs and B12 as limiting factors.

Numerous applications of the METIS workflow can be envi-
sioned in the future, including the optimization of growth media
and/or biochemical assays, genetic circuits, from simple tran-
scription & translation units to more complex designs, or the
guided engineering of proteins, enzymes, and metabolic pathways
in vivo and in vitro. With its convenience and easy access, METIS
opens the door for the study, prototyping, (combinatorial) engi-
neering, and optimization of these systems in an efficient, stan-
dardized, and systematic manner.

Methods
Gold regressor and analyzing different machine learning algorithms. To find
out which machine learning algorithm and sample size are suitable for our
workflow, we conducted the following simulation:

– 1017 data points (compositions and yields) were collected from a recent
study31.

– An XGBRegressor model (gold regressor) was trained on 80% of the dataset
and 20% of the dataset was used for validation and to avoid overfitting via
early stopping.

– 100 combinations produced randomly within the range of each factor
for Day_1.

– Instead of doing experiments in the laboratory to determine the yield of each
combination, yield values were assigned by the gold regressor.

– Note that, in this phase the test model predicts the yields and ranks them to
suggest for the experiments of the next day, and the gold regressor (trained on
pre-data) is used to assign yield values by prediction instead of performing the
experiments in the laboratory.

– For each machine learning model (MLP, DNN, linear regressors, XGBoost) an
ensemble of 5 models with different hyperparameters was produced.

– Note that the linear regressors is a deterministic approach so we just
duplicated a model 5 times for which all predictions are the same.

– Each ensemble was trained on Day_1 data.
– 100000 random combinations were generated, and their corresponding yield

was predicted by the ensemble of models and ranked by UCB score (see
method section for the core algorithm of active learning), top 100
combinations were suggested for the next day. Yields were assigned by the
gold regressor.

– The last two steps were repeated for other days, and on each day the model
was trained on all the previous days’ data.

Note that, in Fig. 1b for different sample sizes with XGBoost, 5, 10, 25, or 100
combinations were suggested for the next day.

Hyperparameters: MLPRegressor from Sklearn (fully connected architecture with
Relu activation function) was used for MLP. In ensemble of 5 models the following
number of neurons were used in the hidden layer: (10, 100, 100, 20), (20, 100, 100, 10),
(20, 100, 100, 20), (10, 100, 100, 10), (20, 100, 100, 50). For DNN we used the Keras
implementation of fully connected layer architecture with 100, 100, 20 neurons for
each of hidden layers. For Linear Regression the default implementation of Ordianry
Least Square by Sklearn was used. XGBRegressor with following parameter was used
for XGBoost model: objective= ‘reg:squarederror’, n_estimators = 500, learning_rate
= 0.01, max_depth = 6, min_child_weight = 1, subsample = 0.8.

General description of METIS notebook. All scripts used in this study were written
in Python 3. Our modular tool, METIS, runs on Google Colab working through web
browsers with a link without users needing to install Python or any packages.

Packages used in the development of METIS:

– Data processing: pandas (1.1.4) and numpy (1.18.5)
– Data visualization: matplotlib (3.2.2) and seaborn (0.11.0)
– Machine learning and deep learning: scikit-learn (0.22.2.post1), xgboost (0.90),

and Keras (2.3.1) using TensorFlow backend.

The core algorithm of active learning. After measuring the value of the objective
function (yield) for random combinations of Day_1, we continued with the fol-
lowing algorithm:

– RandomSearchCV is used to find the optimal 20 hyperparameters for the
XGBoost model.

– The ensemble of 20 models is trained with the hyperparameters on data from
all previous days (Day_1 to present day).

– 100000 combinations out of possible combinations are randomly selected.
– The mean and standard deviation of ensemble predictions are calculated.
– The combinations are sorted based on Upper Confidence Bound (UCB)

score:31 exploitation * (average of predictions) + exploration * (standard
deviation of predictions).

– To perform experiments of the next day, the combinations with the highest
UCB values are suggested.

