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Abstract
Microbiome science as an interdisciplinary research field has evolved rapidly
over the past two decades, becoming a popular topic not only in the scien-
tific community and among the general public, but also in the food industry
due to the growing demand for microbiome-based technologies that provide
added-value solutions. Microbiome research has expanded in the context
of food systems, strongly driven by methodological advances in different
-omics fields that leverage our understanding of microbial diversity and func-
tion. However, managing and integrating different complex -omics layers
are still challenging. Within the Coordinated Support Action Microbiome-
Support (https://www.microbiomesupport.eu/), a project supported by the
European Commission, the workshop “Metagenomics, Metaproteomics and
Metabolomics: the need for data integration in microbiome research” gathered
70 participants from different microbiome research fields relevant to food
systems, to discuss challenges in microbiome research and to promote a switch
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from microbiome-based descriptive studies to functional studies, elucidating
the biology and interactive roles of microbiomes in food systems. A combination
of technologies is proposed. This will reduce the biases resulting from each
individual technology and result in a more comprehensive view of the biolog-
ical system as a whole. Although combinations of different datasets are still
rare, advanced bioinformatics tools and artificial intelligence approaches can
contribute to understanding, prediction, and management of the microbiome,
thereby providing the basis for the improvement of food quality and safety.

KEYWORDS
Omics integration, microbiome, food system, metagenomics, metatranscriptomics, metapro-
teomics, metabolomics

1 INTRODUCTION

Microbiome science is an interdisciplinary research field
connected to diverse areas, for example, agriculture, food
science, biotechnology, bioeconomy, mathematics (infor-
matics, statistics, modeling), plant pathology, and human
medicine. The term microbiome refers not only to the
microorganisms involved but also encompasses their the-
atre of activity, which results in the formation of specific
ecological niches (Berg et al., 2020). The microbiome,
which forms a dynamic and interactive micro-ecosystem
prone to change in time and scale, is integrated with
macro-ecosystems, including eukaryotic hosts, becoming
crucial for their functioning and health.
The microbiome has attracted a lot of attention from

both researchers and policy makers and was defined as a
pathway for action within the Food 2030 strategy of the
European Commission (https://research-and-innovation.
ec.europa.eu/research-area/environment/bioeconomy/
food-systems/food-2030_en). The microbiome can be
one of the major game-changers in how we manage our
planet’s resources, allowing us to produce food in a more
sustainable way, in line with improvements under the
“One Health” approach. It has the potential to beneficially
impact primary food production and advance sustainable
agriculture, as well as food science, human health, and
waste management (https://knowledge4policy.ec.europa.
eu/publication/food-2030-pathways-action-%E2%80%93-
microbiome-world_en). This is strongly aligned with our
current understanding of the food system, defined as
“a network that integrate[s] the food value chain up to
consumption and goes beyond the farm-to-fork principle
by including all activities, actors, drivers, boundaries as
well as input factors and various dimensions and forms
of outcomes” (https://etp.fooddrinkeurope.eu/news-
and-publications/publications/30-etp-food-for-life-sria-
2021.html). The detailed representation of food systems

requires a comprehensive and holistic understanding
of the interactions within it, as well as a high degree of
interdisciplinarity, as the basis for the successful transition
to sustainable food systems. Microbiome science can
effectively help in reaching these objectives.
Microbiome research has been strongly driven by

advances in DNA sequencing technologies (often referred
to as next-generation sequencing, NGS). With the advent
of DNA sequencing and high-throughput technologies
applied in all fields of biological sciences, we are able to
generate billions of data points, which can be used for an
in-depth characterization of the structure, function, inter-
action, and complexity of microbial ecosystems. Indeed,
we are now able to track and map shifts in microbial
communities, discover new molecules, new metabolic
pathways, new adaptation strategies, and also new strains
(Ferrocino et al., 2022). However, the analytical methodol-
ogy needed tomodelmicrobiome data and integrate it with
genomics, transcriptomics, proteomics, metabolomics, or
other “-omics” data, remains nascent (Ferrocino et al.,
2022). This toolset frequently uses techniques developed in
other multi-omics investigations, especially the growing
array of statistical and computational techniques for
integrating and representing data. Thus, to best imple-
ment these complementary techniques from parallel
fields of analytical biology, minimum requirements are
needed both for the experimental work and for the
bioinformatical/biostatistical data analysis to meaning-
fully integrate -omics data and discern their functional
linkages.
In this frame, the workshop was organized to discuss

the advantages and disadvantages of various study designs,
methodologies, and statistical tools and methods of inte-
gration in order to assess their applicability to microbiome
data and discuss their biological interpretability in the con-
text of food systems.We also highlighted ongoing statistical
challenges and opportunities in integrating multi-omics

 15414337, 2023, 2, D
ow

nloaded from
 https://ift.onlinelibrary.w

iley.com
/doi/10.1111/1541-4337.13103 by Inrae - D

ipso, W
iley O

nline L
ibrary on [05/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://research-and-innovation.ec.europa.eu/research-area/environment/bioeconomy/food-systems/food-2030_en
https://research-and-innovation.ec.europa.eu/research-area/environment/bioeconomy/food-systems/food-2030_en
https://research-and-innovation.ec.europa.eu/research-area/environment/bioeconomy/food-systems/food-2030_en
https://knowledge4policy.ec.europa.eu/publication/food-2030-pathways-action-%E2%80%93-microbiome-world_en
https://knowledge4policy.ec.europa.eu/publication/food-2030-pathways-action-%E2%80%93-microbiome-world_en
https://knowledge4policy.ec.europa.eu/publication/food-2030-pathways-action-%E2%80%93-microbiome-world_en
https://etp.fooddrinkeurope.eu/news-and-publications/publications/30-etp-food-for-life-sria-2021.html
https://etp.fooddrinkeurope.eu/news-and-publications/publications/30-etp-food-for-life-sria-2021.html
https://etp.fooddrinkeurope.eu/news-and-publications/publications/30-etp-food-for-life-sria-2021.html


1084 MULTI-OMICs APPROACH IN MICROBIOME SCIENCE

F IGURE 1 A scheme highlighting the most important points a researcher should consider when planning a microbiome experiment.
Choosing the right sample size and sampling procedure to observe shift/modification in the microbiomes and to test the primary hypothesis;
selection of target organisms and molecules and related -omics platform, sampling procedures, and storage; selection of meta-analysis
interpretation/integration strategies to test the hypothesis; validation of the -omics output with an extensive single cell or multiple cells
culture-based approach are some of them

data with prior knowledge in order to generate hypotheses
with regard to biological function, role, and impact.
Microbiomes are widely well-characterized by simul-

taneously measuring thousands of molecules in biolog-
ical samples (DNA, RNA, proteins, and metabolites)
using various -omics technologies, such as metagenomics,
metatranscriptomics, metaproteomics, andmetabolomics.
It is becoming increasingly common to apply two or
more -omics technologies in parallel with techniques
recently defined as “trans-omics analysis” (Dugourd et al.,
2021). However, the choice of -omic tools usually depends
on the technical/analytical skills and resources of a
research group, previous experience with those technolo-
gies, availability of a data analyst/platform, as well as the
availability of funds. Several aspects must be considered
when an experiment is planned as shown in Figure 1.
This review builds on these considerations while specifi-
cally focusing on the design of microbiome studies and on
the development of downstream statistical analysis plans
which answer complex questions in the food system in a
translational setting.

