

DIPCEAU: Développement d'un Indicateur Phytoplancton pour l'évaluation de l'état écologique des Grands Cours d'Eau

Albin Meyer, Emilie Prygiel, Christophe Laplace-Treyture

▶ To cite this version:

Albin Meyer, Emilie Prygiel, Christophe Laplace-Treyture. DIPCEAU: Développement d'un Indicateur Phytoplancton pour l'évaluation de l'état écologique des Grands Cours d'Eau. INRAE Nouvelle Aquitaine, Gazinet. 2023, 103 p. hal-04099620

HAL Id: hal-04099620 https://hal.inrae.fr/hal-04099620v1

Submitted on 17 May 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DIPCEAU : Développement d'un Indicateur Phytoplancton pour l'évaluation de l'état écologique des Grands Cours d'Eau

Action 3 : mise au point de l'indicateur IPHYGE Création et sélection de métriques

Albin MEYER Emilie PRYGIEL Christophe LAPLACE-TREYTURE

Mars 2023

Office français de la biodiversité Pôle de Montpellier Immeuble Tabella- ZAC de l'aéroport 125 Impasse Adam Smith- 34470 Pérols www.ofb.gouv.fr

SOMMAIRE

Index des figures	5
Index des tableaux	8
Liste des abréviations	9
I. Introduction	10
II. Matériel et Méthodes	12
II.1 Le jeu de données de développement	12
II.1.1 Les stations suivies	12
II.1.2 Les données phytoplanctoniques	13
II.1.3 Les données physico-chimiques	14
II.1.4 Autres données bancarisées	14
II.1.5 Caractérisation des pressions anthropiques	15
II.1.6 Sélection finale des OPCA du jeu de données de développement	
II.2 Definition des conditions de reference	
II.3 L Indicateur compine de stress	
II.4 Les métriques	
II 4 2 Les métriques trophiques	25
II 4 3 Les métriques structurelles	30
II.4.4 Les métriques fonctionnelles	
II.4.5 Expressions des valeurs des métriques sous la forme d'EQR	
II.5 Analyses statistiques	33
II.5.1 Performances des métriques et des indices candidats	
II.5.2 Logiciel et librairies	35
II.6 Les indices candidats	35
II.7 Assignation des classes d'état biologique	
	20
III. Resultats	
III.1 Periormances des metriques	
III. 1. 1 Résultats pour les métriques trophiques	
III 1 3 Résultats pour les métriques structurelles	48
III.1.4 Résultats pour les métriques fonctionnelles	
III.2 Performances des indices candidats	
III.3 L'IPHYGE	52
III.3.1 Synthèse	
III.3.2 Cours d'eau couverts par l'IPHYGE	52
III.3.3 Calcul de l'IPHYGE	53
III.3.4 Performances générales	
III.3.5 Proportion des taxons contributifs	
III.3.6 Classes d'état biologique	60
Conclusion at perspectives	64
conclusion et perspectives	
Références	68
Annexes	71
A1. Acquisition des données complémentaires	72
A1.1 Surface du bassin versant	72
A1.2 Altitude	
A1.3 Debits specifiques	
A1.4 Kangs de Stranier	

A4. Liste des stations du jeu de données de développement	77
A5. Distribution des valeurs de l'ICS	82
A6. Liste taxonomique des genres contribuant aux métriques MG-P et MG-A	83
A7. Liste taxonomique des espèces contribuant à la métrique MS-N	90
A8. Classes d'état biologique pour l'IPHYGE et ses quatre métriques constitutives	100
Résumé	101
Mots-clés	101

Index des figures

Figure 2 : distributions des concentrations moyennes en chlorophylle-a (μ g/L) en fonction du niveau des onze catégories de pressions chimiques. Les concentrations moyennes ont été calculées à partir des concentrations mesurées entre avril et octobre. Les p-valeurs (p) renseignent sur les résultats des tests de Kruskal-Wallis effectués pour chaque catégorie de pression entre les OPCA classés LIRR ou IRR. LIRR = niveaux « Très Bon » ou « Bon », IRR = (« Moyen », « Médiocre » et « Mauvais ». DE = efficacité de discrimination (cf. §II.5.1). N = 1027 OPCA.

Figure 6 : schéma synthétique des approches explorées pour le calcul des métriques trophiques...... 30

Figure 20 : distribution des valeurs réelles de l'IPHYGE en fonction du statut des OPCA. La limite « Bon/Moyen » (B-Mo) a été fixé au niveau du 1^{er} quartile de la distribution des valeurs de l'indice dans les LIRR. Les autres limites sont obtenues en divisant en intervalles de même taille les deux étendues restantes, c'est-à-dire celle comprise entre 1 et B-Mo, et celle comprise entre B-Mo et 0. Ma = Mauvais, Mé = Médiocre, Mo = Moyen, B = Bon, et TB = Très Bon. N = 963 OPCA, dont 881 IRR et 82 LIRR. ...60

Figure 22 : classes d'état biologique sur la base des valeurs de l'IPHYGE et sur la base du scénario consistant à placer la limite "Bon-Moyen" au niveau du 1er quartile de la distribution des valeurs de l'IPHYGE dans les LIRR. Les valeurs présentées ici intègrent les résultats obtenus pour le jeu de données de test. Code des couleurs : rouge = « Mauvais », orange = « Médiocre », jaune = « Moyen », vert = « Bon » et bleu = « Très Bon ». Les ronds indiquent les MEN et les carrés les MEFM. N = 1131 OPCA.

Index des tableaux

 Tableau 3 : performances des six meilleures métriques de composition calculées à partir des concentrations en phosphore total. Les colonnes « Profil écologique » et « Calcul » renseignent sur l'échelle temporelle utilisée pour calculer les cotes spécifiques/génériques, les coefficients de sténoécie et les valeurs des métriques trophiques. DE = efficacité de discrimination « toutes pressions confondues » entre les LIRR (N = 82) et les IRR (N = 881). DE moyenne = efficacité de discrimination moyenne pour les cinq catégories de pression : « Matières azotées », « Nitrates », « Matières phosphorées », « Matières organiques », et « Bloom ». * les métriques ont été classées en fonction de leur performance pour ce paramètre.

 Tableau 5 : performances des six meilleures métriques de composition calculées à partir des concentrations en nitrates. Les colonnes « Profil écologique » et « Calcul » renseignent sur l'échelle temporelle utilisée pour calculer les cotes spécifiques/génériques, les coefficients de sténoécie et les valeurs des métriques trophiques. DE = efficacité de discrimination « toutes pressions confondues » entre les LIRR (N = 82) et les IRR (N = 881). DE moyenne = efficacité de discrimination moyenne pour les cinq catégories de pression : « Matières azotées », « Nitrates », « Matières phosphorées », « Matières organiques », et « Bloom ». * les métriques ont été classées en fonction de leur performance pour ce paramètre.

Tableau 8 : poids des métriques dans les trois combinaisons explorées (= indices candidats 1 à 3). ... 51

Liste des abréviations

API : interface de programmation (Application Programming Interface) **BRT** : Boosted Regression Tree **BV** : biovolume Cerema : Centre d'études et d'expertise sur les Risques, l'Environnement, la Mobilité et l'Aménagement **CWM : Community Weighted Mean** DCE : Directive Cadre européenne sur l'Eau DE : efficacité de discrimination DIPCEAU : Développement d'un Indicateur Phytoplancton pour l'évaluation de l'état écologique des grands Cours d'EAU EQR : ratio de qualité écologique (Ecological Quality Ratio) G : classe de taille « Grand » GCE : Grands Cours d'Eau HER : Hydroécorégion HRPI : Hungarian River Phytoplankton Index IC : Indice Candidat ICS : Indice Combiné de Stress INRAE : Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement IPHYGE : Indicateur PHYtoplancton pour les Grands cours d'Eau IRR : Impaired River Reaches LIRR : Least Impaired River Reaches M : classe de taille « Moyen » MBP : Métrique de Biomasse Phytoplanctonique MEA : Masse d'Eau Artificielle MEFM : Masse d'Eau Fortement Modifiée MEN : Masse d'Eau Naturelle MPCE : Moyens et Petits Cours d'Eau MG-A : Métrique de composition au Genre - Azote Kjeldahl MG-P : Métrique de composition au Genre - Phosphore total MNT : Modèle Numérique de Terrain MS-N : Métrique de composition Spécifique - Nitrates MT : Métrique Trophique (ou métrique de composition) NKJ : azote Kjeldahl OPC : Opération de Contrôle (couple « station x date ») OPCA : Opération de Contrôle Annuelle (couple « station x année ») P : classe de taille « Petit » Ptot : phosphore total TG : classe de taille « Très Grand » TGCE : Très Grand Cours d'Eau TP : classe de taille « Très Petit » TTG : classe de taille « Très Très Grand » TTGL : « Très Très Grand Loire » UE : Union Européenne

I. Introduction

En réponse à un appel à manifestation d'intérêt « Développement en matière de surveillance et d'évaluation de l'état des eaux et des milieux aquatiques continentaux, littoraux et marins dans le cadre des directives européennes », le projet DIPCEAU a été retenu. Ce dernier vise au Développement d'un Indicateur Phytoplancton pour l'évaluation de l'état écologique des grands Cours d'EAU (GCE). En effet, un indicateur de l'état écologique basé sur les communautés phytoplanctoniques est requis pour les Très Grands Cours d'Eau (TGCE). Le suivi du compartiment phytoplanctonique est aussi pertinent pour l'évaluation de l'état écologique de cours d'eau de tailles plus restreintes, et l'applicabilité de l'indicateur phytoplancton à développer peut aussi être testé sur ces masses d'eau.

Dans le cadre d'une première action de ce projet, les méthodes déjà existantes au niveau européen pour l'étude et le suivi de l'état écologique des grands cours d'eau sur la base du compartiment biologique phytoplancton, tel que préconisé par la Directive Cadre européenne sur l'Eau (DCE ; European Council 2000), ont été étudiées (Meyer et al. 2021). Cette étude était restreinte aux méthodes développées par les états membres de l'Union Européenne pour lesquels la DCE s'applique (Mischke et al 2016).

Parmi les méthodes européennes, la méthode allemande PhytoFluss et la méthode hongroise HRPI sont d'intérêt, car il s'agit de méthodes performantes pouvant s'appliquer à de nombreux types de cours d'eau au niveau européen. Ces deux méthodes ont d'ailleurs été privilégiées pour le calcul de la métrique commune lors de l'exercice d'inter-étalonnage européen. Ces deux méthodes présentaient des performances correctes sur les données françaises, en termes d'indication des pressions, mais leur efficacité globale était limitée, possiblement à cause de leurs spécificités intrinsèques (par ex. les paramètres de calcul spécifiques aux types de cours d'eau étrangers) et d'une faible prise en compte de la diversité taxonomique du phytoplancton observée dans les grands cours d'eau français (voir le détail des performances dans Meyer et al. 2021).

Ainsi, suite à cette première étude, nous avons préconisé le développement d'un nouvel indicateur français, adapté aux types français et prenant en compte de manière optimale le potentiel des communautés phytoplanctoniques françaises à indiquer les pressions observées sur les grands et très grands cours d'eau métropolitains. Nous avons fait le choix de concevoir un indice multimétrique, c'est-àdire dont la valeur correspond à une moyenne, pondérée ou non, de plusieurs métriques constitutives. Ici, une métrique est définie comme une valeur numérique permettant de décrire l'écologie, la richesse et/ou la diversité (taxonomique et/ou fonctionnelle) des communautés phytoplanctoniques. Le développement d'un indice multimétrique permet à la fois de répondre aux exigences et critères de la DCE pour les méthodes basées sur le phytoplancton (par ex. en prenant en compte la biomasse phytoplanctonique et la composition floristique dans le calcul de la valeur de l'indice ; Mischke et al. 2016), de potentiellement mettre en évidence plus de pressions qu'un indice composé d'une unique métrique (Hering et al. 2006), et de limiter les incertitudes pouvant entourer l'évaluation de l'état écologique des cours d'eau (Meyer et al. *in prep*).

L'objectif du présent rapport est de présenter le processus de développement de l'indice multimétrique. Ainsi sont présentés dans ce rapport :

- (i) le jeu de données utilisées pour le développement de l'indicateur ;
- (ii) la définition des conditions de référence (nécessaire pour exprimer les valeurs des indices sous la forme de ratio de qualité écologique - Ecological Quality Ratio ; EQR) ;
- (iii) les métriques calculées à partir des données floristiques issues du jeu de données de développement (Prygiel et al. 2021) ;
- (iv) l'exploration des performances de ces métriques pour mettre en évidence les principales pressions trophiques observées sur les grands cours d'eau français;
- (v) l'exploration des performances des indices candidats constitués des métriques identifiées lors de l'étape précédente ;
- (vi) l'exploration des performances de l'indice candidat retenu, dénommé IPHYGE, pour Indicateur PHYtoplancton pour les Grands cours d'Eau, sur un jeu de données indépendant ;
- (vii) les classes d'état biologique assignées à partir des valeurs de l'IPHYGE, sous réserve des résultats du futur processus d'intercalibration européenne de l'IPHYGE et de ses bornes délimitant les différentes classes d'état biologique.

II. Matériel et Méthodes

II.1 Le jeu de données de développement

II.1.1 Les stations suivies

La première phase du projet DIPCEAU a consisté en la bancarisation des données de suivis du maillon phytoplancton dans les GCE. Cette phase de bancarisation a permis la constitution d'une base de données phytoplanctoniques sur laquelle s'appuie le développement de la méthode et de l'indicateur présentés dans ce rapport (cf. §II.1.2). Une synthèse des données bancarisées est disponible dans le rapport de Prygiel et al. (2021).

La base regroupe ainsi les informations de 228 stations réparties sur le territoire métropolitain (Figure 1). Globalement, la plupart des stations disposent d'un suivi pérenne depuis 2010 (Rhin-Meuse, Rhône Méditerranée Corse), 2011 (Adour-Garonne) ou 2012 (Artois-Picardie, Seine-Normandie, Loire Bretagne). Les bassins Artois-Picardie et Rhin-Meuse disposent du nombre de stations le plus réduit : 17 et 13 stations, tandis que Seine-Normandie et Loire Bretagne sont les mieux pourvus avec 71 et 66 stations respectivement. Toutefois, on constate que malgré l'apparition/disparition de certaines stations au fil des années, 73 % des 228 stations recensées dans la base ont une durée de suivi supérieure à cinq années.

Figure 1 : nature des masses d'eau au droit des stations de mesure (Prygiel et al. 2021).

Parmi les 228 stations contenues dans la base de données, 106 d'entre elles sont localisées sur des Masses d'Eau Naturelles (MEN). Le reste de la base est composé de 88 stations en Masse d'Eau Fortement Modifiée (MEFM), de 20 stations en Masses d'Eau Artificielles (MEA) et de 14 stations de nature inconnue. Parmi ces stations non naturelles, 54 sont de type « canal ». Douze stations du bassin Seine-Normandie sont de nature inconnue, mais portent toutes l'appellation de « canal », à l'exception de trois stations situées sur la Seine pour lesquelles rien n'est précisé. Les deux dernières stations de nature inconnue, localisées en Artois-Picardie, sont aussi des canaux.

II.1.2 Les données phytoplanctoniques

Le jeu de données floristiques regroupe les données nouvellement acquises pour le phytoplancton en territoire métropolitain. La bancarisation de ces données a été rendue possible par la mise au point préalable par INRAE d'un protocole d'acquisition standardisé (Laplace-Treyture et al. 2010). Ce protocole a été mis en œuvre à partir de 2010 afin de disposer d'un jeu de données comparables et suffisantes pour le développement de l'indicateur présenté dans ce rapport. À partir de 2016, ces données ont été regroupées, bancarisées et structurées par le Cerema dans une base de données communes.

Cette base de données contient ainsi les résultats de 10 178 prélèvements phytoplanctoniques (= Opérations de Contrôle = OPC), réalisés sur les 228 stations suivies pendant la période 2010-2019. Elle comprend des analyses phytoplanctoniques (données taxonomiques, abondances et biovolumes), des mesures physico-chimiques, des relevés hydrologiques et météorologiques effectués lors des prélèvements, et l'observation éventuelle d'efflorescences algales (par la suite nommées « blooms »).

La bancarisation de ces données floristiques a aussi nécessité la mise à jour des tables de référence. En effet, la liste des taxons phytoplanctoniques évolue en permanence et nécessite l'établissement de nouveaux codes Sandre et codes taxons spécifiques aux nouveaux taxons (genres et espèces). Le référentiel des taxons et des codes associés a donc été mis à jour régulièrement par INRAE, au travers du logiciel Phytobs (logiciel de saisie et de bancarisation des comptages phytoplanctoniques ; <u>https://hydrobio-dce.inrae.fr/phytobs/</u>) pour tenir compte de l'évolution de la synonymie et de la description de nouveaux taxons. Ce référentiel a ensuite été implémenté dans la base et extrait de Phytobs pour permettre la mise à jour au sein du référentiel taxonomique du Sandre. Différentes mises à jour ont déjà été réalisées tout au long du projet et une nouvelle mise à jour du Sandre est prévue en parallèle de la livraison de ce rapport final.

II.1.3 Les données physico-chimiques

Ce jeu de données biologiques a été complété par un jeu de données physicochimiques permettant de caractériser les pressions anthropiques s'exerçant sur les GCE. Ainsi, les concentrations de 198 paramètres physico-chimiques, correspondant chacun à un code Sandre, ont été téléchargées à partir de la base de données nationales Naïades (http://www.naiades.eaufrance.fr), grâce à l'API « Hub'EAU » bancarisation, (https://hubeau.eaufrance.fr/). Après les concentrations en orthophosphates (PO₄³⁻; code Sandre 1433), nitrates (NO₃⁻; code Sandre 1340), nitrites (NO2⁻; code Sandre 1339) et ammonium (NH4⁺; code Sandre 1335) ont été transformées afin d'être exprimées directement en concentrations de P ou N (i.e. P-PO₄³⁻ au lieu de PO₄³⁻). Les concentrations égales aux seuils de quantification ont été arbitrairement divisées par deux afin de disposer de valeurs numériques et non de « < seuil ». Les concentrations mesurées durant les sept jours précédents le prélèvement de phytoplancton ont été moyennées pour chaque OPC, mais uniquement pour un certain nombre de paramètres d'intérêt : les orthophosphates, le phosphore total (Ptot; code Sandre 1350), la chlorophylle-a (code Sandre 1439), les chlorures (Cl-; code Sandre 1337), l'ammonium, les nitrates, l'azote Kjeldahl (code Sandre 1319) et les nitrites. Ce pas de temps de sept jours a été sélectionné car il est généralement admis que le compartiment phytoplanctonique est représentatif et indicateur des conditions physico-chimiques récentes (Crossetti et al. 2013). Les valeurs d'azote total ont été obtenues après addition des concentrations en azote Kjeldahl, nitrites et nitrates.

Pour chaque couple « station x année » (= Opération de Contrôle Annuelle = OPCA) et chaque paramètre physico-chimique, nous avons calculé (i) la concentration moyenne saisonnière (à partir de l'intégralité des mesures effectuées durant les sept jours précédents toutes les OPC réalisées durant la période avril-octobre (cf. §II.1.6), et (ii) la concentration moyenne annuelle de l'intégralité des mesures réalisées au cours d'une année.

II.1.4 Autres données bancarisées

La bancarisation des données floristiques et physico-chimiques a été complétée par une phase d'acquisition de données descriptives de l'intégralité des stations présentes dans notre jeu de données afin de permettre des analyses complémentaires, le cas échéant (par ex. afin de réaliser l'intercalibration européenne). Nous avons ainsi bancarisé la surface des bassins versants (km²), l'altitude (m), les débits spécifiques (L.s⁻¹.km⁻²) et les rangs de Strahler des stations, lorsque ces données étaient disponibles et/ou lorsque cela était possible (par ex. nous n'avons pas calculé la surface des bassins versants pour les stations localisées sur des canaux). Les méthodes ayant permis l'acquisition de ces données complémentaires sont décrites dans les annexes (Annexe A1).

II.1.5 Caractérisation des pressions anthropiques

Chacun des 198 paramètres physico-chimiques a été assigné, conformément à la démarche utilisée pour les MPCE (Moyens et Petits Cours d'Eau) et les GCE pour d'autres indicateurs (par ex. Mondy et al. 2012, Meyer et al. 2020) à une des onze catégories de pressions chimiques suivantes : (1) Acidification, (2) Hydrocarbures Aromatiques Polycycliques (HAP), (3) Matières En Suspension (MES), (4) Nitrates, (5) Polychlorobiphényles (PCB), (6) Pesticides, (7) Matières azotées (hors nitrates), (8) Matières organiques, (9) Matières phosphorées, (10) Micropolluants minéraux et (11) (autres) Micropolluants organiques. Les niveaux de pression ont été traduits en classes d'état. Ces classes sont au nombre de cinq, selon un gradient croissant d'impact : de « Très Bon », « Bon », « Moyen », « Médiocre », à « Mauvais ». Les niveaux de pression ont été caractérisés via l'utilisation des seuils SEQ-eau V2 (classes d'aptitude à la biologie ; Oudin et Maupas 2003) et en appliquant la règle du paramètre le plus déclassant (i.e., approche « One Out – All Out ») sur l'ensemble des différents paramètres décrivant un type de pression donné. Cette caractérisation a été effectuée à partir des concentrations moyennes annuelles de chacun des 198 paramètres physico-chimiques sur chacune des stations suivies. L'utilisation des moyennes annuelles permet de mieux rendre compte de l'état global des cours d'eau suivis. Il est à noter que pour cette caractérisation des niveaux de pression nous avons utilisé les concentrations non-transformées des orthophosphates, nitrates, nitrites et ammonium (cf. §II.1.3).

Nous devons aussi signaler que nous n'avons pas pris en compte les chlorures dans la caractérisation des pressions chimiques, alors même que ce paramètre est un des principaux facteurs explicatifs des concentrations moyennes en chlorophylle-a durant la période de végétation (avril-octobre) (par ex. Mischke et al. 2016, Meyer et al. 2021). En effet il n'existe pas pour ce paramètre de seuils pour définir des classes d'aptitude à la biologie dans les cours d'eau de France métropolitaine (Oudin et Maupas 2003).

Les pressions anthropiques liées à des altérations physiques du cours d'eau et des milieux (par ex. canalisation du cours d'eau, altération de la ripisylve, navigation) n'ont pas été caractérisées ni prises en compte car (i) il a été considéré que ces catégories de pression présentent un effet négligeable sur le phytoplancton, *a contrario* des pressions physico-chimiques dont celles liées aux nutriments, et (ii) ces pressions n'étaient pas décrites pour l'intégralité des stations.

Une analyse préliminaire a montré que les concentrations en chlorophylle-a répondent principalement et de manière significative aux catégories de pressions « trophiques » (c'est-à-dire les catégories de pression « Matières Azotées », « Nitrates », « Matières Phosphorées » et « Matières Organiques »). Les concentrations en chlorophylle-a se répartissent clairement, avec un niveau de discrimination élevé, entre des situations peu impactées par ces pressions (niveaux « Très Bon » ou « Bon ») et significativement impactées (« Moyen », « Médiocre » et

« Mauvais ») (Figure 2). De plus, la réponse de la chlorophylle-a à des niveaux de pressions significatives pour ces quatre catégories de pression est similaire : les concentrations en chlorophylle-a sont significativement plus élevées dans les situations impactées en comparaison de ce qui est observé dans les situations peu impactées (Figure 2), *a contrario* de ce qui peut être observé pour d'autres catégories de pression (par ex. pour les « HAP » et pour les « Micropolluants organiques »). Et enfin, la description des niveaux de pression pour ces quatre catégories étaient disponibles pour l'intégralité des OPCA incluses dans le jeu de données de développement (1027 OPCA ; cf. §II.1.6). Il a donc finalement été décidé de se concentrer uniquement sur ces catégories de pressions « trophiques ».

Figure 2 : distributions des concentrations moyennes en chlorophylle-a (μg/L) en fonction du niveau des onze catégories de pressions chimiques. Les concentrations moyennes ont été calculées à partir des concentrations mesurées entre avril et octobre. Les p-valeurs (p) renseignent sur les résultats des tests de Kruskal-Wallis effectués pour chaque catégorie de pression entre les OPCA classés LIRR ou IRR. LIRR = niveaux « Très Bon » ou « Bon », IRR = (« Moyen », « Médiocre » et « Mauvais ». DE = efficacité de discrimination (cf. §II.5.1). N = 1027 OPCA.

II.1.6 Sélection finale des OPCA du jeu de données de développement

Pour le développement de l'indicateur, il a été choisi de filtrer les OPCA à partir d'un certain nombre de critères afin de bénéficier d'un jeu de données de développement robuste. Ce dernier intègre à la fois des stations réparties de manière relativement homogène à l'échelle nationale tout en présentant une diversité de situations plus ou moins dégradées par les différentes pressions anthropiques pouvant impacter les communautés phytoplanctoniques (i.e. principalement les pressions trophiques liées aux phénomènes d'eutrophisation des masses d'eau).

Un **premier** critère a été de considérer uniquement les OPC effectuées pendant la période de végétation, c'est-à-dire pendant la période d'avril à octobre. Le protocole d'échantillonnage (Laplace-Treyture et al. 2010) préconise de réaliser les prélèvements pendant la période mai-octobre, mais de nombreux prélèvements ont aussi été réalisés durant le mois d'avril (Figure 3). La période avril-octobre est également la période qui a été privilégiée lors de la réalisation de l'inter-étalonnage européen (Mischke et al. 2016). Ainsi, nous avons sélectionné la période avril-octobre afin à la fois de maximiser le nombre potentiel de prélèvements phytoplanctoniques pris en compte dans le développement de ce nouvel indice tout en conservant une capacité à correctement inter-calibrer notre nouvelle méthode avec les méthodes européennes.

Figure 3 : nombre d'OPC réalisées chaque mois. Sont uniquement representées sur cette figure les OPC réalisées entre 2012 et 2019 dans les MEN et MEFM avec une taille de cours d'eau « moyenne » a minima. N = 7975 OPC.

Le **second** critère correspond au nombre de prélèvements effectués au cours d'une année. Bien que le protocole de prélèvements préconise de réaliser au moins six prélèvements par an (Laplace-Treyture et al. 2010), nous avons observé dans notre base de données que ce nombre de prélèvements pouvait être assez variable selon les bassins, avec généralement entre quatre et neuf prélèvements par an. Par exemple, les GCE suivis par l'Agence de l'Eau Adour-Garonne font l'objet de quatre prélèvements par an. Le rapport d'intercalibration des méthodes européennes indique qu'un minimum de six prélèvements doit être effectué au cours d'une année. En effet, l'Annexe V de la DCE (European Council 2000) précise que le bon état d'une masse d'eau doit prendre en compte d'éventuels effets secondaires, i.e. le bon état ne doit pas indiquer un développement important du phytoplancton résultant d'une perturbation écologique et/ou d'une perturbation de la qualité physico-chimique de l'eau ou du sédiment. Dit autrement, l'évaluation de l'état écologique des masses d'eau doit répondre aux blooms phytoplanctoniques. Les différentes méthodes européennes prennent en compte les blooms, mais de manière indirecte : en effet, l'UE considère qu'une fréquence élevée des prélèvements de phytoplancton (au moins six prélèvements par an) permet de rendre compte de manière satisfaisante de l'évolution des abondances du phytoplancton au cours de l'année, et donc des blooms le cas échéant (Mischke et al. 2016). Finalement, malgré cette injonction européenne, nous avons choisi de travailler avec toutes les OPCA présentant au moins quatre prélèvements phytoplanctoniques au cours d'une année, afin de maximiser la couverture géographique des stations présentes dans notre jeu de données de développement (i.e. afin d'inclure les stations du bassin Adour-Garonne). Néanmoins, dans le futur, la méthode et l'indicateur décrits dans ce rapport seront à appliquer uniquement pour des OPCA avec au moins six prélèvements par an afin de respecter le critère européen.

Le troisième critère concerne la nature et le type des masses d'eau. Règlementairement parlant, l'arrêté surveillance (Ministère de la Transition Ecologique et Solidaire 2018) préconise l'application d'un indicateur phytoplancton destiné aux très grands cours d'eau naturels (i.e. des MEN) pour huit types pertinents (couple « hydroécorégion x taille de cours d'eau »; cf. Annexe A2). Sur les huit types pertinents, définis pour les classes de tailles « Très Grands (TG) » (i.e. TG9, TG9/21, TG10-15/4, TG11/3-21, TG14/3-11, TG15, TG22/10 et TTGL), sept comprennent des stations avec des données. Aucunes données phytoplanctoniques n'ont été acquises sur des stations du type exogène HER 11/3-21, normalement pertinent pour le phytoplancton. Ainsi, si nous avions uniquement conservé les données des MEN appartenant à ces sept types, le jeu de données utilisable pour le développement aurait présenté une taille trop restreinte limitant alors la robustesse de la nouvelle méthode. par exemple en limitant les gradients de pressions trophiques observées dans les stations suivies. Nous avons donc fait le choix d'inclure, dans notre jeu de données, toutes les stations de nature MEN ou MEFM, présentant une classe de taille a minima moyenne, quel que soit le type des cours d'eau. Des analyses préliminaires (cf. Annexe A3) ont en effet montré qu'une telle sélection de stations permettait à la fois de maximiser les gradients de pressions trophiques observés dans notre jeu de données de développement tout en maintenant une certaine cohérence écologique. C'est-à-dire que les communautés phytoplanctoniques observées dans ces masses d'eau ne présentaient pas de différences excessives en terme de structure (i.e. composition taxonomique et biovolumes). Les principales différences structurelles observées étaient liées à la localisation géographique des masses d'eau et n'étaient que peu liées à la taille des cours d'eau et à leur nature.

Le **quatrième** critère concerne la disponibilité des données physico-chimiques. Nous avons choisi de travailler avec les OPC dont au moins les paramètres suivants étaient renseignés : les concentrations en chlorophylle-a et en phosphore total. Le jeu de données obtenu après application de ce critère (N = 1027 OPCA) a été utilisé pour le développement de la métrique de biomasse phytoplanctonique (cf. §II.4.1). Pour le calcul des autres métriques, nous avons appliqué un dernier filtre en fonction de la disponibilité des biovolumes des taxons. En effet, bien que notre base de données recense les prélèvements phytoplanctoniques réalisés dans les GCE depuis 2010, certains de ces prélèvements se sont révélés « incomplets », car ne comportant pas les biovolumes de taxons observés. Après l'application de ce dernier filtre, le jeu de données de développement intégrait **963 OPCA, pour un total de 160 stations**. Les caractéristiques de ces stations sont données dans l'Annexe A4.

II.2 Définition des conditions de référence

La DCE stipule que l'évaluation de l'état écologique d'un cours d'eau doit être effectuée sur la base d'une comparaison de cet état avec celui observé dans une situation de moindre impact anthropique, proche d'un état naturel. L'identification de ces conditions dites de référence permet de définir des valeurs de référence. Ces dernières permettent d'exprimer l'état écologique d'un cours d'eau sous la forme de ratios de qualité écologique, les EQR (Ecological Quality Ratio).

Il existe de nombreuses manières de définir ces conditions de référence (Tableau 1). La méthode généralement employée consiste à identifier parmi les cours d'eau existants ceux présentant un état physico-chimique et hydro-morphologique le moins impacté, le plus proche d'un état naturel (i.e. des « Least Impaired River Reaches », LIRR ; Mischke et al. 2016). Cependant cette approche est peu adaptée aux grands cours d'eau, impactés depuis longtemps par les activités humaines (car intégrateurs des pressions anthropiques exercées au niveau du bassin versant) et souvent modifiés pour faciliter leurs usages : par exemple, amélioration de leur navigabilité ou lutte contre les inondations (Nilsson 2005).

