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Abstract

We consider populations with time-varying growth rates living in sinks.
Each population, when isolated, would become extinct. Dispersal-induced
growth (DIG) occurs when the populations are able to persist and grow ex-
ponentially when dispersal among the populations is present. We provide
a mathematical analysis of this surprising phenomenon, in the context of
a deterministic model with periodic variation of growth rates and non-
symmetric migration which are assumed to be piecewise continuous. We
also consider a stochastic model with random variation of growth rates
and migration. This work extends existing results of the literature on
the DIG effects obtained for periodic continuous growth rates and time
independent symmetric migration.
Keywords. Dispersal-induced growth. Periodic linear cooperative sys-
tems. Principal Lyapunov exponent. Averaging. Singular perturbations.
Perron root. Metzler matrices. Sinks. Stochastic environment. Markov
Feller process.
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1 Introduction

Many plant and animal populations live in separate patches which have dif-
ferent environmental conditions, that are connected by dispersal. The study
of the interaction between organism dispersal and environmental heterogeneity,
both spatial and temporal, to determine population growth is a central theme
of ecological theory [2, 16]. A patch is called a source when, in the absence
of dispersion, the environmental conditions lead to the persistence of the pop-
ulation, and a sink when, on the contrary, they lead to the extinction of the
population. A basic insight of source-sink theory is that populations in sinks
may be sustained, as a result of immigration from source patches [33]. A more
surprising phenomenon is that of populations that can persist in an environment
consisting of sink habitats only as announced in the title of [22]. In fact, this
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somewhat paradoxical effect of dispersal has already been pointed by Holt [19]
on particular systems and called inflation [20]. Since it is possible for popula-
tions in a set of patches, with dispersal among them, to persist and grow despite
the fact that all these patches are sinks, this phenomenon was called dispersal-
induced growth (DIG) by Katriel [23]. For further details and complements on
the mathematical modelling of this phenomenon and the biological motivations,
the reader is referred to [4, 23] and the references therein.

Katriel [23] considered the model of populations of sizes xi(t) (1 ≤ i ≤ n),
inhabiting n patches, and subject to time-periodic local growth rates ri(t/T )
(1 ≤ i ≤ n), where it is assumed that ri(τ) are 1-periodic continuous functions,
so that ri(t/T ) are periodic with period T > 0. The dispersal among the patches
i and j (i 6= j) is at rate m`ij where the parameter m ≥ 0 measures the strength,
and the numbers

`ij = `ji, (i 6= j) (1)

encode the topology of the dispersal network and the relative rates of dispersal
among different patches: If `ij = 0, there is no migration between the patches i
and j, if `ij > 0, there is a migration. We then have the differential equations

dxi
dt

= ri(t/T )xi +m
∑
j 6=i

`ij (xj − xi) , 1 ≤ i ≤ n. (2)

Katriel [23] proved that in the irreducible case (any two patches are connected
by migration, either directly, or through other patches), any solution of (2)
with xi(0) > 0 for 1 ≤ i ≤ n satisfies xi(t) > 0 for all t > 0 so that we can
define the Lyapunov exponents Λ[xi] = limt→∞

1
t ln(xi(t)), provided this limit

exists. It is shown in [23] that, when m > 0, the Lyapunov exponents Λ[xi] of
all components xi(t) are equal, and moreover they do not depend on the initial
condition. The common value of the Lyapunov exponents Λ[xi] is called the
growth rate of the system (2) and denoted Λ(m,T ). The main results in [23]
are on the asymptotic properties of Λ(m,T ) when T → 0 and T → ∞. An
important result, which play a significant role in the proofs of the main results
of [23] is that for all m > 0, the function T 7→ Λ(m,T ) is increasing. Actually,
it is strictly increasing except in the case that all ri(τ) are equal, where it is a
constant function, see [23, Lemma 2]. This result follows from general results of
Liu et al. [26] on the principal eigenvalue of a periodic linear system. Indeed,
the growth rate Λ(m,T ) can be seen as a principal eigenvalue of a linear periodic
problem, to which the results of [26] apply, see [23, Lemma 3.1].

Our objective in this paper is to remove the assumption (1) of symmetry
of the migration made by [23] since it is rather restrictive in the context of
population dynamics. In addition, we allow the migration to be time dependent.
Moreover, we also consider two classes of local growth rates ri(τ) that are more
general than continuous functions. We consider first the case where ri(τ) are
only piecewise continuous, which contains the important examples of piecewise
constant growth functions. We also consider the case where the growth rates
are random, given as continuous functions of a Markov process. Except the
important result that le map T 7→ Λ(m,T ) is increasing, all the results of [23]
are generalized in this more general setting.

The paper is organized as follows. In Section 2 we consider a periodic envi-
ronment where the growth rates and the migration matrix are periodic functions.
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The formulation of our main results, with some proofs, are given in Section 3.
Technical aspects of some proofs of the results in this section are postponed to
Appendix D. In Section 4, by means of numerous numerical illustrations of the
cases with 2 and 3 patches (where formal calculus software makes it possible to
exploit explicit formulas) we tried to synthesize by images our principal results.
In Section 5 we consider a stochastic environment where the growth rates and
the migration matrix depend on a Markov process. The results presented in
Section 3 on the existence of the growth rate Λ(m,T ) and its asymptotic for-
mulas for T → 0 and T → ∞, are special cases of more general results which
are true for any irreducible cooperative linear T -periodic system. We present
and prove these general results in Section 6. In Section 7 we discuss the results
in more detail and propose some questions for further research. In Appendix
A we provide some consequences of the Perron-Frobenius theorem which are
needed thorough the paper. In Appendix B we provide some results which are
needed in Section 6. In Appendix C we provide a statement of the theorem
of Tikhonov on singular perturbations which is used to prove the asymptotic
behaviour of the growth rate when the period is large (T →∞, see Section 6.3)
or the migration rate is large (m→∞, see Section 6.5).

2 Periodic environment

2.1 The model

We do not consider a time independent symmetric migration as in (2). We
denote by `ij(τ) ≥ 0 the migration term, from patch j to patch i. At time
τ , there is a migration from patch j to patch i if and only if `ij(τ) > 0. The
differential equations (2) become

dxi
dt

= ri(t/T )xi +m
∑
j 6=i

(`ij(t/T )xj − `ji(t/T )xi) , 1 ≤ i ≤ n. (3)

We make the following assumption

Hypothesis 1. The functions τ 7→ ri(τ) and τ 7→ `ij(τ) are piecewise continu-
ous 1-periodic functions, with a finite set of discontinuity points on each period.
Moreover, they have left and right limits at the discontinuity points.

Therefore the solutions of (3) are continuous and piecewise C1 functions
satisfying (3) except at the points of discontinuity of the functions ri and `ij .
The matrix L(τ) whose off diagonal elements are `ij(τ), i 6= j, and diagonal
elements `ii(τ) are given by

`ii(τ) = −
∑
j 6=i

`ji(τ), 1 ≤ i ≤ n, (4)

is called the migration or dispersal matrix. Using the matrix L(τ), (3) can be
written as

dx

dt
= A(t/T )x, A(τ) = R(τ) +mL(τ) (5)

where x = (x1, · · · , xn)
>

and R(τ) = diag (r1(τ), · · · , rn(τ)) . In addition to the
assumptions that L(τ) has non-negative off diagonal elements (`ij(τ) ≥ 0 for
i 6= j), we also make the following assumption
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Hypothesis 2. For all τ , L(τ) is irreducible.

This assumption, which is very usual in this topic, means that at each time,
every patch is reachable from every other patch, either directly or by a path
through other patches.

2.2 The growth rate

We use the following notations: for x ∈ Rn, x ≥ 0 means that for all i, xi ≥ 0,
x > 0 means that x ≥ 0 and x 6= 0, and x� 0 means that for all i, xi > 0.

If m > 0 we have the property that if at t = 0 the population is present in
at least one patch, then it will be present in all patches for all t > 0. Indeed,
since `ij(τ) ≥ 0 for i 6= j and L(τ) is irreducible, for all m > 0 and t ≥ 0,
the matrix A(t/T ) in (5) is an irreducible cooperative matrix. Hence, using a
classical result on irreducible cooperative linear systems (see [18, Theorem 1.1]
or [36, Lemma]), x(0) > 0 implies x(t)� 0 for all t > 0.

The previous result needs that the migration matrix L(τ) is irreducible and
that dispersal is present. Indeed, in the absence of dispersal (m = 0) the popu-
lation in each patch would evolve independently, and the differential equations
are solved to yield

xi(t) = xi(0)e
∫ t
0
ri(s/T )ds, 1 ≤ i ≤ n. (6)

Given a function u : [0,∞)→ (0,∞) we will denote its Lyapunov exponent by

Λ[u] = lim
t→∞

1

t
ln(u(t)),

provided this limit exists. Note that Λ[u] > 0 corresponds to exponential
growth, while Λ[u] < 0 corresponds to exponential decay - leading to extinction.
Therefore, as shown by (6), we have

If m = 0 then Λ[xi] = lim
t→∞

1

t

∫ t

0

ri(s/T )ds = ri, (7)

where

ri =

∫ 1

0

ri(τ)dτ, 1 ≤ i ≤ n (8)

are the local average growth rates in each of the patches.
If m > 0, for any solution of (5) with x(0) > 0, we have xi(t) > 0 for all

t > 0, so that we can define the Lyapunov exponents Λ[xi], for 1 ≤ i ≤ n.
However, the formula (7) giving Λ[xi] is no longer true. The study of Λ[xi]
when the patches are coupled by dispersion (m > 0) is more difficult than in
the uncoupled case, because equations (5) cannot be solved as in the case where
m = 0.

Since the system (5) is a periodic system, its study reduces to the study of
its monodromy matrix Φ(T ), where Φ(t) is the fondamental matrix solution,
i.e. the solution of the matrix equation dX

dt = A(t/T )X associated to (5),
with initial condition X(0) = Id, the identity matrix. Since the matrix A(τ)
has off diagonal nonnegative entries (such a matrix is usually called Metzler
or cooperative), the monodromy matrix Φ(T ) of (5) has positive entries, and
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by the Perron theorem, it has a dominant eigenvalue (an eigenvalue of maximal
modulus, called the Perron root), which is positive, see Theorem 20 in Appendix
A. We denote it by µ(m,T ), to emphasize its dependence on m and T . We have
the following result.

Proposition 1. Assume that Hypotheses 1 and 2 are satisfied. Suppose m > 0
and T > 0. Let µ(m,T ) be the Perron root of the monodromy matrix Φ(T ) of
(5). If x(t) is a solution of (5) such that x(0) > 0, then for all i

Λ[xi] = Λ(m,T ) :=
1

T
ln (µ(m,T )) . (9)

Proof. The result is a particular case of Proposition 15 in the Section 6.

Hence, the fundamental fact is that, when dispersal is present, the Lyapunov
exponents Λ[xi] of all components xi(t) are equal, and moreover they do not
depend on the initial condition. Following [23] we adopt the following definition.

Definition 1. The growth rate of the system (5) is the common value Λ(m,T )
given by (9) of the Lyapunov exponents Λ[xi] of all components of any solution
x(t) such that x(0) > 0.

The main problem is to study the dependence of Λ(m,T ) in m and T . In
contrast to autonomous systems, studying the Perron root of the monodromy
matrix of periodic systems analytically is challenging, and rarely possible. Thus,
the formula (9) is of little practical interest. However, much can be said on the
asymptotics of Λ(m,T ), for large and small m or T , as shown in Section 3.2.

For piecewise constant local growths and migration rates, it is possible to
compute the monodromy matrix and select its largest eigenvalue in modulus,
and use the formula (9) to plot the graph of the function (m,T ) 7→ Λ(m,T ).
For details and complements, see [4] and Section 4.

2.3 The DIG threshold

Following [23] we adopt the following definition.

Definition 2. We say that dispersal-induced growth (DIG) occurs if all patches
are sinks (ri < 0 for 1 ≤ i ≤ n), but Λ(m,T ) > 0 for some values of m and T .

This means that each of the populations would become extinct if isolated,
but dispersal, at an appropriate rate, induces exponential growth in all patches.
The following number was defined by Katriel [23] and plays an important role

χ :=

∫ 1

0

max
1≤i≤n

ri(τ)dτ. (10)

We have the following result

Theorem 2. For all m > 0 and T > 0 we have Λ(m,T ) ≤ χ. Therefore if
χ ≤ 0 then Λ(m,T ) ≤ 0 for all m > 0 and T > 0, so that DIG cannot occur.

Proof. We define rmax(τ) = max1≤i≤n ri(τ). From (3) we have

dxi
dt
≤ rmax(t/T )xi +m

∑
j 6=i

(`ij(t/T )xj − `ji(t/T )xi) , 1 ≤ i ≤ n.
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Adding these equations and setting ρ =
∑n
i=1 xi we have

dρ

dt
≤ rmax(t/T )ρ(t),

which implies

Λ(m,T ) = Λ[xi] = lim
t→∞

1

t
ln(xi(t)) ≤ lim sup

t→∞

1

t
ln(ρ(t))

≤ lim sup
t→∞

1

t

∫ t

0

rmax(s/T )ds =

∫ 1

0

rmax(τ)dτ = χ.

This proves the theorem.

Remark 1. Consider an idealized habitat whose growth rate at any time, is
that of the habitat with maximal growth at this time. Hence χ, defined by (10),
is the average growth rate in this idealized habitat. If the population does not
grow exponentially in this idealized habitat (i.e. if χ ≤ 0), then from Theorem
2 we deduce that DIG cannot occur.

One of our main results is that the condition χ > 0 which is necessary for
DIG to occur is also sufficient, i.e. as soon as χ > 0 then there are values of m
and T for which Λ(m,T ) > 0. For this reason we call χ the DIG threshold. To
prove this result we will study the asymptotic behavior of Λ(m,T ) when m and
T are infinitely small or infinitely large.

3 Results

3.1 Definitions and notations

For the statement of results, it is necessary to recall some classical results.
If a matrix A is Metzler and irreducible, from the Perron-Frobenius theorem,
we know that its spectral abscissa, i.e. the maximum of the real parts of its
eigenvalues, is an eigenvalue of A, usually called its dominant eigenvalue, or the
Perron-Frobenius root and denoted λmax(A), see Theorem 22 in Appendix A.
If A is symmetric, then λmax(A) is simply the maximal eigenvalue of A.

We also need the following result, which is well known in the literature, see
for example [9, Lemma 1], [1, Lemma 1], [10, Lemma 4.1] or [11, Lemma 3.1].

Lemma 3. If a matrix L is Metzler irreducible and its colums sum to 0, then,
0 is a simple eigenvalue of L and all non-zero eigenvalues of L have negative
real part. Moreover, the null space of the matrix L is generated by a positive
vector. If the matrix L is symmetric, then this vector is δ = (1, ..., 1)>.

This result follows from Theorem 22 in Appendix A and the fact that the
spectral abscissa of L is λmax(L) = 0.

Remark 2. A positive vector δ = (δ1, . . . , δn)> which generates the null space
of the matrix L is given explicitly by δi = (−1)n−1L∗ii, where L∗ii is the cofactor
of the i-th diagonal entry lii of L, see [15, Lemma 2.1] or [14, Lemma 3.1].