2 STRATEGIES THAT SHOULD BE
IMPLEMENTED FOR A SUCCESSFUL
OUTCOME OF AMULTI-OMICS STUDY

Due to their nature, -omics data are intrinsically both
highly variable and noisy, leading to several issues when
trying to compare or reproduce them. When planning an
experiment, several steps should be considered: experi-
mental design and challenges, individual -omics datasets,
integration and data issues, and biological knowledge.
Here, we present a summary of the workshop discussions
in the context of these key themes.

2.1 Experimental design and sampling
procedures

Experiments are often planned for one individual -omics
tool (e.g., genomics, transcriptomics, or proteomics), but
in some cases, once the experiment is carried out, new
analyses can be required or added to verify or validate
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the hypothesis (O’Donnell et al., 2020). Sample prepara-
tion and collection, if not properly performed,may prevent
accurate analysis with complementary techniques. Con-
siderations that should be considered when an experiment
is planned include: method of collection, quantity and
selection of biological samples, number of technical repli-
cates, preservation and storage techniques (Ryan, Schloter,
Berg, Kostic, et al., 2021) this reference is the one pub-
lished in Trends in Microbiology, use of standards for
internal controls and standardized procedures, and iden-
tification of limitations of available -omics platforms. For
a given study, the procedures chosen may be suitable for
genomics studies but not for metabolomics, proteomics, or
transcriptomics. As recently reviewed by Pinu et al. (2019),
the sampling procedure is one of the most important steps
a researcher should carefully plan.

2.2 Metadata collection

Another important aspect that should be considered is
to record the metadata associated with samples (Ryan,
Schloter, Berg, Kinkel et al., 2021) this reference is the one
published in Environmentalmicrobiology. This is essential
when an -omics protocol is applied, since metadata are not
often standardized between biological systems or meth-
ods and are often mis-annotated or ambiguous, generating
an overly complex environment for sample reanalysis in
the event of novel methods and bioinformatic techniques
(Kasmanas et al., 2021). Several metadata standards are
already available from the NCBI and the Genomes OnLine
Database (GOLD), while consortia such as the Interna-
tional Human Microbiome Standards promote standard
operating procedures in humanmicrobiome research. Sev-
eral consortia have already proposed “gold standards” that
should be employed. An example is given from the area
of agricultural microbiome research (Dundore-Arias et al.,
2020).
A lack of complete or comprehensive metadata

attributable to an experiment or even the absence of
entire experimental datasets (including nucleic acid
and protein sequence, metabolites, spectra and images)
from public repositories also makes it extremely difficult
for the scientific community to reuse valuable data for
meta-analyses or comparative studies (“Overcoming
hurdles . . . ,” 2017). Some onus must also be placed upon
the scientific journals, such as obliging authors to publish
both their datasets and associated metadata in accordance
with predefined standards, depending on the field. This
effort will encourage researchers to preserve their data in
repositories and by enabling its reuse, increase its value
to microbiome research (Hu et al., 2022; Ryan, Schloter,
Berg, Kinkel et al., 2021).

Throughout the workshop discussions, it emerged that
measures to record and make available metadata, includ-
ing detailed information of samples, sample collection and
storage, microbiome detection, and analysis, are strongly
needed. From the workshop brainstorming emerged the
need to encourage scientists to include positive controls
(e.g., bacterial/fungi/virus mock community) and nega-
tive controls (e.g., blank sample) and to apply one of the
already available detailed standard procedures (De Souza
et al., 2020; Dundore-Arias et al., 2020; Molina et al.,
2021; Santiago-Rodriguez & Hollister, 2021; Vangay et al.,
2021; Yilmaz et al., 2011) depending on the ecosystem
investigated.

2.3 Hypothesis/biological question and
sample size

Microbiome research is enjoying immense growth, but
study designs are not always properly implemented to test
hypotheses. Although researchers usually subscribe to the
hypothesis-driven approach, the broad nature of -omics
tools often leads to a non-hypothesis-driven approach
being applied, withmulti-omics studies often being treated
as “hypothesis-free” as a result (Read & Sharma, 2021).
However, the technique, sample type/size, and standard
procedure must be considered carefully to obtain valid
results. Sometimes researchers are unable to find a “suit-
able story” in their data because they do not properly
estimate sample sizes ahead of time. The number of sam-
ples or sampling points must be chosen in order to reduce
the probability of agreeing that the groups are different
when they are not (Type I Error) and to reduce the prob-
ability of deciding that the groups are not different when
they are (Type II Error) (La Rosa et al., 2012). In addi-
tion, the number of samples should be determined based
on the available sequencing depth, rather than on the cost
per sample. Tripathi and colleagues (Tripathi et al., 2018)
clearly showed that even with small sample coverage, but
with a high number of samples, it is possible to observe sig-
nificant differences if comparedwith an experiment where
fewer samples and higher coverage are used. However, it
should also be considered that different sample sizes are
required depending on the -omics technologies (Pinu et al.,
2019).
Not only does the sample size affect the final results but

also the power analysis remains underutilized in -omics
studies and should be performed as a first step in order
to determine what sorts of outcomes a study can feasi-
bly generate (Ferdous et al., 2022). By way of definition,
it informs the researcher on how large a study must be
conducted in order to have sufficient statistical power for
detecting differences at a given significance (e.g., p < .05)
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between two groups of samples, for example, case versus
controls (Mattiello et al., 2016). While many microbiome
studies are underpowered (unable to detect significant
effects even when present), combining data from several
studies may find correlations or other associations that
cannot be revealed by individual studies alone (Hu et al.,
2022). This approach is commonly used in human micro-
biome studies but could also be adopted in other -omics
fields for the detection of meaningful differences (Impactt,
2022).
The workshop participants also discussed about the

needs of a strong biological knowledge before planning
an -omics study. The first step is a good knowledge of the
field where the research is applied. Further prerequisites
are a solid understanding of the system under investi-
gation, achieving the correct experimental design, and
the consideration of existing data as a useful resource—
for example, the identification of specific taxa or genes
which boost the production of a metabolite or protein of
interest (Daliri et al., 2021): this can be done by, for exam-
ple, analyzing data from public repositories. Adequate
information on the source (whether microbial or host) of
metabolites/genes/species and knowledge of the biologi-
cal sample are required before planning an experiment.
Due to the limitations of automatic annotation pipelines,
a relatively high number of errors occur during the struc-
tural annotation of genes coding for proteins (Armengaud
et al., 2013). Frequent practice is to discard unannotated
microbes or unannotated molecules, focusing on the sub-
set of microbes or molecules that can be matched to
an existing database. Alternate strategies do not lump
unknowns, hypotheticals, and “others” together but treat
them as yet-uncharacterized entities that can be identified
by a single sequence, enabling future association of func-
tion with pure culture and genomic data from more and
moremicroorganisms.Whenever possible, machine learn-
ing protocols should be applied to predicting the function
of such uncharacterized sequences, with the stated goal
of increasing understanding and enlarging the existing
databases. Moreover, applying an extensive and systematic
collection of microbe maps and molecules across different
biological environments can improve our understanding of
microbiome structure and function. This same approach
also improves existing databases by reducing the propor-
tion of unknown molecules/proteins/genomes. In vitro
studies (protein expression at single cell or single-cell
sequencing) (Pineda et al., 2020) and microbe interaction
studies can help decipher the unknown function/potential
of the microbes and may be a valuable tool to enlarge
databases. The use of cell culture from microbial com-
munities remains a challenge due to the interactions
that often become too complex when communities grow
beyond two or three members. However, the application
of model-based identification of key microbial members

that can co-grow to produce a specific outcome would
be a valuable contribution to databases (Kessell et al.,
2020). It should bementioned that several repositories that
are currently available contain hundreds of thousands of
samples (just to cite few: QIITA https://qiita.ucsd.edu/,
MGnify https://www.ebi.ac.uk/metagenomics/, FoodMi-
crobionet http://www.foodmicrobionet.org/), integrating
the deposit/retrieval of sequence data with analysis tools
for both amplicon-targeted or shotgun studies (Gonzalez
et al., 2018; Mitchell et al., 2018; Parente et al., 2016). The
continuous development of bioinformatic technologies
enables the re-analysis of data and additional information
compared to a previous analysis.