Tableau 1 : synthèse des approches utilisées au niveau européen pour la définition des conditions de référence (Mischke et al. 2016).

Member State	Existing near-natura	Modelling	Expert knowledge	Historical data	Least disturbed con
Austria (adopted from DE)		Х			
Belgium (Flanders) (adopted from DE)		Х	Х		
Bulgaria (adopted from DE)		Х			
Croatia (adopted from HU)			Х		Х
Czech Republic			Х		Х
Estonia (adopted from HU)			Х		
Germany		Х			
Hungary			Х		Х
Latvia (adopted from HU)			Х		
Lithuania (adopted from DE)	Х	Х			Х
Poland			Х		Х
Romania			Х	Х	Х
Slovakia			Х		
SUM	1	5	9	1	6

Elle est, néanmoins, souvent utilisée par les états membres de l'Union Européenne (Tableau 1), mais toujours en complément d'autres approches, afin de pallier, au mieux, les limitations décrites dans la section précédente (Mischke et al. 2016). Parmi les six états membres utilisant cette première approche (« Least Disturbed Conditions » dans le Tableau 1), cinq d'entre eux ont choisi de la combiner avec une approche dite « à dire d'expert » (« Expert Knowledge »). Cette approche consiste généralement à valider parmi les cours d'eau les moins impactés ceux pouvant être considérés comme des références sur la base de discussion avec des experts techniques et/ou scientifiques des grands cours d'eau. Ces deux premières approches peuvent être combinées avec l'usage de données historiques afin de confirmer le choix des cours d'eau de référence. L'utilisation de données historiques reste cependant anecdotique au niveau européen. Elle présente un intérêt limité pour le développement de la méthode française, puisque la comparabilité des données historiques avec les données existantes n'est que rarement pertinente, souvent parce que les méthodes de prélèvement du phytoplancton ont changé depuis l'acquisition des données historiques.

Une autre approche privilégiée au niveau européen, tout du moins par les états membres utilisant la méthode allemande, consiste à directement modéliser les valeurs de référence. Ainsi la méthode allemande PhytoFluss a été développée sur la base de valeurs générées avec le modèle MONERIS (Behrendt et al. 2003, dans Mischke et al. 2011). Ce modèle permet de modéliser les concentrations en nutriments dans des cours d'eau en l'absence d'influence anthropique.

Pour le développement de la méthode française, l'approche consistant à identifier les situations les moins impactées (les LIRR) est finalement l'approche qui a été privilégiée, en particulier en l'absence d'un modèle similaire au modèle MONERIS allemand (tout du moins pour des valeurs de référence concernant les concentrations en nutriments). Cette identification des LIRR a été effectuée à partir des niveaux des catégories de pressions trophiques.

Différentes stratégies d'attribution du statut LIRR aux OPCA ont été explorées. Les objectifs étaient doubles : (i) avoir un nombre de LIRR ni trop petit (risque de biais de l'évaluation de l'état écologique) ni trop grand (ce qui pourrait mettre en évidence le caractère laxiste des critères utilisées pour définir les LIRR), et (ii) avoir une répartition géographique nationale relativement homogène afin de garantir une certaine représentativité de l'ensemble des types de cours d'eau suivis. Les stratégies différaient selon les catégories de pression prises en compte et selon les critères d'attribution du statut LIRR. Ces critères étaient le nombre de catégories de pression présentant un niveau « Très Bon », « Bon », voire « Moyen », et éventuellement le nombre de catégories non-renseignées, selon le nombre et les catégories de pression prises en compte dans chacune de ces stratégies.

La stratégie finalement retenue est relativement « sévère » (au regard des niveaux de pression considérée, pas forcément au regard des valeurs mesurées pour les paramètres pris en compte) : pour avoir le statut LIRR, une OPCA doit présenter au moins trois niveaux « Très Bon » et au pire un niveau « Bon » pour l'ensemble des quatre catégories de pressions trophiques prises en compte. Cette stratégie a permis d'attribuer le statut LIRR à un total de 82 OPCA, présentant une répartition relativement homogène à l'échelle du territoire métropolitain (Figure 4). Des discussions avec les développeurs des autres méthodes concernant les GCE (pour les diatomées benthiques, les macrophytes et les macroinvertébrés benthiques) ont permis de mettre en évidence une certaine cohérence entre les LIRR et/ou les stations de référence utilisées par ces différentes méthodes, permettant une validation *a priori* des LIRR retenues dans notre méthode. Par opposition, le statut IRR (Impaired River Reaches) a été attribué aux OPCA ne respectant pas ces critères, soit un total de 881 OPCA classées IRR.

Figure 4 : répartition géographique des stations du jeu de données de développement. Les points verts correspondent aux stations avec au moins une OPCA classée comme LIRR durant la période 2010-2019. Les points rouges correspondent aux stations classées en IRR. N = 160 stations.

II.3 L'indicateur combiné de stress

L'indicateur combiné de stress (ICS) est un indicateur synthétique de l'état chimique des stations. Cet ICS a permis l'intercalibration des méthodes européennes (Mischke et al. 2016). L'ICS est la combinaison de trois paramètres : les concentrations annuelles moyennes en phosphore total, azote total et chlorures (log10-transformées). Ces paramètres ont été sélectionnés (i) car ils étaient renseignés pour l'intégralité des GCE européens intégrés au jeu de données utilisé pour l'intercalibration, et (ii) car, au niveau européen, les concentrations en chlorophylle-a répondent principalement à ces trois paramètres (voir les résultats du modèle BRT dans Mischke et al. 2016, section B.1.5).

Pour calculer les valeurs de l'ICS, les valeurs de ces trois paramètres ont préalablement été normalisées entre 0 et 1 (à partir des valeurs minimales et maximales observées dans le jeu de données européen), avant d'être additionnées pour former l'indicateur combiné de stress. L'ICS présente alors des valeurs comprises entre 0 et 3.

Les concentrations normalisées en chlorures, phosphore total et azote total sont calculées selon l'Equation 1 :

avec [P] la concentration du paramètre P, P_{norm} sa concentration normalisée, et WORST le $90^{ième}$ percentile de sa distribution dans toutes les stations européennes ayant servi à l'exercice d'inter-étalonnage. Les valeurs WORST sont respectivement les suivantes pour les chlorures (log₁₀-transformées), le phosphore total et l'azote total : 2,87 mg/L; 0,194 mg/L(P); 5 mg/L(N). Les concentrations normalisées supérieures à 1 sont ramenées à 1.

Une version « française » de l'ICS (ICS_fr) a aussi été calculée pour notre jeu de données. En effet il s'est avéré que l'ICS (européen) n'était pas forcément adapté aux gradients observés pour ces trois paramètres, en particulier pour celui de l'azote total sur notre territoire (Annexe A5). Deux changements ont été pratiqués pour obtenir cet ICS_fr : (i) l'azote total a été remplacé par l'azote Kjeldahl, car ce dernier explique mieux les concentrations en chlorophylle-a observées en France (Tableau 16 dans Meyer et al. 2021), et (ii) les valeurs de référence (les valeurs WORST dans l'équation 1) ont été recalculées sur la base de la distribution des valeurs des trois paramètres (azote Kjeldahl, phosphore total, et log₁₀(chlorures)) pour notre jeu de données de développement le plus complet (N = 1027 OPCA), en prenant le 95^{ième} percentile de ces distributions comme valeurs de référence.

Les valeurs de l'ICS et de l'ICS_fr ont été calculées pour 1010 OPCA, en l'absence de mesures des concentrations en chlorures pour 17 OPCA.

II.4 Les métriques

Les méthodes européennes basées sur le phytoplancton et adaptées au suivi de l'état écologique des GCE sont des méthodes généralement multimétriques (Mischke et al. 2016) : la valeur des indices associés à chacune de ces méthodes est calculée à partir de plusieurs métriques décrivant certaines caractéristiques des communautés phytoplanctoniques. Cette approche multimétrique permet de répondre de manière optimale aux exigences de la DCE vis-à-vis des paramètres à prendre en compte lors de l'évaluation de l'état écologique d'un cours d'eau sur la base du phytoplancton, i.e. prise en compte des abondances et de la composition taxonomique, de la biomasse phytoplanctonique et de la fréquence des blooms.

La plupart des méthodes européennes intègre aussi souvent dans leur calcul d'indice des métriques d'abondances relatives (ou biovolumes relatifs) de différents groupes taxonomiques d'intérêt. Il s'agit de groupes indicateurs dont l'abondance relative peut soit augmenter avec un accroissement de la trophie (par ex. les cyanobactéries et les chlorophycées), soit diminuer en réponse à une augmentation de la trophie (par ex. les diatomées).

Les traits fonctionnels, c'est-à-dire les traits bioécologiques, du phytoplancton sont seulement pris en compte dans le processus d'évaluation de l'état écologique de la méthode hongroise. En effet, la méthode hongroise intègre une métrique fonctionnelle, appelée métrique « Q », basée sur les groupes fonctionnels de Reynolds et al. (2002). Ces derniers ont constitué des groupes fonctionnels polyphylétiques pour le phytoplancton à partir des caractéristiques morphologiques, physiologiques et écologiques des taxons. Padisák et al. (2006), puis Borics et al. (2007), ont affiné ces groupes fonctionnels et attribué à chacun d'entre eux des scores de qualité écologique à partir de différents critères, respectivement pour les groupes fonctionnels observés dans les plans d'eau (Padisák et al 2006) et les cours d'eau (Borics et al 2007).

II.4.1 La métrique de biomasse

Toutes les méthodes européennes intègrent une métrique de biomasse phytoplanctonique (MBP), classiquement calculée sur la base des concentrations en chlorophylle-a. En effet les concentrations en chlorophylle-a sont une bonne approximation de la biomasse phytoplanctonique totale d'un cours d'eau. De plus, il s'agit d'une métrique qui répond de manière pertinente et optimale à des dégradations trophiques des cours d'eau, comme les phénomènes d'eutrophisation (Mischke et al. 2011). Enfin, c'est la métrique la plus à même de mettre en évidence des blooms phytoplanctoniques, ce qui est une exigence de la DCE (annexe V de la DCE ; European Council 2000).

Dans le cadre du développement de la nouvelle méthode française, nous avons exploré différentes manières de calculer une métrique de biomasse à partir de différentes mesures disponibles. Ainsi nous avons créé des MBP calculées (i) soit à partir des concentrations en chlorophylle-a « annuelles » (période avril-octobre, cf. §II.1.6) moyennes et/ou maximales, (ii) soit à partir des biovolumes totaux de chaque OPC, en calculant, comme pour la chlorophylle-a, les valeurs annuelles moyennes et/ou maximales. Des valeurs de concentrations cellulaires étaient aussi disponibles, mais nous avons choisi de ne pas les garder au profit des biovolumes totaux. Les biovolumes totaux sont en effet considérés comme de meilleures approximations de la biomasse phytoplanctonique que les concentrations cellulaires. Pour la chlorophylle-a, nous avons uniquement pris en compte les concentrations en chlorophylle-a qui ont été mesurées le même jour que les prélèvements de phytoplancton¹.

Les équations utilisées sont les suivantes :

¹ Selon les bassins considérés, un décalage de quelques jours est parfois observé pour certaines stations. Idéalement, la mesure de la concentration en chlorophylle-a doit avoir lieu le même jour que le prélèvement du phytoplancton.

MBP = a x [biomasse]+ b Equation 2

Ou

MBP = a x max([biomasse]) + b Equation 3

Ou

MBP = a x [biomasse]+ b x max([biomasse]) + c Equation 4

avec MBP la valeur de la métrique de biomasse phytoplanctonique, [biomasse] la valeur de concentration considérée (par ex. chlorophylle-a ou biovolume total), log-transformée ou non (logarithme népérien), et max([biomasse]) sa valeur maximale annuelle. Le choix de log-transformer les concentrations ainsi que les valeurs des paramètres a et b (et c) s'est basé sur des régressions linéaires préliminaires avec les valeurs de l'ICS_fr. L'objectif était de maximiser le pouvoir explicatif (R²) du modèle linéaire (cf. §II.5.1), c'est-à-dire la capacité de la valeur de la MBP à retranscrire les valeurs de l'indicateur combiné de stress (dans sa version française).

Six MBP ont ainsi été créées, selon le paramètre utilisé (la concentration en chlorophylle-a [Chlo-a] ou le biovolume total BVtot) et l'utilisation des valeurs moyennes et/ou maximales :

MBP1 : [Chlo-a]_{moy} MBP2 : [Chlo-a]_{max} MBP3 : [Chlo-a]_{moy} & [Chlo-a]_{max} MBP4 : BVtot_{moy} MBP5 : BVtot_{max} MBP6 : BVtot_{moy} & BVtot_{max}

Au final, la transformation logarithmique des valeurs a presque systématiquement été utilisée (sauf pour BVtot_{max} dans la dernière combinaison), car elle permettait d'améliorer les performances des MBP (cf. §II.5.1 et §III.1.1).

II.4.2 Les métriques trophiques

Les métriques trophiques sont des métriques de composition taxonomique permettant de caractériser la trophie d'un cours d'eau sur la base des préférences et de la valence écologiques des taxons composant la communauté phytoplanctonique. Ces métriques trophiques (MT) sont calculées à partir de la formule de Zelinka & Marvan (1961), qui est dans les faits une moyenne doublement pondérée des préférences écologiques des taxons par leur abondance dans la communauté et par leur valence écologique (Equation 5) :

$$MT_{s} = \Sigma_{i} (CS_{i} \times S_{i} \times A_{i,s}) / \Sigma (S_{i} \times A_{i,s})$$
Equation 5

avec CS_i, la cote spécifique de trophie du taxon i, S_i le coefficient de sténoécie du taxon i, et A_{i,s} l'abondance du taxon i dans le site s. La cote spécifique renseigne sur la préférence écologique du taxon i.

Figure 5 : distribution théorique des biovolumes d'un taxon hypothétique en fonction des concentrations en phosphore total (Ptot) des stations où ce taxon est rencontré.

Il existe diverses manières de définir (calculer) la préférence et la valence écologiques de chaque taxon. Classiquement, ces deux valeurs sont calculées à partir de la distribution d'un taxon en fonction des concentrations du paramètre d'intérêt (par ex. le phosphore total) (Figure 5 ; ter Braak & van Dam 1989). La préférence écologique d'un taxon est alors définie à partir de son optimum écologique et sa valence écologique est calculée à partir de sa tolérance (une mesure de la largeur de sa distribution autour de son optimum). Pour définir les préférences écologiques, les approches suivantes ont été explorées :

(i) calcul d'une moyenne pondérée (« weighted averaging » ; cf. ter Braak & van Dam 1989). La moyenne des concentrations du paramètre d'intérêt est pondérée par les biovolumes mesurés du taxon considéré. Il s'agit de l'approche « classique », développée par ter Braak & van Dam dans leur article de 1989 où ils formalisent la construction d'une MT. Néanmoins, des analyses préliminaires nous ont permis de mettre en évidence que cette première approche ne permet parfois pas de bien rendre compte de l'optimum écologique. Cette première approche a donc été complétée par les trois approches suivantes ;

(ii) calcul d'une **moyenne non-pondérée** des concentrations du paramètre d'intérêt où le taxon considéré est rencontré ;

(iii) calcul de la **médiane** des concentrations du paramètre d'intérêt où le taxon considéré est rencontré ;

(iv) utilisation de l'approche « WA-PLS » (Weigthed Averaging – Partial Least Squares regression). Comme son nom l'indique, cette méthode est une combinaison de la première méthode (« weighted averaging ») avec une régression PLS. Cette méthode a été décrite par ter Braak & Juggins dès 1993 et plus récemment utilisée par Liu et al. 2020. La différence entre cette dernière approche et la première est une phase de maximisation du pouvoir explicatif des cotes spécifiques calculées via la création de composantes supplémentaires. Ces dernières sont calculées à partir des résidus du modèle initial (basé sur la méthode « weighted averaging »). Cette approche est itérative : de nouvelles composantes sont générées autant de fois que nécessaire pour améliorer le modèle (i.e. affiner les cotes spécifiques pour modéliser au mieux la concentration observée du paramètre d'intérêt). Cependant, un nombre trop important de composantes, bien que maximisant le pouvoir explicatif du modèle, présente le défaut de conduire le modèle à être trop dépendant du jeu de données utilisé pour le calibrer. Dans une telle situation, le modèle perd en capacité prédictive, par ex. sur un jeu de données de test, indépendant du jeu de données utilisé pour l'utilisation de cette méthode. Pour parer à ce défaut, le choix du nombre de composantes est basé sur une phase de validation croisée « leave-one-out » qui permet de choisir le nombre optimal de composantes (dans notre cas : généralement deux, rarement plus) (ter Braak & Juggins 1993).

Dans un souci d'homogénéité avec les autres méthodes DCE existantes au niveau français, les cotes spécifiques ont été exprimées sous la forme de valeurs comprises entre 0 et 20, avec les cotes proches de 0 pour les taxons les plus caractéristiques de conditions dégradées (par ex. eutrophes) et à l'inverse des cotes proches de 20 pour les taxons retrouvés en conditions de référence (par ex. oligotrophes).

La formule utilisée pour le calcul du coefficient de sténoécie est inspirée de celle de ter Braak & van Dam 1989, mais avec une différence au niveau du dénominateur qui n'est pas mis au carré dans notre équation (Equation 6) :

$$S_i = 1 / \sigma_i$$
 Equation 6

avec S_i le coefficient de sténoécie du taxon i et σ_i l'écart-type des concentrations du paramètre d'intérêt pondéré par les biovolumes du taxon i considéré. Cet écart-type pondéré est la racine carrée de la variance pondérée. La variance pondérée est la variance non-biaisée calculée à partir de la moyenne pondérée (Equation 7 ; VanDerWal et al. 2019) :

$$\sigma_i^2 = \frac{\sum A_{i,s}}{\left(\sum A_{i,s}\right)^2 - \sum A^2_{i,s}} \times \sum A_{i,s} \times (x_{i,s} - \mu)^2 \qquad \text{Equation 7}$$

avec σ^2_i la variance non-biaisée pondérée, $A_{i,s}$ l'abondance du taxon i dans les sites s (= OPCA) où il est rencontré, $x_{i,s}$ les concentrations du paramètre d'intérêt x dans les sites s où le taxon i est rencontré, et μ la moyenne pondérée par les abondances du taxon i des concentrations du paramètre d'intérêt x dans les sites s où le taxon i est rencontré.

Comme pour les cotes spécifiques, les valeurs des coefficients de sténoécie ont été transformées afin d'être exprimées dans une échelle « standard », c'est-à-dire entre 0 (taxons euryèces) et 3 (taxons les plus sténoèces).

Des métriques trophiques ont ainsi été calculées pour trois paramètres d'intérêt, le **phosphore total**, **l'azote Kjeldahl** et les **nitrates**, afin d'obtenir trois groupes de métriques dont les valeurs représentent de manière optimale les niveaux des pressions trophiques illustrées par ces trois paramètres.

Deux jeux de données phytoplanctoniques ont été utilisés pour calculer les cotes spécifiques et les coefficients de sténoécie pour ces trois paramètres. Le premier jeu de données contenait les biovolumes de chaque **espèce**, à l'exclusion des taxons soit déterminés à d'autres niveaux taxonomiques (genre, famille, etc...), soit indéterminés. Le deuxième jeu de données contenait les biovolumes agrégés au niveau du **genre**. Afin d'obtenir une certaine robustesse de la description des profils écologiques de chacune de ces espèces et de chacun de ces genres, les cotes spécifiques et les coefficients de sténoécie ont été calculés pour l'ensemble des espèces et des genres observés dans au moins 20 OPCA et 5 OPCA, respectivement.

Deux échelles temporelles de calcul des cotes spécifiques et des coefficients de sténoécie ont aussi été explorées. Les profils écologiques ont été déterminés soit en mettant en parallèle les biovolumes et les concentrations des trois paramètres mesurés pour chaque prélèvement de phytoplancton, c'est-à-dire pour chaque OPC, soit en mettant en parallèle les biovolumes et concentrations moyens annuels (durant la période de végétation, c'est-à-dire avril-octobre) pour chaque OPCA. Dit autrement, les cotes spécifiques et les coefficients de sténoécie ont été calculés soit au niveau des **OPC**, soit au niveau des **OPCA**.

Les valeurs des métriques trophiques ont ensuite été calculées de trois manières différentes :

(i) soit par OPC en utilisant les cotes spécifiques et coefficients de sténoécie définis au niveau des OPC. Les valeurs ainsi obtenues sont ensuite moyennées pour chaque OPCA ;

(ii) soit par OPC en utilisant les cotes spécifiques et coefficients de sténoécie définis au niveau des OPCA. Les valeurs ainsi obtenues sont ensuite moyennées pour chaque OPCA ;

(iii) soit par OPCA en utilisant les cotes spécifiques et coefficients de sténoécie définis au niveau des OPCA.

Des analyses préliminaires des performances des métriques ainsi générées ont

rapidement mis en évidence que la méthode WA-PLS était la plus performante, quel que soit le paramètre ciblé. Dans un souci de synthèse, nous avons choisi de présenter uniquement dans ce rapport les performances des métriques WA-PLS (soit six métriques par paramètre ; Figure 6).

Figure 6 : schéma synthétique des approches explorées pour le calcul des métriques trophiques.

II.4.3 Les métriques structurelles

Les valeurs des métriques structurelles sont calculées sur la base de la structure (composition et abondances/biovolumes) des communautés phytoplanctoniques. Il s'agit de métriques décrivant la richesse et la diversité taxonomique.

Les métriques suivantes ont été calculées : la richesse taxonomique totale, l'indice de Shannon (Shannon 1948), l'équitabilité de Piélou, l'indice de Simpson. Les richesses totales et relatives et les biovolumes totaux et relatifs ont été calculés au niveau de tous les embranchements et de toutes les classes.

Les valeurs de ces métriques ont été calculées sur la base de deux jeux de données différents : soit avec le jeu de données le plus précis, c'est-à-dire avec les biovolumes par espèce, soit avec un jeu de données agrégées, c'est-à-dire avec les biovolumes sommés pour chaque genre. Les valeurs de ces métriques ont été calculées pour chaque OPC avant d'être moyennées par année (i.e. par OPCA).

II.4.4 Les métriques fonctionnelles

Les valeurs des métriques fonctionnelles ont été calculées sur la base des traits bioécologiques qui ont été décrits pour une partie du phytoplancton français (Derot et al. 2020, Laplace-Treyture et al. 2021). Les taxons avec des traits décrits représentent 78,7% du biovolume total des prélèvements.

Ces traits étaient codés à l'origine soit sous la forme de valeurs numériques continues (par ex. pour la taille et le biovolume des individus), soit sous la forme de catégories ou de classes (par ex. des classes de taille allant du « Picophytoplankton » au « Microphytoplankton »). Afin de pouvoir bénéficier des scripts de calcul existants permettant de calculer rapidement des métriques descriptives de la structure fonctionnelle des communautés phytoplanctoniques (Meyer et al. 2020), le codage des traits a été révisé pour être exprimé sous la forme d'un codage par « modalité de trait », généralement disjonctif (0 ou 1, selon si la modalité est observée ou non pour un taxon donné). Par exemple le trait « Life form » a été codé sous la forme d'un nouveau trait présentant 3 modalités² différentes (« Colonies », « Cells », « Filaments »), elles-mêmes codées 0 ou 1 en fonction de la ou des forme(s) de vie considérée(s) et observée(s) pour un taxon donné.

Pour les traits décrits avec des valeurs numériques continues, les valeurs ont préalablement été discrétisées en quatre classes dont les bornes ont été fixées en fonction des quartiles de la distribution des valeurs, généralement en plaçant les bornes sur des valeurs entières proches de ces quartiles. Par exemple, pour le trait « Minimal width », les quartiles étaient respectivement égaux à 0,40 (Q1), 2,00 (Q2) et 3,65 µm (Q3). Les nouvelles modalités de ce trait après transformation étaient les suivantes : « <=1 », «]1;2] », «]2;4] », et « >4 ».

Un ensemble de 23 traits a ainsi été recodé, ce qui a généré un total de 101 modalités de traits :

(i) traits morphologiques (N = 12 traits) : "Cell biovolume", "Size classes (Ignatiades)", "Individual biovolume", "Maximal length", "Maximal width", "Minimal length", "Minimal width", "Size classes", "Number of protuberances", "Size of protuberances", "Type of protuberances", "Diverse traits" ;

(ii) mobilité (N = 1 trait) : "Motility" ;

(iii) formes de vie (N = 1 trait) : "Life forms" ;

(iv) traits physiologiques (N = 5 traits) : "Carbon content", "Secundary pigment", "Toxins", "Nutrition", "Number of plasts" ;

(v) traits écologiques (N = 3 traits) : "Tolerance", "Trophy", "Salinity" ;

(vi) reproduction (N = 1 trait) : "Reproduction".

Le ré-encodage de ces traits a permis de calculer les métriques fonctionnelles suivantes :

- les **fréquences relatives d'utilisation** (« Community Weighted Means » ; CWM) au sein des communautés phytoplanctoniques des 101 modalités des 23 traits bioécologiques (Tachet et al. 2010 ; Meyer et al. 2022a) ;

² L'appellation « modalité » est discutable. Techniquement, une modalité est un trait (Schmera et al. 2015). Néanmoins, afin de rester homogène avec la littérature existante concernant la description des traits des taxons dulçaquicoles français (e.g. Usseglio-Polatera et al. 2000, Larras et al. 2017), l'appellation « modalité » est ici privilégiée.

- des **indices de diversité fonctionnelle** (par ex. la diversité de Rao ; Rao 1982) basés sur la diversité en traits biologiques simultanément sélectionnés au sein d'une communauté ;

- des indices de **recouvrement** (Pianka 1974) ou de **spécialisation de niche** permettant l'analyse du degré d'homogénéité (ou d'hétérogénéité) et de spécialisation des traits bioécologiques des taxons au sein des communautés phytoplanctoniques (Mondy & Usseglio-Polatera 2014).

Comme pour les valeurs des métriques structurelles, les valeurs des métriques fonctionnelles ont été calculées pour chaque OPC avant d'être moyennées par année (OPCA).

II.4.5 Expressions des valeurs des métriques sous la forme d'EQR

La DCE stipule que l'évaluation de l'état écologique d'un cours d'eau doit être basée sur une comparaison de la situation observée à des conditions de référence. C'est pour cela qu'il est indispensable d'exprimer la valeur d'un indice (et de ses métriques associées) comme un(des) écart(s) à une référence. Pour cela les valeurs des métriques et des indices ont été exprimées en EQR. L'EQR représente la relation entre les valeurs des métriques observées et les valeurs de ces mêmes métriques en conditions de référence (Hering et al. 2006). L'utilisation de valeurs exprimées en EQR permet également la comparaison des valeurs obtenues avec des cours d'eau et d'autres indicateurs européens pour différents types de cours d'eau.

Les valeurs de l'intégralité des métriques calculées ont été transformées pour être exprimées sous la forme de ratio de qualité écologique (EQR) (Equation 8) :

$$MET_{EQR,m} = (MET_{OBS,m} - worst_m) / (best_m - worst_m)$$
Equation 8

avec MET_{EQR,m} la valeur EQR de la métrique m et MET_{OBS,m} la valeur originale de la métrique m. La valeur best_m correspond pour les métriques décroissantes³ au 3^{ième} quartile des valeurs de la métrique m dans les LIRR, ou pour les métriques croissantes au 1^{er} quartile des valeurs de la métrique m dans les LIRR. La valeur worst_m correspond à la valeur minimale ou à la valeur maximale des valeurs de la métrique m dans l'ensemble des OPCA, respectivement pour les métriques décroissantes et pour les métriques croissantes.

Les valeurs ainsi obtenues n'ont pas été bornées entre 0 et 1. Cette étape de bornage n'a seulement été effectuée qu'après le calcul des valeurs des indices candidats (cf. §II.6).

Nous devons aussi préciser dans cette section que les valeurs de référence (best_m) n'ont pas été définies par type ou groupe de types de cours d'eau (par ex. pour

³ Une métrique décroissante est une métrique dont la valeur décroît le long d'un gradient de pression. A contrario, une métrique croissante est une métrique dont la valeur croît le long d'un gradient de pression.

des groupes de types de GCE présentant des structures des communautés phytoplanctoniques similaires; voir par ex. Meyer et al. 2021 pour les macroinvertébrés benthiques). Bien que cette approche aurait pu permettre d'augmenter la robustesse de l'évaluation de l'état écologique des GCE, en prenant en compte les variations géographiques naturelles de la structure des communautés phytoplanctoniques, cette approche nécessite d'avoir suffisamment de sites de références (c'est-à-dire des LIRR) pour chacun de ces types. Or il s'avère que notre jeu de données utilisé pour le développement de ce nouvel indicateur n'inclut qu'un relativement faible nombre d'OPCA classées LIRR (N = 82), localisées principalement sur un nombre restreint de stations et de GCE (par ex. en amont de la Loire, de la Dordogne et de la Saône). Ainsi, une typologie simplifiée de ces 82 LIRR risqueraient de mener à la constitution d'un nombre restreint de groupes, probablement trois ou quatre groupes de types, caractérisés chacun par un faible nombre d'OPCA et/ou de stations localisées uniquement sur un ou deux GCE. Deux problèmes peuvent alors apparaître :

(i) les incertitudes entourant l'évaluation de l'état écologique augmentent plus le nombre d'OPCA permettant de définir les valeurs de référence est faible (Meyer et al., *in prep.*) ;

(ii) l'évaluation de l'état écologique pourrait être biaisée car basée sur des valeurs de référence caractérisées à partir de stations peu représentatives de l'ensemble des conditions écologiques observées dans les GCE à l'échelle métropolitaine. Par exemple, l'état écologique des GCE localisés dans le nord ou le nord-ouest de la France pourrait être évalué à partir de valeurs de référence définies uniquement à partir de stations localisées sur la Loire.

II.5 Analyses statistiques

II.5.1 Performances des métriques et des indices candidats

Les performances des métriques (et des indices candidats) ont été évaluées grâce à deux approches :

(i) la 1^{ère} approche a consisté à réaliser des **régressions linéaires** entre les valeurs de ces métriques et indices avec celles de **paramètres d'intérêt**. Il a été choisi de sélectionner les paramètres suivants pour la comparaison des performances des métriques et indices candidats : le **phosphore total**, l'azote Kjeldahl, les nitrates, les **chlorures** et l'ICS (dans sa version européenne). Ces paramètres ont été sélectionnés car ils sont indicateurs de pressions trophiques d'origine anthropique, mais aussi car les communautés phytoplanctoniques réagissent à ces paramètres (Mischke et al. 2016, Meyer et al. 2021). Le phosphore total a été choisi au détriment des orthophosphates, car il s'agit du paramètre classiquement étudié pour calibrer les méthodes de bio-évaluation basées sur le phytoplancton (Mischke et al. 2016). Bien que le phytoplancton réponde moins bien aux nitrates qu'aux autres formes de l'azote, la catégorie de pression « Nitrates » a été retenue car elle est prégnante sur les GCE

métropolitains. Il s'agit donc d'un paramètre d'intérêt. Le choix d'inclure l'ICS dans ce groupe de paramètres peut apparaître redondant, car sa valeur est calculée à partir des paramètres d'intérêt, mais son inclusion nous a permis de suivre la possibilité d'inter-calibrer le futur indice, via les performances des potentielles métriques constitutives, tout au long du processus de développement de la méthode française ;

(ii) la 2^{nde} approche a consisté à calculer leur efficacité de discrimination (DE). La DE correspond, pour une métrique ou un indice donné, à la proportion des valeurs en situations impactées par des pressions d'origine anthropique (IRR) inférieures à la valeur du 1^{er} ou du 3^{ème} quartile observé dans les situations peu ou pas impactées (LIRR). L'utilisation du 1^{er} ou 3^{ème} quartile dépend du type de métrique (Figure 7) : si la métrique est croissante le long d'un gradient de pression, le 3^{ème} quartile est utilisé. *A contrario*, si la métrique est décroissante le long d'un gradient de pression, le 1^{er} quartile est utilisé.