The following notations are used:
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• If u(τ) is any 1-periodic object (number, vector, matrix...), we denote by

u =
∫ 1

0
u(τ)dτ its average on one period. Therefore the number (10) of

Katriel is denoted χ := max
1≤i≤n

ri.

• For all τ ∈ (0, 1), p(τ)� 0 is the unique positive eigenvector of L(τ), such
that L(τ)p(τ) = 0,

∑n
i=1 pi(τ) = 1 (exists according to Lemma 3, since

L(τ) is Metzler irreducible and its colums sum to 0). If the matrix L(τ)
is symmetric, then pi(τ) = 1/n for all i.

• Similarly, q � 0 is the unique positive eigenvector of L such that Lq =
0 and

∑n
i=1 qi = 1 (exists according to Lemma 3, since L is Metzler

irreducible and its colums sum to 0). It should be noticed that, in general,
we do not have q = p, where p(τ) is the positive eigenvector of L(τ).

• For all τ ∈ [0, 1], λmax(R(τ) + mL(τ)) is the dominant eigenvalue of the
matrix R(τ) +mL(τ) (exists, since R(τ) +mL(τ) is Metzler irreducible).

• Similarly, the dominant eigenvalue λmax
(
R+mL

)
is also well defined.

3.2 Asymptotics of Λ(m,T ) for large or small m and T

We have the following result on the limits of Λ(m,T ) as T → 0, T →∞, m→ 0
or m→∞.

Theorem 4. The growth rate Λ(m,T ) of (5) satisfies the following properties

1. (Fast regime) For all m > 0 we have

lim
T→0

Λ(m,T ) = λmax
(
R+mL

)
. (11)

2. (Slow regime) For all m > 0 we have

lim
T→∞

Λ(m,T ) = λmax(R+mL). (12)

3. (Slow migration) For all T > 0 we have

lim
m→0

Λ(m,T ) = max
1≤i≤n

ri. (13)

4. (Fast migration) For all T > 0 we have

lim
m→∞

Λ(m,T ) =

n∑
i=1

piri. (14)

Proof. The formula (11) is a particular case of Theorem 17 in Section 6.3. It
follows from the averaging method [34]. The formula (12) is a particular case of
Theorem 18 in Section 6.4. The formula (14) is a particular case of Proposition
19 in Section 6.5. The proofs of (12) and (14) use the theorem of Tikhonov [37]
on singular perturbations, see Appendix C. We give here only the proof of (13)
which is easy and follows from the continuous dependence of the solutions of
(5) in the parameter m. Let x(τ,m) be the solution of the system

dx

dτ
= T (R(τ) +mL(τ))x, (15)
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with initial condition x(0,m) = x0 ≥ 0. This system is equivalent to (5) except
that is is written with time τ = t/T instead of time t. Let

ξi(τ) = x0
i e
T

∫ τ
0
ri(s)ds, 1 ≤ i ≤ n,

be the solution, with initial condition ξ(0) = x0, of the diagonal system,

dξ

dτ
= TR(τ)ξ, (16)

obtained from (15) by letting m = 0. Recall that the matrix A(τ) = R(τ) +
mL(τ)) has a finite number of discontinuity points τk, 1 ≤ k ≤ p in the interval
[0, 1]. Using the continuous dependence of the solutions on the parameter m, in
each sub interval [τk, τk+1] on which the matrix A(τ) is continuous, we deduce
that

lim
m→0

xi(τ,m) = ξi(τ), 1 ≤ i ≤ n, uniformly for τ ∈ [0, 1].

Therefore, if Φ(m,T ) is the monodromy matrix of (15), as m→ 0, we have

lim
m→0

Φ(m,T ) = diag(eTr1 , . . . , eTrn),

where the diagonal matrix is the fundamental matrix of (16). The dominant
eigenvalue of this diagonal matrix is eT max1≤i≤n ri . Using the continuity of the
Perron root [29], we have limm→0 µ(m,T ) = eT max1≤i≤n ri . Using (9), we have
limm→0 Λ(m,T ) = limm→0

1
T ln(µ(m,T )) = max1≤i≤n ri.

We denote the limits of Λ(m,T ) as T → 0 or T →∞ by

Λ(m, 0) := lim
T→0

Λ(m,T ) and Λ(m,∞) := lim
T→∞

Λ(m,T ), (17)

respectively. We have the following results.

Proposition 5. The functions Λ(m, 0) and Λ(m,∞) defined by (17) satisfy the
following properties.

lim
m→0

Λ(m, 0) = max
1≤i≤n

ri, lim
m→∞

Λ(m, 0) =

n∑
i=1

qiri. (18)

lim
m→0

Λ(m,∞) = χ, lim
m→∞

Λ(m,∞) =

n∑
i=1

piri. (19)

Moreover, we have

d

dm
Λ(m, 0) ≤ 0,

d2

dm2
Λ(m, 0) ≥ 0, (20)

and equalities hold if an only if ri = r, for all i, in which Λ(m,∞) = r for all
m > 0 and we have

d

dm
Λ(m,∞) ≤ 0,

d2

dm2
Λ(m,∞) ≥ 0, (21)

and equalities hold if an only if ri(τ ] = r(τ), for all i, in which Λ(m,T ) = r for
all m > 0 and T > 0.
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In the constant migration case, for all m > 0 and T > 0, we have

Λ(m, 0) ≤ Λ(m,T ), (22)

and hence Λ(m, 0) ≤ Λ(m,∞), for all m > 0.

Proof. The proof is given in Section D

The formulas (11) and (19) gives the limits of Λ(m, 0) and Λ(m,∞) as m→ 0
or m→∞. The formulas (20) and (21) assert that the functions m→ Λ(m, 0)
and m→ Λ(m,∞) are decreasing, in contrast with the functions m→ Λ(m,T ),
for T > 0, which are not always decreasing, see the figures in Section 4. The
last formula (22) asserts that when the migration matrix L is time independent,
then Λ(m, 0) is a lower bound of Λ(m,T ). This property is not true in the case
where the migration matrix is time dependent, see Figures 3(c), 8(a) and 10(c)
in Sections 4.

T = 0

Λ(m, 0) = λmax
(
R+mL

)

T =∞

Λ(m,∞) = λmax(R+mL)

m
=

0

Λ
(0
,T

)
=

m
a
x

1
≤
i≤
n
r i

m
=
∞

Λ
(∞

,T
)

=

n
∑i=

1

p
i r
i

Λ(0,∞) = χ Λ(∞,∞) =

n∑
i=1

piri

Λ(0, 0) = max
1≤i≤n

ri Λ(∞, 0) =

n∑
i=1

qiri

For m ∈ (0,∞)
and T ∈ (0,∞)

Λ(m,T ) = 1
T ln(µ(m,T ))

Figure 1: The definition of Λ(m,T ) and its limit values when T tends to 0 or
∞ and/or m tends to 0 or ∞.

The results of Theorems 4 and Proposition 5 are summarized in Figure 1,
where, in addition to the notations (17), we use the following notations for the
limits and double limits.

Λ(0, T ) := limm→0 Λ(m,T ), Λ(∞, T ) := limm→∞ Λ(m,T ),
Λ(0, 0) := limm→0 Λ(m, 0), Λ(∞, 0) := limm→∞ Λ(m, 0),

Λ(0,∞) := limm→0 Λ(m,∞), Λ(∞,∞) := limm→∞ Λ(m,∞).

Note that Λ(0, 0) = Λ(0, T ) and Λ(∞,∞) = Λ(∞, T ), for all T > 0. However,
in general χ 6= max1≤i≤n ri, so that

χ = Λ(0,∞) 6= limT→∞ Λ(0, T ) = Λ(0, T ) = max1≤i≤n ri.

On the other hand, in general
∑n
i=1 qiri 6=

∑n
i=1 piri, so that∑n

i=1 qiri = Λ(∞, 0) 6= limT→0 Λ(∞, T ) = Λ(∞, T ) =
∑n
i=1 piri.
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Remark 3. In the case of time independent migration, for all i we have qi = pi
where p� 0 is the positive eigenvector of L such that

∑n
i=1 pi = 1 and Lp = 0.

Hence, for all T > 0, Λ(∞, 0) = Λ(∞,∞) = Λ(∞, T ) =
∑n
i=1 piri.

Remark 4. In the case where the matrix of migrations L(τ) is symmetric we
have pi(τ) = 1/n, so that Λ(∞, 0) = Λ(∞,∞) = Λ(∞, T ) = 1

n

∑n
i=1 ri.

In the case where the migration matrix is constant and symmetric, and the
local growth rates ri(τ) are continuous functions, (11) was given in [23, Lemma
8], (12) was given in [23, Lemma 5], (18) was given in [23, Lemma 9(i,ii)], (19)
was given in [23, Theorem 1 and Lemma 7(ii)]. The results of items (iv) and
(v) of Theorem 4 were not considered in [23].

3.3 The DIG phenomenon

Let χ be the DIG threshold defined by (10). An immediate consequence of

Λ(m,T ) ≤ χ and lim
m→0

lim
T→∞

Λ(m,T ) = χ, (23)

proved in Theorem 2, and (19), respectively, is the following result.

Theorem 6. We have supm,T Λ(m,T ) = χ. Therefore, if ri < 0 for all i, DIG
occurs if and only if χ > 0.

This result is a first answer to the question posed in the title of the paper:
a population spreading across sink habitats can grow exponentially if and only
if χ > 0. As stated in Remark 1, χ = maxi ri is the average growth rate of
an idealized habitat whose growth rate at any time is that of the habitat with
maximal growth. Hence, the population can survive if and only it would survive
in this idealized habitat. Moreover, thanks to Theorem 4 and Proposition 5, we
can answer more precisely, as stated in the following remark.

Remark 5. If χ > 0 and maxi ri < 0 then the population is growing exponen-
tially if the environment is slowly varying and if the dispersal rate across the
patch is small, but not too small. Indeed from limm→0 Λ(m,T ) = maxi ri < 0
we deduce that if T is fixed and m is very small then Λ(m,T ) < 0 and from the
double limit in (23) we deduce that if T is large enough and m is small enough
then Λ(m,T ) > 0.

We can give a more precise description of the set of m and T for which DIG
occur.

Proposition 7. Assume that χ > 0 and max1≤i≤n ri < 0. Two cases must be
distinguished.
1. If

∑n
i=1 piri < 0, then the equation Λ(m,∞) = 0 has a unique solution

m = m∗ > 0, and we have

• If m ∈ (0,m∗) then for any T sufficiently large (depending on m), we have
Λ(m,T ) > 0 (growth) and for any T sufficiently small (depending on m),
we have Λ(m,T ) < 0 (decay).

• If m ≥ m∗ then for any T sufficiently small or sufficiently large (depending
on m), we have Λ(m,T ) < 0 (decay).
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2. If
∑n
i=1 piri ≥ 0, then Λ(m,∞) > 0 for all m > 0 and for any T sufficiently

large (depending on m), we have Λ(m,T ) > 0 (growth) and for any T sufficiently
small (depending on m), we have Λ(m,T ) < 0 (decay).

Proof. Assuming χ > 0 and ri < 0, Proposition 5 tells us that Λ(m, 0) is a
decreasing function from Λ(0, 0) = max1≤i≤n ri < 0 to Λ(∞, 0) =

∑n
i=1 qiri <

0. We conclude that Λ(m, 0) < 0 for all m > 0. On the other hand Λ(m,∞) is
a strictly decreasing function from Λ(0,∞) = χ > 0 to Λ(∞,∞) =

∑n
ii=1 piri.

In the first case we have Λ(∞,∞) < 0 so that the equation Λ(m,∞) = 0 has
a unique solution m = m∗ > 0 and Λ(m,∞) > 0 for m ∈ (0,m∗), Λ(m,∞) < 0
for m > m∗. Therefore, (17) tells us that if m ∈ (0,m∗), then for sufficiently
large T we have Λ(m,T ) > 0 and for sufficiently small T we have Λ(m,T ) < 0.
If m ≥ m∗, then for sufficiently large T and for sufficiently small T we have
Λ(m,T ) < 0.

In the second case we have Λ(∞,∞) ≥ 0 so that Λ(m,∞) > 0 for all m > 0.
Therefore, (17) tells us that for sufficiently large T we have Λ(m,T ) > 0 and
for sufficiently small T we have Λ(m,T ) < 0.

Remark 6. If the migration matrix is time independent, then the second case
in Proposition 7 never occur because

∑n
i=1 piri =

∑n
i=1 piri < 0, if ri < 0 for

all i. It does not occur either when L(τ) is symmetric since in this case we have
pi(τ) = 1/n, so that

∑n
i=1 piri = 1

n

∑n
i=1 ri < 0, if ri < 0 for all i. An example

showing the behaviour depicted in the second case of Proposition 7 is provided
in Section 4.1.4.

We have the more precise statement for the result of Proposition 7.

Remark 7. Assume that χ > 0, max1≤i≤n ri < 0 and
∑n
ii=1 piri < 0. Consider

the functions T1, T2 : (0,m∗)→ (0,∞) given by

T1(m) = sup{T1 > 0 : Λ(m,T ) < 0 for all T ∈ (0, T1)},

T2(m) = inf{T2 > 0 : Λ(m,T ) > 0 for all T ∈ (T2,∞)},

and the functions T3, T4 : [m∗,∞)→ [0,∞] given by

T3(m) = sup{T3 > 0 : Λ(m,T ) < 0 for all T ∈ (0, T3)},

T4(m) = inf{T4 > 0 : Λ(m,T ) < 0 for all T ∈ (T4,∞)}.

If m ∈ (0,m∗) then for T > T2(m), we have Λ(m,T ) > 0 (growth) and for
T < T1(m), we have Λ(m,T ) < 0 (decay). If m ≥ m∗ then for T < T3(m) or
T > T4(m), we have Λ(m,T ) < 0 (decay). Note that T1(m) ≤ T2(m) for all
m ∈ (0,m∗) and limm→m∗ T1(m) = T3(m∗).

If
∑n
ii=1 piri ≥ 0 then we consider the functions T1, T2 : (0,∞) → (0,∞)

given as above. Then for T > T2(m), we have Λ(m,T ) > 0 (growth) and for
T < T1(m), we have Λ(m,T ) < 0 (decay).

Note that the function T1 and T3 are lower semicontinuous, while the func-
tions T2 and T4 are upper semicontinuous, and, since Λ(0, T ) = maxni=1 ri < 0,
we have

lim
m→0

T1(m) = lim
m→0

T2(m) =∞.
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If the function T 7→ Λ(m,T ) is strictly increasing for allm > 0 then the functions
Ti, i = 1, 2, 3, 4 defined in Remark 7 satisfy the following properties:

T1(m) = T2(m) for m ∈ (0,m∗), and T3(m) =∞, T4(m) = 0 for m ≥ m∗.

In Section 3.6 we will consider the problem of monotonicity of the function
T 7→ Λ(m,T ) when the migration matrix L is time independent.