3 OPTIMAL COMBINATIONS OF
-OMICS THAT SHOULD BE USED AS A
STANDARD IN DIFFERENT ECOSYSTEMS

To validate a hypothesis, at least two -omics approaches
should be used simultaneously to obtain more reliable and
valuable insights (Zapalska-Sozoniuk et al., 2019). Due to
the greater popularity and accessibility of different -omics
techniques, it is increasingly common to find descriptive
papers based on a single omics platform. The choice of
the technique used is mostly dependent on the samples
that should be studied. The question of what combination
of -omics tools should be used in each field was exten-
sively discussed throughout theworkshop, considering the
scientific background of the participants as well as the
future perspectives of microbiome-based studies. During
the workshop, an online survey with multiple choice and
open-end questions was conducted to establish a general
overview of the importance that the participants of the
workshop placed on -omics tools in microbiome studies.
The results are summarized in Figure 2.
It is obvious that the choice of the -omics platformmust

consider the hypothesis and the experimental question.
The survey highlighted that most of the participants pri-
oritize transcriptomics, lipidomics, and genomics as the
top three methods that should be used in a microbiome
study. Metabolomics, proteomics, interaction secretome,
and culturomics followed in the prioritization list, while
at the end of the list, metataxonomics (also known as
metabarcoding) was placed. As a further confirmation of
this trend, a search on the Web of Science in the last 10
years yielded 217,798 articles and reviews on microbiome
studies using transcriptomic (using the words transcrip-
tomic*, meta-transcriptomic*, RNA-seq, transcriptome*),
9283 articles on lipidomics (using lipidomic*, meta-
lipidomics*, lipidome*), and 379,929 articles on genomics
(using genomic*, meta-genomic*, WGS, shotgun, DNA-
seq). Based on the survey, Figure 3 shows the schematic
overview of major combinations of -omics a researcher
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F IGURE 2 Preferred -omics tools in microbiome studies.
Word cloud summarizes the preferences of 70 participants of an
online survey during the workshop to have a general overview of
the prioritization in -omics tools in microbiome studies applied in
different ecosystems

should consider when planning an experiment. In detail,
we observed that scientists investigating soil microbiome
prioritized metagenomics plus culturomics, followed by
metataxonomics plus metabolomics and then transcrip-
tomics plus metabolomics. Plant microbiome studies uti-
lized mostly metagenomics plus culturomics, followed by
transcriptomics plus genomics. Food scientists prioritized
metagenomics andmetabolomics, thenmetabolomics and
transcriptomics; and scientists in the field of gut micro-
biome prioritized transcriptomics (preferably annotated to
function) and culturomics, followed bymetagenomics and
metabolomics. In the following sections, we summarize
the multi-omics approach currently used in different
segments of the food system (soil, plant, food, human,
and animal), highlighting the main pitfalls and concrete
actions that should be applied during experimental design
to allow more meaningful research results.

3.1 Overview of -omics integration in
soil science

Soil is one of the most complex ecosystems and soil
microbiomes have a crucial role not only in plant health

and productivity (Trivedi et al., 2021), but also in ani-
mal and human health when considering the intercon-
nectivity of the microbiomes throughout the ecosystems
(Blum et al., 2019; D’Hondt et al., 2021; Hirt, 2020).
Soil microbiomes have been extensively studied, and a
wealth of data has been gathered through coordinated
efforts such as The Earth Microbiome Project (Thompson
et al., 2017) (https://earthmicrobiome.org/) and numer-
ous research projects (Mishra et al., 2022). However, most
of these efforts were DNA-based and collected metataxo-
nomics and metagenomic information only. Nevertheless,
these efforts also resulted in the development of the first
set of standards and recommendations for soil micro-
biome analysis (https://earthmicrobiome.org/protocols-
and-standards/) (Nannipieri et al., 2019) that could be
extended to other -omics technologies to enable compara-
bility and integrability of datasets from different studies.
Notably, a range of different -omics technologies, includ-
ing transcriptomics, proteomics, and metabolomics, were
applied to study soil microbiomes (Biswas & Sarkar, 2018)
in the past.
However, many studies applied one technology only,

resulting in limited insight into the complexity of soil
microbiomes. The need to go beyond taxonomic and one-
dimensional functional studies was elaborated in several
excellent reviews (Jansson & Hofmockel, 2018; Mishra
et al., 2022; Nannipieri et al., 2019) and will thus not
be discussed further here. Rather, we will describe some
recent success stories that showcase how the integra-
tion of multiple-omics approaches contributed to a better
understanding of the soil microbiomes and their function.
A combination of metagenomics, metatranscriptomics,
and metaproteomics was used to elucidate the phyloge-
netic composition, functional potential, and activity of the
microbial communities in three soils representing differ-
ent states of thaw (Hultman et al., 2015). The data revealed
that some processes, that is, nitrogen, sulfur, and methane
cycling, could be found in all soil types, whereas over-
all activity differed greatly between the three soil states
(with permafrost exhibiting the lowest and thermokarst
bog the highest functional potential). Furthermore, a
novel survival strategy, based on the dissimilatory Fe(III)
reduction, was proposed for potentially active microbes
in permafrost. Metataxonomics and metaproteomics were
used to decipher the key microbial players that are poten-
tially involved in composts suppressive against soil-borne
pathogen Phytophthora nicotianae (Ros et al., 2018). Indi-
cators of suppression were found both at the taxonomic
(Proteobacteria) and functional levels (proteins associated
with carbohydrate processes, cell wall structure, and inor-
ganic ion transport and metabolism). Yao and co-workers
(Yao et al., 2018) investigated how soil microbial communi-
ties cope with growth-limiting phosphorus (P) deficiency
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F IGURE 3 Overview of different biological samples/environment along with the major integrated -omics approaches that should be
considered when planning an experiment in the food system: (a) soil; (b) plant; (c) food; (d) human. The arrow in each panel represents the
prioritization of the -omics tools applied in each system

using a metagenomic and metaproteomic approach. The
large-scale comparison of microbial communities in P-
deficient and P-rich soils in a 17-year fertilization exper-
iment in a tropical forest revealed the adaptive response
of genes and proteins in soil microbial communities in
response to shifting nutrient constraints. In P-deficient
soils, a significant (greater than fourfold) increase in the
gene abundance of 3-phytase that catalyzes the release of
phosphate fromphytate, themost recalcitrant phosphorus-
containing compound in soil organicmatter, was observed.
Additionally, genes and proteins for the degradation of
phosphorus-containing nucleic acids and phospholipids,
as well as the decomposition of labile carbon and nitro-
gen, were also enhanced in the P-deficient soils. In the
P-rich soils, increased abundances of genes involved in
the degradation of recalcitrant aromatic compounds, the
transformation of nitrogenous compounds, and assimila-
tion of sulfur were observed.
Another comprehensive study of the agroecosystem

under different management practices, using multi-omics
analysis (Ichihashi et al., 2020), revealed complex inter-
actions between soil metabolic, mineral, and microbial
components. Within the integrated multi-omics data net-
work, one node correlated with plant productivity (as
measured through shoot dryweight), andwithin this node,
soil organic nitrogen and thermophilic rhizosphere bac-
teria (including Paenibacillaceae and Thermaceae) were
among the key components. These results indicated that
the integrated multi-omics approach has predictive power
to detect multilevel interactions between plants, microbes,
and soils, and to identify key components in the agricul-
tural ecosystem.