Ces valeurs de DE ont été calculées soit globalement (entre les 82 LIRR et les 881 IRR), soit pour chaque catégorie de pressions « trophiques » : c'est-à-dire les catégories de pressions « Matières Azotées », « Nitrates », « Matières Phosphorées » et « Matières Organiques ». Pour ces quatre catégories de pression, les valeurs de DE ont été calculées en comparant les valeurs des 82 LIRR prises de manière globale avec celles des IRR significativement impactés par une catégorie de pression donnée (i.e. présentant un niveau « Moyen », « Médiocre », ou « Mauvais »).

Figure 7 : exemples de calcul de l'efficacité de discrimination (DE) d'une métrique quelconque en fonction de la distribution de ses valeurs en situations impactées (IRR) ou en situations peu impactées (« de référence », LIRR). Les valeurs présentées sur cette figure ont été générées aléatoirement. Q25 = 1^{er} quartile, Q75 = 3^{ème} quartile.

Des valeurs de DE ont aussi été calculées pour les blooms. Une OPCA a été considérée IRR vis-à-vis de cette catégorie de pression « Bloom » si au moins un bloom était observé au cours d'une année. Comme pour les autres catégories de

pressions, les valeurs des DE ont été calculées en comparant les valeurs des métriques et indices candidats des LIRR (N = 82) avec les IRR « bloom » (N = 38).

II.5.2 Logiciel et librairies

L'intégralité des analyses statistiques a été réalisée à l'aide du logiciel R (version 4.2.1 ; R Core Team 2022). Les librairies suivantes ont été utilisées afin de créer les métriques trophiques : *SDMTools* (VanDerWal et al. 2019) et *fxTWAPLS* (Liu et al. 2020).

II.6 Les indices candidats

Les analyses statistiques présentées dans la section précédente (§II.5) ont permis de sélectionner et d'identifier les « meilleures » métriques, c'est-à-dire celles qui présentent le meilleur pouvoir prédictif des principales pressions anthropiques, principalement celles liées aux nutriments (azote et phosphore). L'objectif est d'identifier des métriques complémentaires, qui associées ensemble dans l'indice final, lui permettront d'être le plus performant pour l'ensemble des pressions d'intérêt.

À partir de ce choix restreint de métriques, intégrant *a minima* une MBP, puisque demandé par la DCE, différents indices candidats ont été calculés. Ils résultent de moyennes pondérées des valeurs de ces métriques avec des poids différents selon les métriques afin de maximiser les performances de l'indice final sur les pressions d'intérêt. Les valeurs des indices candidats ont ensuite été bornées entre 0 et 1 (i.e. les valeurs supérieures à 1 ont été rendues égales à 1). Les performances de ces indices candidats ont été étudiées en appliquant la même approche que celle utilisée pour étudier la performance des métriques (cf. §II.5.1).

L'indice candidat retenu constitue l'**IPHYGE**, pour Indicateur PHYtoplancton pour les Grands cours d'Eau.

Les performances de l'IPHYGE ainsi que celles des métriques constitutives ont aussi été explorées sur un jeu de données, séparé du jeu de données de développement, constitué des suivis effectués en 2020 et 2021. La bancarisation de ces données a été effectuée tout au long du projet et ces données n'ont pas été incluses dans le jeu de données de développement. Il est donc possible de considérer ce jeu de données comme un jeu de données distinct permettant de tester les performances de l'IPHYGE et de ses métriques constitutives.

Dans un souci d'homogénéité avec le jeu de données utilisé pour le développement de ce nouvel indicateur, ce jeu de données de test a été filtré en utilisant les mêmes critères de sélection que ceux utilisés pour définir le jeu de données de développement, c'est-à-dire avec des stations de nature MEN ou MEFM, de taille *a minima* « Moyenne » et comportant au moins quatre prélèvements phytoplanctoniques par an durant la période avril-octobre. Après cette phase de sélection, le jeu de données de test incluait 198 OPCA. Les OPCA pour lesquelles les
données n'étaient pas complètes, à cause de l'absence de mesures pour au moins un des quatre paramètres d'intérêt ou pour la chlorophylle-a, ont aussi été rejetés du jeu de données de test. Ce dernier, basé sur les données de 2020-2021, inclut finalement 168 OPCA.

II.7 Assignation des classes d'état biologique

Afin de pouvoir attribuer à chaque OPCA une classe d'état biologique nous avons identifié au sein de la distribution de l'IPHYGE des valeurs pouvant correspondre aux limites des classes d'état biologique. Classiquement, ces limites sont définies en deux temps (cf. Mondy et al. 2012).

Dans un premier temps la limite entre les classes d'état « Très bon » et « Bon » peut être définie en prenant un certain percentile (par ex. le 1^{er} quartile ; Q25) de la distribution des valeurs de l'indice dans les LIRR du jeu de données de développement. Dans un second temps, l'étendue des valeurs d'indice comprises entre 0 et la limite « Très Bon/Bon » identifiée est divisée en quatre intervalles de même taille. Les trois bornes séparant ces quatre intervalles servent alors respectivement de limites entre les classes d'état « Bon/Moyen », « Moyen/Médiocre » et « Médiocre/Mauvais » (par ex. Figure 8).

Figure 8 : illustration du processus classique de définition des limites de classe d'un indicateur DCE en fixant la limite « Très Bon/Bon » (TB-B) au niveau du 1^{er} quartile de la distribution des valeurs de l'indice dans les LIRR. Les autres limites sont obtenues en divisant en quatre intervalles de même taille l'étendue des valeurs d'indice comprises entre 0 et la limite TB-B. Ma = Mauvais, Mé = Médiocre, Mo = Moyen, B = Bon, et TB = Très Bon. Les valeurs présentées sur cette figure sont fictives.

Ce processus de définition des limites de classe a été mené en même temps que celui du processus d'intercalibration de l'IPHYGE. En effet les limites définies doivent permettre la compatibilité de l'indicateur IPHYGE avec les indicateurs européens déjà intercalibrés. Ce processus d'intercalibration, en cours, sera détaillé dans un futur rapport.

III. Résultats

III.1 Performances des métriques

III.1.1 Résultats pour les métriques de biomasse phytoplanctonique

Les performances des MBP sont présentées dans le tableau suivant (Tableau 2). Les performances des valeurs brutes de ces mesures de biomasse sont aussi présentées à titre indicatif (cf. les quatre premières lignes du Tableau 2), afin d'observer les gains de performances réalisés grâce aux transformations permettant d'obtenir les valeurs des MBP. Quelle que soit la métrique observée, les DE globales (entre LIRR et IRR, toutes pressions confondues) présentent des valeurs moyennes, comprises entre 0,355 et 0,509. Les valeurs moyennes de DE pour les 5 catégories de pression d'intérêt (pour rappel, « Matières azotées », « Matières phosphorées », « Nitrates », « Matières organiques », et « Bloom ») sont plus élevées, variant entre 0.565 et 0.828. Le pouvoir prédictif pour les différents paramètres d'intérêt varie beaucoup entre les paramètres : les performances sont moyennes pour l'azote Kjeldahl et l'ICS, faible pour le phosphore total et les chlorures, et nulles pour les nitrates. Néanmoins, nous pouvons constater que quelle que soit la mesure de performance étudiée, la meilleure MBP est la métrique calculée à la fois à partir des concentrations moyennes et maximales en chlorophylle-a (MBP.chla.chla.max). Cette MBP est donc la première métrique constitutive de l'IPHYGE.

Tableau 2 : performances des métriques de biomasse phytoplanctonique calculées à partir des valeurs moyennes ou maximales soit des concentrations en chlorophylle-a, soit des biovolumes totaux. DE = efficacité de discrimination « toutes pressions confondues » entre les LIRR (N = 82) et les IRR (N = 881). DE moyenne = efficacité de discrimination moyenne pour les cinq catégories de pression : « Matières azotées », « Nitrates », « Matières phosphorées », « Matières organiques », et « Bloom ».

Métriques de	Paramètre de		DE	Ptot	NKJ	N-NO3	Chlorure	ICS
biomasse	biomasse		moyenne	(R²)	(R²)	(R²)	s (R²)	(R²)
chla	[Chlo-a]moy	0,437	0,748	0,090	0,212	-0,001	0,019	0,147
bv.tot	BVtotmoy	0,440	0,725	0,006	0,030	-0,001	-0,001	0,010
chla.max	[Chlo-a]max	0,412	0,653	0,061	0,146	0,003	0,012	0,112
bv.tot.max	BVtotmax	0,355	0,565	0,001	0,014	-0,001	-0,001	0,003
MBP.chla	[Chlo-a]moy	0,437	0,748	0,132	0,226	0,001	0,058	0,221
MBP.chla.max	[Chlo-a]max	0,412	0,653	0,102	0,176	0,001	0,054	0,173
MBP.chla.chla.max	[Chlo-a]moy et [Chlo-a]max	0,509	0,828	0,145	0,246	0,002	0,055	0,240
MBP.bv.tot	BVtotmoy	0,440	0,725	0,089	0,155	-0,001	0,036	0,112
MBP.bv.tot.max	BVtotmax	0,356	0,565	0,076	0,136	-0,001	0,033	0,103
MBP.bvtot.bvtot.max	BVtotmoy et BVtotmax	0,435	0,724	0,099	0,154	-0,001	0,045	0,121

Les performances de cette MBP pour les deux jeux de données (de développement et de test) sont présentées sur la Figure 9. Cette figure permet

d'apprécier que les performances de la MBP sont correctes pour les données de 2020 et 2021 : les R² ajustés obtenus sur ce jeu de données présentent des valeurs avec un ordre de grandeur correspondant à ce qui est observé pour le jeu de données de développement (Tableau 2 et Figure 9). De plus, les régressions linéaires sont très similaires pour les deux jeux de données.

Figure 9 : régressions linéaires entre les valeurs des quatre paramètres d'intérêt et les valeurs de la métrique de biomasse phytoplanctonique retenue (MBP) pour le jeu de données de développement (N = 963 OPCA) et pour le jeu de données de test (N = 168 OPCA). Les points noirs et la droite de régression en tirets noirs correspondent aux résultats obtenus avec les données de développement. Les points bleus et la droite de régression en pointillés bleus correspondent aux résultats obtenus avec les données de test (données de 2020 et 2021). Les R² ajustés relatifs aux deux jeux de données sont dans la couleur correspondante.

III.1.2 Résultats pour les métriques trophiques

Métriques de composition basées sur le phosphore total

Les performances des métriques de composition calculées à partir du profil écologique des taxons vis-à-vis des concentrations en phosphore total sont présentées dans le tableau suivant (Tableau 3). Seules les performances des six meilleures métriques (en terme de pouvoir explicatif des concentrations en phosphore total) sont présentées dans ce tableau.

Les valeurs des DE globales sont meilleures que celles observées pour les MBP, avec des valeurs comprises entre 0,664 (MG-P2) et 0,740 (MS-P2 et MS-P3). À part la relative faible valeur observée pour MG-P2, les autres métriques présentent toutes des DE globales supérieures à 0,700. Les valeurs des DE moyennes sont très élevées, puisque comprises entre 0,906 (MG-P2) et 0,928 (MS-P2). Les valeurs des R² pour le phosphore total sont correctes, et varient entre 0,366 (MS-P3) et 0,469 (MG-P1). Les performances vis-à-vis de l'azote Kjeldahl sont moins bonnes, mais les valeurs de R² restent relativement correctes puisqu'elles sont comprises entre 0,268 (MS-P2) et 0,344 (MG-P1). Les performances pour les concentrations en nitrates et chlorures ne sont pas bonnes, puisque toutes les valeurs de R² sont inférieures à 0,08. Les meilleures performances de ces métriques sont observées pour l'ICS, avec des valeurs de R² comprises entre 0,433 (MG-P2) et 0,482 (MS-P3).

Bien que l'ensemble des métriques présentées dans ce tableau illustre des performances qui sont globalement similaires, nous avons choisi de sélectionner la métrique **MG-P1** (par la suite, **MG-P**, pour Métrique de composition au Genre - Phosphore) comme métrique constitutive de l'IPHYGE, car elle présente des performances généralement meilleures que celles des autres métriques pour trois des cinq paramètres d'intérêt, dont le phosphore total.

Tableau 3: performances des six meilleures métriques de composition calculées à partir des concentrations en phosphore total. Les colonnes « Profil écologique » et « Calcul » renseignent sur l'échelle temporelle utilisée pour calculer les cotes spécifiques/génériques, les coefficients de sténoécie et les valeurs des métriques trophiques. DE = efficacité de discrimination « toutes pressions confondues » entre les LIRR (N = 82) et les IRR (N = 881). DE moyenne = efficacité de discrimination moyenne pour les cinq catégories de pression : « Matières azotées », « Nitrates », « Matières phosphorées », « Matières organiques », et « Bloom ». * les métriques ont été classées en fonction de leur performance pour ce paramètre.

Codo	Profil Calcul	Détermina	DE	DE	Ptot*	NKJ	N-NO3	Chlorures	ICS	
Coue	écologique	Calcul	tion	DE	moyenne	(R²)	(R²)	(R²)	(R²)	(R²)
MG-P1	ОРСА	OPC	Genre	0,714	0,914	0,469	0,344	0,040	0,077	0,472
MG-P2	OPCA	OPCA	Genre	0,664	0,906	0,429	0,291	0,044	0,068	0,433
MG-P3	OPC	OPC	Genre	0,720	0,918	0,403	0,323	0,055	0,065	0,477
MS-P1	OPCA	OPC	Espèce	0,731	0,919	0,400	0,281	0,060	0,049	0,468
MS-P2	OPCA	OPCA	Espèce	0,740	0,928	0,400	0,268	0,053	0,051	0,456
MS-P3	OPC	OPC	Espèce	0,740	0,910	0,366	0,288	0,069	0,053	0,482

Les performances de la MG-P pour les deux jeux de données (de développement et de test) sont présentées sur la Figure 10. A l'instar de la MBP, cette figure permet d'apprécier que les performances de la MG-P sont aussi correctes pour les données de 2020 et 2021 : les R² ajustés obtenus sur ce jeu de données présentent des valeurs avec un ordre de grandeur correspondant à ce qui est observé pour le jeu de données de développement (Tableau 3 et Figure 10). De plus, les régressions linéaires sont très similaires pour les deux jeux de données.

Figure 10 : régressions linéaires entre les valeurs des quatre paramètres d'intérêt et les valeurs de la métrique de composition au genre pour le phosphore total (MG-P) pour le jeu de données de développement (N = 963 OPCA) et pour le jeu de données de test (N = 168 OPCA). Les points noirs et la droite de régression en tirets noirs correspondent aux résultats obtenus avec les données de développement. Les points bleus et la droite de régression en pointillés bleus correspondent aux résultats obtenus avec les données de test (données de 2020 et 2021). Les R² ajustés relatifs aux deux jeux de données sont dans la couleur correspondante.

Ces bonnes performances sont aussi observées au niveau de la distribution des valeurs de la MG-P avec des différences significatives de ces valeurs en fonction des niveaux de pression de la catégorie de pression « Matières phosphorées » et en fonction du statut des OPCA (Figure 11). Le gradient des valeurs de la MG-P permet d'ailleurs de discriminer significativement les niveaux de pression « Très Bon » et « Bon » des deux autres niveaux, « Moyen » et « Médiocre ». Par contre, il n'y a pas de différence significative observée entre les valeurs de la MG-P pour les niveaux de pression « Moyen » et « Médiocre », mais cette observation peut s'expliquer par le petit nombre d'OPCA classées comme « Médiocre » (seulement sept).

Figure 11 : distribution des valeurs de la MG-P en fonction des niveaux de pression de la catégorie de pression « Matières phosphorées » (sous-graphique de gauche) et en fonction du statut des OPCA du jeu de données de développement (ici, IRR = niveaux de pression « Mauvais », « Médiocre » ou « Moyen » pour la pression considérée). Le lettrage des boîtes à moustache du sous-graphique de gauche correspond aux groupes identifiés suite à des tests post hoc de comparaisons multiples effectués à la suite d'un test significatif de Kruskal-Wallis. Ma = Mauvais, Mé = Médiocre, Mo = Moyen, B = Bon, et TB = Très Bon. N = 963 OPCA pour le sous-graphique à gauche. Pour le sous-graphique de droite : p = p-valeur du test de Kruskal-Wallis, et DE = efficacité de discrimination.

Métriques de composition basées sur l'azote Kjeldahl

Les performances des métriques de composition calculées à partir du profil écologique des taxons vis-à-vis des concentrations en azote Kjeldahl sont présentées dans le tableau suivant (Tableau 4). Comme pour le phosphore total, seules les performances des six meilleures métriques (en terme de pouvoir explicatif des concentrations en azote Kjeldahl) sont présentées dans ce tableau.

Les valeurs des DE globales sont légèrement inférieures à celles des métriques basées sur le phosphore total, puisque les valeurs des DE pour les métriques basées sur l'azote Kjeldahl sont comprises entre 0,569 (MG-A2) et 0,683 (MS-A2). Les valeurs des DE moyennes sont aussi légèrement inférieures à celles observées pour le phosphore total, mais les différences sont minimes. Les valeurs des DE moyennes sont comprises entre 0,871 (MG-A2) et 0,906 (MS-A1). Les performances vis-à-vis des concentrations en azote Kjeldahl sont correctes, puisque les valeurs de R² varient entre 0,388 (MS-A3) et 0,453 (MG-A1). Les performances pour le phosphore total sont aussi relativement correctes, avec des valeurs de R² allant de 0,242 (MS-A3) à 0,310 (MG-A1). À l'instar des métriques trophiques pour le phosphore total, les métriques trophiques pour l'azote Kjeldahl ne présentent pas de bonnes performances pour prédire les concentrations en nitrates et chlorures, puisque presque toutes les valeurs de R² sont inférieures à 0,050. Le pouvoir explicatif des valeurs d'ICS de ces métriques sont correctes, avec des valeurs de R² comprises entre 0,351 (MG-A2) et 0,413 (MG-A3).

Comme pour le phosphore total, l'ensemble de ces six métriques trophiques calées sur les concentrations en azote Kjeldahl présentent des performances relativement proches. Nous avons fait le choix de retenir la métrique **MG-A1** (par la suite, **MG-A** pour Métrique de composition au Genre – Azote Kjeldahl) comme métrique constitutive de l'IPHYGE, car elle présente le meilleur pouvoir prédictif pour les concentrations en azote Kjeldahl et en phosphore total.

Tableau 4: performances des six meilleures métriques de composition calculées à partir des concentrations en azote Kjeldahl. Les colonnes « Profil écologique » et « Calcul » renseignent sur l'échelle temporelle utilisée pour calculer les cotes spécifiques/génériques, les coefficients de sténoécie et les valeurs des métriques trophiques. DE = efficacité de discrimination « toutes pressions confondues » entre les LIRR (N = 82) et les IRR (N = 881). DE moyenne = efficacité de discrimination moyenne pour les cinq catégories de pression : « Matières azotées », « Nitrates », « Matières phosphorées », « Matières organiques », et « Bloom ». * les métriques ont été classées en fonction de leur performance pour ce paramètre.

Codo	Profil	Calaul	Détermina	DE	DE	Ptot	NKJ*	N-NO3	Chlorures	ICS
Coue	écologique	Calcul	tion	DE	moyenne	(R²)	(R²)	(R²)	(R²)	(R²)
MG-A1	ОРСА	OPC	Genre	0,645	0,900	0,310	0,453	0,022	0,045	0,394
MG-A2	OPCA	OPCA	Genre	0,569	0,871	0,267	0,432	0,024	0,046	0,351
MS-A1	OPCA	OPCA	Espèce	0,632	0,906	0,266	0,419	0,037	0,040	0,375
MG-A3	OPC	OPC	Genre	0,629	0,877	0,294	0,405	0,034	0,043	0,413
MS-A2	OPCA	OPC	Espèce	0,683	0,904	0,267	0,403	0,041	0,031	0,380
MS-A3	OPC	OPC	Espèce	0,653	0,891	0,242	0,388	0,050	0,030	0,388

Les performances de la MG-A pour les deux jeux de données (de développement et de test) sont présentées sur la Figure 12. A l'instar des deux métriques précédentes, cette figure permet d'apprécier que les performances de la MG-A sont aussi correctes pour les données de 2020 et 2021 : les R² ajustés obtenus sur ce jeu de données présentent des valeurs avec un ordre de grandeur

correspondant à ce qui est observé pour le jeu de données de développement (Tableau 4 et Figure 12). Néanmoins, les performances vis-à-vis du paramètre ciblé par la métrique MG-A, c'est-à-dire l'azote Kjeldahl, sont plus faibles pour le jeu de données de test, avec un R² ajusté égal à 0,313 alors qu'il est de 0,453 pour le jeu de données de développement. Cependant, quel que soit le paramètre, les régressions linéaires restent très similaires pour les deux jeux de données.

Figure 12 : régressions linéaires entre les valeurs des quatre paramètres d'intérêt et les valeurs de la métrique de composition au genre pour l'azote Kjeldahl (MG-A) pour le jeu de données de développement (N = 963 OPCA) et pour le jeu de données de test (N = 168 OPCA). Les points noirs et la droite de régression en tirets noirs correspondent aux résultats obtenus avec les données de développement. Les points bleus et la droite de régression en pointillés bleus correspondent aux résultats obtenus avec les données de test (données de 2020 et 2021 ; N = 168 OPCA). Les R² ajustés relatifs aux deux jeux de données sont dans la couleur correspondante.

La distribution des valeurs de la MG-A en fonction des niveaux de pression pour la catégorie de pression « Matières azotées » confirment les bonnes performances de la MG-A, avec des différences significatives des valeurs de la MG-A en fonction de ces niveaux de pression et en fonction du statut des OPCA (Figure 12). Le gradient des valeurs de la MG-A permet d'ailleurs de discriminer significativement les niveaux de pression « Très Bon » et « Bon » des deux autres niveaux, « Moyen » et « Médiocre ». Comme pour la MG-P, il n'y a pas de différence significative observée entre les valeurs de la MG-A pour les niveaux de pression « Moyen » et « Médiocre », mais cette observation s'explique une nouvelle fois par le petit nombre d'OPCA classées comme « Médiocre » (N = 21) ou « Moyen » (N = 33).

Métriques de composition basées sur les nitrates

Les performances des métriques de composition calculées à partir du profil écologique des taxons vis-à-vis des concentrations en nitrates sont présentées dans le tableau suivant (Tableau 5). Comme pour les deux paramètres précédents, seules les performances des six meilleures métriques (en terme de pouvoir explicatif des concentrations en nitrates) sont présentées dans ce tableau.

Les valeurs des DE globales sont comprises entre 0,425 (MG-N1) et 0,666 (MS-

N1) et les valeurs des DE moyennes sont comprises entre 0,614 (MG-N1) et 0,844 (MS-N1). Les performances de ces six métriques sont presque nulles, généralement inférieures à 0,050, pour les concentrations en phosphore total, en azote Kjeldahl et en chlorures. Les performances vis-à-vis des concentrations en nitrates sont correctes, avec des R² compris entre 0,241 (MG-N3) et 0,378 (MS-N1). Les performances avec l'ICS sont moins bonnes, mais restent comprises entre 0,148 (MG-N3) et 0,229 (MS-N1).

Pour ces six métriques, les performances (DE et R²) des trois métriques spécifiques (MS-N1 à 3) sont globalement meilleures que celles des métriques génériques (MG-N1 à 3). Ainsi, *a contrario* des métriques sélectionnées pour le phosphore total et l'azote Kjeldahl, la métrique sélectionnée pour les nitrates est une métrique spécifique. Nous avons ainsi sélectionné la métrique **MS-N1** (par la suite, **MS-N** pour Métrique de composition Spécifique - Nitrates), car il s'agit de la métrique qui présente ici les meilleurs pouvoirs prédictifs pour les nitrates et l'ICS, ainsi que les meilleures DE (globale et moyenne).

Tableau 5: performances des six meilleures métriques de composition calculées à partir des concentrations en nitrates. Les colonnes « Profil écologique » et « Calcul » renseignent sur l'échelle temporelle utilisée pour calculer les cotes spécifiques/génériques, les coefficients de sténoécie et les valeurs des métriques trophiques. DE = efficacité de discrimination « toutes pressions confondues » entre les LIRR (N = 82) et les IRR (N = 881). DE moyenne = efficacité de discrimination moyenne pour les cinq catégories de pression : « Matières azotées », « Nitrates », « Matières phosphorées », « Matières organiques », et « Bloom ». * les métriques ont été classées en fonction de leur performance pour ce paramètre.

Codo	Profil	Calaul	Détermina	DE	DE	Ptot	NKJ	N-NO3*	Chlorures	ICS
Coue	écologique	Calcul	tion	DE	moyenne	(R²)	(R²)	(R²)	(R²)	(R²)
MS-N1	ОРСА	OPC	Espèce	0,666	0,844	0,040	0,013	0,378	-0,001	0,229
MS-N2	OPC	OPC	Espèce	0,561	0,760	0,045	0,025	0,369	0,010	0,205
MS-N3	OPCA	OPCA	Espèce	0,594	0,776	0,032	0,009	0,360	0,005	0,196
MG-N1	OPCA	OPC	Genre	0,425	0,614	0,048	0,010	0,289	0,000	0,175
MG-N2	OPCA	OPCA	Genre	0,463	0,693	0,046	0,012	0,269	0,000	0,160
MG-N3	OPC	OPC	Genre	0,444	0,665	0,060	0,029	0,241	0,017	0,148

Les performances de la MS-N pour les jeux de données de développement et de test sont présentées sur la Figure 14. Il est possible d'observer sur cette figure que les performances de la MS-N obtenus pour les données de 2020 et 2021 sont similaires à ce qui est observé pour le jeu de données de développement : les R² ajustés obtenus sur ce jeu de données présentent des valeurs avec un ordre de grandeur correspondant à ce qui est observé pour le jeu de données vis-à-vis des nitrates, ciblés par la métrique MS-N, sont un peu plus faibles pour le jeu de données de test, avec un R² ajusté égal à 0,315 alors qu'il est de 0,378 pour le jeu de données de développement. Cependant, quel que soit le paramètre, les régressions linéaires restent très similaires pour les deux jeux de données.

Figure 14 : régressions linéaires entre les valeurs des quatre paramètres d'intérêt et les valeurs de la métrique de composition spécifique pour les nitrates (MS-N) pour le jeu de données de développement (N = 963 OPCA) et pour le jeu de données de test (N = 168 OPCA). Les points noirs et la droite de régression en tirets noirs correspondent aux résultats obtenus avec les données de développement. Les points bleus et la droite de régression en pointillés bleus correspondent aux résultats obtenus avec les données de test (données de 2020 et 2021). Les R² ajustés relatifs aux deux jeux de données sont dans la couleur correspondante.

La distribution des valeurs de la MS-N en fonction des niveaux de pression pour la catégorie de pression « Nitrates » confirme les bonnes performances de la MS-N, avec des différences significatives des valeurs de la MS-N en fonction de ces niveaux de pression et en fonction du statut des OPCA (Figure 15). Le gradient des valeurs de la MS-N permet d'ailleurs de discriminer significativement les niveaux de pression « Bon », « Moyen » et « Médiocre ».

Figure 15 : distribution des valeurs de la MS-N en fonction des niveaux de pression de la catégorie de pression « Nitrates » (sous-graphique de gauche) et en fonction du statut des OPCA du jeu de données de développement (ici, IRR = niveaux de pression « Mauvais », « Médiocre » ou « Moyen » pour la pression considérée). Le lettrage des boîtes à moustache du sous-graphique de gauche correspond aux groupes identifiés suite à des tests post hoc de comparaisons multiples effectués à la suite d'un test significatif de Kruskal-Wallis. Ma = Mauvais, Mé = Médiocre, Mo = Moyen, B = Bon, et TB = Très Bon. N = 963 OPCA pour le sous-graphique à gauche. Pour le sous-graphique de droite : p = p-valeur du test de Kruskal-Wallis, et DE = efficacité de discrimination.

III.1.3 Résultats pour les métriques structurelles

Les performances des métriques structurelles sont présentées dans le tableau suivant (Tableau 6). De nombreuses métriques calculées à partir d'un même groupe taxonomique (par ex. les euglènes) présentaient des performances similaires. Nous avons donc choisi de présenter dans le tableau suivant uniquement les performances des meilleures métriques des « meilleurs » groupes taxonomiques (vis-à-vis des performances pour l'ICS). L'absence des métriques de richesse et diversité « classiques » (i.e. richesse taxonomique totale, indices de Shannon et Piélou, etc...) s'explique par le fait que ces métriques présentent des performances très faibles, même au regard des performances déjà médiocres présentées dans le tableau suivant. Ces métriques ont donc été exclues du tableau suivant.

Les valeurs de DE globales pour ces cinq métriques sont moyennes, puisque comprises entre 0,400 (pour les algues vertes appartenant à la classe des Trebouxiophyceae) et 0,555 (pour les euglènes). Les valeurs de DE moyennes sont meilleures : elles sont comprises entre 0,639 (pour les diatomées de la classe des

Mediophyceae) et 0,839 (pour les diatomées de la classe des Bacillariophyceae). Le pouvoir prédictif de ces différentes métriques est généralement limité car il ne dépasse que rarement les 10%. Seules les deux premières métriques, c'est-à-dire le biovolume relatif des Euglènes et la richesse relative des Trebouxiophyceae, présentent des performances notables, quoique médiocres.

Sur la base de ces performances, il a été choisi de ne pas inclure de métriques structurelles dans la composition de l'IPHYGE. Nous pouvons néanmoins mettre en avant que ces métriques phytoplanctoniques peuvent quand même présenter un intérêt en bioindication, par exemple pour prédire et modéliser des niveaux de pression (par ex. Meyer et al. 2022b).

Tableau 6 : performances des cinq meilleures métriques structurelles. Pour un groupe taxonomique donné, ce tableau donne uniquement les résultats de la meilleure métrique. DE = efficacité de discrimination « toutes pressions confondues » entre les LIRR (N = 82) et les IRR (N = 881). DE moyenne = efficacité de discrimination moyenne pour les cinq catégories de pression : « Matières azotées », « Nitrates », « Matières phosphorées », « Matières organiques », et « Bloom ». BVrel = biovolume relatif, BVtot = biovolume total, Stot = richesse totale et Srel = richesse relative.

Groupe taxonomique	Métriq ue	Détermi nation	DE	DE moyenne	Ptot (R²)	NKJ (R²)	N-NO3 (R²)	Chlorures (R²)	ICS (R²)
Euglenozoa	BVrel	Genre	0,555	0,759	0,131	0,105	-0,001	0,033	0,168
Trebouxiophyceae	Stot	Espèce	0,400	0,743	0,111	0,058	0,037	0,002	0,133
Bacillariophyceae	Srel	Espèce	0,578	0,839	0,059	0,077	0,001	0,025	0,103
Fragilariophyceae	BVrel	Espèce	0,551	0,657	0,036	0,021	0,023	0,021	0,092
Mediophyceae	BVtot	Espèce	0,421	0,639	0,056	0,068	0,001	0,023	0,081

III.1.4 Résultats pour les métriques fonctionnelles

Les performances des métriques fonctionnelles sont présentées dans le Tableau 7. Ce dernier indique uniquement les performances de la meilleure métrique (i.e, quel que soit son type, CWM, indices de diversité ou de recouvrement, etc...) et de la meilleure modalité <u>pour chaque trait</u>, pour un total de dix traits différents. Les valeurs de DE globales varient entre 0,336 et 0,495, respectivement pour le type de protubérances et les classes de taille. Les valeurs de DE moyennes varient entre 0,434 et 0,697, respectivement pour la largeur minimale et la taille des protubérances. Nous pouvons remarquer que ces valeurs de DE sont globalement moins bonnes que celles observées pour les métriques structurelles. Cette observation est aussi valable pour le pouvoir prédictif de ces métriques fonctionnelles, qui est presque toujours inférieur à 10%.