The high standard deviation represents the uncertainty and improves the
prediction power of models, whereas a high average value weighs favorable
combinations leading to higher yields. Hence a coupled score taking into account
these two factors ranks the most promising combinations31. Note that the active
learning for optimization of objective functions is also called Bayesian
optimization55. In Supplementary Fig. 21 we show optional data preprocessing and
an improved XGBoost model. See Supplementary Fig. 22 for an optional scoring
(can be defined when using METIS), batch UCB that can generate richer
combinations for subsequent rounds.

Finding K most informative combinations. The K most informative combina-
tions are calculated using the following algorithm:

– RandomSearchCV is used to find the optimal 20 hyperparameters for the
XGBoost model.

– 2000 subsets of length K are selected from the tested combinations. The total
number of possible subsets is represented in Eq. (1).

N
K

� �
¼ N!

K! ´ N � Kð Þ! ð1Þ

– Then a new XGBoost with the optimal hyperparameter is trained on each
subset. The model performance is then validated on unseen combinations
using the Spearman correlation coefficient.

– All subsets are sorted based on their Spearman correlation coefficient, the top
5 are then chosen. Each of these 5 could be used.

Note that increasing the number of subsets leads to a longer training time.

Finding feature importance. Feature importance values have been calculated with
the following algorithm:

– RandomSearchCV is used to find the optimal hyperparameter for the
XGBoost model.

– The model is trained using the selected hyperparameter. Using the built-in
“feature_importances_” property of the XGBoost package, the ratio of feature
importance is calculated throughout the training process for each day
cumulatively.

Finding nonlinear (mutual) interactions. In complex systems, factors usually
interact with each other and epistatically affect the output. These interactions can
be among many factors, however, the most relevant is the mutual or double
interaction between factors56. This analysis can be a hint to discover biological
phenomena’s behavior. The mutual interactions were calculated through the fol-
lowing algorithm:57

– A linear regression model is fitted on the dataset and its performance is
evaluated based on the R squared of predicted and actual values. This
performance is considered as the baseline.

– Iteratively, a new feature is added to the temporary dataset that equals Fi × Fj
for i and j in the list of factors.

– The linear regression is fitted on the temporary dataset (which now has one
more feature, Fi × Fj) its performance is measured similarly to the baseline.

– The difference between each performance and the baseline, j, is calculated and
visualized.

METIS prediction. In contrast to METIS optimization that tries to find the most
promising combinations through maximizing the objective function, METIS pre-
diction aims to maximize the model performance on the prediction of the objective
function for unseen combinations. We modified the core active learning algorithm:

– Instead of UCB (exploitation × mean + exploration × std), combinations are
sorted based on only their std value and set exploitation to zero. This enables
picking the most uncertain combination for the next round.

– At the end of each round, it returns a trained model instead of promising
combinations, and the R squared of prediction is improved over rounds.

Performance analysis using cross-validation. To evaluate the model perfor-
mance of the enzyme engineering notebook, we used k-fold cross-validation. In
each round, all the tested combinations are divided into k subsets (k = 5 for
Supplementary Figs. 18, 19), then in five steps we trained the model on 4 and
evaluated its performance (R2 Pearson) on the other subset. This process was
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repeated for all 5 subsets. In the end, the average performance on all subsets was
reported as the model’s performance. We used sklearn built-in function for cross-
validation.

Table-to-speech virtual assistant. This tool helps molecular biologists to boost
their manual liquid handling through reading volume and destination well in
ascending order, therefore minimizes the need for changing the pipetting volume.
We used the Google Text2Speech python package to transform the text into a voice
file. There are two ways to interact with this notebook to continue with the next
pipetting volume. The first is to do it manually with your keyboard (what we did),
the second is using the voice assistant. For transforming voice to text (specific
commands like ‘next’, ‘repeat’, etc.). We used the SpeechRecognition (3.8.1) python
package. The code is available on https://github.com/amirpandi/Liquid-Handling-
Assistant.