3.4 The variables ρ and θ

A crucial step in the description and the proofs of our main results is to reduce
the linear system (5) to the n− 1 simplex

∆ :=
{
x ∈ Rn+ :

∑n
i=1 xi = 1

}
of Rn+. Indeed, the change of variables

ρ =
∑n
i=1 xi, θ = x

ρ , (24)

transforms the differential equation (5) into

dρ
dt = ρ

∑n
i=1 ri(t/T )θi,

dθ
dt = F (t/T, θ) (25)

where, for 1 ≤ i ≤ n, Fi(τ, θ) is given by

Fi(τ, θ) = ri(τ)θi +m

n∑
j=1

`ij(τ)θj − θi
n∑
j=1

rj(τ)θj .

For
∑n
i=1 θi = 1 we have

∑n
i=1

dθi
dt = 0 which proves that the second equation

in (25) can be considered as an n− 1 dimensional system on ∆.

Remark 8. The variables ρ and θ defined by (24) are interpreted as follows:
ρ is the total population present in all patches and θi = xi/ρ is the fraction of
the population on patch i.

By the Perron theorem the monodromy matrix Φ(T ) of (5) has a positive
eigenvector π(m,T ) ∈ ∆, called the Perron vector, corresponding to the its
Perron root µ(m,T ), which was used in (9) to define Λ(m,T ), see Theorem 20
in Appendix A. We know, see Proposition 16 in Section 6, that the solution
θ∗(t,m, T ) of the second equation in (25) with initial condition θ∗(0,m, T ) =
π(m,T ), is a T -periodic solution. We denote it by θ∗(t,m, T ), to recall its
dependence on the period parameters m and T . We have the following result.

Theorem 8. The T -periodic solution θ∗(t,m, T ) of the second equation in (25)
is globally asymptotically stable, that is to say, for any solution θ(t) of (25), we
have limt→∞ ‖θ(t)− θ∗(t,m, T )‖ = 0. Moreover, we have

Λ(m,T ) =

∫ 1

0

n∑
i=1

ri(τ)θ∗i (Tτ,m, T )dτ. (26)

Proof. The existence, uniqueness and global asymptotic stability of the T -
periodic θ∗(t,m, T ) of (25) is a particular case of Proposition 16 in Section
6. Using Proposition 16 and since the columns of L(τ) sum to 0, we have

Λ(m,T ) =

∫ 1

0

〈A(τ)θ∗(Tτ,m, T ),1〉dτ =

∫ 1

0

n∑
i=1

ri(τ)θ∗i (Tτ,m, T )dτ.

This proves (26).
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Formula (26) gives us an integral representation of the growth rate Λ(m,T ).
It will play a major role when we study the limits of Λ(m,T ) when T is small
or large, or when m is large, see Section 6.

3.5 Time independent migration

When the migration matrix is time independent, we have a new formula for the
growth rate Λ(m,T ).

Theorem 9. Assume that the migration matrix L = (`ij) is time independent.
Let p be the positive eigenvector of L such that Lp = 0 and

∑n
i=1 pi = 1 (Recall

that pi = 1/n is the symmetric case). We have

Λ(m,T ) =

n∑
i=1

piri +m

∫ 1

0

h (θ∗(Tτ,m, T )) dτ, (27)

where h(x) =
∑n
i=1

(∑n
j=1 `ijxj

)
pi
xi

.

Proof. We use the following variable U = ln(xp11 · · ·xpnn ) =
∑n
i=1 pi lnxi. We

have
dU

dt
=

n∑
i=1

piri(t/T ) +mh(x),

where h(x) = 〈Lx, p/x〉, and p/x = (p1/x1, · · · , pn/xn)>. We have

h(x) = 〈Lx, p/x〉 = 〈Lρθ, p/(ρθ)〉 = 〈Lθ, p/θ〉 = h(θ).

Therefore
dU

dt
=

n∑
i=1

piri(t/T ) +mh(θ). (28)

Let x(t) the solution of (5) with initial condition x(0) = π(m,T ), where π(m,T )
is the Perron vector of the monodromy matrix X(T ) of (5). Since ρ(0) = 1, the
corresponding solution of (25) has initial condition θ(0) = π(m,T ). Hence, it
is the periodic solution θ∗(t,m, T ). Consider now U(t) =

∑n
i=1 pi lnxi(t). We

have

lim
t→∞

U(t)

t
=

n∑
i=1

pi lim
t→∞

1

t
lnxi(t) =

n∑
i=1

piΛ[xi].

Using now that the Λ[xi] are equal to Λ(m,T ), we have

lim
t→∞

U(t)

t
=

n∑
i=1

piΛ[xi] = Λ(m,T )

n∑
i=1

pi = Λ(m,T ).

Since U(t) is a solution of (28), we have the following integral representation of
U(t)

U(t) = U(0) +

n∑
i=1

pi

∫ t

0

ri(s/T )ds+m

∫ t

0

h(θ∗(s,m, T ))ds.

Therefore

Λ(m,T ) = lim
t→∞

U(t)

t
=

n∑
i=1

piri + +m

∫ 1

0

h(θ∗(Tτ,m, T ))dτ

This proves (27).
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Formula (27) for Λ(m,T ) is given in [23] uniquely in the two-patch case,
when the migration is symmetric and the growth rates r1(τ) and r2(τ) are
continuous, see [23, Lemma 4].

As it was stated in Remark 3, when the migration matrix is time independent
for all T > 0, we have Λ(∞, 0) = Λ(∞,∞) = Λ(∞, T ) =

∑n
i=1 piri. Let us prove

that this limit is actually the infimum of Λ(m,T ). This property is true uniquely
in the case of time independent migration.

Proposition 10. If the migration matrix is time independent then

inf
m,T

Λ(m,T ) =

n∑
i=1

piri.

Proof. In the time independent migration case, we have the formula (27) for
Λ(m,T ). If we prove that the function h is non negative on the positive cone
then, for all m > 0 and T > 0

Λ(m,T ) ≥
n∑
i=1

piri.

Using Remark 3 we deduce then that the infimum of Λ(m,T ) is equal to∑n
i=1 piri. Let us prove that the function h is non negative on the positive

cone. Observe that h(x) = 〈Lx, p/x〉, where p/x = (p1/x1, · · · , pn/xn)> and
〈·, ·〉 is the usual Euclidean scalar product in Rn. Let R denote the transpose
of L. Then, for all x ∈ Rn,

(Rx)i =
∑
j

Rijxj =
∑
j

Rij(xj − xi).

Observe that for all x ∈ Rn

〈p,Rx〉 = 〈Lp, x〉 = 0 (29)

because p is in the kernel of L. By convexity, for all x ∈ Rn with positive entries,

ln(xj)− ln(xi) ≤
xj − xi
xi

.

Thus

R(ln(x))i ≤
∑
j

Rij(
xj − xi
xi

) =
(Rx)i
xi

.

That is R(ln(x)) ≤ Rx
x componentwise, where ln(x) stands for the vector defined

as ln(x)i = ln(xi). Hence, using (29),

0 = 〈p,R(ln(x))〉 ≤ 〈p, Rxx 〉.

Let y = p
x . We have

h(y) = 〈Ly, py 〉 = 〈L px , x〉 = 〈 px , Rx〉 = 〈p, Rxx 〉 ≥ 0.

This proves that h(y) ≥ 0 whenever y has positive entries.
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3.6 The monotonicity of Λ(m,T ) with respect to T

As said in the introduction, when the matrix migration is time independent and
symmetric, the growth rate Λ(m,T ) is strictly increasing with respect to T , see
[23, Lemma 2]. When the migration is time dependent, the monotonicity is no
longer true, see Sections 4.1.3 and 4.2. We were not able to prove the mono-
tonicity of the function T 7→ Λ(m,T ) in the non symmetric time independent
migration case. However, owing to the property Λ(m, 0) ≤ Λ(m,T ) given in
(22) and the numerous numerical simulations we have done with constant non-
symmetric matrices (see Sections 4.1.2 and 4.1.6), we formulate the following
conjecture.

Conjecture 1. If the matrix migration is time independent, then the function
T 7→ Λ(m,T ) is strictly increasing for all m (except in the case where all ri(τ)
are equal).

If the migration matrix is time independent, χ > 0 and max1≤i≤n ri < 0
then as shown in Remark 6, the value m∗ for which Λ(m,∞) = 0 exists. We
have the following result.

Proposition 11. Assume that the migration matrix is time independent. As-
sume that χ > 0 and max1≤i≤n ri < 0. Let m∗ be the unique solution of
Λ(m,∞) = 0. If Conjecture 1 is true (which thanks to [23] is the case when the
migration is symmetric), there exist an analytic function Tc : (0,m∗)→ (0,∞)
such that limm→0 Tc(m) = limm→m∗ Tc(m) =∞ and Λ(m,T ) > 0 if and only if
T > Tc(m). In other words the critical curve T = Tc(m) separates the parame-
ters plane (m,T ) in two regions : above it, DIG occurs, below it, DIG does not
occur.

Proof. For all m > 0 we have Λ(m, 0) < 0. If m ≥ m∗, then Λ(m,∞) < 0
and by the monotonicity of Λ(m,T ) with respect to T , for all T > 0 we have
Λ(m,T ) < 0. If m ∈ (0,m∗), then Λ(m,∞) > 0 and by the monotonicity of
Λ(m,T ) with respect to T , there exists a unique value T = Tc(m) such that
Λ(m,T ) > 0 if T > Tc(m) and Λ(m,T ) < 0 if T < Tc(m).

Using Proposition 15, the function Λ(m,T ) is analytic in T . It is analytic in
m because the monodromy matrix Φ(m,T ) is also analytic in m. Indeed, the
solutions of a differential equation which depends analytically on a parameter
are also analytic in this parameter, and A(τ) = R(τ) + mL(τ) is analytic in
m. Therefore Λ(m,T ) is analytic in m and T . The implicit function theorem
implies that T = Tc(m) is analytic in m since it is the solution of equation
Λ(m,T ) = 0.

Examples where the critical curve T = Tc(m) exists are provided in Section
4.1. The time independence of the migration matrix is not a necessary condition
for the existence of the critical curve T = Tc(m), see Sections 4.1.3 and 4.1.4.
Note that in the symmetric case we have Tc(m) = 1/νc(m), where νc(m) is the
critical curve of Katriel, see [23, Theorem 1(II)].

Remark 9. For time independent migration, and if Conjecture 1 is true, as a
consequence of Proposition 11, DIG can occur only if m < m∗. In contrast, in
the time dependent migration case, if T3(m) < T4(m), for some m ∈ (m∗,∞),
then we can have Λ(m,T ) > 0 (growth) for some T ∈ (T3(m), T4(m)). Therefore
DIG can occur even for m > m∗. Examples showing this behaviour are provided
in Section 4.2.
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3.7 Explicit formulas for the two-patch case

In the simplest two-patch case (n = 2) the system (3) is

dx1

dt = r1(t/T )x1 +m(`12(t/T )x2 − `21(t/T )x1),
dx2

dt = r2(t/T )x2 +m(`21(t/T )x1 − `12(t/T )x2).
(30)

In this case, it is easy to compute the dominant eigenvalue λmax(R(τ)+mL(τ))
and find that

λmax(R(τ) +mL)= 1
2

(
r1(τ)+r2(τ)+

√
D(r1(τ), r2(τ))

)
−m `12(τ)+`21(τ)

2 ,

where

D(r1, r2) = (r1 − r2 +m(`12(τ)− `21(τ)))2 + 4m2`12(τ)`21(τ) (31)

We obtain the following explicit formulas for Λ(m, 0) and Λ(m,∞):

Λ(m, 0) = 1
2

(
r1 + r2 +

√
D(r1, r2)

)
−m `12+`21

2 ,

Λ(m,∞) = 1
2

(
r1 + r2 +

∫ 1

0

√
D(r1(τ), r2(τ))dτ

)
−m `12+`21

2 .

In the symmetric constant migration case (`12(τ) = `21(τ) = 1) we obtain
the formulas

Λ(m, 0) = 1
2

(
r1 + r2 +

√
(r1 − r2)2 + 4m2

)
−m,

Λ(m,∞) = 1
2

(
r1 + r2 +

∫ 1

0

√
(r1(τ)− r2(τ))2 + 4m2dτ

)
−m.

These formulas were given by Katriel [23], see the formula (12) and the formula
preceding (17) in [23].

When the migration is constant, but not necessarily symmetric, the growth
rate of (30), as shown in (27), is given by

Λ(m,T ) =
`12r1 + `21r2

`12 + `21
+
m

T

∫ T

0

(`12θ
∗
2(t, T )− `21θ

∗
1(t, T ))2

θ∗1(t, T )θ∗2(t, T )(`12 + `21)
dt.

In the symmetric case (`12 = `21 = 1) we obtain the formula

Λ(m,T ) =
r1 + r2

2
+m

(
1

2T

∫ T

0

(
θ∗2(t, T )

θ∗1(t, T )
+

(θ∗1(t, T )

θ∗2(t, T )

)
dt− 1

)
.

Using, as in [23], the variable z = x2/x1 = θ2/θ1, we obtain

Λ(m,T ) =
r1 + r2

2
+m

(
1

2T

∫ T

0

(
z∗(t, T ) +

1

z∗(t, T )

)
dt− 1

)
.

which is the same formula as [23, Formula (26)].
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4 Numerical illustrations

We consider the system (3), with piecewise constant 1-periodic growth rates
given by

ri(τ) =

{
ai if 0 ≤ τ < α
bi if α ≤ τ < 1

, 1 ≤ i ≤ n, (32)

where α ∈ (0, 1) and ai and bi, are real numbers. Thus, during a time of
duration αT the ith population grows with a rate ai, then, during a time of
duration (1 − α)T the population grows with a rate bi. We also assume that
the migration terms `ij(τ) are piecewise constant. For simplicity we assume the
discontinuity arises at the same value of time as the growth rates (32):

`ij(τ) =

{
hij if 0 ≤ τ < α
kij if α ≤ τ < 1

, 1 ≤ i 6= j ≤ n, (33)

where hij and kij , i 6= j, are non negative real numbers such that the matrices
H = (hij) and K = (kij), whose diagonal elements are defined as in (4), are
irreducible. This simplest case is already of much interest, since it illustrates all
behaviors depicted in the preceding section. The monodromy matrix is given
by

Φ(T ) = e(1−α)TBeαTA, (34)

where the matrices A = diag(ai) + mH and B = diag(bi) + mK, are time
independent matrices. Hence, we can compute the Perron root µ(m,T ) of the
matrix Φ(T ) and use the formula (9) to compute Λ(m,T ) = 1

T ln(µ(m,T )).
In (32) and (33) we have only two discontinuities on each period of time. In

Section 4.2.1 we will consider a case with three discontinuities.

4.1 DIG occurs only if m < m∗

4.1.1 The ±1 model

This model corresponds to the two-patch case (30), with constant symmetric
migration `12 = `21 = 1 and piecewise constant growth rates ri(τ) given by
(32), with a1 = b2 > 0, b1 = a2 < 0 and −b1 > a1. The matrices A and B in
(34) are given by

A =

[
a1 −m m
m b1 −m

]
, B =

[
b1 −m m
m a1 −m

]
.