Tableau 7 : performances des dix meilleures métriques fonctionnelles. Pour un trait donné, ce tableau donne uniquement les résultats de la meilleure métrique. DE = efficacité de discrimination « toutes pressions confondues » entre les LIRR (N = 82) et les IRR (N = 881). DE moyenne = efficacité de discrimination moyenne pour les cinq catégories de pression : « Matières azotées », « Nitrates », « Matières phosphorées », « Matières organiques », et « Bloom ». * les métriques ont été classées en fonction de leur performance pour ce paramètre.

Métrique	Trait	Modalité de trait	DE	DE moyenne	Ptot (R²)	NKJ (R²)	N-NO3 (R²)	Chlorures (R²)	ICS* (R²)
СММ	Type of protuberance s	Needle	0,393	0,637	0,078	0,118	0,022	0,001	0,113
СММ	Size of protuberance s	Large	0,418	0,697	0,082	0,107	0,020	0,001	0,094
СММ	Number of protuberance s	0	0,406	0,638	0,061	0,079	0,004	0,009	0,080
CWM	Secundary pigment	Chlorophyl-c	0,396	0,631	0,040	0,063	0,014	-0,001	0,078
CWM	Minimal length	≤4 µm	0,372	0,514	0,054	0,111	0,003	0,021	0,076
CWM	Tolerance	Saprobity	0,452	0,693	0,068	0,024	-0,001	0,013	0,076
CWM	Cell biovolume	>800 μm³	0,389	0,566	0,020	0,039	0,041	0,004	0,058
CWM	Maximal length	≤10 µm	0,395	0,525	0,026	0,056	0,001	0,038	0,057
CWM	Minimal width]2;4] µm	0,336	0,434	0,039	0,051	0,008	0,000	0,057
CWM	Size classes	Microphytopl ankton	0,495	0,590	0,039	0,042	0,000	0,024	0,054

Ces résultats semblent refléter la composition taxonomique des communautés phytoplanctoniques : les meilleurs résultats sont obtenus pour des traits caractérisant soit les algues vertes (pour les protubérances larges et en forme d'aiguille), soit les diatomées (avec l'absence de protubérances et la présence de la chlorophylle-c comme pigment secondaire). Les informations écologiques apportées par les métriques fonctionnelles peuvent donc être considérées comme non-pertinentes, car peu prédictives et redondantes avec les informations apportées par les métriques structurelles. À l'instar des métriques structurelles, nous avons donc choisi de ne pas inclure de métriques fonctionnelles dans la composition de l'IPHYGE. Néanmoins, comme pour les métriques structurelles, ces métriques présentent un potentiel certain pour le développement d'outils de diagnostic (par ex. Meyer et al. 2022b).

III.2 Performances des indices candidats

Quatre métriques ont été sélectionnées sur la base de leurs performances visà-vis des principales pressions anthropiques s'exerçant sur les GCE (c'est-à-dire les métriques MG-P, MG-A et MS-N) et dans le but de répondre aux critères de la DCE (la métrique MBP). Trois indices candidats ont été générés à partir des valeurs de ces quatre métriques (IC1 à 3 ; Tableau 8). Les valeurs de ces indices candidats ont été obtenus en calculant une moyenne pondérée des valeurs des métriques constitutives. L'objectif était de faire varier le poids des métriques afin d'obtenir un indice avec des performances correctes (meilleurs R²) pour les principales pressions anthropiques.

Trois stratégies de pondération ont ainsi été explorées (Tableau 8). La première a consisté à attribuer un poids plus faible à la MBP dans le calcul de la valeur de l'indice (IC1 et IC2). En effet, les performances de cette métrique sont les plus faibles parmi celles relevées pour les quatre métriques constitutives. La deuxième stratégie a consisté à attribuer un poids plus important à la métrique MG-P afin de favoriser une bonne réponse de notre indicateur au gradient de phosphore total. En effet les méthodes européennes doivent montrer que l'indicateur associé à chacune de ces méthodes présente une réponse pertinente aux gradients de pression anthropique. Et le phosphore total est le paramètre privilégié, dans le cadre du processus d'intercalibration des méthodes européennes, pour mettre en évidence cette réponse (Mischke et al. 2016). La dernière stratégie explorée est une stratégie de « référence » qui a consisté à attribuer le même poids aux quatre métriques constitutives.

	Poids des métriques								
Indices candidats	MBP	MG-P	MG-A	MS-N					
IC1	0,5	2	1	1					
IC2	0,5	1	1	1					
IC3	1	1	1	1					

Tableau 8 : poids des métriques dans les trois combinaisons explorées (= indices candidats 1 à 3).

Les performances des trois indices candidats sont présentées dans le Tableau 9. Les valeurs de DE globales et moyennes sont très similaires quel que soit l'indice candidat : les valeurs de DE globales (pour rappel : toutes pressions confondues) varient entre 0,711 (IC3) et 0,719 (IC1) et les valeurs moyennes des DE varient entre 0,929 (IC3) et 0,939 (IC1). Les performances vis-à-vis du phosphore total sont comprises entre 0,332 (IC3) et 0,383 (IC1) et sont cohérentes avec les pondérations appliquées. Les R² observés présentent des écarts plus faibles pour l'azote Kjeldahl, pour les chlorures et pour l'ICS : les valeurs sont comprises entre 0,343 (IC2) et 0,363 (IC3), entre 0,040 (IC2) et 0,050 (IC1), et entre 0,554 (IC3) et 0,571 (IC1) respectivement pour l'azote Kjeldahl, les chlorures et l'ICS. Le pouvoir prédictif des indices candidats pour les nitrates varient légèrement selon l'indice, puisque les R² sont compris entre 0,124 (IC3) et 0,161 (IC2).

Tableau 9 : performances des trois indices candidats. DE = efficacité de discrimination « toutes pressions confondues » entre les LIRR (N = 82) et les IRR (N = 881). DE moyenne = efficacité de discrimination moyenne pour les 5 catégories de pression : « Matières azotées », « Nitrates », « Matières phosphorées », « Matières organiques », et « Bloom ».

Indices candidats	DE	DE moyenne	Ptot (R ²)	NKJ (R²)	N-NO3 (R²)	Chlorures (R ²)	ICS (R²)
IC1	0,719	0,939	0,383	0,359	0,133	0,050	0,571
IC2	0,711	0,933	0,340	0,343	0,161	0,040	0,567
IC3	0,714	0,929	0,332	0,363	0,124	0,048	0,554

La catégorie de pression « Nitrates » est prégnante dans les GCE de France métropolitaine et il nous est apparu cohérent de chercher à avoir un pouvoir prédictif satisfaisant des concentrations en nitrates, tout en maintenant de bonnes performances vis-à-vis des autres paramètres d'intérêt. **Nous avons donc fait le choix de sélectionner <u>l'indice candidat IC2</u> comme nouvel indicateur phytoplancton, c'est-à-dire l'IPHYGE. Comparé à l'IC1, ses performances sont légèrement plus faibles pour le phosphore total mais l'IC2 est le plus performant pour les nitrates et l'ensemble des autres mesures de performances (i.e. DE globale et moyenne, autres R²) sont similaires à celles de l'IC1.**

III.3 L'IPHYGE

III.3.1 Synthèse

Cette section a comme objectif de présenter de manière synthétique l'Indicateur PHYtoplancton pour les Grands cours d'Eau (**IPHYGE**), ses principales caractéristiques, la manière de calculer sa valeur, ainsi que ses principales performances. À partir des résultats observés pour l'intégralité des métriques testées (cf. §III.1) et des indices candidats conçus à partir des métriques finalement retenues (cf. §III.2), **I'IPHYGE** a été conçu comme un **indicateur multimétrique** dont la valeur est la **moyenne pondérée** de **quatre métriques** : une métrique de biomasse phytoplanctonique, la **MBP**, dont la valeur est calculée à partir des concentrations moyennes et maximales saisonnières en chlorophylle-a, et trois métriques de composition, dites trophiques, caractérisant les pressions liées aux concentrations en phosphore total (la métrique **MG-P**), en azote Kjeldahl (**MG-A**) et en nitrates (**MS-N**) (Figure 16).

Les valeurs de ces trois métriques trophiques sont calculées séparément pour chaque prélèvement de phytoplancton (OPC) avant d'être moyennées sur l'année (OPCA). Les valeurs des quatre métriques sont calculées à partir d'au moins six prélèvements phytoplanctoniques et mesures simultanées des concentrations en chlorophylle-a effectués durant la période de végétation, c'est-à-dire entre mai et octobre (Laplace-Treyture et al. 2010).

III.3.2 Cours d'eau couverts par l'IPHYGE

L'IPHYGE est un indicateur qui peut être utilisé pour évaluer l'état biologique des **cours d'eau naturels** ou **fortement modifiés** d'une **classe de taille au moins moyenne**. L'IPHYGE est potentiellement aussi applicable pour le suivi du potentiel écologique des **cours d'eau artificiels** (Dumortier 2022), mais cette applicabilité reste à confirmer en l'absence de gradients de pression suffisamment bien décrits pour ces masses d'eau.

Figure 16 : synthèse du calcul de l'IPHYGE et de l'assignation des classes d'état biologique. <u>Attention</u> : les valeurs des limites des classes d'état biologique présentées sur cette figure restent préliminaires car l'intercalibration européenne de l'IPHYGE n'a pas encore été finalisée.

III.3.3 Calcul de l'IPHYGE

Calcul de la métrique MBP

La métrique de biomasse phytoplanctonique (MBP) est calculée à partir des concentrations en chlorophylle-a mesurées durant la période mai-octobre. La formule pour calculer sa valeur est la suivante :

 $MBP = 0,481 \times \ln(chla_{moy}) - 0,172 \times \ln(chla_{max}) + 1,262 \qquad Equation 9$

avec chla_{moy} la moyenne des concentrations en chlorophylle-a mesurées pendant la période mai-octobre et chla_{max} la valeur maximale de ces mesures.

La valeur de la MBP est ensuite exprimée sous la forme d'un EQR grâce à la formule suivante :

$$MBP_{EQR} = (MBP - 2,488) / (1,250 - 2,488)$$
 Equation 10

Calcul des métriques de composition MG-P, MG-A et M-N

Les valeurs des métriques de composition (MC) sont calculées séparément pour chaque prélèvement phytoplanctonique effectué durant la période mai-octobre sur la base de la formule définie par Zelinka et Marvan (1961) :

$$MC = \Sigma_i (CS_i \times S_i \times BV_i) / \Sigma_i (S_i \times BV_{i,s})$$
Equation 11

avec CS_i, la cote spécifique de trophie du taxon i, S_i le coefficient de sténoécie du taxon i, et BV_i le biovolume du taxon i dans un prélèvement donné. Les cotes spécifiques et coefficients de sténoécie propres à chaque métrique sont donnés dans les annexes : pour les métriques MG-P et MG-A, l'annexe A6, et pour la métrique MS-N, l'annexe A7.

Les valeurs de ces métriques de composition, calculées pour chaque prélèvement de phytoplancton, sont ensuite moyennées sur l'année pour un couple « station x année ».

Ces valeurs moyennes (c'est-à-dire MG-P_{moy}, MG-A_{moy} et MS-N_{moy}) sont ensuite exprimées sous la forme d'EQR :

$MG-P_{EQR} = (MG-P_{moy} - 12,990) / (15,527 - 12,990)$	Equation 12
$MG-A_{EQR} = (MG-A_{moy} - 12,684) / (14,971 - 12,684)$	Equation 13
MS-N _{EQR} = (MS-N _{moy} – 9,517) / (12,288 – 9,517)	Equation 14

Ces valeurs ne sont pas bornées entre 0 et 1. Il est donc possible d'observer des valeurs en dehors de ces bornes. Dans les faits, les valeurs inférieures à 0 sont très rares, mais les valeurs supérieures à 1 sont régulièrement observées (et, dans les faits, attendues ; voir par exemple les Figures 9, 11, 13 et 15).

Calcul de l'IPHYGE

La valeur de l'IPHYGE est la moyenne pondérée des valeurs EQR de ses quatre métriques constitutives :

Equation 15

Après ce dernier calcul, les valeurs supérieures à 1 sont ramenées à 1.

III.3.4 Performances générales

La Figure 17 permet d'apprécier la relativement bonne distribution des valeurs de l'IPHYGE le long des gradients des principaux paramètres d'intérêt. Cette figure permet aussi d'observer que l'IPHYGE présente de bonnes performances sur le jeu de données de test (données de 2020 et 2021), puisque les valeurs des R² ajustés obtenues avec ce jeu de données sont très similaires à ce qui est observé pour le jeu de données de test sont meilleures pour le phosphore total (avec un R² égal à 0,416 au lieu de 0,340 pour le jeu de données de développement) mais qu'elles sont moins bonnes pour les nitrates (avec un R² égal à 0,101 au lieu de 0,161 pour le jeu de données de développement). Cependant les nuages de points ainsi que les régressions linéaires présentent de fortes similarités entre les deux jeux de données et confirment ainsi les bonnes performances générales de l'IPHYGE.

La distribution des valeurs de l'IPHYGE en fonction des niveaux de pressions pour les trois catégories de pressions « Matières phosphorées », « Matières azotées » et « Nitrates » est très similaire à ce qui a été observé pour les trois métriques trophiques constitutives prises individuellement (Figure 18 ; cf. Figures 11, 13 et 15). L'IPHYGE présente des valeurs significativement différentes en fonction des niveaux de pressions et en fonction du statut des OPCA, et ce pour les trois catégories de pressions considérées (Figure 18). Comme pour les métriques MG-P et MG-A, les valeurs de l'IPHYGE ne permettent cependant pas de bien discriminer les situations « Moyen » et « Médiocre » pour les catégories de pressions « Matières phosphorées » et « Matières azotées », sans doute à cause des faibles nombres d'OPCA classées « Médiocre » pour ces deux catégories. Nous pouvons aussi remarquer que les valeurs de l'IPHYGE ne sont que faiblement corrélées aux concentrations en nitrates (Tableau 9), mais qu'elles présentent quand même un gradient significatif de valeurs entre les niveaux de pression « Bon », « Moyen » et « Médiocre » pour la catégorie de pression « Nitrates ».

Figure 17 : régressions linéaires entre les valeurs des quatre paramètres d'intérêt et les valeurs de l'IPHYGE (IC2) pour le jeu de données de développement (N = 963 OPCA) et pour le jeu de données de test (N = 168 OPCA). Les points noirs et la droite de régression en tirets noirs correspondent aux résultats obtenus avec les données de développement. Les points bleus et la droite de régression en pointillés bleus correspondent aux résultats obtenus avec les données de 2020 et 2021). Les R² ajustés relatifs aux deux jeux de données sont dans la couleur correspondante.

Figure 18 : distribution des valeurs de l'IPHYGE en fonction des niveaux de pression (sous-graphique de gauche) et en fonction du statut des OPCA du jeu de données de développement (ici, IRR = niveaux de pression « Mauvais », « Médiocre » ou « Moyen » pour la pression considérée) pour les catégories de pression « Matières phosphorées » (première ligne), « Matières azotées » (deuxième ligne) et « Nitrates » (troisième ligne). Le lettrage des boîtes à moustache des sous-graphiques de gauche correspond aux groupes identifiés suite à des tests post hoc de comparaisons multiples effectués à la suite d'un test significatif de Kruskal-Wallis. Ma = Mauvais, Mé = Médiocre, Mo = Moyen, B = Bon, et TB = Très Bon. N = 963 OPCA pour le sous-graphique de gauche. Pour les sous-graphiques de droite : p = p-valeur du test de Kruskal-Wallis, et DE = efficacité de discrimination.

III.3.5 Proportion des taxons contributifs

Des analyses préliminaires pour l'IPHYGE (Figure 19) ont permis de montrer que la proportion des taxons contributifs dans les échantillons varie selon les métriques trophiques. Ainsi, pour les métriques au genre (MG-P et MG-A) plus de 95 % des genres identifiés dans chaque OPC contribuent aux calculs des métriques. Pour la métrique à l'espèce (MS-N) cette proportion tombe à seulement 57,8% en moyenne par OPC. Cette relative faible proportion moyenne pourrait représenter une source d'incertitude puisqu'en moyenne 42,2% des taxons ne contribuent pas au calcul de la métrique.

Néanmoins, nous pouvons relativiser cette observation, car nous pouvons remarquer que cette plus faible proportion s'explique aussi mécaniquement par la richesse taxonomique bien plus importante obtenue avec le jeu de données au niveau des espèces, en comparaison avec les richesses taxonomiques observées pour le jeu de données agrégé au niveau des genres. Pour les trois métriques, nous pouvons ainsi observer que le nombre moyen de taxons contributifs par OPC est relativement similaire, avec 25 genres contributifs pour les métriques MG-P et MG-A, et 22 espèces contributives pour la métrique MS-N (valeurs arrondies à l'unité).

Figure 19 : distribution de la proportion des taxons contributifs pour les trois métriques trophiques, par OPC (colonne de gauche) et par OPCA (colonne de droite) appartenant au jeu de données de développement.

III.3.6 Classes d'état biologique

Sur la base du processus décrit dans la partie Matériel et Méthode (cf. §II.7), il a été choisi de fixer la limite « Bon/Moyen » au niveau du 1^{er} quartile de la distribution des valeurs de l'indice dans les LIRR (Figure 20). La limite « Très Bon/Bon » est obtenue en divisant en deux parts d'égale amplitude la plage des valeurs supérieures comprises entre la limite « Bon/Moyen » et 1. Les autres limites ont été obtenues en divisant l'étendue des valeurs d'indice comprises entre 0 et la limite « Bon/Moyen » en trois intervalles de même taille. L'approche décrite dans ce paragraphe a le mérite de respecter les critères d'intercomparaison des méthodes européennes, c'est-à-dire de respecter un écart de classe inférieur à 25% (Willby et al. 2014).

Figure 20 : distribution des valeurs réelles de l'IPHYGE en fonction du statut des OPCA. La limite « Bon/Moyen » (B-Mo) a été fixé au niveau du 1^{er} quartile de la distribution des valeurs de l'indice dans les LIRR. Les autres limites sont obtenues en divisant en intervalles de même taille les deux étendues restantes, c'est-à-dire celle comprise entre 1 et B-Mo, et celle comprise entre B-Mo et 0. Ma = Mauvais, Mé = Médiocre, Mo = Moyen, B = Bon, et TB = Très Bon. N = 963 OPCA, dont 881 IRR et 82 LIRR.

Les résultats de l'application de cette règle de définition des limites de classes d'état biologique sont représentés sur la Figure 21 et sur les cartes de la Figure 22. Ces deux figures intègrent les résultats obtenus pour le jeu de données de test. La Figure 21 permet d'observer que les classes d'état biologique assignées à partir des valeurs de l'IPHYGE permettent bien et significativement de mettre en évidence des gradients de pression pour les quatre paramètres d'intérêt (i.e. pour les concentrations en phosphore total, azote Kjeldahl, et nitrates, et pour l'ICS). La pré-visualisation de

ces classes sur les cartes de la Figure 22 permet aussi de confirmer la relative stabilité et cohérence temporelle des classes observées pour les stations suivies entre 2010 et 2021. Les stations de référence situées le long de la Saône, le long de la Dordogne ou en amont de la Loire, par exemple, présentent les meilleures classes d'état biologique, avec des OPCA généralement en « Bon » ou « Très Bon » état. Les autres stations présentent généralement un état « Moyen », et les stations les plus déclassées sont les MEFM localisées au nord de la France.

Des limites de classe ont aussi été calculées pour les métriques constitutives de l'IPHYGE afin d'aider à l'interprétation des valeurs de chacune de ces métriques. Ces limites ont été définies en suivant le même processus que celui décrit précédemment pour définir les bornes de l'IPHYGE afin d'avoir des classes relativement cohérentes avec ce qui peut être observé pour les boxplots (cf. Figures 11, 13 et 15).

Une adaptation de ce processus a néanmoins dû être réalisée. En effet, la limite « Très Bon/Bon » aurait normalement été obtenue en divisant par deux l'amplitude des valeurs comprises entre la limite « Bon/Moyen » et 1, mais les valeurs EQR des quatre métriques constitutives supérieures à 1 ne sont pas ramenées à 1. Dans ce cas précis, nous aurions pu alors diviser, pour une métrique donnée, l'amplitude des valeurs comprises entre la limite « Bon/Moyen » et la valeur EQR maximale observée dans les LIRR afin obtenir la limite « Très Bon/Bon ». Le souci est ici que les valeurs EQR maximales des métriques constitutives dans les LIRR sont élevées : respectivement, ces valeurs maximales sont égales à 1,331, 1,275, 1,442 et 1,068 pour les métriques MBP, MG-A, MS-N et MG-P (Figures 9, 11, 13 et 15). L'application directe du processus décrit ci-dessus aurait ainsi mené à des classes « Très Bon » et « Bon » avec des amplitudes importantes, peu comparables avec les classes obtenues pour l'IPHYGE. Nous avons donc décidé d'utiliser une approche permettant de restreindre l'amplitude et d'augmenter la robustesse de la définition de cette valeur « maximale » : nous avons ainsi choisi d'utiliser le 95^{ième} percentile de la distribution des valeurs de ces métriques comme valeur de « référence ». Les bornes ainsi obtenues sont présentées dans le tableau suivant (Tableau 10), et les classes obtenues avec ces bornes sont disponibles dans l'Annexe A8.

Tableau 10 : Valeurs des limites de classes d'état biologique pour l'IPHYGE et pour ses quatre métriques constitutives. Pour les métriques constitutives, il est possible d'observer des valeurs supérieures ou inférieures respectivement aux valeurs de référence et « zéro ». Dans ces rares cas, la classe biologique pour la métrique problématique est alors respectivement fixée soit à la classe « Très Bon », soit à la classe « Mauvais ». * Pour rappel, les bornes de l'IPHYGE n'ont pas encore été validées par les instances européennes chargées du processus d'intercalibration. Ma = Mauvais, Mé = Médiocre, Mo = Moyen, B = Bon, et TB = Très Bon.

	IPHYGE*	MBP	MG-P	MG-A	MS-N
Réf.	1,000	1,143	1,032	1,074	1,298
TB-B	0,939	0,995	0,990	1,000	1,024
B-Mo	0,878	0,848	0,948	0,927	0,749
Mo-Mé	0,586	0,565	0,632	0,618	0,500

Mé-Ma	0,293	0,283	0,316	0,309	0,250
Zéro	0,000	0,000	0,000	0,000	0,000

Figure 21 : distribution des valeurs des quatre paramètres d'intérêt en fonction des classes d'état biologique assignées à partir des valeurs de l'IPHYGE. Les classes ont été assignées en utilisant le scénario consistant à placer la limite "Bon-Moyen" au niveau du 1er quartile de la distribution des valeurs de l'IPHYGE dans les LIRR. Les valeurs présentées ici intègrent les résultats obtenus pour le jeu de données de test. Le lettrage des boîtes à moustache correspond aux groupes identifiés suite à des tests post hoc de comparaisons multiples effectués à la suite d'un test significatif de Kruskal-Wallis. Ma = Mauvais, Mé = Médiocre, Mo = Moyen, B = Bon, et TB = Très Bon. N = 1131 OPCA.

Figure 22 : classes d'état biologique sur la base des valeurs de l'IPHYGE et sur la base du scénario consistant à placer la limite "Bon-Moyen" au niveau du 1er quartile de la distribution des valeurs de l'IPHYGE dans les LIRR. Les valeurs présentées ici intègrent les résultats obtenus pour le jeu de données de test. Code des couleurs : rouge = « Mauvais », orange = « Médiocre », jaune = « Moyen », vert = « Bon » et bleu = « Très Bon ». Les ronds indiquent les MEN et les carrés les MEFM. N = 1131 OPCA.

Conclusion et perspectives

L'IPHYGE

Le projet DIPCEAU a permis de tester une multitude de métriques différentes dans le but d'identifier celles qui présentent les meilleures performances, c'est-à-dire celles qui prédisent au mieux les pressions trophiques anthropiques s'exerçant sur les GCE de France métropolitaine. Quatre métriques ont ainsi été identifiées : une métrique de biomasse phytoplanctonique (MBP), qui permet de mettre en évidence une surabondance, voire des blooms, du phytoplancton en cas par exemple d'eutrophisation, et trois métriques trophiques (MG-P, MG-A, et MS-N), plus performantes quant à leur capacité à prédire, respectivement, les concentrations de trois paramètres indicateurs de pressions anthropiques (le phosphore total, l'azote Kjeldahl et les nitrates). Ces quatre métriques ont été réunies au sein d'un indice multimétrique, l'IPHYGE.

Les performances de l'IPHYGE sont représentatives de celles de ses métriques constitutives bien qu'une légère baisse soit observée par rapport aux performances des métriques prises individuellement pour leur paramètre respectif. Cependant, la pondération de ces métriques au sein de l'indicateur a justement été sélectionnée afin de tenir compte du meilleur compromis en termes de performances de l'IPHYGE pour les différents paramètres d'intérêt. Les valeurs de l'IPHYGE sont d'ailleurs mieux corrélées avec les valeurs de l'ICS que les valeurs des métriques constitutives. Ainsi, bien que l'IPHYGE soit moins bien corrélé avec les paramètres chimiques pris séparément, ses valeurs semblent mieux refléter l'état global des cours d'eau suivis. Les valeurs de l'IPHYGE restent néanmoins bien corrélées avec les concentrations en phosphore total et en azote Kjeldahl. La corrélation est moins bonne avec les concentrations en nitrates, mais l'IPHYGE permet guand même de bien discriminer les différents niveaux de pressions pour la catégorie de pression « Nitrates ». Pour finir, les performances de l'IPHYGE et de ses métriques constitutives ont été confirmées sur le jeu de données de 2020 et 2021, démontrant ainsi leurs bonnes performances sur un jeu de données indépendant.

Nous devons cependant signaler que les métriques constitutives de l'IPHYGE sont partiellement et positivement corrélées entre elles (tests de corrélation de Pearson) : en particulier les valeurs de la MBP sont corrélées significativement avec les valeurs de la MG-P (p < 0,001 et r = 0,548) et avec les valeurs de la MG-A (p < 0,001 et r = 0,548) et avec les valeurs de la MG-A (p < 0,001 et r = 0,548) et avec les valeurs de la MG-A (p < 0,001 et r = 0,548) et avec les valeurs de la MG-A (p < 0,001 et r = 0,548) et avec les valeurs de la MG-A (p < 0,001 et r = 0,548) et avec les valeurs de la MG-A (p < 0,001 et r = 0,548) et avec les valeurs de la MG-A (p < 0,001 et r = 0,548) et avec les valeurs de la MG-A (p < 0,001 et r = 0,00 0.001 et r = 0,647), et les valeurs de la MG-P sont corrélées avec les valeurs de la MG-A (p < 0,001 et r = 0,867). Ces corrélations ne sont pas forcément inattendues, du fait qu'il existe une forme d'auto-corrélation entre les communautés phytoplanctoniques et les mesures des concentrations en phosphore total et azote Kjeldahl: en effet, les concentrations de ces paramètres chimiques prennent en compte la part organique, donc contenue dans le phytoplancton. Cette forme d'autocorrélation existe sans doute aussi pour les autres méthodes européennes, puisqu'elles incluent généralement une métrique de biomasse et une métrique trophique calée sur les concentrations en phosphore total.

Malgré la corrélation existante entre les valeurs des métriques MG-P et MG-A, ces dernières apportent quand même des informations complémentaires, puisque chacune présente une bonne corrélation avec son paramètre cible. Par extension, ces deux métriques permettent à l'IPHYGE de bien refléter les concentrations en phosphore total et azote Kjeldahl. Malheureusement cela se fait aux détriments des concentrations en nitrates, dont le pouvoir explicatif de l'IPHYGE est limité par la pondération choisie.

Retour sur les métriques structurelles et fonctionnelles

Les métriques structurelles et fonctionnelles, calculées sur la base de la structure taxonomique et fonctionnelle des communautés phytoplanctoniques, n'ont pas présenté de bonnes performances sur notre jeu de données de développement. Pourtant ces métriques sont régulièrement intégrées aux méthodes européennes basées sur le phytoplancton et appliquées aux GCE (Meyer et al. 2021). Nous pouvons émettre deux premières hypothèses quant à leur relative mauvaise performance sur notre jeu de données. La première hypothèse est statistique : nous avons testé les performances des métriques sur la base de relations linéaires entre les valeurs des métriques et les concentrations des paramètres d'intérêt mais il est possible que certaines des métriques structurelles ou fonctionnelles présentent des réponses nonlinéaires aux gradients de pression. En effet, les valeurs des DE moyennes pour les métriques structurelles sont souvent relativement bonnes (> 70% en moyenne) et mettent bien en évidence des différences structurelles entre les communautés phytoplanctoniques observées dans les situations de référence et dans les situations impactées par les pressions trophiques, avec une opposition diatomées/euglènes entre ces deux types de situations. La deuxième hypothèse est écologique : il est possible que la grande diversité des types et natures des GCE, et par extension la probable diversité taxonomique, ne permette pas d'identifier un ou plusieurs groupes taxonomiques d'intérêt capables de mettre en évidence les principaux gradients de pressions observés au niveau national. Malheureusement, comme explicité dans la section §II.4.5, la prise en compte de la typologie dans l'évaluation de l'état biologique des GCE pourrait entraîner des biais et/ou une certaine incertitude de l'évaluation par le faible nombre d'OPCA et de stations classées comme LIRR dans notre jeu de données de développement.

Néanmoins, les métriques structurelles et fonctionnelles présentent un réel intérêt et pouvoir prédictif des pressions anthropiques s'exerçant sur les GCE. Dans une approche exploratoire, un outil de diagnostic a été développé à partir des métriques structurelles et fonctionnelles (Meyer et al. 2022b). Cet outil est capable de

prédire correctement le statut LIRR/IRR des OPCA pour un nombre important de catégories de pressions physico-chimiques ou hydro-morphologiques. Il aurait été intéressant d'essayer de combiner les sorties de cet outil avec l'indice multimétrique, mais cette approche n'a pas été explorée afin de garantir la compatibilité de notre indicateur avec les méthodes européennes existantes, qui présentent comme point commun d'avoir été créées afin de mettre principalement en évidence des pressions trophiques.

Applicabilité de l'IPHYGE aux MEA

Des travaux ont été menés par Maxence Dumortier dans le cadre de son stage de fin d'études de deuxième année de Master (Dumortier 2022). Durant son stage, Maxence a étudié l'applicabilité des premiers indices candidats et métriques développés début 2022 aux masses d'eau artificielles (MEA). Son étude a permis de montrer que les caractéristiques physico-chimiques et la composition des communautés phytoplanctoniques des MEA sont globalement similaires à celles des MEN et MEFM utilisées dans le jeu de données de développement. Les valeurs des métriques et indices candidats ont aussi montré des patrons de réponse cohérents avec les gradients des pressions trophiques observés pour ces masses d'eau. Ces deux observations permettent de conclure à la possibilité future d'utiliser l'IPHYGE pour le suivi du bon potentiel écologique des MEA de France métropolitaine.