Plasmid and DNA preparation. The constitutive Gfp under the control of J23101
promoter and B0032 RBS was built in a recent study (pBEAST-J23101-B0032-
sfGfp)58. Using golden gate cloning (BsaI-HFⓇv2 NEB #R3733L, T4 DNA ligase
NEB #M0202T), in this plasmid, the super folder Gfp gene was replaced by LacI for
constitutive-LacI, then the promoter was replaced by a T7 promoter (gaatttaa-
tacgactcactatagggaga) to construct PT7-LacI plasmid. Since we used T7 promoters,
a T7 terminator from Temme et al.59 (tactcgaacccctagcccgctcttatcgggcggctagggg
ttttttgt) was cloned downstream. The version of LacI gene is similar to those in LacI
circuits built by Greco et al.38. Plasmids for the cell-free gene expression were
purified using the Machery-Nagel NucleoBond Xtra Maxi kit. For protein pur-
ification using His tag, sfGfp and LacI genes were cloned with an N-terminal His
tag under IPTG-inducible T7 promoter.

For cell-free experiments for optimization of the transcription & translation
unit (Fig. 4b), PCRs were performed using Q5Ⓡ High-Fidelity 2X Master Mix (NEB
#M0492L), sfGfp as the template, and primers (Eurofins and Sigma-Aldrich) with
overhangs harboring PT7, RBS, and N-terminal sequence (forward primer) and
C-terminal (reverse primer) at the final volume of 50 µL. After verification of PCRs
using agarose gel, Monarch PCR & DNA Cleanup Kit (NEB #T1030L) was used to
purify the fragments and they were all adjusted to the concentration of 100 nM to
use for active learning experiments.

For in vivo experiments of the transcription & translation unit (Fig. 4d) PCRs
were done similar to the cell-free experiment. Restriction sites for BsaI enzyme
were designed on either side of PCR fragments enabling for goldengate assembly
into a pSEVA224 vector (a low copy plasmid with kanamycin marker) from the
SEVA collection60,61. Since we used T7 promoters, a T7 terminator from Temme
et al.59 (tactcgaacccctagcccgctcttatcgggcggctaggggttttttgt) was cloned downstream.

Protein purification. For all enzymes involved in the CETCH cycle, expression
and purification were performed as previously described62. Other proteins, T7
RNA polymerase (addgene #124138), GamS (addgene #45833), sfGfp, and LacI
were His-tag purified using ProtinoⓇ gravity columns (Machery-Nagel #745250)
and ProtinoⓇ Ni-NTA Agarose (Machery-Nagel #745400). 1 L cultures in LB
media supplement with appropriate antibiotic were subcultured (1:100) from
overnight precultures. Cultures were grown at 37 °C for two hours, then induced by
0.1 mM IPTG, incubated for 3 more hours at 37 °C to produce proteins. Cells were
harvested at 8000 g for 10 min, pellets were resuspended with 5 mL NPI-10 buffer,
and sonicated. Samples were centrifuged at 18000 g for 1 hour at 4 °C. The equi-
libration, wash, and elution steps were done according to the manufacturer’s
protocol. Next, imidazole desalting was performed using PD-10 desalting columns
(GE Healthcare #17085101) according to the manufacturer’s protocol. The pur-
ification was verified using the SDS page and the protein concentrations were
determined using the Bradford assay. Glycerol was added to the protein samples to
a final percentage of 10%, then they were aliquoted and after flash-freezing in liquid
nitrogen, stored at −80 °C.