Therefore r1 = r2 = a1+b1
2 < 0 and χ = a1 > 0. Hence, we have two identical

sinks, that are in phase opposition and DIG can occur. This model can be
reduced to the simpler form a1 = b2 = 1− ε, b1 = a2 = −1− ε, with 0 < ε < 1,
see [4, Remark 3]. Using the theoretical formulas depicted in Figure 1 and
Section 3.7, we have

Λ(0, T ) = Λ(m, 0) = Λ(∞, T ) = −ε, Λ(0,∞) = 1 + ε,

Λ(m,∞) = −ε+
√

1 +m2 −m.

All these formulas were already obtained in [4] by using explicit computation of
Λ(m,T ). Note that in the two-patch case, a computer program like Maple is able
to compute analytically the monodromy matrix (34) for any constant matrices
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A and B, and then determine its Perron root, since this computation requires
only the solution of a second degree algebraic equation. However, the formula
obtained for Λ(m,T ) is so complicated that we cannot exploit it mathematically.
It turns out that in the particular case of the ±1 model, we can obtain an explicit
formula, which is simple enough to be exploited mathematically and to deduce
the properties of Λ(m,T ).

In this special case we gave in [4] some properties that are not extended to
the general case considered in the present work. We proved in particular that
the threshold of the dispersal rate at which DIG appears is exponentially small
with the period. For a more detailed discussion on this issue, see Section 4.1.5.
For further details and complements, see [4].
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No DIG

T = Tc(m)

T

m
T

m

Λ

(a) (b)

T = 100
T = 40
T = 15
T = 7
T = 4
T = 1

Λ(m, 0)

Λ(m,∞)

m = 0.01
m = 0.1
m = 0.2
m = 0.4
m = 1

Λ Λ

T

m

(c) (d)

Figure 2: (a) The graph of (m,T ) 7→ Λ(m,T ). (b) The set Λ(m,T ) = 0.
(c) Graphs of m 7→ Λ(m,T ) with the indicated values of T . (d) Graphs of
T 7→ Λ(m,T ) with the indicated values of m. Here we used the two patch
model corresponding to the matrices (35) and α = 0.5.
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Table 1: Limits of Λ(m,T ) for the parameters values used in Figure 2

Λ(0,∞) = 1/2, Λ(0, 0) = Λ(0, T ) = −1/4
Λ(∞, 0) = Λ(∞, T ) = Λ(∞,∞) = −1/3

Λ(m, 0) = − 3
8 −

3
2m+ 1

8

√
1 + 8m+ 144m2

Λ(m,∞) = − 3
8 −

3
2m+ 1

4

√
4 + 4m+ 9m2 + 1

8

√
9− 12m+ 36m2

Λ(m,∞) = 0 for m = m∗ = 5/9.

4.1.2 Time independent migration

We show in Figure 2(a) the plot of Λ(m,T ) (obtained by the Maple software)
in the case where the matrices A and B in (34) are given by

A =

[
1/2−m 2m

m −3/2− 2m

]
, B =

[
−1−m 2m
m 1/2− 2m

]
. (35)

The migration is time independent. For the parameter values used in the figure,
we have χ = 1/2, r1 = −1/4 and r2 = −1/2. Therefore, the patches are sinks
and DIG can occur. Using Remark 2, we have p1 = 2/3 and p2 = 1/3. Using
the theoretical formulas depicted in Figure 1 and Section 3.7, we obtain the
expressions shown in Table 1.
Comments on Figure 2. The strictly decreasing functions m 7→ Λ(m, 0) and
m 7→ Λ(m,∞), are depicted in dotted line on panel (c) of the figure. Panels
(a,d) of the figure show that for all m > 0, the functions T 7→ Λ(m,T ) are
strictly increasing, supporting then Conjecture 1. Hence, there exists a critical
curve T = Tc(m) defined for 0 < m < m∗ such that DIG occurs if and only
if T > Tc(m), as depicted in panel (b) of the figure. Panel (c) of the Figure
shows the graphs of functions m 7→ Λ(m,T ) and illustrates their convergence
toward Λ(m, 0) and Λ(m,∞) as T tends to 0 and ∞, respectively. Notice that
for 0 < T <∞, the functions m 7→ Λ(m,T ) are not monotonic.

4.1.3 Time dependent migration

We show in Figure 3(a) the plot of Λ(m,T ) in the case where the matrices A
and B in (34) are given by

A =

[
1/2− 2m m

2m −3/2−m

]
, B =

[
−1−m 2m
m 1/2− 2m

]
. (36)

The migration is time dependent. For the parameter values used in the figure,
we have χ = 1/2, r1 = −1/4 and r2 = −1/2. Therefore, the patches are sinks
and DIG can occur. Using Remark 2, we have q1 = q2 = 1/2 and

p1(τ) =

{
1/3 if 0 ≤ τ < 1/2
2/3 if 1/2 ≤ τ < 1

, p2(τ) =

{
2/3 if 0 ≤ τ < α
1/3 if α ≤ τ < 1

.

Using the theoretical formulas depicted in Figure 1 and Section 3.7, we obtain
the expressions shown in Table 2. Since Λ(∞, T ) < Λ(∞, 0), for m large enough,
the condition Λ(m,T ) > Λ(m, 0) cannot be satisfied. Note that according to
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Figure 3: (a) The graph of (m,T ) 7→ Λ(m,T ). (b) The set Λ(m,T ) = 0.
(c) Graphs of m 7→ Λ(m,T ) with the indicated values of T . (d) Graphs of
T 7→ Λ(m,T ) with the indicated values of m. Here we used the two patch
model corresponding to the matrices (36) and α = 0.5.

(22), this condition is always true in the case of time independent migration.
Therefore, Conjecture 1 is not true in general for time dependent migration.

We can make the same comments on Figure 3, as those made in the previous
section on Figure 2, except that, in contrast with Figure 2(c), form large enough,
we have Λ(m,T ) < Λ(m, 0) and the function T 7→ Λ(m,T ) is decreasing instead
of increasing. Since this function is increasing for all m ∈ (0,m∗) and negative
for all m > m∗, we also have a critical curve T = Tc(m) defined for 0 < m < m∗

such that DIG occurs if and only if T > Tc(m).

4.1.4 Time dependent migration where DIG occurs for all m > 0

We show in Figure 4(a) the plot of Λ(m,T ) in the case where the matrices A
and B in (34) are given by

A =

[
1/2−m 5m

m −3/2− 5m

]
, B =

[
−1− 5m m

5m 1/2−m

]
. (37)
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Table 2: Limits of Λ(m,T ) for the parameters values used in Figure 3

Λ(0,∞) = 1/2, Λ(0, 0) = Λ(0, T ) = −1/4
Λ(∞, 0) = −3/8, Λ(∞, T ) = Λ(∞,∞) = −2/3

Λ(m, 0) = − 3
8 −

3
2m+ 1

8

√
1 + 144m2

Λ(m,∞) = − 3
8 −

3
2m+ 1

4

√
4− 4m+ 9m2 + 1

8

√
9− 12m+ 36m2

Λ(m,∞) = 0 for m = m∗ ≈ 0.315.

Table 3: Limits of Λ(m,T ) for the parameters values used in Figure 4

Λ(0,∞) = 1/2, Λ(0, 0) = Λ(0, T ) = −1/4
Λ(∞, 0) = −3/8, Λ(∞, T ) = Λ(∞,∞) = 5/24

Λ(m, 0) = − 3
8 − 3m+ 1

8

√
1 + 576m2

Λ(m,∞) = − 3
8 − 3m+ 1

2

√
1 + 4m+ 9m2 + 1

8

√
9 + 48m+ 144m2

Λ(m,∞) > 0 for all m ≥ 0.

The migration is time dependent. For the parameter values used in the figure,
we have χ = 1/2, r1 = −1/4 and r2 = −1/2. Therefore, the patches are sinks
and DIG can occur. Using Remark 2, we have q1 = q2 = 1/2 and

p1(τ) =

{
5/6 if 0 ≤ τ < 1/2
1/6 if 1/2 ≤ τ < 1

, p2(τ) =

{
1/6 if 0 ≤ τ < α
5/6 if α ≤ τ < 1

.

Using the theoretical formulas depicted in Figure 1 and Section 3.7, we obtain
the expressions shown in Table 3. Since for any T > 0, Λ(∞, T ) > 0, for
fixed T and m large enough, the condition Λ(m,T ) > 0 is satisfied, so that
DIG occurs. We can make similar comments on Figure 4, as those made in the
previous sections, except that, in contrast with Figures 2 and 3, the critical curve
T = Tc(m) is defined for all m > 0 and DIG occurs if and only if T > Tc(m).

4.1.5 The set where DIG occurs in the (m, ν) parameter-plane

In Figure 5 we display the set where DIG occurs in the (m, ν) parameter-plane,
where ν = 1/T is the frequency. The figure shows that the critical curve ν =
νc(m), where νc(m) := 1/Tc(m), is tangent to the ν-axis at the origin, i.e.
limm→0 ν

′
c(m) = −∞. This property was already numerically observed in the

symmetric migration case by Katriel [23]. This property was established in
[4], for the ±1 model considered in Section 4.1.1. Using the explicit expression
of Λ(m,T ) we showed that when ν → 0, the threshold m∗(ν) = infν>0{m :
Λ(m, 1/ν) > 0} at which DIG occurs is of order e−(1−ε)/ν , see [4, Proposition
2.9]. Therefore the critical curve ν = νc(m) has asymptotic behavior of the form
m ∼ e−k/ν , that is m becomes exponentially small in 1/ν near the origin.

The difference between the models considered in Figures 2, 3 and 4 is in the
migration matrix which is assumed to be independent of time in the first figure
whereas it depends on it in the two following ones.
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Figure 4: (a) The graph of (m,T ) 7→ Λ(m,T ). (b) The set Λ(m,T ) = 0.
(c) Graphs of m 7→ Λ(m,T ) with the indicated values of T . (d) Graphs of
T 7→ Λ(m,T ) with the indicated values of m. Here we used the two patch
model corresponding to the matrices (36) and α = 0.5.

Note that in the second case the migration is always stronger towards the
most unfavorable patch. As expected, and as illustrated in Figure 5(b), the
region of the (m, ν) for which DIG occurs is narrowed, but it still remains
present. In the third case the migration is always stronger towards the most
favorable patch. As expected, and as illustrated in Figure 5(c), the region of
the (m, ν) for which DIG occurs is bigger. Since Λ(m,∞) > 0 in this case, DIG
occurs for all m > 0.

4.1.6 The three patch case

Our objective in this section is to show numerical simulations with three patches
that illustrate all our findings and also corroborate our Conjecture 1. We show in
Figure 6(a) the plot of Λ(m,T ) in the three patch case with time independent
migration given by `12 = `23 = `31 = 0 and `21 = `32 = `13 = 1, which
corresponds to a circular migration 1 → 2 → 3 → 1. We consider the piecwise
constant growth rates r1(τ) = 0.15 if τ < 1/2, r1(τ) = −0.45 if 1/2 ≤ τ < 1,
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Figure 5: The set where DIG occurs in the (m, ν) parameter-plane. (a) Pa-
rameters values of Figure 2. (b) Parameters values of Figure 3. (c) Parameters
values of Figure 4

r2(τ) = r1(τ − 1/2) and r3(τ) = −0.2 for τ ∈ [0, 1]. Hence, the matrices A and
B in (34) are given

A =

 0.15−m 0 m
m −0.45−m 0
0 m −0.2−m

 ,
B =

 −0.45−m 0 m
m 0.15−m 0
0 m −0.2−m

 .
(38)

For these parameter values, we have χ = 0.15, r1 = r2 = −0.15 and r3 = −0.2.
Therefore the patches are sinks and DIG can occur. Using Remark 2, we have
p1 = p2 = p3 = 1/3. Using the theoretical formulas depicted in Figure 1, we
have

Λ(0, 0) = Λ(0, T ) = −0.15, Λ(0,∞) = 0.15,
Λ(∞, 0) = Λ(∞, T ) = Λ(∞,∞) = −1/6.

We can make the same comments on Figure 6, as those made in Section 4.1.2
on Figure 2. Panels (a,d) of the figure are supporting then Conjecture 1.

4.2 DIG can also occur for m > m∗

4.2.1 The two patch case

In this section we consider the following example of two-patches (30), with
piecewise constant 1-periodic growth rates and migration terms, having three
discontinuities on each period of time, and given by

r1(τ) =


0 if 0 ≤ τ < 1

3

− 4
5 if 1

3 ≤ τ <
2
3

1
2 if 2

3 ≤ τ < 1

, r2(τ) =


− 1

10 if 0 ≤ τ < 1
3

3
2 if 1

3 ≤ τ <
2
3

−2 if 2
3 ≤ τ < 1

, (39)

`12(τ) =


1
10 if 0 ≤ τ < 1

3

2 if 1
3 ≤ τ <

2
3

1
100 if 2

3 ≤ τ < 1

, `21(τ) =


1 if 0 ≤ τ < 1

3
1
5 if 1

3 ≤ τ <
2
3

1
100 if 2

3 ≤ τ < 1

. (40)

The monodromy matrix is given by

Φ(T ) = e
T
3 Ce

T
3 Be

T
3 A, (41)
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Figure 6: (a) The graph of (m,T ) 7→ Λ(m,T ). (b) The set Λ(m,T ) = 0.
(c) Graphs of m 7→ Λ(m,T ) with the indicated values of T . (d) Graphs of
T 7→ Λ(m,T ) with the indicated values of m. We considers the three patch
model given by the matrices (38). We have Λ(m,∞) = 0 for m = m∗ = 0.172.

where the matrices A, B and C are defined by

A =

[
−m m

10
m − 1

10 −
m
10

]
, B =

[
− 4

5 −
m
5 2m
m
5

3
2 − 2m

]
,

C =

[
1
2 −

m
100

m
100

m
100 −2− m

100

]
.

(42)

We can compute the Perron root µ(m,T ) of the matrix Φ(T ) and plot the graph
of Λ(m,T ) = 1

T ln(µ(m,T )), which is shown in Figure 7. For the parameter
values used in the figure, we have χ = 2

3 , r1 = − 1
10 and r2 = − 1

5 . Therefore,
the patches are sinks and DIG can occur. Using Remark 2, we have q1 = 211

332 ,
q2 = 121

332 and

p1(τ) =


1
11 if 0 ≤ τ < 1

3
10
11 if 1

3 ≤ τ <
2
3

1
2 if 2

3 ≤ τ < 1

, p2(τ) =


10
11 if 0 ≤ τ < 1

3
1
11 if 1

3 ≤ τ <
2
3

1
2 if 2

3 ≤ τ < 1

.
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Figure 7: The graph of (m,T ) 7→ Λ(m,T ) corresponding to the matrices (42),
seen from left (a) and right (b), showing the non monotonicity of T 7→ Λ(m,T ).