Perspectives

Dans le futur, il sera nécessaire de compléter le développement de cette nouvelle méthode avec une étude des incertitudes entourant l'assignation de la classe d'état biologique effectuée sur la base des valeurs de l'IPHYGE. En effet, la DCE indique qu'il est nécessaire de connaître le niveau de confiance et la précision des résultats fournis par les différents indicateurs (European Council 2000). L'IPHYGE est un indicateur multimétrique, ce qui présente l'avantage de limiter par un effet « moyenne » l'impact des incertitudes propres à chaque métrique (résultat observé par exemple pour l'I₂M₂ ; Meyer et al., *in prep.*).

De plus, il serait intéressant de renseigner sur la robustesse de l'évaluation écologique effectuée avec l'IPHYGE : (i) en indiquant par exemple au moment de la restitution de la valeur de l'indicateur et de la classe d'état assignée, à l'instar de ce qui est fait respectivement pour l'IBMR (Haury et al. 2006) et prochainement dans Phytobs pour l'IPLAC (Laplace-Treyture et al. 2016), les valeurs et classes obtenues en omettant le taxon le plus contributif (présentant la plus grande valeur de sténoécie multipliée par son biovolume) et (ii) le nombre exact de taxons contributifs, avec éventuellement un message d'alerte en dessous d'une certaine richesse taxonomique

contributive à définir (comme l'IPLAC dans Phytobs ; Laplace-Treyture et al. 2017). Ces pistes d'amélioration pourront être à envisager après l'ajout de l'IPHYGE au sein du SEEE.

Nous pouvons aussi préciser qu'une piste évidente d'amélioration de l'IPHYGE pourrait être la mise-à-jour dans un futur un peu plus lointain des profils écologiques (c'est-à-dire cotes spécifiques/génériques et coefficients de sténoécie) des taxons contributifs. En effet la bancarisation continue des données phytoplanctoniques pourra permettre d'affiner les profils écologiques des taxons contributifs et éventuellement d'intégrer de nouveaux taxons dans la liste. Nous devons cependant noter que cette mise-à-jour des profils, liés à chaque métrique trophique, nécessitera de recalculer l'intégralité des cotes spécifiques/génériques, *a contrario* de l'IBD (Coste et al. 2007). En effet, la méthode WA-PLS maximise la performance des métriques trophiques en ajustant au mieux les cotes les unes par rapport aux autres. Cette mise-à-jour pourrait se faire en même temps qu'une mise-à-jour de la base Phytobs.

La validation finale de l'IPHYGE et des bornes associées permettant l'assignation des classes d'état biologique sera effective lorsque l'intercalibration de ce nouvel indicateur sera validée par les instances européennes. Au moment de la rédaction de ce rapport, il est aussi prévu que l'IPHYGE soit intégré dans le cortège des nouveaux indicateurs réglementaires DCE lors de la révision de l'arrêté établissant le programme d'évaluation de l'état des eaux (dans sa version actuelle : Ministère de la Transition Ecologique et Solidaire 2018b).

Références

- Behrendt, H., Bach, M., Kunkel, R., Opitz, D., Pagenkopf, W.-G., Scholz, G., & Wendland, F. (2003). Internationale Harmonisierung der Quantifizierung von N\u00e4hrstoff eintr\u00e4gen aus diffusen und punktuellen Quellen in die Oberfl\u00e4chengew\u00e4sser Deutschlands. 82/03 Forschungsbericht 299 22 285. (202 p.).
- Borics, G., Várbíró, G., Grigorszky, I., Krasznai, E., Szabó, S., & Kiss, K. T. (2007). A new evaluation technique of potamo-plankton for the assessment of the ecological status of rivers. *Large Rivers*, 466-486. https://doi.org/10.1127/lr/17/2007/466
- Brenning, A., Bangs, D., & Becker, M. (2018)._RSAGA: SAGA Geoprocessing and Terrain Analysis. https://CRAN.R-project.org/package=RSAGA
- Coste, M., Boutry, S., Tison-Rosebery, J., & Delmas, F. (2007). Presentation of IBD2006, and its performance compared to the initial version and to IPS. 1. <u>https://hal.inrae.fr/hal-02589813</u>
- Crossetti, L. O., Stenger-Kovács, C., & Padisák, J. (2013). Coherence of phytoplankton and attached diatombased ecological status assessment in Lake Balaton. *Hydrobiologia*, 716(1), 87-101. https://doi.org/10.1007/s10750-013-1547-0
- Derot, J., Jamoneau, A., Teichert, N., Rosebery, J., Morin, S., & Laplace-Treyture, C. (2020). Response of phytoplankton traits to environmental variables in French lakes: New perspectives for bioindication. *Ecological Indicators*, *108*, 105659. <u>https://doi.org/10.1016/j.ecolind.2019.105659</u>
- Dumortier, M. (2022). Applicabilité de l'indicateur phytoplancton grands cours d'eau aux rivières canalisées (42 p.) [Mémoire de Master 2 Mention Science de la Mer Parcours Ecologie Marine et Halieutique (EMaH)].
- European Council (2000). Directive 2000/60/EC. Establishing a framework for community action in the field of water policy. European Commission PE-CONS 3639/1/100 Rev 1, Luxemburg.
- Haury, J., Peltre, M.-C., Trémolières, M., Barbe, J., Thiébaut, G., Bernez, I., Daniel, H., Chatenet, P., Haan-Archipof, G., Muller, S., Dutartre, A., Laplace-Treyture, C., Cazaubon, A., & Lambert-Servien, E. (2006). A new method to assess water trophy and organic pollution the Macrophyte Biological Index for Rivers (IBMR): Its application to different types of river and pollution. In J. M. Caffrey, A. Dutartre, J. Haury, K. J. Murphy, & P. M. Wade (Éds.), Macrophytes in Aquatic Ecosystems: From Biology to Management (Vol. 190, p. 153-158). Springer Netherlands. https://doi.org/10.1007/978-1-4020-5390-0_22
- Hering, D., Feld, C. K., Moog, O., & Ofenböck, T. (2006). Cook book for the development of a Multimetric Index for biological condition of aquatic ecosystems : Experiences from the European AQEM and STAR projects and related initiatives. In M. T. Furse, D. Hering, K. Brabec, A. Buffagni, L. Sandin, & P. F. M. Verdonschot (Éds.), *The Ecological Status of European Rivers : Evaluation and Intercalibration of Assessment Methods* (p. 311-324). Springer Netherlands. https://doi.org/10.1007/978-1-4020-5493-8_22
- IGN. (2017). BD ALTI®Version 2.0 Descriptif de contenu (29 p.). https://geoservices.ign.fr/sites/default/files/2021-07/DC_BDALTI_2-0.pdf
- Laplace-Treyture, C., Chauvin, C., Menay, M., Dutartre, A., & Moreau, L. (2010). Protocole standardisé d'échantillonnage et de conservation du phytoplancton en grands cours d'eau applicable aux réseaux de mesure DCE : document du groupe de travail DCE-ESC Version 2.
- Laplace-Treyture, C., & Feret, T. 2016. Performance of the Phytoplankton Index for Lakes (IPLAC): A multimetric phytoplankton index to assess the ecological status of water bodies in France. *Ecological Indicators* 69: 686–698. <u>https://doi.org/10.1016/j.ecolind.2016.05.025</u>
- Laplace-Treyture, C., Hadoux, E., Plaire, M., Dubertrand, A., & Esmieu, P. 2017. PHYTOBS v3.0: Outil de comptage du phytoplancton en laboratoire et de calcul de l'IPLAC. Version 3.0. Application JAVA (Version 3.0). <u>https://hydrobio-dce.inrae.fr/phytobs-software/</u>
- Larras, F., Coulaud, R., Gautreau, E., Billoir, E., Rosebery, J., & Usseglio-Polatera, P. (2017). Assessing anthropogenic pressures on streams : A random forest approach based on benthic diatom communities. *Science of The Total Environment*, 586, 1101-1112. <u>https://doi.org/10.1016/j.scitotenv.2017.02.096</u>
- Liu, M., Prentice, I. C., ter Braak, C. J. F., & Harrison, S. P. (2020). An improved statistical approach for reconstructing past climates from biotic assemblages. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 476*(2243), 20200346. https://doi.org/10.1098/rspa.2020.0346
- Meyer, A., Alric, B., Dézerald, O., Billoir, E., Coulaud, R., Larras, F., Mondy, C. P., & Usseglio-Polatera, P. (2022a). Linking Micropollutants to Trait Syndromes across Freshwater Diatom, Macroinvertebrate, and Fish Assemblages. *Water*, *14*(8), Art. 8. <u>https://doi.org/10.3390/w14081184</u>

- Meyer, A., Billoir, E., Archaimbault, V., Mondy, C., & Usseglio-Polatera, P. A certain uncertainty: evaluating the effect of index construction methodology and interoperator variability on invertebrate-based stream ecological assessment. *In prep.*
- Meyer, A., Coulaud, R., Vellinger, C., Chardon, T., & Usseglio-Polatera, P. (2020). Diagnostic écologique multi-compartiments des cours d'eau. Action 1 : Définition des conditions de référence pour les Grands Cours d'Eau (GCE) et les Très Grands Cours d'Eau (TGCE), action 2 : Proposition d'une version opérationnelle de l'indice I2M2-GCE et action 3 : Proposition d'un outil diagnostique pour les Grands Cours d'Eau (88 p.). Université de Lorraine (LIEC) pour l'OFB.
- Meyer, A., Prygiel, E., & Laplace-Treyture, C. (2021). DIPCEAU: Développement d'un Indicateur Phytoplancton pour l'évaluation de l'état écologique des Grands Cours d'Eau—Action 1: Revue des indicateurs européens (86 p.). INRAE, Cerema, OFB.
- Meyer, A., Prygiel, E., & Laplace-Treyture, C. (2022b). Phytoplankton communities in French large rivers : A comparative study of the ability of different metrics to highlight anthropogenic pressures [Poster]. I.S.Rivers, Lyon.
- Ministère de la Transition Ecologique et Solidaire (2018a). Arrêté du 17 octobre 2018 modifiant l'arrêté du 25 janvier 2010 établissant le programme de surveillance de l'état des eaux en application de l'article R. 212-22 du code de l'environnement (98 p.).
- Ministère de la Transition Ecologique et Solidaire (2018b). Arrêté du 27 juillet 2018 modifiant l'arrêté du 25 janvier 2010 relatif aux méthodes et critères d'évaluation de l'état écologique, de l'état chimique et du potentiel écologique des eaux de surface pris en application des articles R. 212-10, R. 212-11 et R. 212-18 du code de l'environnement (76 p.).
- Mischke, U., Venohr, M., & Behrendt, H. (2011). Using Phytoplankton to Assess the Trophic Status of German Rivers. *International Review of Hydrobiology*, *96*(5), 578-598. <u>https://doi.org/10.1002/iroh.201111304</u>
- Mischke, U., Wolfram, G., VanWichelen, J., Hlúbiková, D., Belkinova, D., Opatrilova, L., Birk, S., Piirsoo, K., Stanković, I., Varbiro, G., Borics, G., Jekabsone, J., Stankeviciene, J., Virbickas, T., Picińska-Fałtynowicz, J., Panek, P., Rotaru, N., Garbea, R., & Placha, M. (2016). XGIG Large River Intercalibration Exercise – Milestone 6 Report Intercalibrating the national classifications of ecological status for very large rivers in Europe Biological Quality Element : Phytoplankton 2. Version – November 2016 (157 p.).
- Mondy, C. P., & Usseglio-Polatera, P. (2014). Using fuzzy-coded traits to elucidate the non-random role of anthropogenic stress in the functional homogenisation of invertebrate assemblages. *Freshwater Biology*, 59(3), 584-600. <u>https://doi.org/10.1111/fwb.12289</u>
- Mondy, C. P., Villeneuve, B., Archaimbault, V., & Usseglio-Polatera, P. (2012). A new macroinvertebratebased multimetric index (I2M2) to evaluate ecological quality of French wadeable streams fulfilling the WFD demands: A taxonomical and trait approach. *Ecological Indicators*, *18*, 452-467. https://doi.org/10.1016/j.ecolind.2011.12.013
- Nilsson, C. (2005). Fragmentation and Flow Regulation of the World's Large River Systems. *Science*, 308(5720), 405-408. <u>https://doi.org/10.1126/science.1107887</u>
- Oudin, S., & Maupas, D. (2003). Systeme d'évaluation de la qualité de l'eau des cours d'eau. Grilles d'évaluation SEQ-Eau (version 2). (40 p.). Ministère de l'Ecologie et du Développement Durable Agences de l'Eau.
- Padisák, J., Borics, G., Grigorszky, I., & Soróczki-Pintér, É. (2006). Use of Phytoplankton Assemblages for Monitoring Ecological Status of Lakes within the Water Framework Directive : The Assemblage Index. *Hydrobiologia*, 553(1), 1-14. https://doi.org/10.1007/s10750-005-1393-9
- Pianka, E. R. (1974). Niche Overlap and Diffuse Competition. *Proceedings of the National Academy of Sciences*, 71(5), 2141-2145. <u>https://doi.org/10.1073/pnas.71.5.2141</u>
- Prygiel, E., Lasseron, F., Laplace-Treyture, C., & Meyer, A. (2021). Développement d'un indicateur phytoplancton très grands cours d'eau : Présentation et bilan de la base de données nationales (39 p.).
 QGIS Development Team. (2020). QGIS version 3.16.
- R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. <u>https://www.R-project.org/</u>
- Rao, C. R. (1982). Diversity and dissimilarity coefficients : A unified approach. *Theoretical Population Biology*, 21(1), 24-43. <u>https://doi.org/10.1016/0040-5809(82)90004-1</u>
- Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L., & Melo, S. (2002). Towards a functional classification of the freshwater phytoplankton. *Journal of Plankton Research*, 24(5), 417-428. https://doi.org/10.1093/plankt/24.5.417
- Shannon, C. E. (1948). A mathematical theory of communication. *The Bell System Technical Journal*, 27, 379-423 and 623-656.
- Schmera, D., Podani, J., Heino, J., Erős, T., & Poff, N. L. (2015). A proposed unified terminology of species traits in stream ecology. *Freshwater Science*, *34*(3), 823-830. <u>https://doi.org/10.1086/681623</u>

- Tachet, H., Richoux, P., Bournaud, M., & Usseglio-Polatera, P. (2010). Invertébrés d'eau douce : Systématique, biologie, écologie (Nouvelle éd. revue et augmentée). CNRS éd.
- ter Braak, C. J. F., & Juggins, S. (1993). Weighted averaging partial least squares regression (WA-PLS): An improved method for reconstructing environmental variables from species assemblages. In H. van Dam (Éd.), *Twelfth International Diatom Symposium* (p. 485-502). Springer Netherlands. https://doi.org/10.1007/978-94-017-3622-0_49
- ter Braak, C. J. F., & van Dam, H. (1989). Inferring pH from diatoms : A comparison of old and new calibration methods. *Hydrobiologia*, *178*(3), 209-223. <u>https://doi.org/10.1007/BF00006028</u>
- Usseglio-Polatera, P., Bournaud, M., Richoux, P., & Tachet, H. (2000). Biomonitoring through biological traits of benthic macroinvertebrates : How to use species trait databases? In M. Jungwirth, S. Muhar, & S. Schmutz (Éds.), Assessing the Ecological Integrity of Running Waters (p. 153-162). Springer Netherlands. https://doi.org/10.1007/978-94-011-4164-2_12
- VanDerWal, J., Falconi, L., Januchowski, S., Shoo, L., & Storlie, C. (2019). SDMTools : Species Distribution Modelling Tools : Tools for processing data associated with species distribution modelling exercises (R package version 1.1-221.2). <u>https://CRAN.R-project.org/package=SDMTools</u>
- Wasson, J.-G., Chandesris, A., Pella, H., & Blanc, L. (2002). Les hydro-écorégions de France métropolitaine—Approche régionale de la typologie des eaux courantes et éléments pour la définition des peuplements de référence d'invertébrés.
- Wasson, J.-G., Chandesris, A., Pella, H., Sauquet, E., & Mengin, N. (2006). Appui scientifique à la mise en oeuvre de la Directive Européenne Cadre sur l'Eau. Typologie des cours d'eau de France métropolitaine.
- Willby, N., Birk, S., Poikane, S., & van de Bund, W. (2014). Water Framework Directive intercalibration manual: Procedure to fit new or updated classification methods to the results of a completed intercalibration. Publications Office. <u>https://data.europa.eu/doi/10.2788/37057</u>
- Zelinka, M., & Marvan, P. (1961). Zur Präzisierung der biologischen Klassifikation der Reinheit fliessender Gewässer. *Arch. Hydrobiol.*, *57*, 389-407.

Annexes

Sommaire des annexes

A1. Acquisition des données complémentaires	_ p.72
A1.1 Surface du bassin versant	_ p.72
A1.2 Altitude	_p.73
A1.3 Débits spécifiques	_p.73
A1.4 Rangs de Strahler	_ p.73
A2. Rappels sur la typologie française	_ p.74
A3. Facteurs structurant les communautés phytoplanctoniques	_p.75
A4. Liste des stations du jeu de données de développement	_ p.77
A5. Distribution des valeurs de l'ICS	_ p.82
A6. Liste taxonomique des genres contribuant aux métriques MG-P et MG-A	_p.83
A7. Liste taxonomique des espèces contribuant à la métrique MS-N	_ p.90
A8. Classes d'état biologique pour l'IPHYGE et ses quatre métriques	
constitutives	p.100
A1. Acquisition des données complémentaires

La bancarisation des données floristiques et physico-chimiques a été complétée par une phase d'acquisition de données descriptives de l'intégralité des stations présentes dans notre jeu de données de développement afin de réaliser des analyses complémentaires (par ex. Meyer et al. 2021) et la future intercalibration européenne de l'IPHYGE.

A1.1 Surface du bassin versant

Les surfaces des bassins versants topographiques (km²), c'est-à-dire prenant uniquement en compte les écoulements de surface, des stations suivies par les Agences de l'Eau pour le compartiment phytoplancton ont été calculées à partir d'un Modèle Numérique de Terrain (MNT). Deux MNT différents ont été utilisés : les BD Alti® de l'IGN (V2 ; IGN 2017) avec des mailles de 25 et 75 m.

Dans une première étape les dépressions locales de ces MNT ont été comblées numériquement afin d'éviter aux algorithmes de délinéation des bassins versants de rester bloqués dans ces minima topographiques locaux. La fonction « *Fill sinks (wang & liu)* » (SAGA > Terrain Analysis – Hydrology) de la boîte à outils de traitements de QGIS (version 3.16 ; QGIS Development Team 2020) a été utilisée pour réaliser ce pré-traitement des données topographiques.

Les calculs de l'étendue des bassins versants ont ensuite été réalisés à l'aide de la fonction « *Upslope area* » (SAGA > Terrain Analysis – Hydrology) de la boîte à outils de traitements de QGIS. Ces calculs ont été automatisés sous R (R Core Team 2022), à l'aide d'une librairie (RSAGA ; Brenning et al. 2018) permettant l'utilisation de cette fonction directement au sein du logiciel R. La fonction « *Upslope area* » donne comme résultat un fichier *raster* présentant pour chaque maille du MNT une valeur non-nulle lorsque cette maille appartient au bassin versant d'un exutoire (une station) donné. La surface des bassins versants a donc été simplement obtenue en multipliant le nombre de mailles possédant des valeurs non-nulles par la surface d'une maille (25 x 25 ou 75 x 75 m², selon le MNT utilisé). La surface obtenue, exprimée en m², est ensuite convertie en km².

L'intégralité des bassins versants obtenus avec cette méthode a été vérifiée afin de confirmer la justesse des valeurs obtenues. Lorsque cela n'était pas le cas, la délinéation des bassins versants concernés a été corrigée manuellement, en soustrayant ou additionnant les éventuels surfaces en trop/manquantes, respectivement. Dans de très rares cas (souvent des stations localisées dans des régions avec de très/trop faibles pentes), il a été nécessaire de délimiter les bassins versants à la main en suivant les lignes de crête.

A1.2 Altitude

L'altitude des stations a été lue à partir de leurs coordonnées géographiques sur le MNT BD Alti® de l'IGN (V2 ; IGN 2017), avec une maille de 25 m.

A1.3 Débits spécifiques

Les valeurs des débits spécifiques (L.s⁻¹.km⁻²) des stations avec des surfaces de bassin versant supérieures à 5000 km² ont été obtenues à partir des moyennes historiques disponibles sur le site <u>https://hydro.eaufrance.fr/.</u> Ce site bancarise les données hydrométriques et hydrologiques des cours d'eau français. Les stations de mesure ne correspondent pas forcément à nos stations. Il a donc été décidé de récupérer ces valeurs de débits spécifiques sur les stations Vigicrue (i) localisées sur les mêmes rivières, (ii) les plus proches de nos stations, (iii) dans la mesure du possible, non-influencées par des affluents, et (iv) avec des données historiques disponibles. Les codes des stations Vigicrue ayant permis d'obtenir ces données sont précisés pour chacune des stations de notre jeu de données (cf. Annexe A4).

A1.4 Rangs de Strahler

Les rangs de Strahler ont été récupérés à partir d'un jeu de données de la BD Carthage® 2010 amendé avec l'ordination de Strahler. Ce jeu de données a été téléchargé depuis le site « *data.eaufrance.fr* », grâce au lien suivant :

http://www.data.eaufrance.fr/jdd/dec8a000-d799-4438-bfb9-77004729eebb

Ces rangs de Strahler ne sont pas exacts, car générés automatiquement, et il a été nécessaire de les corriger *a posteriori* pour coller à la typologie HER1 de nos stations. Chaque classe de taille de la typologie HER1, de TG à TP, correspond à des rangs de Strahler précis, et ce en fonction de l'Agence de l'Eau (cf. le Tableau A1.1 cidessous). Les rangs de Strahler considérés comme erronés ont ainsi été corrigés et remplacés par le rang le plus proche, numériquement parlant, correspondant à la classe de taille de la station considérée.

Tableau A1.1 : correspondances entre les classes de taille des cours d'eau et leur rang de Strahler, er
fonction de l'Agence de l'Eau. TG = Très Grand, G = Grand, M = Moyen, P = Petit et TP = Très Petit
D'après Wasson et al. 2006.

Agences de l'eau	TG	G	Μ	Ρ	ТР
Agence de l'eau : Loire Bretagne	8, 7	6	5	4	3, 2 et 1
Autres Agences de l'eau	8, 7 et 6	5	4	3	2 et 1

A2. Rappels sur la typologie française

L'identification des types de masse d'eau peut se faire sur la base de deux systèmes typologiques, telle que proposée par la DCE (Figure A2.1 ; Wasson et al. 2002). Le Système A est une typologie basée sur une approche régionalisée prenant en compte des écorégions, caractérisées à partir des communautés biologiques aquatiques et à partir de l'altitude, de la géologie et de la dimension des bassins versants. Le Système B est une typologie indépendante de la biologie, puisque basée uniquement sur des paramètres abiotiques obligatoires (localisation, altitude, géologie, dimension du bassin versant), pouvant être croisés avec des paramètres optionnels (par ex. hydro-géomorphologie, chimie, climat) (Figure A2.1).

La typologie française des cours d'eau, développée par Wasson et al en 2002, se base sur une approche hybride entre les deux systèmes A et B. En effet, il s'agit d'une approche régionalisée, mais s'inscrivant dans l'approche de classification du Système B, puisqu'utilisant l'intégralité des paramètres abiotiques obligatoires de ce système, ainsi que bon nombre de paramètres optionnels (Wasson et al 2002). Cette typologie a ainsi permis de caractériser 22 hydro-écorégions de rang 1 (= HER1). La typologie des cours d'eau français est la combinaison de ces HER avec une classe de taille du cours d'eau, de Très Petit (TP) à Très Très Grand (TTG), en fonction des rangs de Strahler. Par ex. le type TP22 désigne les Très Petits cours d'eau des Ardennes. Cette typologie peut être affinée en détaillant l'éventuelle influence d'un type voisin sur la chimie de l'eau (par ex. si le bassin versant d'une rivière est principalement localisé dans cet autre type). Cet autre type est appelé type exogène et est indiqué à la suite du code de base de l'HER1 : par ex. TG9/21.

DCEE : Typologie	Paramètres obligatoires :
Système B Classification	Coordonnées géographiques Altitude Géologie + Dimension du bassin
Système A Régionalisation Paramètres régionaux : Ecoregions : biogéographie Altitude (3 classes) Géologie (3 classes) + Dimension du bassin: (4 cl.)	Paramètres optionnels Morphologie, Géométrie (largeur, prof., pente) Substrat Hydrologie, Energie du CE Chimie Température, Précipitations

Figure A2.1 : les deux systèmes typologiques proposés par la DCE (figure tirée de Wasson et al. 2002).

A3. Facteurs structurant les communautés phytoplanctoniques

Une des premières questions soulevées au début du projet DIPCEAU fut de savoir quels GCE inclure au sein du jeu de données de développement. En effet le protocole développé par Laplace-Treyture et al. (2010) afin de réaliser le prélèvement du phytoplancton dans les GCE a été appliqué de manière générale par les Agences de l'Eau et par leurs prestataires dans la plupart des cours d'eau profonds dans lesquels le suivi du phytoplancton aurait pu se révéler pertinent. Cette application générale présente le mérite de nous avoir permis de constituer un jeu de données important en amont du développement du nouvel indicateur (Prygiel et al. 2021). Ainsi, des données ont été produites à l'échelle nationale pour des « GCE » de toutes classes de taille (de TP à TTG) et de toutes natures (MEN, MEFM et MEA), alors même que le développement de l'indicateur ne concernait techniquement que huit types pertinents, définis pour les classes de tailles « Très Grands (TG) » (i.e. TG9, TG9/21, TG10-15/4, TG11/3-21, TG14/3-11, TG15, TG22/10 et TTGL).

L'objectif était d'avoir un jeu de données de développement présentant suffisamment de stations et de situations dégradées par des pressions anthropiques, principalement les matières phosphorées, afin d'observer un gradient de pression permettant le développement de métriques qui répondent de manière optimale à ce même gradient. Pour cela il a été nécessaire d'étendre le jeu de données de développement à des stations n'appartenant pas aux huit types pertinents, et donc potentiellement de tailles et de natures différentes. Néanmoins nous avons fait le choix d'essayer de garder une certaine cohérence écologique dans ce jeu de données, c'est-à-dire de ne garder que les stations qui ne présentent pas une structure de leur communauté phytoplanctonique fondamentalement différentes de celles des autres stations incluses dès le départ (i.e. des GCE de nature MEN et de taille TG) dans le jeu de données, à l'exclusion des facteurs hydrogéographiques (i.e. des types HER1).

Deux analyses ont ainsi été réalisées afin d'identifier si les classes de taille et la nature des cours d'eau (MEN et MEFM) étaient des facteurs déterminants. Les MEA avaient d'emblée été écartées du jeu de données, car nous avions considéré que leur caractère lentique était un facteur potentiellement très discriminant⁴.

Les résultats de la première analyse, une analyse factorielle des correspondances (Figure A3.1), montrent que le principal facteur expliquant la structure des communautés phytoplanctoniques est géographique : ainsi, la projection des OPCA sur le premier plan factoriel oppose les OPCA localisées dans le bassin versant de la Saône et du Doubs (TG15 ; score négatif sur l'axe 1) aux autres OPCA, et l'axe 2 oppose principalement les OPCA réalisées dans les stations du sud-ouest de la France (les types appartenant à l'HER14 ; score positif) aux autres OPCA. Généralement, les OPCA réalisées dans des stations de tailles différentes mais localisées dans la même HER1 sont regroupées ensemble (voir par exemple la position des types appartenant aux HER 12 et 14), montrant donc que la localisation

⁴ Le stage de Maxence Dumortier a cependant permis de montrer que l'IPHYGE peut être utilisé dans l'évaluation de l'état écologique des MEA (Dumortier 2022).

hydrogéographique des stations est un facteur plus important de la structure des communautés phytoplanctoniques que les classes de taille.

Les résultats de la deuxième analyse confirment ces premières observations. Nous avons réalisé une partition de la variance suite à la réalisation d'une ANOVA post-CCA afin d'estimer l'importance de trois facteurs dans la structure des communautés phytoplanctoniques. Nous avons limité cette analyse aux OPCA réalisées dans les GCE MEN et MEFM et pour des classes de taille TTG, TG et G. le facteur HER de niveau 1 explique ainsi à lui seul 75,2% de la variance. Les classes de taille expliquent 17,4% de la variance⁵ et la nature des cours d'eau uniquement 7,4%. Les résultats de cette analyse confirment donc que la localisation hydrogéographique des stations est le premier facteur structurant les communautés phytoplanctoniques.

Figure A3.1 : projection des OPCA (points noirs) sur le premier plan factoriel d'une analyse factorielle des correspondances des données phytoplanctoniques, après une transformation de Hellinger des données de biovolume et l'exclusion des taxons les plus rares (avec une fréquence d'occurrence totale strictement inférieure à 10) et des relevés les plus atypiques. Quarante-quatre OPCA ont ainsi été exclues lors d'analyses préliminaires en fonction de leur position extrême le long des deux premiers axes factoriels. Les étiquettes indiquent les centres de gravité des types des OPCA. Les types en rouge sont les types pertinents pour le développement du nouvel indicateur. N = 1161 OPCA.

⁵ Les mêmes analyses ont aussi été réalisées en incluant des classes de taille plus petite (GM, puis M). Bien que la part de la variance expliquée par la taille augmentait en prenant en compte ces stations plus petites, la conclusion restait la même.

A4. Liste des stations du jeu de données de développement

Tableau A4.1 : Liste et caractéristiques des stations appartenant au jeu de données de développement. Se référer à l'annexe A1 pour le détail de l'acquisition de ces données. N = 160 stations.