Lysate preparation. E. coli lysate was prepared using an autolysis strategy63.
Briefly, freeze-thawing E. coli BL21-Gold (DE3) cells with a pAS-LyseR plasmid
produce a high-quality extract. Overnight precultures in LB-ampicillin media at
37 °C were subcultured in 5 × 2 L 2xYTPG medium supplemented with ampicillin
and grown at 37 °C to the OD = 1.5. Cells were harvested (2000g, 15 min, room
temperature) in 10 centrifuge bottles and 90 mL of cold S30A buffer (50 mM Tris-
HCl at pH 7.7, 60 mM K-glutamate, 14 mM Mg-glutamate, to the final pH of 7.7)
was added to each. After vigorous vortexing, each was divided into two preweighed
50 mL falcons and centrifuged (2000g, 15 min, room temperature). The super-
natants were removed carefully and after weighing falcons with pellets, the net
weights were calculated. Two volumes of cold S30A with 2 mM DTT, were used to
resuspend each pellet (2.8 mL for 1.4 g pellet), which were then vortex-mixed, and
stored at −80 °C. The next day, frozen cells were thawed in a water bath at room
temperature, vigorously vortex-mixed, and incubated at 37 °C shaking for 45 min.
The vortexing and 45 min incubation steps were repeated. Finally, the samples were
centrifuged (30000 g, 60 min, 4 °C) to obtain the cell extract. The supernatants were
gently pipetted out in 1.5 tubes, recentrifuged (20000 g in a tabletop centrifuge,
5 min, 4 °C) to remove all the remaining cell debris aliquoted, and after freezing in
liquid nitrogen stored at −80. For the composition of the cell-free reaction buffer

and energy mix, all chemicals were used as by Sun et al.33 except for amino acids
(L-amino acids set, Sigma #LAA21-1KT).

Cell-free reactions. To perform the active learning experiments in Figs. 1 and 3,
Table2Seech_Volume.csv file of each round was downloaded from the notebook
and uploaded to the table-to-speech virtual assistant notebook. Before starting the
pipetting, we arranged all pipette tips with numbers written on one side of tip
boxes (two boxes side by side) from 1 to 20 (for 20 data points). PCR tubes in
which the compositions were going to be mixed also were numbered on racks from
1 to 20. The numbering increases the accuracy of the manual pipetting. Next, the
table-to-speech assistant was run on a laptop on the bench and the space key was
set in the Google Colab settings to run the code. After pipetting each factor into the
corresponding destination, while the right hand was replacing the tip, the left hand
pressed the space key to hear the next pipetting step in a headphone as well as to
see the action appearing on the screen. The table-to-speech assistant goes line by
line for each factor and ranks the pipetting values from minimum to maximum,
hence, minimizes changes in the pipette volume. For fixed elements such as HEPES
and lysate, a master mix was made and after finishing pipetting all combinations,
the master mix was added to each. All the steps were performed on ice. At the end,
samples were gently mixed (not to generate bubbles) using a multichannel pipette
and 10 µL of each was transferred into a 384-well plate (Greiner Bio-One #784076).
Note that the volume of mixtures should be at least 20% in excess in PCR tubes not
to face difficulties in the final pipetting step into the 384-well plate. The Gfp
fluorescence was monitored (excitation: 485, emission: 528 nM, gain: 80) every
10 min in a plate reader (Tecan Infinite 200 PRO).

The yield (objective function) in Fig. 1e, as provided in the Data availability, is
the Gfp fluorescence (after 6 h incubation at 30 °C) of each composition
normalized by a composition in which the concentration of all variable factors is at
mid-range. However, the plotted yields are those values divided by 0.33, the average
ratio of Gfp fluorescence between the active learning reference and a commonly
used composition33. The objective function of the LacI circuit active learning in
Fig. 3c is fold-change (FC) × dynamic range (DR) of the output (Gfp fluorescence)
between 0 and 10 mM input (concentration of IPTG). For cell-free reactions in
Fig. 4c, the final volume of 5 µL was prepared directly in a 384-well plate, 10 nM
final concentration of each linear DNA was transferred and the mix of other
components of the cell-free lysate plus T7 polymerase (40 µg.mL−1) and GamS
(2 µM) was added while gently mixing. The yield (objective function) in Fig. 4c is
the Gfp fluorescence readout (after 6 h of incubation at 30 °C) of each transcription
& translation unit normalized by the Gfp fluorescence of a commonly used
sequence in our lab, wild-type T7 promoter, B0032 RBS, and sfGfp sequence. For all
cell-free reactions, the Gfp fluorescence readout of the extract with no DNA was
subtracted before yield calculations.