Table 4: Limits of Λ(m,T ) for the parameters values used in Figure 7

Λ(0,∞) = 2/3, Λ(0, 0) = Λ(0, T ) = −1/4
Λ(∞, 0) = −453/3320, Λ(∞, T ) = Λ(∞,∞) = −21/44

Λ(m, 0) = − 3
20 −

83
150m+ 1

300

√
225 + 1350m+ 27556m2

Λ(m,∞) = − 3
20 −

83
150m+ 1

60

√
1− 18m+ 121m2

+ 1
60

√
529− 828m+ 484m2 + 1

300

√
15625 +m2

Λ(m,∞) = 0 for m = m∗ ≈ 1.764.

Using the theoretical formulas depicted in Figure 1 and Section 3.7, we obtain
the expressions shown in Table 4. Since, as in Figure 3, Λ(∞, T ) < Λ(∞, 0),
for m large enough, the condition Λ(m,T ) > Λ(m, 0) cannot be satisfied. Note
that the functions m 7→ Λ(m,T ) can take values greater than Λ(m,∞), see
Figure 8(a,c). In contrast with Figure 3, the functions T 7→ Λ(m,T ) can be
increasing then decreasing, see Figure 8(b,d). Hence we do not have a critical
curve T = Tc(m), defined for 0 < m < m∗, such that DIG occurs if and
only if T > Tc(m). The set of parameter values where DIG occur behaves as
in Remarks 7 and 9. Indeed, the functions Ti(m) for i = 1, 2, 3, 4 defined in
Remark 7 satisfy

T1(m) = T2(m), 0 < T3(m) < T4(m) <∞.

Let T 1
c : (0,∞)→ (0,∞) and T 2

c : (m∗,∞)→ (0,∞) defined by

T 1
c (m) =

{
T1(m) if 0 < m < m∗,
T3(m) if m ≥ m∗, , T 2

c (m) = T4(m) if m > m∗.

Then, see Figure 9(a), DIG occur if and only if

T 1
c (m) < T < T 2

c (m).

Therefore, DIG can occur for m > m∗. In Figure 9(b) we display the set where
DIG occurs in the (m, ν), where ν = 1/T . We observe that the critical curve
ν = 1/T 1

c (m) is tangent to the ν-axis at the origin.
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Figure 8: (a) Graphs of m 7→ Λ(m,T ), with the indicated values of T . (b)
Graphs of T 7→ Λ(m,T ) with the indicated values of m. (c) and (d) are zooms
of (a) and (b) respectively. The parameter values correspond to Figure 7.

4.2.2 The three patch case

Our objective in this section is to show numerical simulations with three patches
that illustrate the non monotonicity of Λ(m,T ) with respect to T . We consider
the case where α = 1/2 and the matrices A and B in (34) are given by:

Aε(m) =

 9− (10 + ε1)m ε2m ε3m
10m −1− (ε2 + ε4)m ε5m
ε1m ε4m −10− (ε3 + ε5)m

 ,
Bδ(m) =

 −10− (δ1 + δ4)m δ2m 10m
δ1m −(10 + δ2)m δ3m
δ4m 10m 9− (10 + δ3)m

 ,
(43)

with ε = (ε1, ε2, ε3, ε4, ε5) ≥ 0 and δ = (δ1, δ2, δ3, δ4) ≥ 0 such that the corre-
sponding migration matrices are irreducible. Our theory applies to this example.
For these parameter values, we have χ = 9 and r1 = r2 = r3 = −1/2. Therefore
all patches are sinks and DIG can occur. We have the following result
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Figure 9: (a) The set Λ(m,T ) = 0. (b) The set Λ(m, ν) = 0. Here we use the
parameter values of Figure 7 (m∗ = 1.764)

Proposition 12. Let Λε,δ(m,T ) the growth rate corresponding to the piecewise
constant system defined by the matrices (43). For ε and δ small enough, we
have

Λε,δ(1, 0) < 0, Λε,δ(1,∞) < 0, Λε,δ(1, 2) > 0,

so that the function T 7→ Λε,δ(1, T ) is not monotonous.

Proof. For m = 1, ε = 0 and δ = 0 we get A0(1) = A and B0(1) = B, where A
and B are given by

A =

 −1 0 0
10 −1 0
0 0 −10

 , B =

 −10 0 10
0 −10 0
0 10 −1

 .
These matrices have been proposed in [12] as a counterexample to the conjecture
that a PLS (positive linear switched system) is GUAS (globally uniformly asymp-
totically stable) if every matrix in the convex hull of the matrices defining the
subsystems of the PLS is Hurwitz, i.e. its spectral abscissa is negative. Indeed,
it is proved in [12] that every matrix in co(A,B) = {kA+(1−k)B : k ∈ [0, 1]} is
Hurwitz and a calculation reveals that the matrix eAeB has one real eigenvalue
µ ≈ 1.669 > 1. Thus the PLS defined by the matrices A and B is not GUAS.
From these observations we deduce that

λmax(A) < 0, λmax(B) < 0, λmax
(
A+B

2

)
< 0,

and the Perron root of eAeB is stricly greater than 1.

Using the continuity of the spectral abscissa and the continuity of the Perron
root we deduce that for ε and δ small enough, we have

λmax (Aε(1)) < 0, λmax (Bδ(1)) < 0, λmax

(
Aε(1)+Bδ(1)

2

)
< 0,

and the Perron root of eAε(1)eBδ(1) is stricly greater than 1.
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Figure 10: (a,b) The graph of (m,T ) 7→ Λ(m,T ) corresponding to the matrices
(43) and ε3 = ε4 = 0.1, ε1 = ε2 = ε5 = 0, δ1 = 0.1, δ2 = δ3 = δ4 = 0, seen from
left and right. (c) Graphs of m 7→ Λ(m,T ) with the indicated values of T . (d)
Graphs of T 7→ Λ(m,T ) with the indicated values of m. We have Λ(m,∞) = 0
for m = m∗ = 0.172.

Therefore, using (11) and (12) we have

Λε,δ(1, 0) = λmax

(
Aε(1)+Bδ(1)

2

)
< 0,

Λε,δ(1,∞) = 1
2 (λmax (Aε(1)) + λmax (Bδ(1))) < 0.

Let µ be the Perron root of eAε(1)eBδ(1). Using the definition (9) of Λ(m,T ),
we have Λε,δ(1, 2) = 1

2 ln (µ) > 0.

We show in Figure 10 the plot of Λε,δ(m,T ) for the particular choice of ε and
δ indicated in the caption of the figure. For this choice of ε and δ the migration
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Figure 11: (a) The set Λ(m,T ) = 0. (b) The set Λ(m, ν) = 0. The parameter
values are those of Figure 10. We have m∗ ≈ 0.904 and m∗∗ ≈ 1.807.

matrix is irreducible and corresponds to the circular migrations

1
10−→ 2

0.1−→ 3
0.1−→ 1, for τ ∈ [0, 1/2),

1
0.1−→ 2

10−→ 3
10−→ 1, for τ ∈ [1/2, 1).

Using Remark 2, we have q1 = q2 = q3 = 1/3 and

p1(τ) =

{
1

201 if 0 ≤ τ < 1
2

50
51 if 1

2 ≤ τ < 1
, p2(τ) = p3(τ) =

{
100
201 if 0 ≤ τ < 1

2
1

102 if 1
2 ≤ τ < 1

.

Using the theoretical formulas depicted in Figure 1, we have

Λ(0,∞) = 9, Λ(0, 0) = Λ(0, T ) = Λ(∞, 0) = Λ(m, 0) = −1/2,
Λ(∞, T ) = Λ(∞,∞) = −34497/4556 ≈ −7.572.

As in Figures 3 and 8, we have Λ(∞, T ) < Λ(∞, 0) and hence, form large enough
we should have Λ(m,T ) < Λ(m, 0), so that Λ(m,T ) is not increasing with
respect to T . Actually, the behaviour predicted by Proposition 12 occurs in this
case since for m = 1 the map T 7→ Λ(m,T ) is increasing and then decreasing,
see Figure 10(d). We can make comments on the critical set Λ(m,T ) = 0 which
are similar to those made on Figure 8. Indeed, the set of parameter values where
DIG occur behaves as in Remarks 7 and 9: the functions Ti(m) for i = 1, 2, 3, 4
defined in Remark 7 satisfy T1(m) = T2(m) for all m ∈ (0,m∗) and there exists
m∗∗ > m∗ such that

0 < T3(m) < T4(m) <∞ for m ∈ [m∗,m∗∗), T3(m∗∗) = T4(m∗∗)
T3(m) =∞, T4(m) = 0 for m > m∗∗.

Let T 1
c : (0,∞)→ (0,∞) and T 2

c : (m∗,∞)→ (0,∞) defined by

T 1
c (m) =

{
T1(m) if 0 < m < m∗,
T3(m) if m∗ ≤ m ≤ m∗∗, , T 2

c (m) = T4(m) if m∗ < m ≤ m∗∗.
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Then, see Figure 11(a), DIG occur if and only if T 1
c (m) < T < T 2

c (m). Therefore,
DIG can occur for m > m∗. In Figure 11(b) we display the set where DIG occurs
in the (m, ν), where ν = 1/T . We observe that the critical curve ν = 1/T 1

c (m)
is tangent to the ν-axis at the origin.

5 Stochastic environment

In this section, we briefly explain why most of our results remain valid if the
growth rates are stochastic. More precisely, we consider a Markov Feller process
(ωt)t≥0 on a compact state S. For precise definition, the reader is referred to
[5]. For each 1 ≤ i ≤ n we consider a continuous function ri : S → R. We
also consider for each s ∈ S a matrix L(s) = (lij(s))ij which satisfies (4) and
we assume that s 7→ L(s) is continuous on S. We then have the system of
differential equations

dxi
dt

= ri(ωt)xi +m
∑
j 6=i

(`ij(ωt)xj − `ji(ωt)xi) , 1 ≤ i ≤ n, (44)

We assume that (ωt)t≥0 has a unique stationary distribution µ on S. This a
the consequence that, for all bounded continuous function f : S → R, with
probability one,

lim
t→∞

1

t

∫ t

0

f(ωu)du =

∫
S

f(s)µ(ds) (45)

In particular, in analogy with the periodic case, we let

ri =

∫
S

ri(s)µ(ds)

be the local average growth rate in each patch in the absence of migration
(m = 0). Formula (45) implies that when m = 0, for each 1 ≤ i ≤ n, with
probability one,

lim
t→∞

1

t
ln(xi(t)) = lim

t→∞

1

t

∫ t

0

ri(ωu)du = ri.

For s ∈ S, we let R(s) = diag(r1(s), . . . , rn(s)), A(s) = R(s) + mL(s) and for
a function f defined on S and with values in R or in the set of matrices, we
let f =

∫
S
f(s)µ(ds) . Setting x(t) = (x1(t), · · · , xn(t))

>
, Equation (44) can be

rewritten as
dx(t)

dt
= A(ωt)x,

By Proposition 1 in [5], we have:

Proposition 13. There exists Λ ∈ R such that, for all x(0) > 0, with probability
one,

lim
t→∞

ln(‖x(t)‖)
t

= Λ. (46)

For all T > 0, we let ωTt = ωt/T . We let Λ(m,T ) denote the Lyapunov
exponent given by (46), when (ωt)t≥0 is replaced by (ωTt )t≥0 in (44). We can
prove the following results:
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Theorem 14. The Lyapunov exponent Λ(m,T ) satisfies the following properties

1. For all m,T > 0,

Λ(m,T ) ≤ χ :=

∫
S

max(ri(s))µ(ds). (47)

2. For all m > 0,
lim
T→0

Λ(m,T ) = λmax(R+mL). (48)

3. For all m > 0,

lim
T→∞

Λ(m,T ) =

∫
S

λmax(R(s) +mL(s))µ(ds). (49)

4. We have
lim
m→0

lim
T→∞

Λ(m,T ) = χ (50)

In particular, supm,T Λ(m,T ) = χ.

5. We have
lim
m→0

lim
T→0

Λ(m,T ) = max(ri). (51)

6. We have

lim
m→∞

lim
T→∞

Λ(m,T ) =
∑
i

piri, lim
m→∞

lim
T→0

Λ(m,T ) =
∑
i

qiri (52)

Proof. The proof of the upper bound (47) is exactly the same as in the periodic
case, except that we use (45) to justify the convergence of the temporal mean.
The limits (48) and (49) are consequence, respectively of Propositions 4 and 5
in [5]. The double limits (50), (51) and (52) are proven as in the periodic case,
using Lemma 29.

Example 1. (Periodic case) The continuous periodic case corresponds to
S = R/Z identified with the unit circle and ωt = s+ t (mod 1) for some s ∈ S.

Example 2. (PDMP case) Let S = {1, . . . , N} a finite set, and (ωt)t≥0 a
continuous time Markov chain on S. Then, (ωt)t≥0 is a Markov Feller process.
The process (xt, ω

T
t )t≥0 is a Piecewise Deterministic Markov Process (PDMP).

The case where N = 2 and n = 2 has been investigated in [4]. Theorem 14
extend to the case of general N and n the results found in [4].

Remark 10. The results given here all rely on results proved in [5]. In this
paper, we have used the fact that the couple (xt, ωt)t≥0 is a Feller Markov
process (see [5, Lemma 7]). This is the reason why we assumed that s→ R(s)
and s 7→ L(s) are continuous functions, in contrast with Section 2, where these
functions can have discontinuities.

The proofs of the asymptotic formulas for Λ(m,T ) when T tends to 0 or T
tends to infinity are done in quite different ways, in the periodic case (Theorem
4) and the random case (Theorem 14). In the random case, these formulas are
special cases of the results given in [5] for a general irreducible cooperative linear
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system. In the periodic case, these are also special cases of general results that
deal with an irreducible linear cooperative system and are given in the Section
6 of this paper. Moreover, as for the periodic case, one could also give in the
random case asymptotic formulas for Λ(m,T ) when m tends to 0 or m tends to
infinity, which are similar to those given in items 3 and 4 of Theorem 4.

6 Cooperative linear T -periodic systems

The existence of the growth rate (see Proposition 1) and the results presented in
Theorem 4 on the fast regime (T → 0), and the slow regime (T →∞), are special
cases of more general results which are true for any irreducible cooperative linear
T -periodic system. The objective of this section is to discuss and prove these
results in this more general framework. Consider the linear T -periodic system

dx

dt
= A(t/T )x, (53)

where A(τ) is not necessarily equal to R(τ) +mL(τ) as in the system (5). We
only assume that

Hypothesis 3. The function A : τ 7→ A(τ) is a piecewise 1-periodic continu-
ous function, with a finite number of discontinuities on [0, 1) and has left and
right limits at the discontinuity points. Moreover, for each τ ≥ 0, A(τ) is an
irreducible Metzler matrix.