Code station	Cours d'eau	Station	Туре	Nature	Classe de taille	Rang de Strahler	Surface du bassin versant (km²)	Débit spécifique (L.s ⁻¹ .km ⁻²)	Station Vigicrue associée
1004000	LA SAMBRE CANALIS	AVAL DU PONT D963	GM22	MEFM	GM	5	1202		
1016000	L'ESCAUT CANALIS	PONT DE LA CD 50	M20	MEFM	М	4	1565		
1037000	LA SCARPE CANALIS	AMONT DE L'ECLUSE DANS LES 2 BRAS DE DECHARGE	M9	MEFM	М	4	526		
1041000	LA SCARPE CANALIS	PONT DU CD 66	M20	MEFM	М	4	1290		
1046000	LA SENS	PONT DE LA RN 956	M9	MEFM	М	4	724		
1056000	LA LYS CANALIS	PONT DE LA BRETELLE D'AUTOROUTE	GM20	MEFM	GM	5	1667		
1059000	LA LYS CANALIS	PONT DU CD 9	GM20	MEFM	GM	5	2636		
1063900	LE CANAL D'AIRE	PONT DU CD 194 - AIRE SUR LA LYS	M20	MEFM	М	4			
1078000	LA DEULE CANAL	2	GM20	MEFM	GM	4			
1079000	LA DEULE CANAL	AVAL DE L'ECLUSE DE DON SUR LA D 41	GM20	MEFM	GM	4	162		
1082000	LA DEULE CANAL	AMONT DE L'ECLUSE	GM20	MEFM	GM	4	666		
1102000	LE CANAL DE L'AA	PONT DE LA D 928	M20	MEFM	М	4	532		
1104000	LE CANAL DE L'AA	PONT DU CD 229	GM20	MEFM	GM	4	753		
1108000	CANAL DE BERGUES	CAPPELLE LA GRANDE	GM20	MEFM	GM	4			
1129000	LA SOMME CANALIS	PONT RELIANT EPAGNE	M9A	MEFM	М	4	5630	6,2	E6470910
1130000	LA SOMME CANALIS	PONT DE LA ROUTE RELIANT CAMBRON	M9A	MEFM	М	4	5926	6,5	E6480930
2060750	LA MOSELLE	LA MOSELLE	TG10-15/4	MEFM	TG	6	3776	18,7	A5730610
2076800	LA MOSELLE	LA MOSELLE	TG10-15/4	MEFM	TG	6	7351	16,2	A7010610
2094900	LA MOSELLE	LA MOSELLE	TG10-15/4	MEFM	TG	6	11539	12,9	A8500610
2100150	LA SARRE	LA SARRE	G10/4	MEFM	G	5	2762		
2118000	LA MEUSE	LA MEUSE	TG22/10	MEFM	TG	7	7322	14,0	B5600010
2124000	LA MEUSE	LA MEUSE	TG22/10	MEFM	TG	7	9315	13,6	B7200000
3011300	LA SEINE A CONFLANS-SUR- SEINE 1	PONT RD 48	G9	MEN	G	5	8735	8,7	H1700010
3012100	LA SEINE A COURCEROY 1	Pont D168	G9	MEN	G	5	9304	8,7	H1700010
3014000	LA SEINE A MONTEREAU-FAULT- YONNE 1	PONT RN 5 BIS	G9	MEN	G	5	10340	8,7	H1700010
3032000	L'YONNE A MONTEREAU-FAULT- YONNE 1	PONT RN 5 BIS	G9	MEFM	G	5	10880	8,5	H2721010
3048000	LA SEINE A SAINT- FARGEAU- PONTHIERRY 1	PONT RD 50	TG9	MEN	ТG	7	26602	8,1	H3930020
3063000	LA SEINE A ABLON- SUR-SEINE 2	BARRAGE D'ABLON,HORS DE L'ECLUSE	TG9	MEFM	TG	7	29776	7,0	H4340020
3084470	LA SEINE A MAISONS- LAFFITTE 1	PONT RN 308	TG9	MEFM	TG	7	44770	7,2	H5920010
3091000	LA MARNE A FRIGNICOURT 1	PONT D396	G9	MEN	G	5	3370	12,4	H5091010
3098000	LA SAULX A VITRY- EN-PERTHOIS 1	PONT RN 382 ,A LA STATION LIMNIMETRIQUE	M9	MEN	М	4	2134		
3104000	LA MARNE A MATOUGUES 1	PONT DANS LE VILLAGE	G9	MEN	G	5	6580	11,5	H5201010
3105462	LA MARNE A DAMERY 1	PONT RD 22	G9	MEN	G	5	7656	11,6	H5231030
3105500	LA MARNE A REUIL 1	PONT CD 601	G9	MEN	G	5	7685	11,6	H5231030
3107000	LA MARNE A JAULGONNE 2	PONT D330	G9	MEFM	G	5	8019	11,6	H5231030
3108098	LA MARNE A AZY- SUR-MARNE 1	PONT RD 151 ,AMONT CONFLUENCE DOLLOIR	G9	MEFM	G	5	8619	10,5	H5321010

Code station	Cours d'eau	Station	Туре	Nature	Classe de taille	Rang de Strahler	Surface du bassin versant (km²)	Débit spécifique (L.s ⁻¹ .km ⁻²)	Station Vigicrue associée
3109000	LA MARNE A LA FERTE-SOUS- JOUARRE 1	PONT RN 3	G9	MEFM	G	5	8901	10,5	H5321010
3112480	LA MARNE A CHARENTON-LE- PONT 2	PONT DE CHARENTON	G9	MEFM	G	5	12919	10,5	H5841070
3127370	LA SEINE A MERICOURT 4	AMONT IMMEDIAT DU BARRAGE	TG9	MEFM	TG	7	62869	7,8	H7900010
3134000	L'OISE A COMPIEGNE 1	PONT RN 31	TG9	MEFM	TG	6	13042	7,6	H7611010
3135000	L'OISE A VERBERIE 1	PONT D 26	TG9	MEFM	TG	6	13477	7,6	H7611010
3136000	L'OISE A PONT- SAINTE-MAXENCE 2	PONT N 17	TG9	MEFM	TG	6	13587	7,6	H7611010
3138000	L'OISE A BEAUMONT- SUR-OISE 1	PONT D 21	TG9	MEFM	TG	6	16222	7,6	H7611010
3138800	L'OISE A MERIEL 1	PONT ENTRE BUTRY SUR OISE ET MERIEL	TG9	MEN	TG	6	16624	7,6	H7611010
3152000	L'AISNE A CONDE- SUR-AISNE 1	PONT RD 531	G9	MEN	G	5	6446	8,1	H6501020
3156000	L'AISNE A CHOISY-AU- BAC 1	PONT RD 130	G9	MEFM	G	5	7954	8,1	H6501020
3174000	LA SEINE A POSES 2	AMONT BARRAGE DE POSES	TG9	MEFM	TG	7	65077	8,3	H8110010
3191700	L'EURE A CAILLY- SUR-EURE 1	PONT D 69 - Acc	M9	MEN	М	4	4643	3,9	H9331010
3193000	L'EURE A LERY 1	PONT D 110	M9-A	MEN	М	4	6012	4,2	H9501010
3214000	L'ARQUES A DIEPPE 1	SAINT PIERRE PONT VL A DIEPPE	M9-A	MEFM	М	4	1035		
3222275	LA RISLE A PONT- AUDEMER 2	CHATEAU DE LA VICOMTE	M9-A	MEN	М	4	2239		
3228000	LA TOUQUES A SAINT-MARTIN-AUX- CHARTRAINS 1	PONT D 58 A RONCHEVILLE	M9	MEN	М	4	1190		
3231000	LA DIVES A SAINT- SAMSON 1	PONT N175	M9	MEFM	М	4	1639		
3237800	L'ORNE A LOUVIGNY 1	PONT SNCF	G9	MEFM	G	5	2583		
3247700	L'AURE A LA CAMBE 1	LE MARAIS,PONT D 113	M9	MEFM	М	4	674		
3252500	LA VIRE A PONT- HEBERT 3	AVAL BARRAGE,LES CLAIES DE VIRE	M12-B	MEN	М	4	1045		
3254035	LA DOUVE A NEHOU 2	PONT D 42, La Laiterie	M9	MEFM	М	4	318		
3266975	LA SIENNE A QUETTREVILLE-SUR- SIENNE 2	AMONT PRISE D'EAU,LES LANDES	M12-B	MEN	М	4	558		
3271000	LA S	PONT D 104 E	M12-B	MEN	М	4	328		
3272685	LA S	PONT D 178 A SIGNY	M12-B	MEN	М	4	786		
4004100	LOIRE	AUBAIGNES	G3	MEN	G	6	3450	11,5	K0550010
4006000	LOIRE	AVAL PONT CD8 - RG	G3	MEFM	G	6	3866	9,4	K0690010
4011300	LOIRE	AVAL BALBIGNY - RD AU NIVEAU DES GRAVIERES ET PLAN D'EAU	G3	MEFM	G	6	5998	10,2	K0790010
4013000	LOIRE	PONT DE VILLEREST (RG)	G17/3-21	MEFM	G	6	6691	8,3	K0910050
4021000	LOIRE	AVAL DIGOIN - HAMEAU DE VARENNE	TTGL	MEN	TTG	6	12681	9,3	K1180010
4023100	LOIRE	PONT LE FOURNEAU	TTGL	MEN	TTG	6	14111	10,0	K1440010
4024000	LOIRE	PONT D978A - AMONT DU CANAL	TTGL	MEN	TTG	6	14880	9,1	K1900010
4026000	LOIRE	SOUS PONT SNCF SAUF HAUTES EAUX PONT RN7	TTGL	MEN	TTG	7	18455	10,0	K1930010
4044700	ALLIER	PONT D76 (RG)	TG17/3-21	MEN	TG	7	14229	9,8	K3650810
4045900	LOIRE	PONT DE FOURCHAMBAULT	TTGL	MEN	TTG	8	32878	9,5	K4000010
4046800	LOIRE	PONT D2 RIVE DROITE POUR EVITER INFLUENCE VAUVISE	TTGL	MEN	TTG	8	34346	8,4	K4080010
4048000	LOIRE	PONT D940 - AMONT GIEN	TTGL	MEN	TTG	8	35925	9,5	K4180020
4050000	LOIRE	PONT N721	TTGL	MEN	TTG	8	36888	9,1	K4350020
4051400	LOIRE	PONT D18 - AVAL CONFLUENCE LOIRET	TTGL	MEN	TTG	8	37728	9,1	K4350020
4051850	LOIRE	PONT D112	TTGL	MEN	TTG	8	38101	9,3	K4470010

Code station	Cours d'eau	Station	Туре	Nature	Classe de taille	Rang de Strahler	Surface du bassin versant (km²)	Débit spécifique (L.s ⁻¹ .km ⁻²)	Station Vigicrue associée
4053000	LOIRE	PONT DE CHAUMONT SUR LOIRE	TTGL	MEN	TTG	8	41396	8,3	K4800010
4056000	LOIRE	PONT S.N.C.F AMONT CONFLUENCE CHER	TTGL	MEN	TTG	8	42810	8,1	K4900030
4064000	CHER	AVAL ST AMANT MONTROND - PONT D92	TG9/21	MEN	TG	7	3995	7,9	K5400920
4065000	CHER	AMONT VIERZON FOECY - PONT D30	TG9/21	MEN	TG	7	4576	7,2	K5490900
4068200	CHER	Pont D128	TG9	MEN	TG	7	9352	6,7	K6220910
4070300	CHER	PONT DE ST AIGNAN - N675	TG9	MEN	TG	7	12819	6,4	K6500910
4072000	CHER	PONT DE SAVONNIERES - FACE EGLISE	TG9	MEFM	TG	7	13758	6,6	K6710910
4075000	INDRE	PONT DE MARNAY - D7	G9	MEN	G	6	3308		
4075500	LOIRE	RD PONT D749 hors influence Indre et Centrale Chinon-Avoine	TTGL	MEN	TTG	8	56708	7,3	K6830020
4085500	CLAIN	PONT NIVEAU DE NAINTRE - BRAS SUD	M9	MEN	М	5	3213		
4097200	CREUSE	PONT RN10	TG9/21	MEN	TG	7	9589	9,2	L6020710
4097600	VIENNE	PONT D757 - BRAS NORD	TG9/21	MEN	TG	7	20353	8,3	L7220610
4098200	VIENNE	PONT D7	TG9/21	MEN	TG	7	21184	8,3	L7220610
4100000	THOUET	PONT DU CIRQUE DE MISSE	M12-A	MEN	М	5	1099		
4102500	THOUET	PONT D205	G12-A	MEN	G	6	3296		
4103200	LOIRE	PONT DE LA D55	TTGL	MEN	TTG	8	84987	7,6	L8700010
4108000	LOIR	PONT DE NAVEIL - AVAL DE VENDOME	M9	MEN	М	5	4230	3,2	M1151610
4108500	LOIR	Pont D10	M9	MEN	М	5	6562	4,0	M1341610
4110000	LOIR	PONT LEZIGNE	M9	MEN	М	5	8058	4,0	M1531610
4119000	SARTHE	SPAY - ECLUSE	G9	MEFM	G	6	5382	6,6	M0500620
4123000	SARTHE	PONT D74 - CAMPING DE L'ECLUSE	G9	MEFM	G	6	7922	6,4	M0680610
4123750	MAYENNE	PONT D214 - LD CHATEAU DE TORCE	M12-B	MEN	М	5	854	10,9	M3230920
4127000	JOUANNE	PONT DE LA RD21	M12-A	MEN	М	5	420		
4128490	MAYENNE	PRISE D'EAU POTABLE VERS LE LIEU-DIT CHAUDURE	G12-A	MEFM	G	6	3860	9,3	M3600910
4132000	OUDON	LD LA JAILLETTE - PONT DE LA D216	M12-A	MEFM	М	5	1433		
4132500	MAYENNE	PONT A JUIGNE BENE	G12-A	MEFM	G	6	5865	9,5	M3630910
4133000	MAINE	PONTON ENTRE PT D112 ET PT SNCF- AVAL ANGERS	G12-A	MEFM	G	6	22380	5,9	M4101921
4134000	LAYON	LD BEZIGON - PONT DE LA D209	M12-A	MEN	М	5	941		
4134700	LOIRE	PONT D15	TTGL	MEN	TTG	8	110403	7,7	M5300010
4139050	SEVRE NANTAISE	LD POUPET	M12-A	MEN	М	5	578		
4145000	MAINE	LD PONT CAFFINEAU	M12-A	MEN	М	5	682		
4146000	SEVRE NANTAISE	PONT DE LA D15 - VERTOU LE CHENE	G12-A	MEN	G	6	2350		
4152000	VIE	PONT D754 AU LD LE PAS OPTON	M12-A	MEFM	М	5	357		
4179500	AULNE	STATION DE POMPAGE - AMONT CHATEAULIN	G12-B	MEFM	G	6	1504		
4194000	BLAVET	AMONT D'HENNEBONT - TREBIHAN	G12-B	MEFM	G	6	1975		
4196449	OUST	BOIS DE BAS	M12-A	MEFM	М	5	952		
4199200	OUST	PONT - ROUTE ST GRAVE A ST MARTIN	M12-A	MEFM	М	5	2502		
4204300	VILAINE	AU LD PONT BRIAND - AMONT RENNES	M12-A	MEN	М	5	882	7,5	J7090630
4209000	MEU	PONT MORDELLES / N24	M12-A	MEN	М	5	779		
4209990	VILAINE	PONT REAN D577	G12-A	MEFM	G	6	2501	7,2	J7500610

Code station	Cours d'eau	Station	Туре	Nature	Classe de taille	Rang de Strahler	Surface du bassin versant (km²)	Débit spécifique (L.s ⁻¹ .km ⁻²)	Station Vigicrue associée
4212700	SEMNON	LD GUE DE LA JAUNAIS	M12-A	MEN	М	5	501		
4214495	CHERE	LD TRIGUEL	M12-A	MEN	М	5	449		
4215750	VILAINE	AU PONT DU GRAND PAS	G12-A	MEFM	G	6	5736	5,7	J7900060
4216000	VILAINE	AVAL DE REDON - PONT DE CRAN	G12-A	MEFM	G	6	10201	7,1	J9300611
5002500	La Boutonne	Pont de la D215	M9	MEN	М	4	1299		
5006900	La Charente	Pont de la D127	G9	MEFM	G	5	7500	8,8	R5200010
5007600	La Seugne au chateau Renaud	Aval du moulin de La Vergne, en aval de Pons	M9	MEN	М	4	910		
5013900	La Charente	Pont de St-Simeux	G9	MEFM	G	5	4478	11,4	R3090020
5015000	La Charente au Pont de La Meure	Pont de La Meure, de la D41	G9	MEFM	G	5	4299	11,4	R3090020
5015900	La Touvre	Pont de la N737	M9	MEFM	М	4	137		
5018000	La Charente	Pont de Roffit, amont du confluent avec la Touvre	G9	MEN	G	5	3864	7,9	R2240010
5019000	La Charente	Pont de Lux	G9	MEN	G	5	2914	6,5	R2000000
5021000	La Tardoire	Pont de Vouthon en aval de Montbron	M9-10/21	MEFM	М	4	431		
5024000	La Charente	Pont de la D105	M9	MEN	М	4	509	12,4	R0110010
5031900	La Dronne	Pont de la D139	M14/3-11	MEN	М	4	1935		
5038000	L'Isle	Pont de la D3E4	M14/3-11	MEFM	М	4	3376		
5046000	La Dordogne	Pont de Pessac	TG14/3-11	MEN	TG	7	15015	16,4	P5550010
5046740	La Dordogne	Par la D130 au niveau du lieu dit Paponats	TG14/3-11	MEN	TG	7	14728	16,4	P5550010
5047000	La Dordogne en aval de Bergerac (Pont de la D4)	Pont de la D4	TG14/3-11	MEN	TG	7	14644	16,4	P5550010
5047600	La Dordogne	Pont reliant la N660	TG14/3-11	MEN	TG	7	13952	19,9	P5140010
5048210	La Dordogne	Pont de la D31	TG14/3-11	MEN	TG	7	13474	16,3	P5000002
5079100	Le Dropt	Moulin de Loubens, pont du CD216E de Le Puy	GM14	MEN	GM	5	1205		
5081000	La Garonne	Pont du CD3 pr	TG14/3-11	MEN	TG	8	51209	11,5	O9000010
5083580	La Garonne au Mas d'Agenais	Pont de la D6 au Mas d'Agenais	TG14/3-11	MEN	TG	8	50492	11,5	O900010
5084000	Le Lot	Pont de la N11	TG14/3-11	MEFM	TG	7	11599	14,1	O8481520
5118950	La Garonne	Pont de Coudol	TG14/1	MEFM	TG	8	31026	12,1	O6140010
5119000	Le Tarn	Pont de Moissac	TG14/3-11	MEFM	TG	8	15831	15,4	O4931010
5120000	L'Aveyron	Pont de la N659	G14/3	MEN	G	5	5256	10,2	O5882510
5125000	Le Viaur	Pont du CD239	M3	MEN	М	4	1501		
5142100	Le Tarn	Ponton de l'Aviron club d'Albi	TG14/3-11	MEFM	TG	6	4751		
5152000	La Garonne	Pont de la D12	TG14/1	MEN	TG	6	15009	14,0	O2620010
5153000	La Gimone	Pont de la D14	GM14	MEFM	GM	5	842		
5156950	L'Hers mort au niveau de St-Sauveur	Pont de la D20 de St- Sauveur	GM14	MEFM	GM	5	989		
6005500	SAONE A APREMONT	Pont D 269	TG10-15/4	MEN	TG	6	5433	18,5	U0820010
6011000	SAONE A AUXONNE 1	Pont N 5	TG10-15/4	MEN	TG	6	8797	13,0	U1420001
6017050	SAONE A CHARREY- SUR-SAONE	Pont D 34	TG15	MEN	TG	6	11790	13,0	U1420001
6017070	SAONE A SEURRE	Pont D 973	TG15	MEN	TG	6	11887	13,0	U1420001
6031200	DOUBS A GEVRY	Pont N 5	TG15	MEN	TG	6	5399	23,7	U2722010
6035500	DOUBS A SAUNIERES	Pont D 454	TG15	MEN	TG	6	7911	23,7	U2722010
6037400	SAONE A GERGY	Pont D 439 (D 139)	TG15	MEN	TG	7	20918	17,8	U3310010
6039500	SAONE A OUROUX- SUR-SAONE	Pont D 6	TG15	MEN	TG	7	21565	17,8	U3310010
6045800	SAONE A FLEURVILLE	Pont D 933a - amont imm	TG15	MEN	TG	8	25625	17,8	U3310010

Code station	Cours d'eau	Station	Туре	Nature	Classe de taille	Rang de Strahler	Surface du bassin versant (km²)	Débit spécifique (L.s ⁻¹ .km ⁻²)	Station Vigicrue associée
6053800	SAONE A ST- BERNARD	Pont de Saint Bernard	TG15	MEFM	TG	8	28408	15,7	U4710010
6059500	SAONE A LYON 1	Pont de l'	TG15	MEFM	TG	8	29595	15,7	U4710010
6810010	SAONE A ST- SYMPHORIEN- D'ANCELLES	Pont D 7a (Ain)	TG15	MEN	TG	8	27404	16,3	U4300010

Figure A5.1 : distribution des valeurs normalisées des trois paramètres permettant le calcul de la valeur des ICS (Mischke et al. 2016 et §II.3). N = 1027 OPCA.

La distribution des concentrations normées des trois paramètres inclus dans le calcul de l'ICS, c'est-à-dire les concentrations en chlorures, en azote total et en phosphore total, est présentée dans la Figure A5.1. Pour les chlorures et le phosphore total ces distributions sont relativement symétriques et proches d'une gaussienne. Néanmoins la distribution des concentrations normées en azote total est tronquée, avec une majorité de valeurs égales à un, c'est-à-dire égales ou supérieures à la valeur de référence définie à partir du jeu de données qui a été utilisé lors de l'exercice d'intercalibration (Mischke et al. 2016). L'utilisation de valeurs de référence spécifiques aux données françaises et le remplacement de l'azote total par l'azote Kjeldahl a ainsi permis de calculer une version française de l'ICS, avec un gradient de valeurs plus étendu et non-tronqué, décrivant mieux le gradient des pressions observées pour les grands cours d'eau français.

A6. Liste taxonomique des genres contribuant aux métriques MG-P et MG-A

Tableau A6.1 : profils écologiques (cotes génériques et coefficient de sténoécie pour le phosphore total [PT] et l'azote Kjeldahl [NKJ]) des genres contributifs au calcul des métriques MG-P et MG-A. S = 301 genres pour PT, S = 300 pour NKJ. Code = code des genres (3 premières lettres des codes des taxons) tels que définis dans Phytobs (Laplace-Treyture et al. 2017) et inscrit en tant que code alternatif du Sandre.

Embranchement	Genre	Code	Cote PT	Sténo PT	Cote NKJ	Sténo NKJ
BACILLARIOPHYTA	Acanthoceras	ACN	12,930	0,539	15,131	0,447
BACILLARIOPHYTA	Achnanthes	ACH	15,081	0,887	12,833	0,401
BACILLARIOPHYTA	Achnanthidium	ACD	16,745	0,587	16,405	0,415
BACILLARIOPHYTA	Actinocyclus	ACO	10,108	0,193	14,991	0,292
BACILLARIOPHYTA	Amphora	AMP	15,596	0,403	15,550	0,428
BACILLARIOPHYTA	Asterionella	AST	16,007	0,556	14,441	0,371
BACILLARIOPHYTA	Aulacoseira	AUL	13,385	0,252	11,328	0,153
BACILLARIOPHYTA	Bacillaria	BAC	14,418	0,752	15,298	0,608
BACILLARIOPHYTA	Caloneis	CAL	17,025	1,284	16,876	0,766
BACILLARIOPHYTA	Ceratoneis	CEA	16,273	0,469	17,329	0,487
BACILLARIOPHYTA	Chaetoceros	CHT	8,423	0,242	9,290	0,236
BACILLARIOPHYTA	Cocconeis	COC	15,612	0,799	15,147	0,649
BACILLARIOPHYTA	Conticribra	СОТ	11,095	0,309	12,345	0,441
BACILLARIOPHYTA	Craticula	CRA	11,207	0,299	11,751	0,299
BACILLARIOPHYTA	Cyclostephanos	CYS	15,254	0,515	14,281	0,373
BACILLARIOPHYTA	Cyclotella	CYC	13,983	0,331	13,749	0,325
BACILLARIOPHYTA	Cymatopleura	CYT	14,029	0,359	14,042	0,313
BACILLARIOPHYTA	Cymbella	CYM	15,657	1,219	13,889	0,794
BACILLARIOPHYTA	Denticula	DEN	18,949	2,209	16,637	1,012
BACILLARIOPHYTA	Diadesmis	DIE	17,794	2,152	17,828	1,102
BACILLARIOPHYTA	Diatoma	DIA	15,945	0,934	15,319	0,699
BACILLARIOPHYTA	Diploneis	DIP	17,393	1,477	17,772	1,385
BACILLARIOPHYTA	Discostella	DIS	15,776	0,551	14,891	0,396
BACILLARIOPHYTA	Ellerbeckia	ELL	15,804	1,920	13,624	0,765
BACILLARIOPHYTA	Encyonema	ENC	15,532	1,109	15,875	0,522
BACILLARIOPHYTA	Encyonopsis	ENY	17,250	1,250	16,326	1,122
BACILLARIOPHYTA	Entomoneis	ENO	14,244	0,270	15,238	0,304
BACILLARIOPHYTA	Eolimna	EOL	17,037	0,696	14,887	0,605
BACILLARIOPHYTA	Epithemia	EPI	17,416	0,350	15,734	0,494
BACILLARIOPHYTA	Eunotia	EUN	15,616	1,006	13,812	0,517
BACILLARIOPHYTA	Fallacia	FAL	17,444	0,788	16,164	0,354
BACILLARIOPHYTA	Fragilaria	FRA	15,785	0,466	14,925	0,405
BACILLARIOPHYTA	Frustulia	FRU	16,066	1,537	15,310	1,007
BACILLARIOPHYTA	Geissleria	GES	17,091	2,254	17,756	1,435
BACILLARIOPHYTA	Gomphoneis	GOH	15,213	1,556	15,375	0,737
BACILLARIOPHYTA	Gomphonema	GOM	15,333	0,734	15,213	0,609
BACILLARIOPHYTA	Gyrosigma	GYR	15,847	1,095	15,139	1,043
BACILLARIOPHYTA	Hantzschia	HAN	15,658	1,301	12,280	0,802
BACILLARIOPHYTA	Hippodonta	HIP	15,719	0,518	15,642	0,353

Embranchement	Genre	Code	Cote PT	Sténo PT	Cote NKJ	Sténo NKJ
BACILLARIOPHYTA	Karayevia	KAR	15,999	1,069	16,345	0,470
BACILLARIOPHYTA	Lindavia	LID	14,176	0,368	17,125	0,318
BACILLARIOPHYTA	Luticola	LUT	17,012	1,268	18,237	0,688
BACILLARIOPHYTA	Mayamaea	MAY	14,904	1,188	18,114	1,088
BACILLARIOPHYTA	Melosira	MEL	15,241	0,441	14,849	0,346
BACILLARIOPHYTA	Meridion	MED	17,246	1,581	17,994	1,002
BACILLARIOPHYTA	Nanofrustulum	NAN	13,683	0,917	16,843	1,336
BACILLARIOPHYTA	Navicula	NAV	15,308	0,764	14,981	0,585
BACILLARIOPHYTA	Navigeia	NVI	15,651	1,610	15,881	0,799
BACILLARIOPHYTA	Neidium	NEI	15,942	1,757	15,407	2,028
BACILLARIOPHYTA	Nitzschia	NIZ	15,746	0,632	15,155	0,453
BACILLARIOPHYTA	Odontidium	ODT	14,137	2,384	15,928	0,795
BACILLARIOPHYTA	Pantocsekiella	PAT	16,200	0,540	16,239	0,613
BACILLARIOPHYTA	Pinnularia	PIN	16,952	0,903	16,790	0,529
BACILLARIOPHYTA	Placoneis	PLC	15,604	0,722	14,853	0,530
BACILLARIOPHYTA	Planothidium	PLT	16,466	0,949	16,517	0,752
BACILLARIOPHYTA	Platessa	PLS	15,624	0,974	16,308	0,670
BACILLARIOPHYTA	Praestephanos	PRE	14,930	0,621	16,899	0,442
BACILLARIOPHYTA	Pseudostaurosira	PSS	16,137	0,271	17,020	0,261
BACILLARIOPHYTA	Punctastriata	PUC	17,212	1,317	14,840	1,426
BACILLARIOPHYTA	Puncticulata	PUN	8,685	0,187	11,942	0,220
BACILLARIOPHYTA	Reimeria	REI	16,566	0,577	16,464	0,547
BACILLARIOPHYTA	Rhoicosphenia	RHC	14,249	0,465	15,899	0,402
BACILLARIOPHYTA	Sellaphora	SEA	16,708	1,029	16,709	0,495
BACILLARIOPHYTA	Skeletonema	SKE	15,150	0,458	14,139	0,290
BACILLARIOPHYTA	Stauroneis	STO	18,023	2,524	17,533	1,491
BACILLARIOPHYTA	Staurosira	STS	15,085	0,309	14,631	0,237
BACILLARIOPHYTA	Staurosirella	STU	15,601	0,303	17,184	0,342
BACILLARIOPHYTA	Stephanodiscus	STE	14,144	0,371	13,811	0,346
BACILLARIOPHYTA	Surirella	SUR	14,955	0,639	14,780	0,487
BACILLARIOPHYTA	Tabellaria	ТАВ	13,742	0,295	9,208	0,494
BACILLARIOPHYTA	Thalassiosira	THA	15,117	0,563	14,833	0,373
BACILLARIOPHYTA	Tryblionella	TRY	15,488	0,480	15,520	0,449
BACILLARIOPHYTA	Ulnaria	ULN	15,875	0,640	15,051	0,435
BACILLARIOPHYTA	Urosolenia	URS	17,335	0,531	14,932	0,377
BIGYRA	Bicosoeca	BIO	14,051	0,375	12,787	0,266
BIGYRA	Codomonas	CDM	4,746	0,242	5,072	0,210
CHAROPHYTA	Closterium	CLO	15,671	0,762	14,462	0,294
CHAROPHYTA	Cosmarium	COS	15,528	0,714	15,692	0,411
CHAROPHYTA	Elakatothrix	ELA	17,039	0,530	16,355	0,373
CHAROPHYTA	Euastrum	EUA	15,982	1,226	9,061	0,322
CHAROPHYTA	Mesostigma	MST	15,955	0,302	18,251	0,359
CHAROPHYTA	Spondylosium	SPO	13,470	0,933	18,937	1,565
CHAROPHYTA	Staurastrum	STA	15,956	0,553	16,370	0,340
CHAROPHYTA	Staurodesmus	STD	17,352	0,887	17,129	0,531
CHAROPHYTA	Teilingia	TEI	15,841	1,242	17,423	0,763

Embranchement	Genre	Code	Cote PT	Sténo PT	Cote NKJ	Sténo NKJ
CHLOROPHYTA	Acanthosphaera	ACA	15,226	0,357	15,412	0,309
CHLOROPHYTA	Actinastrum	ACS	13,087	0,336	14,924	0,347
CHLOROPHYTA	Acutodesmus	ACU	15,351	0,401	15,244	0,344
CHLOROPHYTA	Amphikrikos	AMK	10,451	0,356	13,882	0,262
CHLOROPHYTA	Ankistrodesmus	ANK	16,570	0,490	16,354	0,353
CHLOROPHYTA	Ankyra	ANY	17,151	1,059	17,155	0,591
CHLOROPHYTA	Botryococcus	вот	17,422	0,884	18,023	0,377
CHLOROPHYTA	Botryosphaerella	BOR	15,360	0,435	14,341	0,502
CHLOROPHYTA	Carteria	CAR	15,288	0,468	13,773	0,248
CHLOROPHYTA	Catena	CTN	10,293	0,685	11,963	0,371
CHLOROPHYTA	Chlamydomonas	CHL	15,132	0,377	14,011	0,300
CHLOROPHYTA	Chlamydonephris	CDN	17,875	1,286	17,245	0,898
CHLOROPHYTA	Chlorella	CLL	17,214	0,885	15,854	0,531
CHLOROPHYTA	Chlorococcum	CLC	15,749	0,273	14,174	0,256
CHLOROPHYTA	Chlorogonium	CHG	14,849	0,771	12,798	0,399
CHLOROPHYTA	Chloroidium	CLI	15,049	0,212	15,014	0,165
CHLOROPHYTA	Chlorolobion	СНО	14,854	0,352	14,159	0,229
CHLOROPHYTA	Chlorotetraedron	CLT	15,067	0,533	13,367	0,338
CHLOROPHYTA	Choricystis	ССТ	15,498	0,531	13,566	0,368
CHLOROPHYTA	Closteriopsis	CLP	14,303	0,321	12,383	0,289
CHLOROPHYTA	Coelastrum	COE	14,266	0,334	14,133	0,273
CHLOROPHYTA	Coenochloris	CO0	13,098	0,252	12,581	0,198
CHLOROPHYTA	Coenococcus	COU	14,654	0,350	12,823	0,225
CHLOROPHYTA	Coenocystis	COY	14,828	0,495	14,456	0,471
CHLOROPHYTA	Colemanosphaera	CEM	14,901	0,732	14,527	0,644
CHLOROPHYTA	Collodictyon	CLD	15,238	1,335	14,209	0,622
CHLOROPHYTA	Coronastrum	COR	15,181	0,655	15,021	0,459
CHLOROPHYTA	Crucigenia	CRU	16,051	0,565	15,177	0,371
CHLOROPHYTA	Crucigeniella	CRC	14,274	0,345	14,307	0,271
CHLOROPHYTA	Dangeardinia	DAN	15,685	1,433	14,996	0,859
CHLOROPHYTA	Desmodesmus	DED	13,392	0,276	13,554	0,245
CHLOROPHYTA	Diacanthos	DIO	16,343	0,386	18,199	0,292
CHLOROPHYTA	Dicellula	DIL	15,619	0,526	12,787	0,704
CHLOROPHYTA	Dichotomococcus	DIH	14,927	0,606	12,628	0,338
CHLOROPHYTA	Dictyosphaerium	DIC	15,482	0,521	14,367	0,328
CHLOROPHYTA	Didymocystis	DID	14,204	0,384	13,668	0,307
CHLOROPHYTA	Didymogenes	DIY	15,965	0,464	13,567	0,335
CHLOROPHYTA	Diplochloris	DCH	15,694	0,420	14,445	0,380
CHLOROPHYTA	Diplostauron	DST	0,000	0,249	3,207	0,239
CHLOROPHYTA	Eudorina	EUD	15,237	0,480	15,865	0,361
CHLOROPHYTA	Eutetramorus	EUT	14,559	0,506	14,074	0,318
CHLOROPHYTA	Franceia	FRN	16,846	0,688	16,749	0,453
CHLOROPHYTA	Gloeotila	GLT	13,210	0,370	15,356	0,362
CHLOROPHYTA	Golenkinia	GOL	16,133	0,490	14,547	0,324
CHLOROPHYTA	Golenkiniopsis	GOK	15,839	0,346	15,216	0,284
CHLOROPHYTA	Gonium	GON	17,297	0,831	15,679	0,296