RT-qPCR experiment. Total RNA was extracted from cell-free expression reac-
tions with a kit (NEB #T2010), following the manufacturer’s instructions. Initial
qPCR analysis indicated that a substantial amount of plasmid DNA remained in
control reactions, which did not include reverse transcriptase to synthesize cDNA.
Therefore, samples were subsequently treated to an additional DNase treatment by
TURBO DNA-free™ Kit (Invitrogen™ #AM1907) according to the manufacturer’s
instructions. The resulting RNA produced a substantial qPCR signal (iTaq Uni-
versal SYBR Green Supermix Bio-Rad #1725120) when converted to cDNA by
ProtoScript® II Reverse Transcriptase (NEB #M0368) using the standard protocol
and random hexamer primers (ThermoFisher #SO142), but not in control reac-
tions lacking reverse transcriptase. In order to account for potential sample-to-
sample variability in extraction efficiency, all data presented herein is represented
as a relative difference in cycle threshold (Ct) between Gfp and LacI cDNA
within each sample. Standard curves with known concentrations of plasmid
DNA were analyzed in parallel for Gfp and LacI primer sets, indicating
comparable qPCR efficiencies and template specificity. No further normalization
was required.

Western blot. Cell-free expression reactions and LacI-6xHis purified protein
dilutions were mixed with 4 µL of non-reducing sample loading buffer (Thermo
Scientific #39001) and incubated at 90 °C for 5 minutes. The samples were then
loaded into pre-cast SDS-PAGE gels (Bio-Rad #4561095) and separated by elec-
trophoresis. The gel was then immediately placed into a Bio-Rad TransBlot® Turbo
apparatus for protein transfer onto a nitrocellulose membrane (Bio-Rad #1704158).
Since all samples were produced from the same batch of cell-free expression
reaction mix or were of known concentration, total protein concentration was not
assessed. Western blot analysis was performed using a monoclonal antibody
against LacI clone 9A5 (Sigma-Aldrich #05-503-I) and an anti-mouse HRP-con-
jugated secondary antibody (Invitrogen #31430) with dilution of 1:1000 and
1:100,000, respectively. After dispensing the detection reagent as indicated by the
manufacturer (Neogen #324175), the blot was immediately imaged on a Bio-Rad
ChemiDoc. A single clear band corresponding to the molecular weight of LacI was
detected in lanes containing purified LacI or expression from a LacI-containing
plasmid (see inset, Supplementary Fig. 9a).
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In vivo experiment of transcription & translation units. After cloning tran-
scription & translation units into the pSEVA224 vector (plasmid and DNA pre-
paration section), they were transformed into E. coli DH10β harboring an
autoregulated T7 RNA polymerase circuit (addgene #71428)64. 3 colonies of each
were cultured in LB with 30 µg.mL−1 ampicillin + 30 µg.mL−1 kanamycin in a 96
deep well plate. After 10 hours of cultivation at 37 °C, 10 µL of each was added to
190 µL LB with 30 µg.mL−1 ampicillin + 30 µg.mL−1 kanamycin in a 96-well plate
(Thermo Scientific #137101). The Gfp fluorescence was monitored (excitation: 485,
emission: 528 nM, gain: 80) every 30 min in a plate reader (Tecan Infinite 200
PRO) shaking at 37 °C. The in vivo yield in Fig. 4e, f is the Gfp fluorescence readout
(after 6 h) of each transcription & translation unit normalized by the Gfp fluor-
escence of a commonly used sequence in our lab, wild-type T7 promoter, B0032
RBS, and sfGfp sequence. The Gfp fluorescence readout of cells with no sfGfp gene
was subtracted before yield calculations.