Applying a combination of metataxonomics, metage-
nomics, metatranscriptomics, and phenomics for the anal-
ysis of the soil samples froma long-term liming experiment
improved the current understanding of soil denitrifier
communities and how pH affects their activity, which
organisms are involved, and their control and accumu-
lation of denitrification intermediates (Frostegård et al.,
2021). The data showed that the un-limed, low pH soil
had severely delayed nitrous oxide (N2O) reduction despite
early transcription of the nosZ gene, encoding N2O reduc-
tase, and the presence of the accessory genes from the nos
cluster involved in the NosZ maturation. High nir tran-
script abundances (encoding nitrite (NO2−) reductase) in
un-limed, low pH suggested that low NO2− concentration
in acidic soils is the result of the biological activity and
not, as commonly ascribed, of abiotic degradation. Analo-
gously, high expression of the nar gene (encoding nitrate
reductase) was correlated to the accumulation of NO2−

in the limed, pH neutral soil. Interestingly, the -omics
results revealed dominance of nirK over nirS in both soils
while qPCR showed the opposite, which led the authors
to hypothesize that standard primer pairs only partially
capture the nirK pool.
Multi-omics approaches also contributed to novel

insights and developments in the bioremediation research
field. In an early study,Mason and colleagues (Mason et al.,
2012) investigated the functional role of the Oceanospir-
illales and other active members of the microbial com-
munity using metagenomics and metatranscriptomics, as
well as single-cell genomics. The results showed that
genes for motility, chemotaxis, and aliphatic hydrocar-
bon degradationwere significantly enriched and expressed
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MULTI-OMICs APPROACH IN MICROBIOME SCIENCE 1089

in the hydrocarbon-contaminated plume samples com-
pared with uncontaminated seawater. Contrarily, genes
coding for degradation of more recalcitrant compounds,
such as benzene, toluene, ethylbenzene, total xylenes, and
polycyclic aromatic hydrocarbons, were identified in the
metagenomes but expressed at low levels or not at all.
Isolation and sequencing of two Oceanospirillales single
cells enabled elucidation of the near-complete pathway
for cyclohexane oxidation. Microorganisms responsible
for aerobic biodegradation of biphenyl were investigated
using biphenyl-degrading enrichment cultures and apply-
ing a combination of metataxonomics, metagenomics,
stable isotope probing, and metaproteomics (Chen et al.,
2021). Using 13C-labeled biphenyl and tracing the flow of
pollutant-derived carbon throughout the system resulted
in the detection of the uncultured Alphaproteobacteria
clade UBA11222, containing a distinctive biphenyl dioxy-
genase gene widely retrieved from contaminated envi-
ronments. Furthermore, biphenyl oxidation potential was
linked for the first time to Azoarcus and Rugosibacter
genera.
Similarly, the application of combined metagenomics,

metatranscriptomics, and metaproteomics enabled the
identification of the microorganisms actively methylat-
ing arsenic in anoxic soil-derived microbial cultures
(Viacava et al., 2022). Furthermore, based on the analysis
of the metagenome-assembled genomes of microorgan-
isms expressing arsenite S-adenosylmethionine methyl-
transferase (ArsM), a targeted cultivation strategy was
developed, resulting in the isolation of the Paraclostridium
sp. strain EML, which was confirmed to actively methylate
arsenic under anaerobic conditions. These examples show-
case the potential of multi-omics approaches to improve
our understanding of microbial systems and their func-
tioning, but also to support the development of novel
beneficial management solutions and applications.

3.2 Overview of -omics integration in
plant science

It is well known that the microbiome directly affects plant
health and survival (Compant et al., 2019; Trivedi et al.,
2020). Through chemical exchange and supply of carbon
and nutrients, plants selectively influence the composi-
tion and activity of their associated microbiota, which, in
return, plays vital functions, including nutrient uptake,
disease suppression, and abiotic stress tolerance (Compant
et al., 2019; Lemanceau et al., 2017; Vandenkoornhuyse
et al., 2015). Even though a large number of studies on
plant-microbe interaction are solely based on amplicon
sequencing, there is an increased number of cases that

successfully applied multi-omics approaches to create a
more complete view of the plant microbiome.
DNA-, RNA-seq, and metabolomics have successfully

connected alterations in plant exudates caused by stresses
to the enrichment of specificmicrobial groups. An increas-
ing number of studies have shown that under a stressful
abiotic condition, plants alter their exudation profile in
a “cry for help” response to recruit a stress-relieving
microbiome (Rizaludin et al., 2021; Trivedi et al., 2022;
Yi et al., 2011). Water-limiting conditions, for instance,
have been shown to shift many plant secondary metabo-
lites and exudates (such as carbohydrates, mucilage,
and osmolytes) and increase abundance and activity of
certain monodermic bacteria and fungi associated with
drought tolerance in plants (López-Ráez, 2016; Pang et al.,
2021; Santos-Medellín et al., 2017; Xu et al., 2018; Xu &
Coleman-Derr, 2019). Conversely, by using a combination
of -omic approaches, it has been shown that the “cry
for help” phenomenon also applies to plants under biotic
stress, where root exudate metabolites shape a beneficial
microbiota that protects plant against pathogens (Gómez
Expósito et al., 2017; Hu et al., 2018; Huang et al., 2021).
As microbiome research suggests that plant-associated

microbiota influences several host traits related to growth
and health, studies have progressed beyond themicrobiota
to also include investigation of plant genetics and physi-
ology. For instance, changes in microbial profile has been
linked to transcriptional changes in plant host, with direct
implications in host development, defense, and stress tol-
erance (Chaparro et al., 2014; Finkel et al., 2019; Hu et al.,
2018; Teixeira et al., 2021). The integration of phenomics
approaches has also allowed a deeper understanding of
key alterations in plant physiology caused by association
with microbes, such as water usage and nutrient status
(Armanhi et al., 2021; Chai et al., 2021). Conversely, a num-
ber of GWAS studies has explored the microbiome as a
quantitative plant trait and connected the recruitment of
specific microbial taxa to plant genes related to different
traits, such as carbonmetabolism and plant defense (Deng
et al., 2021; Horton et al., 2014; Wallace et al., 2018).