The solutions of (53) are continuous and piecewise C1 functions satisfying
(74) excepted on the discontinuity points of A(τ). The fundamental matrix
solution X(t) of (53) is the solution of the matrix valued differential equation

dX

dt
= A(t/T )X, (54)

with initial condition X(0) = Id, the identity matrix. By changing time, we
can return to the case where the period is 1 and make T appear as a parameter
of the system. Indeed, the change of variables

t/T = τ, y(τ) = x(Tτ), Y (τ) = X(Tτ)

transforms (53) and (54) into the equations

dy

dτ
= TA(τ)y,

dY

dτ
= TA(τ)Y. (55)

In order not to burden the presentation, the results on the existence of the
growth rate for the system (55), and the formulas that give it, are discussed in
Appendix B. The main result of Appendix B is the Theorem 26 which shows that
the system (55) admits a growth rate, noted Λ(T ) to recall its dependence on
the parameter T in the system (55). This theorem also provides two formulas to
compute Λ(T ), one using the Perron root µ(T ) of the monodromy matrix Y (1) =
X(T ) and the other using a periodic GAS solution of the equation associated
with system (55) in the simplex ∆. The existence and global asymptotic stability
of this periodic solution is given in Proposition 24 in Appendix B.

In the remainder of this section we use Proposition 24 and Theorem 26 of
Appendix B, which concern the 1-periodic systems (55), to derive analogous
results which concern the equivalent systems (53,54).
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6.1 The growth rate

We have the following result.

Proposition 15. Let x(t) be a solution of (53) such that x(0) > 0. For all
t > 0 we have x(t)� 0. For all i we have

Λ[xi] = Λ(T ) :=
1

T
ln(µ(T )),

where µ(T ) is the Perron root of the monodromy matrix X(T ) of (53). The
function Λ is analytic in T .

Proof. Using Theorem 26 of Appendix B, for any solution y(τ) of (55), such
that y(0) > 0, we have

lim
τ→∞

1

τ
ln(yi(τ)) = ln(µ(T )),

where µ(T ) is the Perron root of the monodromy matrix Y (1) = X(T ). On the
other hand we have

lim
τ→∞

1

τ
ln(yi(τ)) = lim

t→∞

1

t/T
ln(xi(t)) = T lim

t→∞

1

t
ln(xi(t)).

Hence we have Λ[xi] = Λ(T ), where Λ(T ) = 1
T ln(µ(T )).

We prove now that Λ(T ) is analytic in T . The monodromy matrix X(T )
is analytic in T . Indeed, the solutions of the differential equation (55), which
is analytic in the parameter T are analytic in this parameter. Hence X(T )
is analytic in T . So is its Perron root µ(T ), since it is a simple root of the
characteristic polynomial, see [6]. Therefore Λ(T ) is analytic in T .

6.2 The variables ρ and θ

As we said in Section 3.4 about the particular system (5) the variables ρ =
∑
i xi

and θ = x/ρ play a major role in the description of our results. Let us show in
this section how these variables are used in the general case of system (53). In
these variables, the system (53) is written

dρ
dt = 〈A(t/T )θ,1〉ρ
dθ
dt = A(t/T )θ − 〈A(t/T )θ,1〉θ (56)

The second equation in (56) is a differential equation on the simplex ∆. We
have the following result.

Proposition 16. Let θ∗(t, T ) be the solution of the second equation in (56)
with initial condition θ∗(0, T ) = π(T ), where π(T ) is the Perron vector of the
monodromy matrix X(T ). Then θ∗(t, T ) is a T -periodic solution, and is globally
asymptotically stable. Moreover, the growth rate Λ(T ) := 1

T ln(µ(T )) of equation
(53) satisfies

Λ(T ) =

∫ 1

0

〈A(τ)θ∗(Tτ, T ),1〉dτ. (57)
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Proof. Using the change of variable

τ = t/T, σ(τ) = ρ(Tτ), η(τ) = θ(Tτ),

the system (56) becomes

dσ
dτ = T 〈A(τ)η,1〉σ
dη
dτ = TA(τ)η − T 〈A(τ)η,1〉η (58)

According to Proposition 24 of Appendix B, the second equation in (58), has
a periodic solution, denoted η∗(τ, T ) to emphasize its dependence on the pa-
rameter T , which is globally asymptotically stable. Recall that η∗(τ, T ) is the
solution of initial condition η∗(0, T ) = π(T ), where π(T ) is the Perron vector of
the monodromy matrix X(T ). Therefore, θ∗(t, T ) := η∗(t/T, T ) is a T -periodic
solution of the second equation in (56). It is globally asymptotically stable. As
a consequence of Theorem 26 of Appendix B, we have the formula (57) for the
growth rate Λ(T ) of the equation (53).

6.3 Fast regime

Our aim is to determine the limit of Λ(T ) as T → 0. We use the averaging
method [34]. The averaged system of (53) consists in the following linear system

dx

dt
= Ax. (59)

In contrast with (53), the system (59) is an autonomous linear systems whose
solutions can be computed analytically. We have

x(t) = eAtx(0).

SinceA is a an irreducible Metzler matrix, its spectral abscissa, denoted λmax(A),
is a simple real eigenvalue, called the dominant eigenvalue of A. Therefore the
growth rate of the averaged system (59) is equal to λmax(A). We have the fol-
lowing result which asserts that when T → 0, the limit of the growth rate of the
original system (53) is equal to the growth rate of the averaged system (59).

Theorem 17. Let λmax(A) be the dominant eigenvalue of A. We have

lim
T→0

Λ(T ) = λmax(A).

Proof. Using Proposition 16, the growth rate of the equation (53), satisfies

Λ(T ) =

∫ 1

0

〈A(τ)θ∗(Tτ, T ),1〉dτ.

where θ∗(t, T ) is the T -periodic solution of the second equation in (56). Let
θ(t, T ) be the solution of the second equation in (56), with initial condition
θ(0, T ) = θ0. From the averaging theorem we deduce that, as T → 0, θ(t, T ) is
approximated by the solution θ(t) of the averaged equation

dθ
dt = Aθ − 〈Aθ,1〉θ, (60)
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with the same initial condition θ(0) = θ0. The averaged equation (60) has a
globally asymptotically stable equilibrium in ∆. Indeed, let w = (w1, · · · , wn)>

be the Perron-Frobenius vector of A, i.e., the unique positive eigenvector corre-
sponding to the eigenvalue λmax

(
A
)

of the matrix A, such that 〈w,1〉 = 1. We
have w ∈ ∆ and w is the unique positive equilibrium of (60). Using Proposition
25 in Appendix B, w is GAS for (60) in the simplex ∆. Since the averaged equa-
tion has an attractive equilibrium w, as T → 0, the T -periodic solution θ∗(t, T )
of the second equation in (56) converges toward w. Hence, using Proposition
16, as T → 0, we have

Λ(T ) =

∫ 1

0

〈A(τ)θ∗(Tτ, T ),1〉dτ =

∫ 1

0

〈A(τ)w,1〉dτ + o(1)

Using Aw = λmax
(
A
)
w and 〈w,1〉 = 1, we have∫ 1

0
〈A(τ)w,1〉dτ = 〈

(∫ 1

0
A(τ)dτ

)
w,1〉 = 〈Aw,1〉

= λmax
(
A
)
〈w,1〉+ = λmax

(
A
)
.

Therefore, as T → 0, Λ(T ) = λmax
(
A
)

+ o(1).

6.4 Slow regime

Our aim in this section is to determine limT→∞ Λ(T ). Since A(τ) is an irre-
ducible cooperative matrix, the Perron-Frobenius theorem for irreducible Met-
zler matrices implies that its stability modulus is a simple real eigenvalue of
the matrix A(τ), denoted λmax(A(τ)). We have the following result, which has
already been proved by Carmona [7], in the case where the matrix A(τ) is con-
tinuous. Hence the next theorem is an extension of [7, Theorem 2.1] to the case
where the matrix A(τ) is piecewise continuous.

Theorem 18. Let λmax(A(τ)) be the spectral abscissa of the matrix A(τ). We
have

lim
T→∞

Λ(T ) = λmax(A)

Proof. As shown by (56), the equation on the simplex ∆ is

dθ
dt = A(τ)θ − 〈A(τ)θ,
dτ
dt = 1

T

(61)

We use the change of variable τ = t/T and η(τ) = θ(Tτ). The equation (61)
becomes

1

T

dη

dτ
= A(τ)η − 〈A(τ)η (62)

When T → ∞ this is a singularly perturbed equation whose study is achieved
using Tikhonov’s theorem, see Appendix C. The systems (61) and (62) are
equivalent. The first one is written using the fast time t, while the second one
is written using the slow time τ . These systems have n− 1 fast variables θ and
one slow variable τ . The fast dynamics, obtained from (61) by letting 1

T = 0 is

dθ
dt = A(τ)η − 〈A(τ)η, (63)
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where τ is considered as a parameter. Let us prove that the hypotheses of the
Proposition 28 in Appendix C are satisfied. The conditions H0’ and H1 hold.
It remains to prove that the condition H2’ also hold. This is true since the fast
equation (63) admits the Perron-Frobenius vector v(τ) of A(τ) as an equilibrium
which is globally asymptotically stable in the simplex ∆, see Proposition 25 in
Appendix B. Therefore, according to Proposition 28 (see Remark 15 following
this proposition), the solution η(τ, T ) of (62) is approximated by the slow curve
v(τ). More precisely, for any ν > 0, as small as we want, as T →∞, we have

η(τ, T ) = v(τ) + o(1) uniformly on [0, 1] \
p⋃
k=0

[τk, τk + ν],

where τ0 = 0 and τk, 1 ≤ k ≤ p, are the discontinuity points of A(τ) =
R(τ) + mL(τ). Hence the unique T -periodic solution η∗(t, T ) of the second
equation in (58) (see the proof of Proposition 16), satisfies

η∗(τ, T ) = v(τ) + o(1) uniformly on [0, 1] \
p⋃
k=1

[τk, τk + ν].

From this formula and θ∗(Tτ, T ) = η∗(τ, T ) we deduce that

θ∗(Tτ, T ) = v(τ) + o(1) uniformly on [0, 1] \
p⋃
i=1

[τk, τk + ν].

Since ν can be chosen as small as we want, as T → ∞, using Proposition 16,
we have

Λ(T ) =

∫ 1

0

〈A(τ)θ∗(Tτ, T ),1〉dτ =

∫ 1

0

〈A(τ)v(τ),1〉dτ + o(1)

Using A(τ)v(τ) = λmax(A(τ))v(τ) and 〈v(τ),1〉 = 1, we have∫ 1

0
〈A(τ)v(τ),1〉dτ =

∫ 1

0
λmax(A(τ))〈v(τ),1〉dτ =

∫ 1

0
λmax(A(τ))dτ.

Therefore, as T →∞, Λ(T ) =
∫ 1

0
λmax(A(τ))dτ + o(1) = λmax(A) + o(1).

The behavior of θ∗(Tτ, T ) as T →∞ is illustrated in Figure 12, showing the
approximation of θ∗(Tτ, T ) by the Perron-Frobenius vector v(τ) when T is large
enough. Note that the approximation is uniform except on the small intervals
[τk, τk + ν], where τk is a discontinuity of v(τ . In these thin layers, the solution
jumps quickly from the left limit of v(τ) at τk to its right limit.

6.5 Fast migration

In this section we consider the following particular case of (53)

dx

dt
= R(t/T ) +mL(t/T ) (64)

where the matrix A(τ) is of the form A(τ) = R(τ) + mL(τ), with m > 0 and
R(τ), L(τ) are n×n matrices. In addition to Hypothesis 3 we make the following
assumption.
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θ1(Tτ, T ) θ2(Tτ, T ) θ3(Tτ, T )

τ τ τ

Figure 12: The figure corresponds to the example discussed in Section 4.1.6,
with m = 1 and T = 20. The solution θ(Tτ, T ) of the second equation in (56)
with initial condition θ1(0) = 0.3, θ2(0) = 0.35, θ3(0) = 0.35 is colored in red.
The Perron-Frobenius vector v(τ) of the matrix A(τ) is colored in blue.

Hypothesis 4. For any τ ∈ [0, 1] the matrix L(τ) is Metzler irreducible and
its columns sum to 0.

If the matrix R(τ) is diagonal we obtain the system (5).
As recalled in Lemma 3, the spectral abscissa L(τ) is λmax(L(τ)) = 0. It is

an eigenvalue and L(τ) has a unique positive corresponding eigenvector in the
simplex ∆ that we note p(τ), called its Perron-Frobenius vector, see Theorem
22 in Appendix A. We have the following result.

Proposition 19. Let p(τ) be the Perron-Frobenius vector of L(τ). Let Λ(m,T )
be the growth rate of (64). We have

lim
m→∞

Λ(m,T ) = 〈Rp,1〉.

In the particular case of (5), where R(τ) = diag(r1(τ), · · · , rn(τ)) is diagonal,
this formula becomes limm→∞ Λ(m,T ) =

∑n
i=1 piri.

Proof. As shown by (56), the equation on the simplex ∆ is

dθ

dt
= R(t/T )θ +mL(t/T )θ − 〈R(t/T )θ,1〉θ −m〈L(t/T )θ,1〉θ, (65)

Since the columns of L(τ) sum to 0 we have 〈L(τ)θ,1〉 = 0. Therefore, using
the variables τ = t/T and η(τ) = θ(Tτ), this equation is written

dη

dτ
= TR(τ)η + TmL(τ)η − T 〈R(τ)η,1〉η, (66)

Dividing by m we obtain

1

m

dη

dτ
= TL(τ)η +

1

m
[TR(τ)η − T 〈R(τ)η,1〉η] . (67)

When m→∞ this is a singularly perturbed equation with n− 1 fast variables
θ and one slow variable τ . Using the fast time s = mτ , this equation is written

dη
ds = TL(τ)η + 1

m [TR(τ)η − T 〈R(τ)η,1〉η] ,
dτ
ds = 1

m

(68)
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Therefore, the fast dynamics, obtained by letting 1
m = 0 in (68) is

dη
ds = TL(τ)η, (69)

where τ is considered as a parameter. Let us prove that the hypotheses of the
Proposition 28 in Appendix C are satisfied. The conditions H0’ and H1 hold. It
remains to prove that the condition H2’ also hold. This is true since the Perron-
Frobenius vector p(τ) of L(τ), is the unique positive equilibrium of (69) and is
GAS in the simplex ∆, as shown in the Proposition 25 in Appendix B. Therefore,
according to Proposition 28 (see Remark 15 following this proposition), the
solution θ(τ,m) of (67) is approximated by the slow curve p(τ). More precisely,
for any ν > 0, as small as we want, as T →∞, we have

η(τ, T ) = p(τ) + o(1) uniformly on [0, 1] \
p⋃
k=0

[τk, τk + ν],

where τ0 = 0 and τk, 1 ≤ k ≤ p, are the discontinuity points of A(τ) =
R(τ) +mL(τ). Hence the unique T -periodic solution θ∗(t, T ) of (65) satisfies

θ∗(Tτ,m) = p(τ) + o(1) uniformly on [0, 1] \
p⋃
i=1

[τk, τk + ν].

From Proposition 16, we have Λ(m,T ) =
∫ 1

0
〈R(τ)θ∗(Tτ, T ),1〉dτ . Since ν can

be chosen as small as we want, as m→∞, we have∫ 1

0
〈R(τ)θ∗(Tτ, T ),1〉dτ =

∫ 1

0
〈R(τ)p(τ),1〉dτ + o(1) = 〈Rp,1〉+ o(1).