Workflow for CETCH assays in 384-well plates. The worklist generated by the
METIS script was dissected into 5 worklists: dH2O, Buffers and Cofactors,
Enzymes, Carbonic Anhydrase, and Substrate (pco: propionyl-CoA oxidase, ccr:
crotonyl-CoA carboxylase/reductase, epi: ethylmalonyl-CoA/methylmalonyl-CoA
epimerase, mcm: methylmalonyl-CoA mutase, scr: succinyl-CoA reductase, ssr:
succinic semialdehyde reductase, hbs: 4-hydroxybutyryl-CoA synthetase, hbd: 4-
hydroxybutyryl-CoA dehydratase, ecm: ethylmalonyl-CoA mutase, mco:
methylsuccinyl-CoA oxidase, mch: mesaconyl-CoA hydratase, mcl: β-methylmalyl-
CoA lyase, gor: glyoxylate reductase, kat: catalase, fdh: formate dehydrogenase, ck:
creatine phosphokinase). For source of enzymes and kinetic parameters see
Schwander et al.39. In cases where pipetting errors occurred, we used our Excep-
tions_to_Worklist script for correction of failed transfers (provided in Code
availability). This script generates a new worklist out of the exception file generated
by the ECHO® and provides a list with how much volume needs to be added into
which well. Dissecting the worklists guarantees for example that all buffers are
transferred before enzymes are added. Note that we used fresh enzyme stocks in
each round to prevent loss of activity due to repetitive freeze-thaw cycles. As source
plates we used ECHO® qualified 384-Well PP 2.0 Plus Microplates from Labcyte
and used AQ_GP as the liquid class (AQueous solution; Glycerol/Protein). This
liquid class was tested previously with the stocks of our assay components.

We also added a control condition with composition derived from the
published assay of CETCH 5.4 (for the composition, see Assays for determination
of new enzyme stocks after round two section in Supplementary Note 4). Controls
can be added in the workflow as specials. The yield of our control condition
increased from round 2 to 3, where new enzyme batches of four enzymes were used
(Supplementary Fig. 16b). To identify the enzyme that was the reason for that, we
tested the control assay with each of the four old enzymes separately
(Supplementary Fig. 16b). Despite being important in the control (~280 µM in
round 1 and 2), catalase did not seem important in each condition, since we
reached yields up to 1500 µM already in round 2 with the old stock (Fig. 5c).

After starting the assays with 100 µM propionyl-CoA we used an Axygen®
Breathable Sealing Film (BF-400-S) to cover the 384-well PCR Plate (AB-1384) to
allow the transfer of oxygen. The reaction (10 µL volume) was carried out at 30 °C
and mild shaking at 160 rpm in an Infors HT Ecotron shaker. The reactions were
stopped after 3 h with 1.25 µL of 500 mM polyphosphate and 1.25 µL of 50% formic
acid. While the formic acid quenches the reaction, the polyphosphate was used for
enhanced precipitation of the proteins. The plate was spun for 1 h at 2272 g and
4 °C to pellet the proteins.

For analysis by LC-MS, we used a multichannel pipette to transfer 1 µL of the
supernatant into 9 µL of precooled dH2O in a new 384-Well Thermo-Fast® plate.
Afterward, we added 10 µL of 10 µM 13C2 labeled glycolic acid as an internal
standard. The plate was sealed with a Corning™ Microplate Aluminum Sealing
Tape (6570). The assay plate with the quenched reactions was sealed with a
Corning™ Microplate Aluminum Sealing Tape too and stored at −80 °C.