3.3 Overview of -omics integration in
food science

The foodmicrobiome confers particular organoleptic char-
acteristics to the final products (Bertuzzi et al., 2018;
Ferrocino et al., 2018; Filippis et al., 2016), is responsible for
spoilage and safety issues (Chaillou et al., 2015; Hultman
et al., 2020; McHugh et al., 2018), and can be transferred
from foods to humans (Milani et al., 2019; Pasolli et al.,
2020).
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1090 MULTI-OMICs APPROACH IN MICROBIOME SCIENCE

From 2011 when -omics started to be used routinely in
foods studies (De Filippis et al., 2018), an impressive num-
ber of papers reported the application of these technologies
to allow thorough characterization of the microbiome in
agro-food systems (Olmo et al., 2022). Amplicon sequenc-
ing remains the main approach for such studies (Parente
et al., 2020) and is used mainly for observational stud-
ies with an ecological purpose. Several platforms offer the
opportunity to predict with a certain accuracy the micro-
biota’s composition from amplicon data (Caicedo et al.,
2020); however, this technique does not detect important
changes at species level, is blind to organisms not tar-
geted by the specific DNA probes employed, and further
is susceptible to PCR errors (Ferrocino et al., 2022).
To create both form and function, all biological systems

rely on the interplay of information (genomics), function
(proteomics), and environment (metabolomics) (Santiago-
Rodriguez & Hollister, 2021). The optimal set of -omics
tools that can be applied is to use nucleic acid sequenc-
ing (both DNA and RNA) combined with metabolomics
or metaproteomics. Direct nucleic acid sequencing (shot-
gun metagenomics/metatranscriptomics) is often used in
food-based studies with the aim of providing new insights
into the components and functions of food ecosystems. In
food-based studies, DNA sequencing is frequently com-
bined with metabolomics due to the stability of DNA, the
relatively affordable cost ofDNAsequencing, and the avail-
ability ofmetabolomics platforms inmost research centers.
Several examples are already available that successfully
integrated such an approach.
DNA-seq with metabolomics was successfully used to

connect metagenomic clusters with the modification of
color, variation of pH, and flavor development during
cheese ripening (Bertuzzi et al., 2018); to detect genes
and their correlation with flavor development in soy
sauce (Sulaiman et al., 2014), fermented meat (Ferro-
cino et al., 2018; Franciosa et al., 2021), fermented cocoa
(Mota-Gutierrez et al., 2021), fermented fish (Zhao &
Eun, 2020), Daqu, Baijiu, and Xiaoqu jiu Chinese liquors
(Huang et al., 2020; Yang et al., 2021; Zhao et al., 2021); or
during water kefir fermentation (Verce et al., 2019).
It should be pointed out that DNA can originate also

from dead cells and all the aforementioned studies showed
a global view of the food microbiome, but gene expres-
sion dynamics cannot be assessed by the use of DNA as
a target molecule. However the detection of one metabo-
lite can, from one side, overcome this limitation even if
it is very challenging to identify which specific species or
gene produced it. Tests of association or correlation are
often used to show the relationship between two or more
microbes, gene functions, proteins, and son, as well as
how they are impacted by the experimental design. DNA
as a target molecule is easier to study compared to RNA,

and scientific literature in food-omics is mostly oriented
toward DNA-based approaches. The added value of DNA
as the targetmolecule is the simultaneous detection of bac-
teria, fungi and other eukarya, some viruses (Beghini et al.,
2021; Manni et al., 2021), genetic elements (ARGs, bacteri-
ocins, etc.) (Raymond et al., 2019), as well as the ability to
resolve differences at a taxonomic strain-level (Franciosa
et al., 2021; Walsh et al., 2018).
However, we must consider the value that RNA gives

to a study. Working with RNA implies that a researcher
must take into account several factors like RNA instability,
cost, and complexity of reverse transcription (Cottier et al.,
2018). RNA-based studies in food systems ecology and
function need to be coupled with other techniques such as
metataxonomics, metaproteomics, or metabolomics. Sev-
eral examples of data integration are available in the
literature in this light.
An important example of a multi-omics approach based

on transcriptomics applied in foods is the soy sauce fer-
mentation (ganjang). The simultaneous application of
DNA and RNA-seq coupled with metabolomics is help-
ing to reconstruct the metabolic networks of ganjang.
The study showed how the minor aerobic or faculta-
tive halophilic bacterial populations (Chromohalobacter,
Halomonas, and Marinobacter) as well as minor yeasts
(Debaryomyces andWickerhamomyces) play an important
role during fermentations influencing quality and taste
and of ganjang (Chun et al., 2021). Using a combina-
tion of metatranscriptome and proteome data (in order
to verify the transfer of information from nucleic acids to
proteins), an upregulation of specific microbial genes was
shown to boost the total polyphenols of Chinese yam (Guo
et al., 2021). By coupling RNA-seq with metabolomics, it
was also possible to see that perturbations during food
processing modify the function of the microbiome. For
example, process temperature during cheese ripening (De
Filippis et al., 2016), fruit ripening (Li et al., 2021; Xu
et al., 2019), plant-based fermentation (Kim et al., 2021),
and vinegar production (Wu et al., 2021) regulates the
metabolic activity and modifies the gene expression of
the microbiome with important changes in volatilome
profile of the final products. Apart from observational
studies showing how process parameters can modify the
microbiome with important changes in the final sensorial
characteristic of the products, the integration of RNA-
seq with metabolomics offers the possibility to study the
mechanism of bacteria acid-and-ethanol tolerance directly
connected with the quality characteristics and ammonia
flavor formation in fermented fish (Zhao & Eun, 2020), the
identification of microbes responsible for producing bio-
genic amines during soy sauce fermentation (Kim et al.,
2021), or bacterial metabolism under high salinity-induced
osmotic stress (Chun et al., 2019). Additionally, different
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-omics tools were successfully integrated to identify the
mechanisms behind the interconversion between hydrox-
ytyrosol and oleuropein in order to define the optimal
harvest period of olives for oil production (Rao et al., 2021).
Not only bacterial function can be monitored, but also

fungi, especially in cheese (Dugat-Bony et al., 2015; Lessard
et al., 2014). Integration of different -omics techniques
showed that in cheese maturation, fungi promote the
growth of motile over non-motile bacteria (Zhang et al.,
2018). In addition,metagenomics andmetatranscriptomics
are helping identify and discover new gene groups that can
cause antibiotic resistance (Nghiem et al., 2019).
These examples explore various adaptation strategies

and biological phenomena of the microbiome and often
report the use of unsupervised techniques like net-
work or association/correlation analysis in order to iden-
tify quantitative relationships between -omic features
(gene/taxa abundance and metabolites development) and
samples. However, the quantitative relationships iden-
tified using correlation-based approaches (Pearson or
Sperman) may not reflect the biological significance,
nor do they specifically account for complex interactions
(Santiago-Rodriguez & Hollister, 2021). Observed changes
in metabolic features as a result of the production process,
or due to external factors, will correspond to physicochem-
ical changes in the substrate of a sample. A validation step
which recapitulates the observed or imputed results (as
in Koch’s postulates) is often missing, since culture-based
evaluations are absent in most of the examined studies.
Only a few studies use this “complete” approach to vali-
date the data obtained. It was recently showed that cheese
discoloration defect was caused by an uncommonmicrobe
(Thermus thermophilus) through a NGS approach. As a
second step, the isolation of this causative bacterium by
culture-based approaches allowed the cheese defect to be
reproduced as a confirmation of the association retrieved
fromNGS data (Quigley et al., 2016). This exploits a unique
advantage of food process technology, whereby it is rela-
tively simple, in comparison with other larger biological
systems, to isolate the main microbial component in order
to verify the hypothesis.