Embranchement	Genre	Code	Cote PT	Sténo PT	Cote NKJ	Sténo NKJ
CHLOROPHYTA	Granulocystis	GCY	13,710	0,320	14,079	0,262
CHLOROPHYTA	Granulocystopsis	GRC	14,745	0,271	13,551	0,228
CHLOROPHYTA	Haematococcus	HAE	15,611	0,233	15,014	0,251
CHLOROPHYTA	Hafniomonas	HAF	14,684	1,627	15,424	0,697
CHLOROPHYTA	Hariotina	HAR	16,001	0,503	15,154	0,296
CHLOROPHYTA	Hindakia	HID	15,694	0,371	14,746	0,411
CHLOROPHYTA	Hydrodictyon	HYI	15,506	0,471	13,953	0,197
CHLOROPHYTA	Juranyiella	JUR	16,432	0,464	14,573	0,424
CHLOROPHYTA	Keratococcus	KER	18,674	1,368	18,726	0,859
CHLOROPHYTA	Kirchneriella	KIR	14,780	0,381	14,804	0,309
CHLOROPHYTA	Koliella	KOL	14,083	0,488	13,534	0,351
CHLOROPHYTA	Komarekia	KOA	15,815	0,758	15,721	0,503
CHLOROPHYTA	Korshikoviella	KOR	18,169	3,000	16,937	1,400
CHLOROPHYTA	Lacunastrum	LAC	14,040	0,511	10,274	0,183
CHLOROPHYTA	Lagerheimia	LAG	14,046	0,291	13,425	0,250
CHLOROPHYTA	Lanceola	LAN	13,670	0,433	14,995	0,444
CHLOROPHYTA	Lemmermannia	LMM	15,066	0,326	14,226	0,250
CHLOROPHYTA	Lobocystis	LOC	17,327	1,044	20,000	0,749
CHLOROPHYTA	Lobomonas	LOB	17,060	1,012	15,950	0,374
CHLOROPHYTA	Messastrum	MSS	17,205	0,736	14,289	0,465
CHLOROPHYTA	Micractinium	MIT	16,045	0,447	15,577	0,337
CHLOROPHYTA	Microspora	MIC	14,324	1,475	14,585	1,163
CHLOROPHYTA	Monactinus	МОТ	15,972	0,435	13,632	0,311
CHLOROPHYTA	Monomastix	MMA	16,270	1,374	18,148	0,909
CHLOROPHYTA	Monoraphidium	MON	15,595	0,434	15,454	0,322
CHLOROPHYTA	Mucidosphaerium	MUC	15,665	0,324	14,791	0,299
CHLOROPHYTA	Mychonastes	MYC	17,045	0,457	17,127	0,369
CHLOROPHYTA	Neglectella	NEG	15,006	0,388	11,373	0,322
CHLOROPHYTA	Neodesmus	NED	14,555	0,640	9,696	0,341
CHLOROPHYTA	Nephrochlamys	NEC	15,601	0,480	15,269	0,308
CHLOROPHYTA	Nephrocytium	NEP	12,085	0,493	11,407	0,464
CHLOROPHYTA	Nephroselmis	NES	12,857	0,393	14,252	0,390
CHLOROPHYTA	Oocystis	000	15,030	0,404	14,052	0,281
CHLOROPHYTA	Pandorina	PAD	15,302	0,467	14,502	0,222
CHLOROPHYTA	Parapediastrum	PRP	17,385	0,799	16,433	0,946
CHLOROPHYTA	Pediastrum	PED	13,597	0,321	12,871	0,254
CHLOROPHYTA	Phacotus	PHT	16,264	0,602	16,151	0,461
CHLOROPHYTA	Planctonema	PLN	13,293	0,319	11,255	0,376
CHLOROPHYTA	Planktosphaeria	PLK	14,985	0,482	16,444	0,379
CHLOROPHYTA	Pseudodidymocystis	PSD	15,522	0,535	14,531	0,321
CHLOROPHYTA	Pseudokirchneriella	PKI	13,621	0,186	14,046	0,176
CHLOROPHYTA	Pseudopediastrum	PPE	14,050	0,289	13,934	0,247
CHLOROPHYTA	Pseudoschroederia	PSC	16,530	0,251	16,627	0,160
CHLOROPHYTA	Pteromonas	PTE	9,870	0,348	12,471	0,403
CHLOROPHYTA	Pyramidomonas	PYA	15,796	1,527	16,819	0,469
CHLOROPHYTA	Pyramimonas	PYM	9,535	0,167	11,960	0,296

Embranchement	Genre	Code	Cote PT	Sténo PT	Cote NKJ	Sténo NKJ
CHLOROPHYTA	Quadricoccus	QUD	16,447	0,529	15,249	0,343
CHLOROPHYTA	Quadrigula	QUA	16,623	0,951	14,061	0,404
CHLOROPHYTA	Raphidocelis	RDO	15,647	0,461	16,885	0,411
CHLOROPHYTA	Scenedesmus	SCE	14,760	0,297	14,083	0,219
CHLOROPHYTA	Scherffelia	SCF	14,689	0,566	14,774	0,687
CHLOROPHYTA	Schroederia	SCR	16,052	0,515	15,259	0,291
CHLOROPHYTA	Scourfieldia	SCU	18,974	2,590	17,083	1,307
CHLOROPHYTA	Selenastrum	SEL	15,047	0,526	13,457	0,945
CHLOROPHYTA	Siderocelis	SID	16,440	0,454	15,202	0,335
CHLOROPHYTA	Siderocystopsis	SIC	14,652	0,582	16,620	0,601
CHLOROPHYTA	Spermatozopsis	SZO	16,104	0,864	15,472	0,413
CHLOROPHYTA	Sphaerocystis	SPE	16,386	0,423	15,510	0,312
CHLOROPHYTA	Stauridium	SRI	15,920	0,387	14,997	0,281
CHLOROPHYTA	Stichococcus	STC	15,204	0,502	15,735	0,359
CHLOROPHYTA	Tetrachlorella	тсн	16,211	0,293	16,528	0,274
CHLOROPHYTA	Tetradesmus	TED	15,751	0,428	15,406	0,358
CHLOROPHYTA	Tetraedron	TEA	15,606	0,337	13,808	0,261
CHLOROPHYTA	Tetraselmis	TES	15,288	0,700	15,315	0,453
CHLOROPHYTA	Tetrastrum	TER	10,403	0,270	10,970	0,214
CHLOROPHYTA	Treubaria	TRE	16,414	0,561	15,334	0,391
CHLOROPHYTA	Trochiscia	TRO	11,995	0,250	10,762	0,155
CHLOROPHYTA	Verrucodesmus	VER	15,848	0,396	14,530	0,272
CHLOROPHYTA	Vitreochlamys	VIT	11,478	0,421	14,114	0,354
CHLOROPHYTA	Westella	WES	15,367	0,408	14,327	0,310
CHLOROPHYTA	Willea	WIL	15,588	0,350	15,111	0,256
CHOANOZOA	Aulomonas	AUO	15,643	1,851	13,685	0,540
CHOANOZOA	Salpingoeca	SAL	16,124	0,350	12,085	0,332
CRYPTOPHYTA	Chilomonas	CHI	16,209	2,585	17,588	0,854
CRYPTOPHYTA	Chroomonas	CHM	15,099	0,268	14,959	0,229
CRYPTOPHYTA	Cryptomonas	CRY	15,169	0,406	14,480	0,320
CRYPTOPHYTA	Goniomonas	GOI	16,362	1,645	16,051	0,631
CRYPTOPHYTA	Plagioselmis	PLG	15,144	0,419	15,271	0,334
CRYPTOPHYTA	Rhodomonas	RHD	16,195	1,771	17,216	1,130
CYANOBACTERIA	Anabaena	ANA	14,546	0,349	13,915	0,240
CYANOBACTERIA	Anagnostidinema	ANG	16,343	0,566	15,755	0,458
CYANOBACTERIA	Anathece	ANT	18,984	0,468	16,354	0,323
CYANOBACTERIA	Aphanizomenon	APH	15,289	0,525	15,697	0,294
CYANOBACTERIA	Aphanocapsa	APA	15,266	0,317	16,272	0,284
CYANOBACTERIA	Aphanothece	APO	17,130	0,369	16,888	0,256
CYANOBACTERIA	Chroococcus	CHR	13,875	0,252	13,110	0,193
CYANOBACTERIA	Clastidium	CLS	12,938	0,465	12,653	0,679
CYANOBACTERIA	Coelomoron	CEL	14,009	0,279	13,177	0,175
CYANOBACTERIA	Coelosphaerium	COP	11,921	0,482	11,659	0,393
CYANOBACTERIA	Cuspidothrix	CUS	16,891	0,490	15,244	0,277
CYANOBACTERIA	Cyanobacterium	CBA	15,601	0,294	15,233	0,654
CYANOBACTERIA	Cyanobium	CBI	14,709	1,512	10,870	0,707

Embranchement	Genre	Code	Cote PT	Sténo PT	Cote NKJ	Sténo NKJ
CYANOBACTERIA	Cyanocatena	CYE	15,573	0,292	14,190	0,262
CYANOBACTERIA	Cyanocatenula	CCN	15,491	0,937	10,192	1,244
CYANOBACTERIA	Cyanodictyon	CDI	16,246	0,759	19,643	0,597
CYANOBACTERIA	Cyanogranis	CYG	11,552	0,283	12,316	0,267
CYANOBACTERIA	Cyanosarcina	CSA	15,548	0,291	14,322	0,182
CYANOBACTERIA	Dolichospermum	DOL	14,577	0,682	11,912	0,258
CYANOBACTERIA	Eucapsis	EUC	6,461	0,241	8,692	0,242
CYANOBACTERIA	Geitlerinema	GEI	12,923	0,563	11,846	0,416
CYANOBACTERIA	Glaucospira	GLU	0,487	0,215	0,000	0,161
CYANOBACTERIA	Gloeocapsa	GLC	13,712	0,643	12,728	0,609
CYANOBACTERIA	Heteroleibleinia	HET	16,436	1,793	18,832	2,471
CYANOBACTERIA	Jaaginema	JAA	17,080	2,382	15,555	1,563
CYANOBACTERIA	Komvophoron	КОМ	13,627	0,290	13,665	0,361
CYANOBACTERIA	Leptolyngbya	LEL	15,782	1,337	15,755	1,042
CYANOBACTERIA	Limnococcus	LIN	14,550	0,254	15,388	0,212
CYANOBACTERIA	Limnothrix	LIM	16,477	0,707	15,117	0,360
CYANOBACTERIA	Merismopedia	MER	15,616	0,743	14,707	0,323
CYANOBACTERIA	Microcystis	MIO	14,656	0,430	12,660	0,089
CYANOBACTERIA	Pannus	PAN	13,777	0,447	15,362	0,556
CYANOBACTERIA	Phormidium	PHO	15,830	0,504	15,501	0,247
CYANOBACTERIA	Planktolyngbya	PLL	14,329	0,381	14,918	0,275
CYANOBACTERIA	Planktothrix	PLA	14,067	0,654	11,351	0,215
CYANOBACTERIA	Pseudanabaena	PSE	14,995	0,390	13,719	0,086
CYANOBACTERIA	Radiocystis	RAI	20,000	2,081	18,871	2,173
CYANOBACTERIA	Romeria	ROM	14,999	0,190	15,112	0,151
CYANOBACTERIA	Snowella	SNO	14,159	0,401	13,616	0,288
CYANOBACTERIA	Spirulina	SPU	4,158	0,298	6,724	0,449
CYANOBACTERIA	Synechococcus	SYC	15,845	0,885	17,065	0,620
CYANOBACTERIA	Synechocystis	SYY	16,205	0,538	15,305	0,371
CYANOBACTERIA	Woronichinia	WOR	15,883	1,080	18,196	0,329
EUGLENOZOA	Colacium	COL	15,398	0,330	13,510	0,394
EUGLENOZOA	Euglena	EUG	12,105	0,324	12,244	0,268
EUGLENOZOA	Euglenaformis	EUF	9,642	0,259	12,996	0,346
EUGLENOZOA	Lepocinclis	LEP	14,775	0,399	14,212	0,342
EUGLENOZOA	Monomorphina	MOM	16,574	0,580	15,094	0,213
EUGLENOZOA	Phacus	PHA	13,199	0,366	12,623	0,310
EUGLENOZOA	Strombomonas	STR	14,069	0,592	11,531	0,310
EUGLENOZOA	Trachelomonas	TRA	14,155	0,522	11,951	0,342
ΗΑΡΤΟΡΗΥΤΑ	Chrysidalis	CRD	17,063	0,782	15,219	0,601
ΗΑΡΤΟΡΗΥΤΑ	Chrysochromulina	ССН	17,361	0,807	15,271	0,578
MIOZOA	Borghiella	BOG	16,569	2,323	-	-
MIOZOA	Ceratium	CER	15,217	0,614	14,521	0,495
MIOZOA	Gonyaulax	GOA	15,412	2,462	14,885	3,000
MIOZOA	Gymnodinium	GYM	15,622	0,345	13,875	0,295
MIOZOA	Parvodinium	PAV	15,619	0,698	14,116	0,461
MIOZOA	Peridiniopsis	PEP	15,791	1,317	15,511	0,831

Embranchement	Genre	Code	Cote PT	Sténo PT	Cote NKJ	Sténo NKJ
MIOZOA	Peridinium	PER	15,509	0,466	14,775	0,353
MIOZOA	Unruhdinium	UNR	15,127	1,302	14,498	0,616
OCHROPHYTA	Bitrichia	BIT	16,201	0,498	15,111	0,473
OCHROPHYTA	Centritractus	CET	12,934	0,347	11,057	0,455
OCHROPHYTA	Chloridella	CRL	15,215	1,016	17,501	0,548
OCHROPHYTA	Chromulina	CHU	15,161	0,266	14,656	0,263
OCHROPHYTA	Chrysococcus	CHS	13,142	0,369	12,959	0,334
OCHROPHYTA	Chrysolykos	CYY	18,217	0,365	18,308	0,306
OCHROPHYTA	Dinobryon	DIN	16,200	0,605	15,652	0,464
OCHROPHYTA	Ellipsoidion	ELI	16,546	0,677	17,561	0,423
OCHROPHYTA	Epipyxis	EPP	13,484	0,344	13,569	0,245
OCHROPHYTA	Goniochloris	GOC	13,535	0,476	13,053	0,306
OCHROPHYTA	Gonyostomum	GOT	16,029	0,419	15,157	0,220
OCHROPHYTA	Kephyrion	KEP	15,208	0,375	14,483	0,307
OCHROPHYTA	Mallomonas	MAL	15,252	0,369	14,546	0,281
OCHROPHYTA	Monallantus	MOA	13,266	0,852	15,328	0,570
OCHROPHYTA	Monosiga	MOS	5,631	0,317	9,177	0,409
OCHROPHYTA	Nephrodiella	NEH	15,868	0,504	14,515	0,317
OCHROPHYTA	Ochromonas	ОСН	7,207	0,147	6,891	0,115
OCHROPHYTA	Ophiocytium	OPH	15,081	0,384	14,159	0,533
OCHROPHYTA	Pleurochloris	PLH	16,828	0,926	16,992	0,581
OCHROPHYTA	Pseudokephyrion	PSK	16,829	0,449	14,537	0,340
OCHROPHYTA	Pseudopedinella	PDP	16,530	0,453	17,104	0,465
OCHROPHYTA	Pseudostaurastrum	PST	14,671	0,788	11,542	0,372
OCHROPHYTA	Pseudotetraëdriella	PTT	18,171	0,364	18,487	0,468
OCHROPHYTA	Syncrypta	SYT	14,230	0,189	17,702	0,186
OCHROPHYTA	Synochromonas	SYR	18,657	1,208	19,363	0,865
OCHROPHYTA	Synura	SYU	15,494	0,370	15,557	0,265
OCHROPHYTA	Tetraëdriella	TEE	13,676	0,421	13,363	0,430
OCHROPHYTA	Tetraplektron	TEK	8,853	0,522	12,647	0,339
OCHROPHYTA	Trachydiscus	TRD	14,717	0,312	16,172	0,241
OCHROPHYTA	Uroglena	URO	8,704	0,211	9,594	0,140

A7. Liste taxonomique des espèces contribuant à la métrique MS-N

Tableau A7.1 : profils écologiques (cotes spécifiques et coefficients de sténoécie pour les nitrates [Nit]) des espèces contributives au calcul de la métrique MS-N. S = 355 espèces. Code = code des taxons tels que définis dans Phytobs (Laplace-Treyture et al. 2017) et inscrit en tant que code alternatif du Sandre.

Embranchement	Espèce	Auteur	Code	Cote Nit	Sténo Nit
BACILLARIOPHYTA	Acanthoceras zachariasii	(Brun) Simonsen	ACNZAC	14,618	0,645
BACILLARIOPHYTA	Achnanthidium catenatum	(Bily & Marvan) Lange- Bertalot	ACDCAT	13,822	0,597
BACILLARIOPHYTA	Achnanthidium minutissimum	(Kützing) Czarnecki	ACDMIN	7,664	0,379
BACILLARIOPHYTA	Actinocyclus normanii	(Gregory ex Greville) Hustedt	ACONOR	10,765	0,431
BACILLARIOPHYTA	Amphora copulata	(Kützing) Schoeman & Archibald	AMPCOP	13,785	1,265
BACILLARIOPHYTA	Amphora ovalis	Kützing	AMPOVA	11,563	0,535
BACILLARIOPHYTA	Amphora pediculus	Kützing	AMPPED	8,266	0,670
BACILLARIOPHYTA	Asterionella formosa	Hassall	ASTFOR	11,031	0,527
BACILLARIOPHYTA	Aulacoseira ambigua	(Grunow) Simonsen	AULAMB	10,939	0,637
BACILLARIOPHYTA	Aulacoseira distans	(Ehrenberg) Simonsen	AULDIS	16,967	0,440
BACILLARIOPHYTA	Aulacoseira granulata	(Ehrenberg) Simonsen	AULGRA	11,491	0,686
BACILLARIOPHYTA	Aulacoseira granulata morphotype curvata	(Ehrenberg) Simonsen	AULCUR	12,874	0,679
BACILLARIOPHYTA	Aulacoseira muzzanensis	(Meister) Krammer	AULMUZ	9,873	0,424
BACILLARIOPHYTA	Aulacoseira pusilla	(Meister) Tuji & Houki	AULPUS	13,288	0,789
BACILLARIOPHYTA	Aulacoseira subarctica	(Müller) Haworth	AULSUB	11,188	0,981
BACILLARIOPHYTA	Bacillaria paxillifera	(Müller) Hendey	BACPAX	5,312	0,656
BACILLARIOPHYTA	Caloneis lancettula	(Schulz) Lange-Bertalot & Witkowski	CALLCT	14,915	1,064
BACILLARIOPHYTA	Cocconeis pediculus	Ehrenberg	COCPED	13,017	0,507
BACILLARIOPHYTA	Cocconeis placentula	Ehrenberg	COCPLA	11,267	0,419
BACILLARIOPHYTA	Cocconeis pseudolineata	(Geitler) Lange-Bertalot	COCPSD	10,993	0,506
BACILLARIOPHYTA	Conticribra weissflogii	(Grunow) Stachura- Suchoples & Williams	COTWEI	12,127	1,051
BACILLARIOPHYTA	Cyclostephanos delicatus	(Genkal) Kling & Hakansson	CYSDEL	10,794	0,789
BACILLARIOPHYTA	Cyclostephanos dubius	(Fricke) Round	CYSDUB	10,602	0,525
BACILLARIOPHYTA	Cyclostephanos invisitatus	(Hohn & Hellerman) Theriot, Stoermer & Hakansson	CYSINV	11,962	0,635
BACILLARIOPHYTA	Cyclotella atomus	Hustedt	CYCATO	10,480	0,763
BACILLARIOPHYTA	Cyclotella distinguenda	Hustedt	CYCDIS	9,456	0,368
BACILLARIOPHYTA	Cyclotella meduanae	Germain	CYCMED	10,986	0,849
BACILLARIOPHYTA	Cyclotella meneghiniana	Kützing	CYCMEN	12,909	0,776
BACILLARIOPHYTA	Cyclotella radiosa	(Grunow) Lemmermann	CYCRAD	9,072	0,593
BACILLARIOPHYTA	Cyclotella scaldensis	Muylaert & Sabbe	CYCSCA	11,708	0,818
BACILLARIOPHYTA	Cymatopleura elliptica	(Brébisson) Smith	CYTELL	12,557	1,563
BACILLARIOPHYTA	Cymatopleura solea	(Brébisson) Smith	CYTSOL	9,890	0,799
BACILLARIOPHYTA	Cymbella tumida	(Brébisson) Van Heurck	CYMTUM	12,114	0,651

Embranchement	Espèce	Auteur	Code	Cote Nit	Sténo Nit
BACILLARIOPHYTA	Diatoma tenuis	Agardh	DIATEN	2,539	0,388
BACILLARIOPHYTA	Diatoma vulgaris	Bory	DIAVUL	12,338	0,708
BACILLARIOPHYTA	Discostella nana	(Hustedt) Chang	DISNAN	12,003	0,953
BACILLARIOPHYTA	Discostella pseudostelligera	(Hustedt) Houk & Klee	DISPSE	13,307	0,680
BACILLARIOPHYTA	Discostella stelligera	(Cleve & Grunow) Houk & Klee	DISSTE	13,111	0,781
BACILLARIOPHYTA	Encyonema minutum	(Hilse) Mann	ENCMIN	16,922	1,122
BACILLARIOPHYTA	Encyonema silesiacum	(Bleisch) Mann	ENCSIL	10,424	0,743
BACILLARIOPHYTA	Encyonema triangulum	(Ehrenberg) Kützing	ENCTRI	13,275	3,000
BACILLARIOPHYTA	Encyonema ventricosum	(Agardh) Grunow	ENCVEN	12,183	0,565
BACILLARIOPHYTA	Eolimna minima	(Grunow) Lange-Bertalot	EOLMIN	17,570	0,632
BACILLARIOPHYTA	Fragilaria capucina	Desmazières	FRACAU	20,000	1,150
BACILLARIOPHYTA	Fragilaria crotonensis	Kitton	FRACRO	9,403	0,454
BACILLARIOPHYTA	Fragilaria longifusiformis	Siver, Morales, Van de Vijver, Smits, Hamilton, Lange-Bertalot, & Hains	FRALON	11,943	0,641
BACILLARIOPHYTA	Fragilaria saxoplanctonica	Lange-Bertalot & Ulrich	FRASAX	13,042	0,527
BACILLARIOPHYTA	Gomphonema augur	Ehrenberg	GOMAUG	17,395	1,034
BACILLARIOPHYTA	Gomphonema kociolekii	Jahn & Abarca	GOMKOC	19,535	2,010
BACILLARIOPHYTA	Gomphonema minutum	Agardh	GOMMIU	8,654	0,360
BACILLARIOPHYTA	Gomphonema olivaceum	(Hornemann) Brébisson	GOMOLI	13,832	0,787
BACILLARIOPHYTA	Gomphonema parvulum	Kützing	GOMPAR	10,996	0,456
BACILLARIOPHYTA	Gomphonema pumilum	(Grunow) Reichardt & Lange-Bertalot	GOMPUM	17,216	0,998
BACILLARIOPHYTA	Gomphonema tergestinum	Fricke	GOMTER	14,075	1,024
BACILLARIOPHYTA	Gyrosigma acuminatum	(Kützing) Rabenhorst	GYRACU	13,556	1,360
BACILLARIOPHYTA	Gyrosigma attenuatum	(Kützing) Cleve	GYRATT	9,612	1,099
BACILLARIOPHYTA	Gyrosigma sciotense	(Sullivan & Wormley) Cleve	GYRSCI	12,551	0,509
BACILLARIOPHYTA	Hippodonta capitata	(Ehrenberg) Lange- Bertalot, Metzeltin & Witkowski	HIPCAP	12,393	0,738
BACILLARIOPHYTA	Karayevia clevei	(Grunow) Bukhtiyarova	KARCLE	13,367	1,000
BACILLARIOPHYTA	Melosira varians	Agardh	MELVAR	11,442	0,607
BACILLARIOPHYTA	Navicula antonii	Lange-Bertalot	NAVANT	14,067	0,555
BACILLARIOPHYTA	Navicula capitatoradiata	Germain	NAVCAO	13,178	0,648
BACILLARIOPHYTA	Navicula cryptocephala	Kützing	NAVCRY	15,326	1,171
BACILLARIOPHYTA	Navicula cryptotenella	Lange-Bertalot	NAVCRT	12,687	0,897
BACILLARIOPHYTA	Navicula germainii	Wallace	NAVGER	15,068	1,095
BACILLARIOPHYTA	Navicula gregaria	Donkin	NAVGRE	14,275	0,704
BACILLARIOPHYTA	Navicula lanceolata	(Agardh) Ehrenberg	NAVLAN	11,549	0,744
BACILLARIOPHYTA	Navicula reichardtiana	Lange-Bertalot	NAVREI	14,143	0,907
BACILLARIOPHYTA	Navicula rostellata	Kützing	NAVROS	14,643	0,757
BACILLARIOPHYTA	Navicula tripunctata	(Müller) Bory	NAVTRP	10,263	1,024
BACILLARIOPHYTA	Nitzschia acicularis	(Kützing) Smith	NIZACI	11,855	0,639
BACILLARIOPHYTA	Nitzschia amphibia	Grunow	NIZAMP	1,317	0,450

Embranchement	Espèce	Auteur	Code	Cote Nit	Sténo Nit
BACILLARIOPHYTA	Nitzschia capitellata	Hustedt	NIZCAP	11,821	0,775
BACILLARIOPHYTA	Nitzschia costei	Tudesque, Rimet & Ector	NIZCOE	19,696	2,117
BACILLARIOPHYTA	Nitzschia dissipata	(Kützing) Rabenhorst	NIZDPT	14,053	0,890
BACILLARIOPHYTA	Nitzschia fonticola	Grunow	NIZFON	15,620	1,319
BACILLARIOPHYTA	Nitzschia fruticosa	Hustedt	NIZFRU	11,971	0,626
BACILLARIOPHYTA	Nitzschia graciliformis	Lange-Bertalot & Simonsen	NIZGRF	11,228	0,920
BACILLARIOPHYTA	Nitzschia gracilis	Hantzsch	NIZGRA	14,899	0,667
BACILLARIOPHYTA	Nitzschia heufleriana	Grunow	NIZHEU	16,700	1,396
BACILLARIOPHYTA	Nitzschia inconspicua	Grunow	NIZINC	16,050	1,323
BACILLARIOPHYTA	Nitzschia linearis	(Agardh) Smith	NIZLIN	11,268	0,936
BACILLARIOPHYTA	Nitzschia palea	(Kützing) Smith	NIZPAL	15,148	1,233
BACILLARIOPHYTA	Nitzschia paleacea	Grunow	NIZPAA	14,723	1,488
BACILLARIOPHYTA	Nitzschia recta	Hantzsch ex Rabenhorst	NIZREC	11,865	0,728
BACILLARIOPHYTA	Nitzschia sigmoidea	(Nitzsch) Smith	NIZSID	9,360	0,905
BACILLARIOPHYTA	Nitzschia sociabilis	Hustedt	NIZSOC	9,686	0,693
BACILLARIOPHYTA	Nitzschia vermicularis	(Kützing) Hantzsch	NIZVER	9,727	0,387
BACILLARIOPHYTA	Pantocsekiella costei	(Druart & Straub) Kiss & Ács	PATCOS	13,312	0,772
BACILLARIOPHYTA	Pantocsekiella ocellata	(Pantocsek) Kiss & Ács	PATOCE	11,805	0,600
BACILLARIOPHYTA	Planothidium frequentissimum	(Lange-Bertalot) Lange- Bertalot	PLTFRE	11,301	0,666
BACILLARIOPHYTA	Planothidium lanceolatum	(Brébisson ex Kützing) Lange-Bertalot	PLTLAN	6,604	0,423
BACILLARIOPHYTA	Planothidium rostratum	(Oestrup) Lange-Bertalot	PLTROS	10,522	0,409
BACILLARIOPHYTA	Praestephanos triporus	(Genkal & Kuzmin) Tuji & Ki	PRETRI	0,000	0,361
BACILLARIOPHYTA	Pseudostaurosira brevistriata	(Grunow) Williams & Round	PSSBRE	13,099	0,826
BACILLARIOPHYTA	Reimeria sinuata	(Gregory) Kociolek & Stoermer	REISIN	15,247	1,025
BACILLARIOPHYTA	Rhoicosphenia abbreviata	(Agardh) Lange-Bertalot	RHCABB	9,147	0,568
BACILLARIOPHYTA	Sellaphora pupula	(Kützing) Mereschkowksy	SEAPUP	9,998	0,707
BACILLARIOPHYTA	Skeletonema potamos	(Weber) Hasle	SKEPOT	12,303	0,826
BACILLARIOPHYTA	Staurosira construens	Ehrenberg	STSCON	13,283	0,571
BACILLARIOPHYTA	Staurosira venter	(Ehrenberg) Cleve & Moeller	STSVEN	15,130	0,661
BACILLARIOPHYTA	Stephanodiscus hantzschii	Grunow	STEHAN	9,044	0,525
BACILLARIOPHYTA	Stephanodiscus minutulus	(Kützing) Cleve & Moller	STEMIN	11,713	0,968
BACILLARIOPHYTA	Stephanodiscus neoastraea	Hakansson & Hickel	STENEO	9,556	0,513
BACILLARIOPHYTA	Surirella brebissonii	Krammer & Lange- Bertalot	SURBRE	10,859	1,253
BACILLARIOPHYTA	Surirella lacrimula	English	SURLAC	9,010	0,713
BACILLARIOPHYTA	Surirella suecica	Grunow	SURSUE	16,761	0,714
BACILLARIOPHYTA	Thalassiosira gessneri	Hustedt	THAGES	10,551	1,130
BACILLARIOPHYTA	Thalassiosira lacustris	(Grunow) Hasle	THALAC	15,494	0,916