Timepoint assays of 7 selected conditions. The assays were done in triplicates
containing 150 µL volume each and were carried out in a 1.5mL reaction tube (at
30 °C, 500 rpm). The reactions were started with 100 µM propionyl-CoA. 12 µL
samples were taken and quenched in 1.5 µL 50% formic acid and 1.5 µL 500mM
sodium polyphosphate (emplura®) at 5, 10, 15, 30, 60, 120, 180, 240, 300 and 480min.
The samples were spun for 20min at 4 °C and 20.000 g, before the supernatant was
transferred into Thermo Scientific™ Abgene 96 Well Polypropylene Storage Micro-
plates (AB-1058) and sealed with Corning™ Microplate Aluminum Sealing Tape.
While 2 µL were used to prepare a 1:10 dilution in water for the measurement via LC-
MS, the remaining samples were stored at −80 °C. The concentrations for the assays
are shown in the table below (Buffers and cofactors in mM, enzymes in µM). See
Supplementary Table 3 for the details of these conditions.

LC-MS analysis of CoA esters. All CoA esters were measured on a triple quad-
rupole mass spectrometer (Agilent Technologies 6495 Triple Quad LC-MS)
equipped with a UHPLC (Agilent Technologies 1290 Infinity II) using a 150 ×
2.1 mm C18 column (Kinetex 1.7 µm EVO C18 100 Å) at 25 °C. The injection
volume was 2 µL of the diluted samples (1:10 in water). The flow was set to
0.400 mL.min−1 and the separation was performed using 50 mM ammonium

formate pH 8.1 (buffer A) and acetonitrile (buffer B). We quantified the CoAs
using external standard curves prepared in water with formic acid at pH 3. The
standard curves were measured before and after the samples. Except for methyl-
succinyl-CoA, all compounds were stable. For methysuccinyl-CoA we calculated
the concentration as an average of the two standard curves at the time point the
sample was measured. The parameters for the multiple reaction monitoring
(MRMs) and the gradient are shown in the tables below. The data analysis was
done with Agilent MassHunter Quantitative Analysis (for QQQ). See Supple-
mentary Table 4 (Gradient for the separation of CoA esters) and Supplementary
Table 5 (MRM transitions).

LC-MS analysis of glycolate. Glycolate was measured on a triple quadrupole mass
spectrometer (Agilent Technologies 6495 Triple Quad LC-MS) equipped with a
UHPLC (Agilent Technologies 1290 Infinity II) using a 150 ×2.1 mm C18 column
(Kinetex 1.7 µm EVO C18 100 Å) at 25 °C. The injection volume was 0.5 µL. The
diluted samples (1:10 in water), as well as the external standard curve, were diluted
1:2 with 10 µM 13C2-labeled glycolic acid as internal standard. The flow was set to
0.100 mL.min−1 and the separation was performed using dH2O with 0.1% formic
acid (buffer A) and methanol with 0.1% formic acid (buffer B). The parameters for
the multiple reaction monitoring (MRMs) and the gradient are displayed below.
Data analysis was done using the Agilent Mass Hunter Workstation Software. See
Supplementary Table 6 (Gradient for the separation of CoA esters) and Supple-
mentary Table 7 (MRM transitions).

Data analysis. Data was analyzed using Microsoft Excel, GraphPad Prism, and
custom Python scripts (available at https://github.com/amirpandi/METIS) and
Agilent Mass Hunter Workstation Software (QQQ) 10.0 for LC-MS data.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The source data underlying Figs. 3f-i, 4a, e, and 5h-l and Supplementary Figures 2, 7a, b,
9b, 11, 16a, b are provided as a Source Data file. All active learning data (combinations
and yields) are available along with Google Colab Python notebook of each application
on GitHub, https://github.com/amirpandi/METIS. Primers used for transcription and
translation units (Fig. 4) are provided in Supplementary Tables 8, 9. Source data are
provided with this paper.

Code availability
METIS workflows for different applications used in this study run as Google Colab
Python notebooks and are free open source tools available at https://github.com/
amirpandi/METIS. All scripts used in this study were written in Python 3. Packages used
in the development of the workflow are pandas (1.1.4) and numpy (1.18.5), matplotlib
(3.2.2) and seaborn (0.11.0), scikit-learn (0.22.2.post1), xgboost (0.90), and Keras (2.3.1)
using TensorFlow backend.
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