Therefore, as m → ∞, Λ(m,T ) = 〈Rp,1〉 + o(1). If R is diagonal we obtain
Λ(m,T ) =

∑n
i=1 piri + o(1).

7 Discussion

Non-autonomous linear differential systems of the form

dx

dt
= R(t/T )x+mL(t/T )x, (70)

where R(τ) and L(τ) are 1-periodic, R is a diagonal matrix, representing the lo-
cal growths on the patches, and L represents the migration between the patches,
are the simplest models to address the question of population dynamics subject
to temporal fluctuations (the system is not autonomous), and spatial fluctua-
tions encoded in the migration matrix L.

Motivated by the pioneering remarks of [19] and [22] and some others (see
[4] for a more detailed historical review) on the paradoxical effect of DIG (or
inflation) a thorough mathematical study has been undertaken to clarify the
origin and characteristics of this phenomenon by [4], in the case of two patches,
and by [23], in the more ambitious case of n patches. The natural way to do so is
to study the properties of the growth rate Λ(m,T ) which can be associated to the
linear system (70) when the matrix L(τ) is irreducible for any τ (see Proposition
1). Indeed, we prove that when m > 0, the Lyapunov exponents Λ[xi] of all
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components xi(t) of the solutions of (70) are equal, and moreover they do not
depend on the initial condition. The common value of the Lyapunov exponents
Λ[xi] is called the growth rate of the system (70) and denoted Λ(m,T ). It
is given by Λ(m,T ) = 1

T ln(µ(m,T ), where µ(m,T ) is the Perron root of the
monodromy matrix associated to (70). This result is not obvious, neither in the
case of a symmetric and constant migration matrix, considered by Katriel [23],
nor in the one considered here when the migration matrix is neither symmetric
nor constant.

In [23] the migration matrix L is time independent and symmetric and the
matrix R(t) is a continuous. The existence of the growth rate Λ(m,T ) is demon-
strated, see [23, Section 3.1], and its properties are described:

1. Asymptotic behavior of Λ(m,T ) for T tending to 0 or ∞.

2. Monotonicity of T 7→ Λ(m,T ).

These results of [23] follow from general results of Liu et al. [26] on the principal
eigenvalue of a periodic linear system.

Using rather elementary methods, the theorem of Perron-Frobenius, the
method of averaging and Tikhonov’s theorem on singular perturbations, we
have generalized the results of point 1 to the case where the matrix L is not
symmetric and can depend on time and the functions R(t) and L(t) can have dis-
continuities. We gave the asymptotic behavior of Λ(m,T ) for m and T tending
to 0 or ∞ (Theorem 4).

We have shown, as in [23], that if all patches are sinks (i.e. maxi ri < 0) then
DIG occurs (i.e. Λ(m,T ) > 0, see Definition 2) if and only if χ := maxi ri > 0
(see Theorem 6) and we characterized the set of m and T for which Λ(m,T ) > 0
(see Proposition 7 and Remark 7). The properties of Λ(m, 0) and Λ(m,∞),
defined as the limits of Λ(m,T ), when T tends to 0 or ∞ respectively, are
important in this study. As in [23], it appears that these limits are decreasing
with respect of m (see Proposition 5). Among the new properties we obtain
when the matrix L(τ) depends on time or is not symmetric, we can mention the
following facts.

• If maxi ri < 0 and χ := maxi ri > 0 then there is not necessarily any m∗

for which Λ(m∗,∞) = 0, so that Λ(m,∞) > 0 for any m > 0 and DIG can
occur, when T is large enough, for any m > 0 not only for 0 < m < m∗ as
in the constant symmetric migration case, see Section 4.1.4. This behavior
cannot occur if L is constant or L(τ) is symmetric, see Remark 6.

• When m∗ such that Λ(m∗,∞) = 0 exists, DIG does not occur only for
T > Tc(m), where T = Tc(m) is the critical curve defined for 0 < m < m∗,
as in [23]. The set of (m,T ) for which DIG can occur is more complicated,
see Section 4.2.

• When the migration matrix L(τ) is time dependent then the function
T 7→ Λ(m,T ) is not always strictly increasing, see Sections 4.1.3 and 4.2.
The DIG phenomenon can occur for m > m∗, precisely because of this
non-monotonicity.

The extension to a non symmetric time dependent migration seems impor-
tant to us because the symmetry assumptions are not very realistic and the
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dispersal patterns can also be seasonal. The possibility that R(t) and L(t) have
discontinuities is not a simple desire for mathematical generality. Indeed, it
opens the way to thinking, for example in the piecewise constant case, about
stochastic models (PDMP) as we sketched in the Section 5. Note that even if we
assume in Section 5 that R and L are continuous, this does not contradict the
fact that in our deterministic study we found it important to extend the results
to the non-continuous case, since for a realization t 7→ ωt of many reasonable
stochastic processes, t 7→ R(ωt) +mL(ωt) is discontinuous. We refer to [4] and
[5] for further analysis of these issues.

In the random case, the asymptotic formulas for Λ(m,T ) when T tends to
0 or T tends to infinity given in Theorem 14 are special cases of the formulas
given in [5] for a general cooperative linear system. In the periodic case, these
formulas, given in Theorem 4 are special cases of the results given in Section 6
of the present paper.

There remains the second point of the results of Katriel, the monotony of
T 7→ Λ(m,T ) that we have not been able to re-demonstrate with our methods.
The clarification of this last point seems to require new ideas insofar as we think
that it is still true in the non-symmetric time independent case, but that it is
no longer true as soon as L depends on time as we have seen.

In this article, and in its title, we focused on the case where all patches
are sinks (the all-sink case). However, the theoretical results obtained on the
growth rate Λ(m,T ) and its limits when m or T tends to 0 or to ∞ allow us
to study also the case when some patches are sources (the source-sink case).
For example, if there is at least one source (one of the r̄i’s is positive) then
the formula limm→0 Λ(m,T ) = max1≤i≤n ri, established in Theorem 4, shows
that for m small enough Λ(m,T ) will be positive, in contrast with the all-sink
case, where it is negative. The source-sink case has been analyzed in detail by
Katriel [23, Section 2.4] when the migration matrix is constant. The extension
of his results to the case where the migration matrix is time dependent is an
important question which deserves more development and will be the subject of
future work.

It seems likely that these results remain true for more realistic models in-
cluding density dependent growth rates and dispersions along the lines proposed
in [4], but the work remains to be done. It also remains to be addressed, still
from the point of view of the combined effect of dispersal intensity and tempo-
ral fluctuations, for more complex models of population dynamics, structured
populations, population interaction etc...

A The Perron Frobenius theorem

The Perron theorem, implies the following result.

Theorem 20. Let X be a matrix with positive entries. The matrix X has a
unique positive real eigenvalue, denoted µ and a unique corresponding eigenvec-
tor, denoted π, called respectively the Perron root and the Perron vector, such
that

Xπ = µπ, πi > 0 and ‖π‖1 =
∑n
i=1 πi = 1. (71)

Moreover
lim
k→∞

(X/µ)k = G, (72)
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where G is the projector onto the nullspace N(M) along the range R(M) of the
matrix M = X − µI.

The matrix G is called the Perron projection. We have the explicit formula
G = vw>/w>v, where v and w> are left and right positive eigenvectors of X,
with eigenvalue µ, i.e. Xv = µv and w>X = µw>. However, we don’t need
here this explicit formula. For details and complements, see [28]. We have the
following result.

Lemma 21. Let X be a matrix with positive entries and π its Perron vector.
For all x 6= 0 in Rn+ we have

lim
k→∞

Xkx

‖Xkx‖1
= π.

Proof. Let x 6= 0 in Rn+. Using (72), we have

lim
k→∞

Xkx

‖Xkx‖1
= lim
k→∞

(X/µ)kx

‖(X/µ)kx‖1
=

Gx

‖Gx‖1
,

where G is the Perron projection of X. Since Gx ∈ N(X − µI), which is
generated by π, we have Gx

‖Gx‖1 = π.

The Perron Frobenius theorem extends the Perron theorem to irreducible
matrices with nonnegative entries, see [28]. This theorem implies the following
result.

Theorem 22. Let A be an irreducible Metzler matrix (i.e. the matrix A has
off diagonal nonnegative entries). The matrix A has a unique real eigenvalue,
denoted λmax(A) and a unique corresponding eigenvector, denoted u, called re-
spectively the Perron-Frobenius root and the Perron-Frobenius vector, such that

Ap = λmaxp, pi > 0 and ‖p‖1 =
∑n
i=1 pi = 1. (73)

Moreover any other eigenvalue λ of A satisfies <(λ) < λmax(A).

This result is obtained by applying the Perron-Frobenius theorem to the
matrix X = A+ rId where r is chosen such that X has nonnegative entries.

B Cooperative linear 1-periodic systems

We consider the linear differential equation

dx

dt
= A(t)x. (74)

We assume that Hypotheis 3 of Section 6 is satisfied, i.e. the function A : t 7→
A(t) is a piecewise 1-periodic continuous function, with a finite number of dis-
continuities on [0, 1) and having left and right limits at the discontinuity points.
and, for each t ≥ 0, A(t) is an irreducible Metzler matrix. Therefore the solu-
tions of (74) are continuous and piecewise C1 functions satisfying (74) excepted
on the discontinuity points of A(t). Moreover, the positive cone is positively in-
variant for (74). More precisely, since A(t) is cooperative and irreducible then,
as a consequence of [18, Theorem 1.1] or [36, Lemma], we have the following
result.
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Lemma 23. Suppose that x : [0 +∞) → Rn is a solution of (74) such that
x(0) > 0. Then x(t)� 0 for all t > 0.

Recall that the solution x(t, x0) to (74) such that x(0, x0) = x0 writes

x(t, x0) = Φ(t)x0 (75)

where Φ(t), called the fundamental matrix solution, is the solution to the matrix
valued differential equation

dX

dt
= A(t)X, X(0) = Id. (76)

From Lemma 23 we deduce that for all t > 0, Φ(t) has positive entries.
Let ∆ :=

{
x ∈ Rn+ :

∑n
i=1 xi = 1

}
be the unit n − 1 simplex of Rn+. Every

x 6= 0 in Rn+ can be written as

x = ρθ, with ρ =
∑n
i=1 xi and θ = x

ρ ∈ ∆. (77)

The flow (75) of (74) induces a flow on ∆, given by

Ψ(t, θ) =
Φ(t)θ

〈Φ(t)θ,1〉
. (78)

Here 1 = (1, . . . , 1)> and 〈x,1〉 = ‖x‖1 =
∑n
i=1 xi is the usual Euclidean scalar

product of vectors x and 1. We have the following result.

Proposition 24. Let π ∈ ∆ the Perron vector of Φ(1). Then t 7→ Ψ(t, π) is a
periodic orbit in ∆. It is globally asymptotically stable, i.e. for any θ ∈ ∆

lim
t→∞

‖Ψ(t, θ)−Ψ(t, π)‖ = 0.

Proof. The Perron vector π of Φ(1) is a fixed point for the induced flow Ψ(1, θ)
on ∆. Indeed, using (71) and(78), we have

Ψ(1, π) =
Φ(1)π

〈Φ(1)π,1〉
=

µπ

µ〈π,1〉
= π.

Therefore Ψ(t, π) is a periodic orbit in ∆. Using (78) and Lemma 21 we have

lim
t→∞

‖Ψ(t, θ)−Ψ(t, π)‖ = lim
k→∞

‖Ψ(k, θ)−Ψ(k, π)‖

= lim
k→∞

∥∥∥∥ Φ(1)kθ

‖Φ(1)kθ‖1
− π

∥∥∥∥ = 0.

This proves the global asymptotic stability of Ψ(t, π).

Let us write the differential equation on ∆ corresponding to the flow (78).
Using the decomposition (77), the differential equation (74), with initial condi-
tion x(0) > 0, rewrites:

dρ

dt
= 〈A(t)θ,1〉ρ (79)

dθ

dt
= A(t)θ − 〈A(t)θ,1〉θ (80)
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with initial conditions ρ(0) = 〈x(0),1〉 and θ(0) = x(0)
〈x(0),1〉 . For any θ0 ∈ ∆, the

solution θ(t) of of (80) with initial condition θ(0) = θ0 is given by θ(t, θ0) =
Ψ(t, θ0), where Ψ is given by (78). We can also express the solution x(t, x0) by
using the solution θ(t, θ0), as shown in the following remark.

Remark 11. Let θ(t, θ0) be the solution of (80) with initial condition θ0. The
solution x(t, x0) of (74) with initial condition x0 is given by

x(t, x0) = θ (t, x0/ρ0) ρ0e
∫ t
0
〈A(s)θ(s,x0/ρ0),1〉ds, (81)

where ρ0 = 〈x0,1〉.

We have the following result which is the particular case of Proposition 24
when the matrix A is constant. We state it here because it is used several times
in the proofs of our results, see Sections 6.3, 6.4, and 6.5.

Proposition 25. Let A be an irreducible Metzler matrix. Let λmax(A) be
its spectral abscissa. Let p ∈ ∆ be the Perron Frobenius vector associated to
λmax(A). Then p is an equilibrium point of the differential equation

dθ

dt
= Aθ − 〈Aθ,1〉θ (82)

on the simplex ∆ associated to the autonomous linear equation dx
dt = Ax. It is

GAS in the simplex ∆.

Proof. We obviously have Ap−〈Ap,1〉p = 0. Therefor p is an equilibrium point
of (82). Since the differential equation is autonomous, the fundamental matrix
of solution is X(t) = etA. Its Perron root is µ = eλmax(A). Since Ap = λmaxp
we have eAp = eλmaxAp, so that the Perron vector of X(1) is equal to p. Recall
that the flow Ψ(t, θ) of (82) is given by (78) where Φ(t, θ) = etAθ. Hence, using
Lemma 21, we have

lim
t→∞

‖Ψ(t, θ)−Ψ(t, p)‖ = lim
k→∞

‖Ψ(k, θ)−Ψ(k, p)‖

= lim
k→∞

∥∥∥∥∥
(
eA
)k
θ

‖ (eA)
k
θ‖1
− p

∥∥∥∥∥ = 0.

This proves the global asymptotic stability of p.

We have the following result, which asserts the existence of the growth rate
of (74) and which gives us two formulas to calculate it. One uses the periodic
solution whose existence was given in Proposition 24. The other uses the Perron
root of the monodromy matrix of (74).