3.4 Overview of -omics integration in
human-based study

The human microbiome is a complex ecosystem of bac-
teria, archaea, viruses (including bacteriophages), fungi,
and, in some instances, a variety of microeukaryotes that
vary between environments and populations and oper-
ate differently across the various ecological niches within
the body (Pasolli et al., 2019). Gut microbial commu-
nities play an important role in synthesizing essential

vitamins, out-competing pathogenic microbes, modulat-
ing immunity, impacting mucosal permeability, and reg-
ulating metabolic processes (Debnath et al., 2021; Wang
et al., 2019). Indeed, alterations in the composition and
function of the gut microbiota have been associated with
several non-communicable diseases ranging from inflam-
matory to metabolic disorders and respiratory conditions
(Rooks & Garrett, 2016; Sultan et al., 2021).
Multiomic studies have already provided a range of

striking insights into microbiome–host interrelationships,
many of which have been revealed through the contexts
of diet. For example, the integration of metabolomics
(SCFA, cytokines, bile acids, hormones), metagenomics,
and amino-acid tagging has demonstrated the effect of fer-
mentable fibers in improving satiety, through an increase
in propionate-producingmicrobes over thosewho produce
butyrate (Deehan et al., 2022). Another microbial metabo-
lite, lithocholic acid, is one of a number of secondary
bile acids produced by bacteria that act as powerful stim-
ulators of thermogenesis through ligand binding (FXR,
TGR5), leading to consumption of adipose material and
subsequent weight loss (Pathak et al., 2018). Antigen
cross-reactivity between the heat-shock protein, ClpB, and
the feeding and emotional regulatory hormone, aMSH,
induces fasting behavior in the host which can be recapitu-
lated through consumption of ClpB-expressingEscherichia
coli in rodents—as further validation, this cross reactivity
can also be observed in humans who exhibit dysregulated
feeding processes (Tennoune et al., 2014). In contrast with
these desirable interactions, many mechanisms are char-
acterized due to their roles in disease and, in particular, in
metabolic dysfunction.
For instance, dietary studies have shown trimethy-

lamine (TMA), a microbial byproduct of high protein-
consumption, to accelerate a range of heart disease factors
(Zhu, 2016), while direct chemical inhibition of microbial
TMA synthesis reduces those same factors (Wang et al.,
2015). Sufferers of type-2 diabetes have been shown to
present higher microbial productivity and higher circulat-
ing concentrations of imidazole propionate, a microbial
metabolite which reduces insulin sensitivity in the host
by inhibiting the insulin signaling cascade post ligand-
binding (Koh et al., 2016).
Nonalcoholic fatty liver disease (NAFLD) is associ-

ated with enrichment in microbial producers of hepa-
totoxic materials, including 2-butanone and 4-methyl-2-
pentanone (Del Chierico et al., 2017). Ethanol, which can
lead directly to inflammation and liver damage, is pro-
duced by Klebsiella pneumoniae and other proteobacteria,
which have also been connected to the exacerbation of
nonalcoholic steatosis and related conditions through the
production of phenylacetate (Hoyles et al., 2018; Yuan
et al., 2019). Branched-chain amino acids (L, I, V), which
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are known agents of oxidative stress in cardiac disease and
markers of T2D, are also generated by the gut microbiota
(Wang et al., 2011). It seems likely that further researchwill
uncover a panoply of roles in physiological function for the
gut microbiome.
Althoughmuch is known aboutmicrobiome–host inter-

relationships through carefully conducted mechanistic
studies, a comprehensive toolkit is required to further
advance our understanding of the extensive range of
microorganisms and their molecules in the gut. Fortu-
nately, functional omics-based approaches have become
more accessible and are used with increasing frequency,
with the outputs from such analyses highlighting their
potential to identify functional features of the microbiome
related to health and disease (Han et al., 2021; Zheng et al.,
2021).
Through the application of diverse -omics techniques

such as metagenomic and metatranscriptomic profil-
ing, changes in microbiome diversity, dysbiosis, and
gene expression have been implicated in several differ-
ent metabolic and inflammatory disorders, in particular
diets, or in treatments with antibiotics or other drugs,
thereby unveiling a more dynamic picture of the micro-
biome (Lavelle & Sokol, 2018; Schirmer et al., 2018). While
metatranscriptomic profiles offer valuable insight into
the functional expression of genes within microbiomes,
metaproteomic screening offers even greater potential to
accurately reflect the actual phenotype expressed. How-
ever, as of yet, metaproteomic analysis is still unable to
achieve the information content or sampling depth of
sequencing-based technologies. Indeed, highly abundant
and stably expressed conserved proteins typically dom-
inate in metaproteomic datasets, resulting in artificially
stable profiles being generated (Ferrer et al., 2013). Despite
this challenge, it should be noted that current limitations
can be addressed by refining protein preparation proto-
cols (Xiong et al., 2015) and improved identification (Tanca
et al., 2016).
Another -omic approach, metabolomics, involving the

direct measurement of metabolic outcomes, is likely to
offer greater sensitivity in resolving the functional micro-
biome. Indeed, quantitative methods, such as proton
nuclear magnetic resonance (NMR) analyses, are able
to capture some of the most important, high-abundance
microbial metabolites, such as short-chain fatty acids.
While advanced metabolomic methods allow the reso-
lution of thousands of metabolic features from human
microbiome samples, current limitations relate to the
very large fraction of unknown metabolites that can be
generated (more than 90% of measured features may
be unknown) even when comparing metabolomic data
to comprehensive databases, as well as the challenges
of relating specific metabolic features to their microbial

provenance. Advances in computational mass spectrom-
etry, de novo reconstruction, and modeling of metabolic
networks have the potential to address some of these
limitations and help understand the functional micro-
biome. A final -omic approach of relevance is culturomics.
Notably, in the past, when traditional culture methods
were employed, it was estimated that only 10%−25% of the
gut microbiota could be isolated and identified (Jandhyala
et al., 2015). However, armed with a greater understanding
of the growth requirements of many gut microbes, more
recent studies have significantly increased the successwith
which the dominant human gut species can be cultured
and thus studied (Forster et al., 2019; Liu et al., 2021).
End-points of these studies should involve the monitor-

ing of health-related physiological markers as well as fol-
lowing, in detail, the induced changes in the microbiome
over time using -omics measurements to understand the
role of the microbiome in managing human health and
disease.

3.5 Overview of -omics integration in
animal based study

Sequence-based studies of animal gut microbiome started
later in development than plant, soil, and the human
microbiome. However, the role and importance of gut-
health attracted attention in farmed animals prior to the
sequencing era. Recently, sequence-based studies of ani-
mal gut microbiome have been intensified and building
up in momentum and complexity. Microbiome studies
in animals have developed rapidly in methodology in
the last few years, initially with focus on 16S rRNA
gene amplicon-based studies, later combined with cul-
turomics (Zehavi et al., 2018). In recent years, studies
have broadened to focus also on compounds for pos-
sible immunomodulating/anti-inflammatory effects. The
strongest effect so far achieved by combining probiotics,
prebiotics, and anti-inflammatory compounds (e.g., via
lactic acid bacteria fermentation of feed biomass compo-
nents, which after fermentation have high prebiotic and
anti-inflammatory effects) (Grela et al., 2019) was revealed
when focusing on the microbiome interactive (digestive)
secretome and was enabled by combining metagenomic
and metaproteomics with a strong functional annotation
methodology (Barrett & Lange, 2019). Such studies rep-
resent state-of-the-art attempts to integrate use of many
types of data deriving from DNA, RNA, proteins, and
metabolites.
In addition, prioritizing animal microbiome studies

holds the potential to provide significant new insights
into broader roles of the microbiome in human health.
Studies have progressed beyond the animal, to include