Embranchement	Espèce	Auteur	Code	Cote Nit	Sténo Nit
BACILLARIOPHYTA	Tryblionella apiculata	Gregory	TRYAPI	12,107	0,567
BACILLARIOPHYTA	Tryblionella levidensis	Smith	TRYLEV	12,046	0,659
BACILLARIOPHYTA	Ulnaria acus	(Kützing) Aboal	ULNACU	10,211	0,802
BACILLARIOPHYTA	Ulnaria delicatissima var. angustissima	(Smith) Aboal & Silva	ULNDAN	10,658	0,530
BACILLARIOPHYTA	Ulnaria grunowii	(Lange-Bertalot & Ulrich) Cantonati & Lange- Bertalot	ULNGRU	9,323	0,636
BACILLARIOPHYTA	Ulnaria ulna	(Nitzsch) Compère	ULNULN	12,204	0,823
BACILLARIOPHYTA	Urosolenia eriensis	Round & Crawford	URSERI	14,151	0,415
BACILLARIOPHYTA	Urosolenia longiseta	(Zacharias) Bukhtiyarova	URSLON	9,340	0,507
BIGYRA	Bicosoeca planctonica	Kisselev	BIOPLA	12,686	0,859
BIGYRA	Codomonas annulata	Lackey	CDMANN	12,238	0,677
CHAROPHYTA	Closterium aciculare	West	CLOACI	10,676	0,360
CHAROPHYTA	Closterium acutum	Brébisson	CLOACU	11,318	0,474
CHAROPHYTA	Closterium gracile	Brébisson ex Ralfs	CLOGRA	12,559	0,535
CHAROPHYTA	Elakatothrix gelatinosa	Wille	ELAGEL	8,917	0,586
CHAROPHYTA	Mesostigma viride	Lauterborn	MSTVIR	0,603	0,452
CHLOROPHYTA	Actinastrum hantzschii	Lagerheim	ACSHAN	11,824	0,652
CHLOROPHYTA	Acutodesmus acuminatus	(Lagerheim) Tsarenko	ACUACU	8,985	0,462
CHLOROPHYTA	Amphikrikos minutissimus	Korshikov	AMKMIN	10,872	1,071
CHLOROPHYTA	Amphikrikos nanus	(Fott & Heynig) Hindák	AMKNAN	10,846	0,738
CHLOROPHYTA	Ankistrodesmus arcuatus	Korshikov	ANKARC	12,270	0,647
CHLOROPHYTA	Ankistrodesmus fusiformis	Corda	ANKFUS	17,396	0,990
CHLOROPHYTA	Ankyra judayi	(Smith) Fott	ANYJUD	10,666	0,390
CHLOROPHYTA	Carteria globulosa	Pascher	CARGLU	11,285	0,566
CHLOROPHYTA	Carteria pseudoglobosa	Ettl	CARPSE	10,103	0,481
CHLOROPHYTA	Chlamydomonas globosa	Snow	CHLGLO	2,678	0,346
CHLOROPHYTA	Chlamydomonas pertusa	Chodat	CHLPER	14,068	0,766
CHLOROPHYTA	Chlorella vulgaris	Beijerinck	CLLVUL	15,496	1,321
CHLOROPHYTA	Chloroidium ellipsoideum	(Gerneck) Darienko, Gustavs, Mudimu, Menendez, Schumann, Karsten, Friedl & Proschold	CLIELL	15,816	0,368
CHLOROPHYTA	Chloroidium saccharophilum	(Krüger) Darienko, Gustavs, Mudimu, Menendez, Schumann, Karsten, Friedl & Proschold	CLISAC	15,295	0,416
CHLOROPHYTA	Chlorolobion braunii	(Nägeli) Komárek	CHOBRA	11,928	1,276
CHLOROPHYTA	Chlorotetraedron incus	(Teiling) Komárek & Kovácik	CLTICU	12,196	0,779
CHLOROPHYTA	Choricystis minor	(Skuja) Fott	CCTMIN	13,017	1,086
CHLOROPHYTA	Closteriopsis acicularis	(Chodat) Belcher & Swale	CLPACI	8,355	0,678
CHLOROPHYTA	Coelastrum astroideum	De Notaris	COEAST	10,618	0,454
CHLOROPHYTA	Coelastrum microporum	Nägeli	COEMIC	10,163	0,490
CHLOROPHYTA	Coenochloris fottii	(Hindák) Tsarenko	COOFOT	10,828	0,492

Embranchement	Espèce	Auteur	Code	Cote Nit	Sténo Nit
CHLOROPHYTA	Crucigenia fenestrata	Schmidle	CRUFEN	11,098	0,668
CHLOROPHYTA	Crucigenia quadrata	Morren	CRUQUA	6,898	0,664
CHLOROPHYTA	Crucigeniella apiculata	(Lemmermann) Komárek	CRCAPI	11,514	0,536
CHLOROPHYTA	Dangeardinia pseudopertusa	(Ettl) Nakada	DANPSE	8,330	0,643
CHLOROPHYTA	Desmodesmus abundans	(Kirchner) Hegewald	DEDABU	10,374	0,567
CHLOROPHYTA	Desmodesmus aculeolatus	(Reinsch) Tsarenko	DEDACU	11,947	0,782
CHLOROPHYTA	Desmodesmus armatus	(Chodat) Hegewald	DEDARM	7,936	0,576
CHLOROPHYTA	Desmodesmus bicaudatus	(Dedusenko) Tsarenko	DEDBIC	12,606	0,535
CHLOROPHYTA	Desmodesmus bicellularis	(Chodat) An, Friedl & Hegewald	DEDBIE	5,633	0,463
CHLOROPHYTA	Desmodesmus communis	(Hegewald) Hegewald	DEDCOM	9,900	0,646
CHLOROPHYTA	Desmodesmus costato- granulatus	(Skuja) Hegewald	DEDCOG	7,268	0,425
CHLOROPHYTA	Desmodesmus denticulatus	(Lagerheim) An, Friedl & Hegewald	DEDDEN	15,609	0,659
CHLOROPHYTA	Desmodesmus dispar	Brébisson	DEDDIS	9,727	0,585
CHLOROPHYTA	Desmodesmus grahneisii	(Heynig) Hegewald	DEDGRA	14,405	0,469
CHLOROPHYTA	Desmodesmus granulatus	(West & G.S. West) Tsarenko	DEDGRL	7,707	0,537
CHLOROPHYTA	Desmodesmus heteracanthus	(Guerrero) Hentschke & Torgan	DEDHET	6,703	0,883
CHLOROPHYTA	Desmodesmus hystrix	(Lagerheim) Hegewald	DEDHYS	8,139	0,512
CHLOROPHYTA	Desmodesmus intermedius	(Chodat) Hegewald	DEDINT	9,556	0,608
CHLOROPHYTA	Desmodesmus lefevrei	(Deflandre) An, Friedl & Hegewald	DEDLEF	4,301	0,640
CHLOROPHYTA	Desmodesmus magnus	(Meyen) Tsarenko	DEDMAG	8,303	0,736
CHLOROPHYTA	Desmodesmus opoliensis	(Richter) Hegewald	DEDOPO	9,425	0,590
CHLOROPHYTA	Desmodesmus pannonicus	(Hortobágyi) Hegewald	DEDPAN	11,305	1,440
CHLOROPHYTA	Desmodesmus serratus	(Corda) An, Friedl & Hegewald	DEDSER	12,789	0,539
CHLOROPHYTA	Desmodesmus spinosus	(Chodat) Hegewald	DEDSPI	9,115	0,554
CHLOROPHYTA	Desmodesmus subspicatus	(Chodat) Hegewald & Schmidt	DEDSUB	10,433	0,775
CHLOROPHYTA	Dichotomococcus curvatus	Korshikov	DIHCUR	12,005	0,616
CHLOROPHYTA	Dictyosphaerium ehrenbergianum	Nägeli	DICEHR	11,464	0,589
CHLOROPHYTA	Dictyosphaerium subsolitarium	Van Goor	DICSUB	11,215	0,677
CHLOROPHYTA	Didymocystis comasii	Komárek	DIDCOM	11,212	0,700
CHLOROPHYTA	Didymocystis inconspicua	Korshikov	DIDINS	11,150	0,664
CHLOROPHYTA	Didymocystis inermis	(Fott) Fott	DIDINE	10,527	0,581
CHLOROPHYTA	Didymogenes palatina	Shmidle	DIYPAL	11,564	0,869
CHLOROPHYTA	Diplochloris decussata	Korshikov	DCHDEC	9,520	0,654
CHLOROPHYTA	Diplochloris lunata	Fott	DCHLUN	12,105	0,706
CHLOROPHYTA	Eutetramorus tetrasporus	Komárek	EUTTET	4,602	0,406

Embranchement	Espèce	Auteur	Code	Cote Nit	Sténo Nit
CHLOROPHYTA	Golenkinia radiata	Chodat	GOLRAD	12,114	0,616
CHLOROPHYTA	Gonium pectorale	Müller	GONPEC	2,527	0,514
CHLOROPHYTA	Granulocystis helenae	Hindák	GCYHEL	10,322	0,449
CHLOROPHYTA	Granulocystopsis coronata	(Lemmermann) Hindák	GRCCOR	16,777	0,400
CHLOROPHYTA	Hariotina polychorda	(Korshikov) Hegewald	HARPOL	13,171	0,849
CHLOROPHYTA	Hariotina reticulata	Dangeard	HARRET	12,346	0,417
CHLOROPHYTA	Hindakia tetrachotoma	(Printz) Bock, Pröschold & Krienitz	HIDTET	11,636	0,824
CHLOROPHYTA	Kirchneriella irregularis	(Smith) Korshikov	KIRIRR	13,112	0,568
CHLOROPHYTA	Kirchneriella obesa	(West) Schmidle	KIROBE	9,787	0,494
CHLOROPHYTA	Koliella longiseta	(Vischer) Hindák	KOLLON	7,973	0,651
CHLOROPHYTA	Lagerheimia balatonica	(Scherffel) Hindák	LAGBAL	12,144	0,654
CHLOROPHYTA	Lagerheimia ciliata	(Lagerheim) Chodat	LAGCIL	1,774	0,328
CHLOROPHYTA	Lagerheimia genevensis	(Chodat) Chodat	LAGGEN	11,967	0,542
CHLOROPHYTA	Lagerheimia wratislaviensis	Schroeder	LAGWRA	12,096	0,749
CHLOROPHYTA	Lanceola spatulifera	(Korshikov) Hindák	LANSPA	4,804	0,350
CHLOROPHYTA	Lemmermannia komarekii	(Hindák) Bock & Krienitz	LMMKOM	8,725	0,581
CHLOROPHYTA	Lemmermannia punctata	(Schmidle) Bock & Krienitz	LMMPUN	5,832	0,934
CHLOROPHYTA	Lemmermannia tetrapedia	(Kirchner) Lemmermann	LMMTET	12,030	0,510
CHLOROPHYTA	Lemmermannia triangularis	(Chodat) Bock & Krienitz	LMMTRI	12,173	0,505
CHLOROPHYTA	Micractinium pusillum	Fresenius	MITPUS	14,516	0,738
CHLOROPHYTA	Monactinus simplex	(Meyen) Corda	MOTSIM	10,488	0,487
CHLOROPHYTA	Monoraphidium circinale	(Nygaard) Nygaard	MONCIR	11,512	0,664
CHLOROPHYTA	Monoraphidium contortum	(Thuret) Komárkova- Legnerova	MONCON	11,316	0,593
CHLOROPHYTA	Monoraphidium convolutum	(Corda) Komárkova- Legnerova	MONCOV	10,089	0,586
CHLOROPHYTA	Monoraphidium griffithii	(Berkeley) Legnerova	MONGRI	12,146	0,695
CHLOROPHYTA	Monoraphidium komarkovae	Nygaard	MONKOM	10,593	0,557
CHLOROPHYTA	Monoraphidium minutum	(Nägeli) Komárková- Legnerová	MONMIN	11,880	0,561
CHLOROPHYTA	Monoraphidium nanum	(Ettl) Hindák	MONNAN	10,034	0,503
CHLOROPHYTA	Monoraphidium pseudobraunii	(Belcher & Swale) Heynig	MONPSE	8,566	0,496
CHLOROPHYTA	Monoraphidium pusillum	(Printz) Komárkova- Legnerova	MONPUS	12,522	0,644
CHLOROPHYTA	Monoraphidium tortile	(West & G.S. West) Komárkova-Legnerova	MONTOR	13,067	0,712
CHLOROPHYTA	Mucidosphaerium pulchellum	(Wood) Bock, Proschold & Krienitz	MUCPUL	12,667	0,532
CHLOROPHYTA	Mychonastes homosphaera	(Skuja) Kalina & Puncochárová	МҮСНОМ	18,697	0,428
CHLOROPHYTA	Neglectella solitaria	(Wittrock) Stenclová & Kastovsky	NEGSOL	10,357	0,341
CHLOROPHYTA	Neodesmus danubialis	Hindák	NEDDAN	12,458	0,926

Embranchement	Espèce	Auteur	Code	Cote Nit	Sténo Nit
CHLOROPHYTA	Nephrochlamys rostrata	Nygaard	NECROS	7,268	0,503
CHLOROPHYTA	Nephroselmis olivacea	Stein	NESOLI	12,284	0,897
CHLOROPHYTA	Oocystis borgei	Snow	OOCBOR	13,636	0,430
CHLOROPHYTA	Oocystis lacustris	Chodat	OOCLAC	8,932	0,433
CHLOROPHYTA	Oocystis marssonii	Lemmermann	OOCMAR	10,560	0,477
CHLOROPHYTA	Oocystis parva	West & G.S. West	OOCPAR	9,270	0,471
CHLOROPHYTA	Pandorina morum	Bory	PADMOR	11,328	0,817
CHLOROPHYTA	Pediastrum duplex	Meyen	PEDDUP	10,311	0,700
CHLOROPHYTA	Phacotus lenticularis	(Ehrenberg) Stein	PHTLEN	9,291	0,434
CHLOROPHYTA	Planctonema lauterbornii	Schmidle	PLNLAU	12,028	0,838
CHLOROPHYTA	Planktosphaeria gelatinosa	Smith	PLKGEL	9,451	0,405
CHLOROPHYTA	Pseudodidymocystis fina	(Komárek) Hegewald & Deason	PSDFIN	13,711	0,652
CHLOROPHYTA	Pseudodidymocystis inconspicua	(Korshikov) Hindák	PSDINC	13,407	0,497
CHLOROPHYTA	Pseudodidymocystis planctonica	(Korshikov) Hegewald & Deason	PSDPLA	12,836	0,575
CHLOROPHYTA	Pseudopediastrum boryanum	(Turpin) Hegewald	PPEBOR	10,065	0,553
CHLOROPHYTA	Pseudoschroederia robusta	(Korshikov) Hegewald & Schnepf	PSCROB	15,343	0,575
CHLOROPHYTA	Pteromonas angulosa	Lemmermann	PTEANG	12,530	1,112
CHLOROPHYTA	Pteromonas pseudoangulosa	Péterfi	PTEPSE	19,207	0,612
CHLOROPHYTA	Quadricoccus verrucosus	Fott	QUDVER	15,134	0,936
CHLOROPHYTA	Raphidocelis danubiana	(Hindák) Marvan, Komárek & Comas	RDODAN	10,501	0,531
CHLOROPHYTA	Scenedesmus arcuatus	(Lemmermann) Lemmermann	SCEARC	10,189	0,671
CHLOROPHYTA	Scenedesmus ecornis	(Ehrenberg) Chodat	SCEECO	7,424	0,522
CHLOROPHYTA	Scenedesmus ellipticus	Corda	SCEELI	13,824	0,500
CHLOROPHYTA	Scenedesmus obtusus	Meyen	SCEOBT	16,948	0,501
CHLOROPHYTA	Scenedesmus quadricauda	(Turpin) Brebisson	SCEQUA	11,509	0,555
CHLOROPHYTA	Scenedesmus semipulcher	Hortobágyi	SCESEM	6,394	0,667
CHLOROPHYTA	Scenedesmus smithii	Chodat	SCESMI	8,806	0,593
CHLOROPHYTA	Schroederia setigera	(Schröder) Lemmermann	SCRSET	15,005	0,662
CHLOROPHYTA	Siderocelis kolkwitzii	(Naumann) Fott	SIDKOL	8,200	0,565
CHLOROPHYTA	Siderocelis oblonga	(Naumann) Fott	SIDOBL	17,192	0,496
CHLOROPHYTA	Siderocelis ornata	(Fott) Fott	SIDORN	17,213	0,655
CHLOROPHYTA	Siderocystopsis pseudoblonga	(Hindák) Hindák	SICPSE	14,613	0,561
CHLOROPHYTA	Spermatozopsis exsultans	Korshikov	SZOEXU	9,534	0,647
CHLOROPHYTA	Spermatozopsis similis	Preisig & Melkonian	SZOSIM	10,600	0,719
CHLOROPHYTA	Sphaerocystis planctonica	(Korshikov) Bourrelly	SPEPLA	11,907	0,559
CHLOROPHYTA	Sphaerocystis schroeteri	Chodat	SPESCH	13,496	0,281
CHLOROPHYTA	Stauridium tetras	(Ehrenberg) Hegewald	SRITET	12,353	0,727

Embranchement	Espèce	Auteur	Code	Cote Nit	Sténo Nit
CHLOROPHYTA	Tetrachlorella alternans	(Smith) Korshikov	TCHALT	10,048	0,583
CHLOROPHYTA	Tetradesmus dimorphus	(Turpin) Wynne	TEDDIM	10,983	0,587
CHLOROPHYTA	Tetradesmus lagerheimii	Wynne & Guiry	TEDLAG	10,773	0,427
CHLOROPHYTA	Tetradesmus obliquus	(Turpin) Wynne	TEDOBL	11,624	0,744
CHLOROPHYTA	Tetraedron caudatum	(Corda) Hansgirg	TEACAU	10,405	0,588
CHLOROPHYTA	Tetraedron minimum	(Braun) Hansgirg	TEAMIN	9,649	0,512
CHLOROPHYTA	Tetraedron triangulare	Korshikov	TEATRI	9,606	0,488
CHLOROPHYTA	Tetraselmis cordiformis	(Carter) Stein	TESCOR	11,862	0,880
CHLOROPHYTA	Tetrastrum elegans	Playfair	TERELE	10,913	0,599
CHLOROPHYTA	Tetrastrum heteracanthum	(Nordstedt) Chodat	TERHET	7,932	0,580
CHLOROPHYTA	Tetrastrum staurogeniaeforme	(Schröder) Lemmermann	TERSTA	8,466	0,537
CHLOROPHYTA	Treubaria planctonica	(Smith) Korshikov	TREPLA	7,590	0,398
CHLOROPHYTA	Treubaria triappendiculata	Bernard	TRETRI	10,939	0,580
CHLOROPHYTA	Verrucodesmus verrucosus	(Roll) Hegewald	VERVER	14,512	0,644
CHLOROPHYTA	Westella botryoides	(West) De Wild	WESBOT	10,792	0,506
CHLOROPHYTA	Willea crucifera	(Wolle) John, Wynne & Tsarenko	WILCRU	8,105	0,590
CHLOROPHYTA	Willea rectangularis	(Braun) John, Wynne & Tsarenko	WILREC	6,020	0,391
CRYPTOPHYTA	Chroomonas coerulea	(Geitler) Skuja	CHMCOE	7,343	0,581
CRYPTOPHYTA	Cryptomonas curvata	Ehrenberg	CRYCUR	11,424	0,512
CRYPTOPHYTA	Cryptomonas erosa	Ehrenberg	CRYERO	8,687	0,643
CRYPTOPHYTA	Cryptomonas marssonii	Skuja	CRYMAR	9,032	0,551
CRYPTOPHYTA	Cryptomonas ovata	Ehrenberg	CRYOVA	12,042	0,510
CRYPTOPHYTA	Cryptomonas pyrenoidifera	Geitler	CRYPYR	13,182	0,932
CRYPTOPHYTA	Goniomonas truncata	(Fresenius) Stein	GOITRU	11,041	0,882
CRYPTOPHYTA	Plagioselmis lacustris	(Pascher & Ruttner) Javornick	PLGLAC	8,935	0,665
CRYPTOPHYTA	Plagioselmis nannoplanctica	(Skuja) Novarino, Lucas & Morrall	PLGNAN	11,211	0,608
CRYPTOPHYTA	Rhodomonas lens	Pascher & Ruttner	RHDLEN	13,979	2,201
CYANOBACTERIA	Anathece minutissima	(West) Komárek, Kastovsky & Jezberová	ANTMIN	6,569	0,613
CYANOBACTERIA	Anathece smithii	(Komárková-Legnerová & Cronberg) Komárek, Kastovsky & Jezberová	ANTSMI	12,909	0,654
CYANOBACTERIA	Aphanizomenon flos- aquae	Ralfs ex Bornet & Flahault	APHFLS	5,094	0,398
CYANOBACTERIA	Aphanocapsa delicatissima	West & G.S. West	APADEL	11,149	0,576
CYANOBACTERIA	Aphanocapsa elachista	West & G.S. West	APAELA	9,986	0,645
CYANOBACTERIA	Aphanocapsa holsatica	(Lemmermann) Cronberg & Komárek	APAHOL	8,015	0,673
CYANOBACTERIA	Aphanocapsa incerta	(Lemmermann) Cronberg & Komárek	APAINC	14,521	0,612
CYANOBACTERIA	Clastidium setigerum	Kirchner	CLSSET	9,225	0,721
CYANOBACTERIA	Coelomoron pusillum	(Van Goor) Komárek	CELPUS	10,982	0,577

Embranchement	Espèce	Auteur	Code	Cote Nit	Sténo Nit
CYANOBACTERIA	Cuspidothrix issatschenkoi	(Usacev) Rajaniemi, Komárek, Willame, Hrouzek, Katovská, Hoffmann & Sivonen	CUSISS	17,072	0,726
CYANOBACTERIA	Cyanocatena planctonica	Hindák	CYEPLA	2,487	0,710
CYANOBACTERIA	Cyanogranis ferruginea	(Wawrik) Hindák	CYGFER	12,324	0,652
CYANOBACTERIA	Cyanogranis libera	Hindák	CYGLIB	13,482	0,538
CYANOBACTERIA	Cyanosarcina chroococcoides	(Geitler) Kovácik	CSACHR	14,225	1,592
CYANOBACTERIA	Komvophoron minutum	Skuja	KOMMIN	13,072	0,483
CYANOBACTERIA	Limnococcus limneticus	(Lemmermann) Komárková, Jezberová, Komárek & Zapomelová	LINLIM	9,405	0,870
CYANOBACTERIA	Limnothrix planctonica	(Woloszynska) Meffert	LIMPLA	5,289	0,441
CYANOBACTERIA	Limnothrix redekei	(Van Goor) Meffert	LIMRED	11,971	0,550
CYANOBACTERIA	Merismopedia glauca	(Ehrenberg) Kützing	MERGLA	16,765	0,932
CYANOBACTERIA	Merismopedia tenuissima	Lemmermann	MERTEN	10,707	0,620
CYANOBACTERIA	Merismopedia tranquilla	(Ehrenberg) Trevisan	MERTRA	12,914	0,784
CYANOBACTERIA	Merismopedia warmingiana	Lagerheim	MERWAR	15,442	0,651
CYANOBACTERIA	Microcystis aeruginosa	Kützing	MIOAER	9,879	0,528
CYANOBACTERIA	Microcystis flos-aquae	(Wittrock) Kirchner	MIOFLO	9,787	0,513
CYANOBACTERIA	Microcystis smithii	Komárek & Anagnostidis	MIOSMI	17,443	0,910
CYANOBACTERIA	Microcystis wesenbergii	Komárek	MIOWES	12,178	1,025
CYANOBACTERIA	Planktolyngbya limnetica	(Lemmermann) Komarkova-Legnerova	PLLLIM	19,058	1,017
CYANOBACTERIA	Planktothrix agardhii	(Gomont) Anagnostidis & Komárek	PLAAGA	11,270	0,741
CYANOBACTERIA	Planktothrix suspensa	(Pringsheim) Anagnostidis & Komárek	PLASUS	12,227	0,536
CYANOBACTERIA	Pseudanabaena catenata	Lauterborn	PSECAT	12,545	0,479
CYANOBACTERIA	Pseudanabaena galeata	Boecher	PSEGAL	3,044	0,646
CYANOBACTERIA	Pseudanabaena limnetica	(Lemmermann) Komárek	PSELIM	9,360	0,571
CYANOBACTERIA	Pseudanabaena mucicola	(Naumann & Huber- Pestalozzi) Schwabe	PSEMUC	17,233	0,739
CYANOBACTERIA	Romeria leopoliensis	(Raciborski) Koczwara	ROMLEO	3,682	0,383
CYANOBACTERIA	Synechococcus capitatus	Bailey-Watts & Komárek	SYCCAP	9,593	1,204
CYANOBACTERIA	Woronichinia naegeliana	(Unger) Elenkin	WORNAE	9,570	0,722
EUGLENOZOA	Euglena oxyuris	Schmarda	EUGOXY	9,280	0,970
EUGLENOZOA	Lepocinclis acus	(Müller) Marin & Melkonian	LEPACS	13,419	0,839
EUGLENOZOA	Phacus pyrum	(Ehrenberg) Stein	PHAPYR	12,658	1,146
EUGLENOZOA	Phacus tortus	(Lemmermann) Skvortsov	PHATOR	12,464	0,490
EUGLENOZOA	Trachelomonas hispida	(Perty) Stein	TRAHIS	18,037	1,106
EUGLENOZOA	Trachelomonas volvocina	Ehrenberg	TRAVOL	13,227	0,640
EUGLENOZOA	Trachelomonas volvocinopsis	Svirenko	TRAVOC	14,505	1,000
НАРТОРНҮТА	Chrysochromulina parva	Lackey	CCHPAR	13,722	0,682
MIOZOA	Ceratium hirundinella	(Müller) Bergh	CERHIR	14,666	0,731

Embranchement	Espèce	Auteur	Code	Cote Nit	Sténo Nit
MIOZOA	Gymnodinium cnecoides	Harris	GYMCNE	10,063	0,378
MIOZOA	Gymnodinium lantzschii	Utermöhl	GYMLAN	15,687	1,805
MIOZOA	Parvodinium elpatiewskyi	(Ostenfeld) Kretschmann, Zerdoner & Gottschling	PAVELP	11,938	0,594
MIOZOA	Parvodinium umbonatum	(Stein) Carty	PAVUMB	12,832	0,683
MIOZOA	Peridiniopsis cunningtonii	Lemmermann	PEPCUN	11,126	1,290
OCHROPHYTA	Centritractus belenophorus	(Schmidle) Lemmermann	CETBEL	10,598	0,610
OCHROPHYTA	Chrysococcus biporus	Skuja	CHSBIP	12,492	0,912
OCHROPHYTA	Chrysococcus minutus	(Fritsch) Nygaard	CHSMIN	5,576	0,448
OCHROPHYTA	Chrysococcus rufescens	Klebs	CHSRUF	11,157	0,550
OCHROPHYTA	Dinobryon bavaricum	Imhof	DINBAV	9,904	0,510
OCHROPHYTA	Dinobryon crenulatum	West & G.S. West	DINCRE	8,805	0,470
OCHROPHYTA	Dinobryon divergens	Imohf	DINDIV	9,674	0,711
OCHROPHYTA	Dinobryon sertularia	Ehrenberg	DINSER	9,287	0,557
OCHROPHYTA	Dinobryon sociale	Ehrenberg	DINSOC	11,764	0,560
OCHROPHYTA	Goniochloris fallax	Fott	GOCFAL	16,766	1,107
OCHROPHYTA	Goniochloris mutica	(Braun) Fott	GOCMUT	12,243	0,572
OCHROPHYTA	Goniochloris pulchra	Pascher	GOCPUL	13,030	0,657
OCHROPHYTA	Kephyrion inconstans	(Schmid) Bourrelly	KEPINC	7,104	0,611
OCHROPHYTA	Kephyrion littorale	Lund	KEPLIT	5,521	0,441
OCHROPHYTA	Kephyrion rubri-claustri	Conrad	KEPRUB	10,052	0,677
OCHROPHYTA	Mallomonas akrokomos	Ruttner	MALAKR	9,833	0,451
OCHROPHYTA	Mallomonas mangofera	Harris & Bradley	MALMAN	13,130	2,210
OCHROPHYTA	Nephrodiella lunaris	Pascher	NEHLUN	9,105	0,508
OCHROPHYTA	Nephrodiella semilunaris	Pascher	NEHSEM	8,239	0,390
OCHROPHYTA	Ochromonas variabilis	Meyer	OCHVAR	7,195	0,665
OCHROPHYTA	Ochromonas viridis	Böcher	OCHVIR	6,762	0,861
OCHROPHYTA	Pseudokephyrion pseudospirale	Bourrelly	PSKPSE	11,065	0,631
OCHROPHYTA	Pseudopedinella elastica	Skuja	PDPELA	11,440	0,522
OCHROPHYTA	Pseudotetraëdriella kamillae	Hegewald & Padisák	PTTKAM	17,002	1,186
OCHROPHYTA	Trachydiscus lenticularis	Ettl	TRDLEN	7,301	0,531
OCHROPHYTA	Trachydiscus minutus	(Bourrelly) Ettl	TRDMIN	14,142	0,437

A8. Classes d'état biologique pour l'IPHYGE et ses quatre métriques constitutives

Cette annexe est disponible dans un fichier complémentaire.

Résumé

Le projet DIPCEAU visait à proposer une 1^{ère} version d'un nouvel indicateur biologique basé sur le maillon phytoplancton et permettant l'évaluation de l'état écologique des très grands cours d'eau en France métropolitaine. Le développement de ce nouvel indicateur est présenté dans ce rapport. Ainsi ce dernier recense et décrit succinctement les jeux de données ayant permis ce développement. Il détaille aussi les critères de sélection des couples « stations x année » utilisés pour constituer le jeu de données. À partir de ce jeu de données nous avons identifié des situations de référence, c'est-à-dire des situations peu ou pas impactées par des pressions trophiques.

Sur la base de ces données et à partir des caractéristiques des communautés phytoplanctoniques (biomasses/biovolumes, compositions, et traits bioécologiques), nous avons calculé de nombreuses métriques : métriques de biomasse phytoplanctonique, métriques trophiques, métriques structurelles et métriques fonctionnelles. Les performances de ces métriques, c'est-à-dire leur capacité à prédire les valeurs des principaux paramètres de dégradation de ces masses d'eau, ont été comparées afin d'identifier les meilleures métriques. Nous avons ainsi identifié quatre métriques d'intérêt : une métrique de biomasse phytoplanctonique (calculée à partir des concentrations annuelles moyennes et maximales en chlorophylle-a) et trois métriques trophiques, permettant respectivement de prédire les concentrations en phosphore total, en azote Kjeldahl et en nitrates.

Le calcul d'une moyenne pondérée des valeurs de ces quatre métriques a permis de créer un indice synthétique multimétrique. Cet indice est dénommé IPHYGE, pour Indice PHYtoplancton pour les Grands cours d'Eau. Les performances de ce nouvel indice sont brièvement explorées dans ce rapport. Cet indice sera intégré dans la liste des indicateurs réglementaires DCE pour le suivi de l'état des GCE naturels.

Mots-clés

Phytoplancton – bioindicateur – évaluation – état écologique – grands cours d'eau – chlorophylle-a – pressions trophiques