Theorem 26. Let Λ = ln(µ), where µ is the Perron root of the monodromy
matrix Φ(1) of (74). Let π its Perron vector. Let θ∗(t) := Ψ(t, π) is the periodic
solution of (80) whose existence and global asymptotic stability are proved in
Proposition 24. For any solution x(t) of (74), such that x(0) > 0, we have

lim
t→∞

1

t
ln(xi(t)) =

∫ 1

0

〈A(t)θ∗(t),1〉dt = Λ,
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Proof. Using (81), the Lyapunov exponent of the components of any solution
x(t, x0) of (74) can be computed as follows

lim
t→∞

1

t
ln(xi(t, x0)) = lim

k→∞

1

k
ln(xi(k, x0))

= lim
k→∞

1

k

[
ln(θi(k, x0/ρ0)ρ0) +

∫ k

0

U(s)ds

]
,

where U(s) = 〈A(s)θ (s, x0/ρ0) ,1〉. Since ‖θ (t, x0/ρ0)− θ∗(t)‖ tends to 0, as t
tends to ∞, the first term in the right hand side goes to 0. Therefore, for all
k1 ≥ 0,

lim
t→∞

1

t
ln(xi(t, x0)) = lim

k→∞

1

k

[∫ k1

0

U(s)ds+

∫ k

k1

U(s)ds

]
Using Proposition 24, for k1 large enough, we can replace in the second integral
θ (t, x0/ρ0) by θ∗(t), and then, using the fact that the first term tends to 0 as
k →∞, we have

lim
t→∞

1

t
ln(xi(t, x0)) = lim

k→∞

1

k

∫ k

k1

〈A(s)θ∗(s),1〉ds

= lim
k→∞

k − k1

k

∫ 1

0

〈A(s)θ∗(s),1〉ds =

∫ 1

0

〈A(t)θ∗(s),1〉ds.

This proves the first equality. The second equality is proved as follows. Let
x(t) = Φ(t)π be the solution of (74), with initial condition x(0) = π, where
π ∈ ∆ is the Perron vector of Φ(1). Since x(1) = Φ(1)π = µπ, we have
x(k) = Φ(k)π = Φ(1)kπ = µkπ. Hence

lim
k→∞

1

k
ln(xi(k)) = ln(µ) = Λ,

which proves the formula, since all components of all solutions x(t) of (74), such
that x(0) > 0, have the same Lyapunov exponents.

Remark 12. In the Floquet theory of linear periodic systems (see [17, Section
4.6]), ln(µ) is known as the largest Floquet exponent, or the principal Lyapunov
exponent, that is, the carracteristic multiplier corresponding to the dominant
eigenvalue µ of Φ(1). For further details, we refer the reader to [7] and [30,
Section II.2].

C Tikhonov’s theorem

Tikhonov’s theorem [37] provides a mathematically rigorous basis for the quasi-
steady-state approximation commonly used in the study of systems at several
time scales [31, 35]. We consider the singularly perturbed initial value problem{

εdxdτ = f(τ, x, y, ε), x(τ0) = x0(ε),
dy
dτ = g(τ, x, y, ε) y(τ0) = y0(ε),

(83)

for an m vector x and an n vector y on some bounded interval, say τ0 ≤ τ ≤ τ1,
where ε is a small positive parameter, 0 < ε� 1. We assume that
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H0 The functions f and g are continuous in τ ∈ [τ0, τ1].

H1 The functions f , g, x0 and y0 are continuous in ε. The functions f and g
are differentiable in their x and y arguments.

If assumptions H0 and H1 are satisfied, then the initial value problem (83)
has a unique solution, denoted x(τ, ε), y(τ, ε). When ε→ 0, (83) is a slow-fast
system, with m fast variables x, and n + 1 slow variables, y and τ . According
to Tikhonov’s theory, the so called fast equation is

dx

dt
= f(τ, x, y, 0) (84)

where τ and y are considered as parameters. Note that this equation is obtained
by replacing ε by 0 in the right hand side of the system

dx
dt = f(τ, x, y, ε),
dy
dt = εg(τ, x, y, ε)
dτ
dt = ε.

(85)

which is equivalent to the slow-fast system in (83), written with the time t = τ/ε.
We refer to τ as the slow time and to t as the fast time. We assume that

H2 For any y in a compact set K and τ ∈ [τ0, τ1], the fast equation (84) has
an equilibrium x = ξ(τ, y), which is asymptotically stable with a basin
of attraction that is uniform in the parameters (τ, y) ∈ [0, 1] × K. The
function ξ is continuous in τ and differentiable in y.

The critical manifold, also called slow manifold, is the set of equilibrium
points x = ξ(τ, y) of the fast equation (84). The reduced equation, defined for
(τ, y) ∈ [τ0, τ1]×K,

dy

dτ
= g(τ, ξ(τ, y), y, 0), y(t0) = y0(0) (86)

is obtained by replacing ε by 0 and x by ξ(τ, y) in the second equation of (83).
Since the function ξ is continuous in τ and differentiable in y, the equation
(86) is well defined. Tikhonov’s theorem states that the solution of (83) jumps
quickly near the critical manifold and is then approximated by the solution of
(86). More precisely:

Theorem 27 (Tikhonov’s theorem). Assume that H0, H1 and H2 are satis-
fied. Assume that y0(0) ∈ K and x0(0) belongs to the basin of attraction of
ξ(τ0, y

0(0)). Let y(τ) be the solution of (86), which is assumed to exist on the
interval [τ0, τ1]. Let ν > 0. For ε small enough, x(τ, ε) and y(τ, ε) are defined
on [τ0, τ1] and, as ε→ 0

y(τ, ε) = y(τ) + o(1) uniformly on [τ0, τ1],
x(τ, ε) = ξ(τ, y(τ)) + o(1) uniformly on [τ0 + ν, τ1].

Remark 13. The approximation given by Tikhonov’s theorem holds for all
τ ∈ [τ0, τ1] for the slow variable y(τ, ε) and for all τ ∈ [τ0 + ν, τ1] for the fast
variables x(τ, ε), where ν is as small as we want. Indeed we have a boundary
layer at τ = τ0 since the fast variables jumps quickly from their initial conditions
x0(ε) near the point ξ(τ0, y0(0)) of the slow manifold.
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This theorem was first stated by Tikhonov [37] and can be found in various
forms in the classical literature, see the book by O’Malley [32, Section 2.D] and
the book by Wasow [38, Section X.39]. For a statement of Tikhonov’s theorem
that is very close to the one given here, the reader can refer to [27] or to Khalil’s
book [24, Theorem 11.1]. The book by Banaisak and Lachowicz [3, Chapter 3] is
also a highly recommended reference for the reader interested by applications in
mathematical biology. This result remains true under less restrictive conditions
on the regularity of f and g, see [27, 38]. This result was extended by Fenichel
[13] in the context of Geometric Singular Perturbation Theory. See also [25,
Chapter 3].

We want to use Tikhonov’s theorem when the functions f and g have dis-
continuities in the variable τ . Assume that

H0’ There exist a finite set D = {τk, 1 ≤ k ≤ p : 0 < τ1 < · · · < τp < 1} such
that f and g are continuous on [0, 1] \D and have right and left limits at
the discontinuity points τk ∈ (0, 1), k = 1, . . . , p.

We extend f by its right limit at each discontinuity point, so that the fast
equation (84) is defined for all τ ∈ [0, 1]. We assume that

H2’ For all y in some compact set K and τ ∈ [0, 1], the fast equation (84) has
a globally asymptotically stable equilibrium x = ξ(τ, y). The function ξ is
continuous for τ ∈ [0, 1] \D and differentiable in y ∈ K and has left and
right limits at the discontinuity points τk denoted by

ξ(τk − 0, y) = lim
τ→τk,τ<τk

ξ(τ, y), ξ(τk + 0, y) = lim
τ→τk,τ>τk

ξ(τ, y), (87)

and ξ(τk + 0, y) is the globally asymptotically stable equilibrium for the
fast equation (84) for τ = τk.

Since the function ξ is continuous for τ ∈ [0, 1] \ D and differentiable in
y ∈ K, the equation (86) is well defined on [0, 1]×K.

As a consequence of Tikhonov’s theorem, we have the following result, which
is used in the proofs of Theorem 4(4), see Section 6.5 and Theorem 18, see
Section 6.4.

Proposition 28. Assume that H0’, H1 and H2’ are satisfied. Assume that
y0(0) ∈ K. Let y(τ) be the solution of (86), which is assumed to exist on the
interval [0, 1]. Let ν > 0. For ε small enough, x(τ, ε) and y(τ, ε) are defined on
[0, 1] and, as ε→ 0

y(τ, ε) = y(τ) + o(1) uniformly on [0, 1],
x(τ, ε) = ξ(τ, y(τ)) + o(1) uniformly on [0, 1] \

⋃p
k=0[τk, τk + ν].

where τ0 = 0 and τk, 1 ≤ k ≤ p, are the discontinuity points of f and g.

Proof. For each 0 ≤ k ≤ p, we consider the system (83) on the interval [τk, τk+1],
where τp+1 = 1. We extend the functions f and g by continuity to τk and τk+1

(such extensions exist because, according to H0’, the functions have left and
right limits at the discontinuity points τk). This system satisfies assumptions
H0, H1 and H2. For the first interval (k = 0), we use the initial condition
x(0) = x0(ε) and y(0) = y0(ε). We obtain an approximation on the interval
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[τ0, τ1]. For the second interval (k = 1), we use as initial conditions x(τ1, ε) and
y(τ1, ε), which, according to the approximation obtained in the first interval, are
close to ξ(τ1−0, y(τ1)) and y(τ1), respectively. Since ξ(τ1 +0, y(τ1)) is a globally
asymptotically stable equilibrium for the fast equation (84), ξ(τ1 − 0, y(τ1))
belongs to its basin of attraction, so that Tikhonov’s theorem can be used on
the interval [τ1, τ2]. Similarly for the following intervals. Therefore, on each
interval, for any ν > 0, as ε→ 0,

y(τ, ε) = y(τ) + o(1) uniformly on [τk, τk+1],
x(τ, ε) = ξ(τ, y(τ)) + o(1) uniformly on [τk + ν, τk+1].

This ends the proof of the proposition.

Remark 14. In addition to the boundary layer at τ = 0, we have now an
inner layer at each discontinuity point τk, because the fast variables must jump
quickly from a point close to ξ(τk − 0, y(τk)) to a point close to ξ(τk + 0, y(τk)),
where the left and right limits are defined by (87). These behaviors are illus-
trated in Figure 12 for the limit T →∞.

Remark 15. Consider the special case where there is no slow variable y in (83),
that is to say we have a singularly perturbed system of the form

ε
dx

dτ
= f(τ, x, ε),

where τ is the only slow variable. The critical manifold is a curve (also called
the slow curve) x = ξ(τ), where ξ(τ) is the equilibrium of the fast dynamics
dx
dt = f(τ, x, 0). In this case, the fast variable x(τ, ε) is approximated by the slow
curve, i.e. the result of Proposition 28 becomes x(τ, ε) = ξ(τ) + o(1) uniformly
on each interval [τk + ν, τk+1].

D Proof of Proposition 5

We use the following Lemma:

Lemma 29. Let B and H two Metzler matrices. For ε ≥ 0, the function
ε 7→ λmax(ε) := λmax(B + εH) is continuous in a neighbourhood of 0. If
furthermore B is irreducible, then ε 7→ λmax(ε) is differentiable at ε = 0, and

λ′max(0) = y>Hx, (88)

where x and y are respectively the right- and left eigenvectors of B associated
to λmax(B) such that 1>x = 1 and y>x = 1.

Proof of Lemma 29. Let C be a matrix with nonnegative entries. Then, the
Perron-Frobenius theorem (as stated in Section 2 of [29]) implies that the spec-
tral radius of C, denoted µ(C), is an eigenvalue of C. Moreover, if Cn is a
sequence of matrices with nonnegative entries converging to C, then Theorem
3.1 (in the case where C is irreducible) and Theorem 3.2 in [29] (in the case
where C is reducible) entail that µ(Cn) converges to µ(C). Note that since µ(C)
is an eigenvalue of C, then it is also its spectral abscissa, i.e. µ(C) = λmax(C).
Therefore, the aforementioned results imply the continuity of ε 7→ λmax(C+εK),
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for any matrix K with nonnegative entries. Now, let B and H two Metzler ma-
trices. Then, there exists η ≥ 0 such that B+ εH+ηId has nonnegative entries
for all ε ∈ [0, 1]. Thus, ε 7→ λmax(B + εH + ηId) is continuous on [0, 1]. This
yields the continuity of ε 7→ λmax(ε) since λmax(B+εH+ηId) = λmax(ε)+η. A
proof of the formula for the derivative can be found in [21, Theorem 6.3.12].

Using Λ(m, 0) = λmax(R+mL), B = R and H = L, we deduce that

lim
m→0

Λ(m, 0) = λmax(R) = max
1≤i≤n

ri.

Using Λ(m,∞) =
∫ 1

0
λmax(R(τ) + mL(τ))dτ , B = R(τ) and H = L(τ), we

deduce that

lim
m→0

Λ(m,∞) =

∫ 1

0

λmax(R(τ))dτ =

∫ 1

0

max1≤i≤n(ri(τ))dτ = χ.

Note that we can exchange the limit and the integral by dominated convergence,
since for all τ ∈ [0, 1],

min
i
ri(τ) ≤ λmax(R(τ) +mL(τ)) ≤ max

i
ri(τ). (89)

Now, using (88), B = L and H = R, and the fact that λmax(L) = 0, x = q and
y = 1, we have

λmax(R+mL) = mλmax
(

1
mR+ L

)
= m

(
λmax(L) + 1

m1>Rq + o
(

1
m

))
=

∑n
i=1 qiri + o(1).

Therefore,

limm→∞ Λ(m, 0) = limm→∞ λmax(R+mL) =
∑n
i=1 qiri.

Similarly, using (88), B = L(τ) and H = R(τ), and the fact that λmax(L(τ)) =
0, x = p(τ) and y = 1, we have

λmax(L(τ) +mL(τ)) = mλmax
(

1
mR(τ) + L(τ)

)
= m

(
λmax(L(τ)) + 1

m1>R(τ)p(τ) + o
(

1
m

))
=

∑n
i=1 pi(τ)ri(τ) + o(1).

Therefore, we obtain

limm→∞ Λ(m,∞) =
∫ 1

0
limm→∞ λmax(R(τ) +mL(τ))dτ

=
∫ 1

0

∑n
i=1 pi(τ)ri(τ)dτ =

∑n
i=1 piri.

Note that we can also exchange the limit and the integral by using (89) and
dominated convergence.

By [8, Theorem 1.1], for any diagonal matrix S = diag(s1, . . . , sn), and
Metzler irreducible matrix K whose columns sum to 0, we have

d

dm
λmax(S +mK) ≤ λmax(K) = 0,

d2

dm2
λmax(S +mK) ≥ 0,

and the equality holds if and only if s1 = . . . = sn.
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Using Λ(m, 0) = λmax(R + mL), S = R and K = L we deduce that (20)
is true and the equality holds if and only if r1 = . . . = rn. Similarly, using

Λ(m,∞) =
∫ 1

0
λmax(R(τ)+mL(τ))dτ , S = R(τ) and K = L(τ) we deduce that

(21) is true and the equality holds if and only if r1(τ) = . . . = rn(τ) for all τ .
Finally, we prove (22). For T > 0, and t ≥ 0, let C(t) = A(t/T ) = R(t/T ) +

mL (recall that we have asusmed here that the migration is constant). Then, C
is a T - periodic function, with constant off-diagonal entries. By [30, Theorem
II.5.3],

Λ(m,T ) ≥ λmax(C),

where

C =
1

T

∫ T

0

C(t)dt = R+mL.

By (11), λmax(C) = Λ(m, 0), which concludes the proof.
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