 15414337, 2023, 2, D
ow

nloaded from
 https://ift.onlinelibrary.w

iley.com
/doi/10.1111/1541-4337.13103 by Inrae - D

ipso, W
iley O

nline L
ibrary on [05/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



MULTI-OMICs APPROACH IN MICROBIOME SCIENCE 1093

the effects of physical surroundings—the indoor vertical
and horizontal surfaces of the stable (Grela et al., 2019).
The inclusion of microbiome sampling from slaughtered
animals in study design provides more detailed infor-
mation about the different roles and functions of the
microbiome in different parts of the gut system. There
are also substantial opportunities to apply multi-omic
approaches in understanding the function and role of
the microbiome in the animal rumen, an evolutionarily
unique, highly-specialized, and efficiency-optimized habi-
tat for breaking recalcitrant plant structures. Such efforts
are made even more valuable through their direct rele-
vance to animal nutrition, production of red meat, and the
resultant greenhouse gas emissions.
Carbon emissions from animal husbandry represent a

significant threat for climate change, methane being 23
times more potent a greenhouse gas than CO2. Inten-
sive studies of the highly unique digestive microorganisms
of the cow rumen were carried out decades before the
genome sequencing era (Borneman & Akin, 1994). Atten-
tion was specifically drawn to studies of the large group of
specialized rumen bacteria and not the least studying the
unique rumen fungi (early lineage, zoosporic, anaerobic
Chytridiomycota spp.). Notably, conceptual understanding
of many facets of the rumen activities at the molecular
level was achieved already in the 1980s. Most stunning
was the discovery and characterization of the cellulosome,
a common denominator between rumen bacteria and
rumen fungi, being composed of a dockerin structure with
a portfolio of structurally integrated digestive enzymes
(Haitjema et al., 2017). Such insightful results were built on
a combination of several sets and types of data, for exam-
ple, rumen culturomics, excelled for both fungi, bacteria,
and archaea; and rumen protein (enzyme) and metabo-
lite and emission studies (e.g., effect and role of protozoa
on pH and for starch metabolism), all with integrated use
of taxonomic data, distinguishing a wide spectrum of tax-
onomically well-described archaeal, bacterial, and fungal
species. At the start of the microbiome and metagenome
sequencing era, many cow rumen research studies were
based on 16S amplicon sequencing only, aiming at eluci-
dating the taxonomic composition but methodologically
including only prokaryotes.
The basis for choosing this simpler approach, often

including only bacteria in the rumen microbiome studies,
was analysis of total DNA from the rumen, estimating the
ratio of bacteria versus fungi to hold only a smaller fraction
of fungi (<5%–8%). Notably, Elekwachi and co-workers
developed a new rumen microbiome sampling method
(through inclusion of the solid fraction of the rumen)
and a new RNA preparation method (Elekwachi et al.,
2017), by which it was demonstrated that fungi constitute
a larger part of the microbiome. Such underestimation

of the fungal role in the rumen microbiome metabolism
can be explained by a widespread sampling bias: Making
the microbiome studies from the rumen fluid inherently
underrepresented the fungal DNA, as the rumen fungi are
attached by rhizoids to the feed biomass, thus found pri-
marily in the (small particle) solid fraction of the rumen
content.
Another parameter of complexity impacting the stud-

ies of the rumen microbiome is the intensive genetic
research for optimized cattle breeding, suggesting at least
to some extent that host genetics are controlling the rumen
microbiome. A pertinent question is how we can optimize
multi-omics approaches to include also the impact of host
genetics and microbiome–host interaction. The rumen
microbiome represents an optimal model for developing
truly multi-omic microbiome research studies. Sampling
hosts can be selected to have a highly similar, almost iden-
tical genetic background, rumen microbiome sampling
methods can be fully standardized, and it can be carried
out with high reproducibility from fistulated cows.
Extraction and preparation of samples for sequenc-

ing and analysis can be both comprehensive and
standardized for quality and reproducibility. DNA,
RNA, proteins, and metabolites can be analyzed
and functionally annotated, with high specificity and
sensitivity, by using a spectrum of -omics technologies—
(meta)genomics, (meta)transcriptomics, metaproteomics,
and metabolomics. For all steps, the analysis should be
supplemented by functional analysis of the microbiome
and microbiome–host interaction secretome. Last but
most importantly, meticulous measurements of CO2,
hydrogen, and methane emissions can be made. In such
a standardized system, hypotheses can be tested reliably
by changing only one dimension: either the genetic back-
ground of the host or the composition of the feed intake
(Noel et al., 2019). The objective, significantly reducing the
methane emission from milk and meat production, could
be within reach by simply changing the feeding regime
and choosing the genetic background where such changes
can take place with neither yield nor animal welfare being
damaged.

4 DATA INTEGRATION: CURRENT
APPROACHES AND REMAINING
HURDLES

Complex cellular functions depend on the interplay
between genes, transcripts, proteins, metabolites, and
other biological molecules. Because of this complexity, if
a biological system is to be understood with the greatest
accuracy and detail, the methods used must try, as much
as is possible, to carry out a simultaneous and integrated
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1094 MULTI-OMICs APPROACH IN MICROBIOME SCIENCE

analysis of these molecules. This type of multi-omic data
integration offers a powerful way to view a cellular system
but can be fraughtwith challenges (Jiang et al., 2019).How-
ever, new approaches are addressing these challenges and
making multi-omic data integration easier (McClure et al.,
2019). In this section, we address some of the approaches
currently used to integrate multi-omic data as well as the
hurdles associated with these methods and the steps taken
to mitigate them.

4.1 Network analysis of multi-omic data

One method of integrating multi-omic data is using a fea-
ture co-expression or co-abundance network approach. In
this approach, multiple kinds of -omics data (e.g., pro-
teomics and transcriptomics) can be integrated through
identifying proteins and transcripts that shift their abun-
dance in a coordinated manner across a range of experi-
mental conditions or samples.
There are a number of mathematical methods for

inferring such networks that have been applied includ-
ing Pearson and Spearman correlation (Afshari et al.,
2020) and mutual information methods such as con-
text likelihood of relatedness (CLR) (Faith et al., 2007),
overall random forest based methods such as GENIE3
(Huynh-Thu et al., 2010), and several others (Margolin
et al., 2006). While most of these network inference tools
have been applied to networks of a single -omics type
(mainly amplicon analysis or transcriptomics), their use
as multi-omic network generation tools has also been
explored. In these networks, each feature (either a species,
transcript, protein, metabolite, or lipid) represents a node
in the network, and instances of high coordination of
expression or abundance between two features represent
edges (connections) within the network.
The key difference with single -omic versus multi-omic

networks is that in multi-omic networks, edges can link
features of the same type as well as features of two differ-
ent types (e.g., a transcript linked to a metabolite). Some
studies have set out specifically with the goal of compar-
ing the strength of various network inference tools as it
relates to multi-omic networks. One study compared the
ability of 10 network inference methods and ranked them
based on their ability to generate highly integrated multi-
omic networks using transcriptomic and proteomic data
(McClure et al., 2019). Integration was measured both by
accuracy of the resulting network and by the ratio of edges
connecting features of different types (protein/transcript)
versus features of the same type (protein/protein or tran-
script/transcript). This study found that the random forest
method, GENIE3, was by far the best method for infer-
ring associations within multi-omic data. Another recent

review compared a number of different methods and also
found that GENIE3 was a promising candidate for multi-
omic network integration (Hawe et al., 2019). It should also
be noted that GENIE was a top contender in the DREAM
challenge which sought to compare network inference
tools regarding their accuracy in linking regulator-target
pairs of E. coli (Marbach et al., 2012). Though GENIE3 has
been found to be useful for multi-omic networks, other
methods have also been used with success. These include
PALM, a Bayesian network that is designed to work with
multi-omic longitudinal time scale data (Ruiz-Perez et al.,
2021), and TIGRESS, a regression approach that uses the
behavior of some features to predict the behavior of others
(Yan et al., 2017).
Further analysis of both of these methods and others is

warranted due to the rather specific input data on which
GENIE3 ranked so highly. Most of these data were from
tightly controlled in vivo studies, and it is likely that in a
natural microbiome setting (the gut, soil, marine, or other
sites), natural variability may lead to other network infer-
ence methods being able to draw more edges between
features, lowering the impact of GENIE3.
While networks can provide a great deal of data, the

possibility exists for spurious links or edges to be inferred
in a network, reducing the accuracy and use of the net-
work. With any network analysis approach, some edges
that do not reflect true biological associations but rather
random correlations of data are inevitable. The key to
proper network analysis is to: (1) identify to what degree
such spurious edges exist in a network and (2) to confirm
edges of interest as much as possible with additional data
types or experiments. To gain a view of how abundant spu-
rious edges are, accuracy of networks can be calculated
by looking at the ratio of edges linking genes in the same
functional category (likely true links) compared to edges
linking genes in different functional categories (possible
spurious links). This method was shown to work well in
networks of transcriptomic or proteomic data (McClure
et al., 2019), where the ratio of true links to spurious links
droppedwhennetworksweremadewith sparse data or lib-
eral edge cutoffs (wherein spurious edges would be more
prominent) and rose when networks were made with rich
data and more conserved edge cutoffs. Using this met-
ric, networks with a large number of spurious edges can
at least be identified and set aside or modified before
conclusions are made.
Confirming edges of interest is a second way that spuri-

ous edges can be dealt with. This can be done by either
using multiple network methods on the same data set,
if an edge of interest is found regardless of the specific
mathematical method used to infer the network than it
can be assumed that the edge represents a true biological
link and not a randommathematical correlation. This can
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also be done by incorporating other analyses. For example,
in a network of genes linked to regulatory DNA-binding
proteins, networks were initially used to link regulators
and targets (McClure et al., 2016). These links were then
partially confirmed by looking for DNA-binding sites for
the identified regulator in the promoter region of target
genes linked in the network. Genes that were found to be
linked to a regulator in a network andwere found to harbor
the binding site of that regulatory in their 5′ untranslated
region were strong candidates for being new targets of the
regulator. While such pieces of data in isolation would not
allow any strong conclusion to be drawn, integration of
these different datasets provides significant insight.

4.2 Overlaying multi-omic data onto
existing metabolic pathways

Much of the network analysis above can be done with
minimal knowledge of gene classification of the system
under analysis. In fact, networks have even been used to
expand knowledge of gene function in a process termed
“guilt by association,” though other studies have empha-
sized the limits of this approach (Gillis & Pavlidis, 2012).
However, while not universally true, there does often exist
some genomic annotation data for the system under analy-
sis. In addition, many pathways and processes inmicrobial
systems are universal, offering the possibility of using
general KEGG pathway information to guide analysis of
specific systems. Because of this, new methods have been
emerging that combine existing knowledge with multi-
omic data from the system to infer which processes are
being activated under certain conditions.
One such approach is the Metabolite-Expression-

Metabolic Network Integration for Pathway Identification
and Selection (MEMPIS) program. This program collects
transcriptomic and metabolic data from a system and
integrates it in combination with annotated metabolic
pathways to identify which processes are being expressed
by a biological system such as a microbiome. Interestingly,
the current applications of MEMPIS are not on well-
annotated model systems but on complex soil microbiome
samples showing that this approach can be applied to sites
where little specific knowledge of genome annotation has
yet been collected (McClure et al., 2020). Another tool,
XCMS Online, also includes metabolomics data but is
able to integrate proteomic data or genomic data as well
(Forsberg et al., 2018). However, unlike MEMPIS, this tool
has not yet been tested extensively in complexmicrobiome
systems. Other methods that take as input multi-omic
data and overlay it onto existing pathways using KEGG,
KBase, or Reactome include GraphOmics and InterTADs
(Tsagiopoulou et al., 2022). Other approaches have taken

a broader view and instead of developing wholly new
methods of multi-omic integration have instead developed
pipelines that guide users in applying existing multi-omic
integration tools. This is the case with STATegra that has
been demonstrated to be successful in multi-omic analysis
of human systems, though its application to microbial
data has not yet been evaluated (Planell et al., 2021).

5 CONCLUSIONS

In this paper, we have presented the outcomes of
the workshop “Metagenomics, Metaproteomics, and
Metabolomics: The need for data integration in micro-
biome research” organized to discuss the pros and cons of
study designs, methodologies, and statistical/integration
tools to advance microbiome applications in the context
of the food system. In doing this, we have taken a systems
thinking approach, and to this end, a number of domains
associated with food (e.g., soil, plant, human, and animal
sciences) were taken into consideration to address the
complexity of the food system.
Despite the success over the last several years, chal-

lenges still remain with multi-omic data integration
and their effective exploitation in the food system. First,
technologies applied to study these factors can generate
continuous, discrete, and categorical data which contain
batch effects and are often noisy, sparse (i.e., containmany
zeros), and high-dimensional (Tsagiopoulou et al., 2022).
Apart from normalization, transformation, or scaling
steps used before integration, another challenge is the
use of reproducible pipelines and a better community
effort for data analysis strategies based on the ecological
niche. The common approach now used is based on
network-based methods, multi-variate random forests,
and Bayesian approaches used to find probabilistic causal
relationships between variables, and to identify the most
probabilistic network that is predictive of the observed
data (Chong & Xia, 2017). An extensive, but not exhaus-
tive, list of integration tools is accessible via GitHub
(https://github.com/mikelove/awesome-multi-omics)
along with commercial platforms that may be more user
friendly. Most methods utilize randomizations to generate
data without regard to biochemical structure; thus, biolog-
ical significance is sometimes overestimated. Univariate
correlations are relatively straightforward but lack context
for interpretation in terms of biological plausibility and
mechanistic insight (Chong et al., 2020). Various tools
have been developed to integrate -omics datasets, but there
are limited strategies to systematically extract mechanistic
hypotheses from them. To give an example, the COSMOS
platform (Dugourd et al., 2021) offers the opportunity to
find potential mechanisms by linking deregulated protein
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activities and metabolite concentrations with a known
network by coupling signaling, transcription, and metabo-
lites. The advantage of this tool is of interest, since apart
from proposed mechanisms between pairs of molecules
(metabolites and proteins) it can also take into account
the interaction with other inputs (molecules or genes) that
can be included in the model. Throughout the workshop
discussion, several propositions emerged including: (i)
the need for classical microbiology to produce knockouts
to extract mechanistic hypotheses; (ii) advertising how
important the mechanistic hypothesis is, since at present
it is still often simply ignored; (iii) obtain more knowledge
about the biological system as well as updating and inte-
grating this information into popular databases; (iv) drive
scientists to apply mechanistic, rather than descriptive
studies; and (v) focusing on the combination of extensive
prior knowledge and (new) computational methods to
obtain new mechanistic insight. Only in this way will
microbiome science efficiently contribute to the food
system, allowing for solutions to be designed which can
help to address the challenges our planet currently faces.
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