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Abstract: Monitoring virus infections can be an important selection tool in honey bee breeding. A
recent study pointed towards an association between the virus-free status of eggs and an increased
virus resistance to deformed wing virus (DWV) at the colony level. In this study, eggs from both
naturally surviving and traditionally managed colonies from across Europe were screened for the
prevalence of different viruses. Screenings were performed using the phenotyping protocol of the
‘suppressed in ovo virus infection’ trait but with qPCR instead of end-point PCR and a primer
set that covers all DWV genotypes. Of the 213 screened samples, 109 were infected with DWV,
54 were infected with black queen cell virus (BQCV), 3 were infected with the sacbrood virus,
and 2 were infected with the acute bee paralyses virus. It was demonstrated that incidences of
the vertical transmission of DWV were more frequent in naturally surviving than in traditionally
managed colonies, although the virus loads in the eggs remained the same. When comparing virus
infections with queen age, older queens showed significantly lower infection loads of DWV in
both traditionally managed and naturally surviving colonies, as well as reduced DWV infection
frequencies in traditionally managed colonies. We determined that the detection frequencies of DWV
and BQCV in honey bee eggs were lower in samples obtained in the spring than in those collected in
the summer, indicating that vertical transmission may be lower in spring. Together, these patterns in
vertical transmission show that honey bee queens have the potential to reduce the degree of vertical
transmission over time.
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1. Introduction

Disease pressure is an inherent driver of the evolution of eusociality [1,2] or social
task division [3], and it forms an important component in the evolution of western honey
bees (Apis mellifera). With the arrival of the Varroa mite (Varroa destructor), the virus
landscape in honey bee colonies was considerably changed by the introduction of a new
transmission pathway, thereby influencing virus virulence and evolution [4–13]. Through
Varroa-mediated transmission, virus diseases have become one of the most important
proximate causes of colony mortality and honey bee decline [14–21].

Of the 72 virus species that have been identified in honey bees [22], the most com-
monly occurring belong to the families Iflaviridae and Dicistroviridae [23], particularly the
sacbrood virus (SBV), black queen cell virus (BQCV), acute bee paralysis virus (ABPV) and
deformed wing virus (DWV). Both ABPV and DWV consist of a complex of closely related,
co-circulating master variants capable of forming viable recombinants [22,24,25]. The DWV
complex is best described as a group of functionally and genetically compatible minor
and major variants and their recombinants based on four master strains [26], of which
DWV-A and DWV-B are currently the most common [27–32]. Dynamics in the presence and
abundance of honey bee viruses show strong seasonal and geographical variation [33–35].
This variation is driven by the local adaptations of the virus, host and vector species, as well
as by the specific characteristics of each virus [36–40]. Together, they form a geographic
mosaic of coevolution [41].

In the first years after managed colonies are left untreated against the Varroa mite,
colony mortality increases considerably [42,43]. This results in strong selective pressure
forcing bees, mites and the viruses to adapt to each other. Most naturally surviving popula-
tions consist of unmanaged or feral colonies [40]. In managed colonies, two approaches
have been described to transition from treated colonies to naturally surviving colonies. The
first consists of leaving a large number of colonies unmanaged with respect to swarming,
re-queening and Varroa control [39] and allowing natural selection to take place. This is
described as the ‘Bond’ test: ‘live and let die’ [39]. A second approach, named ‘Darwinian
black box’, builds further on this by adding selection for strong spring development [43].
One of the best studied naturally surviving populations with regard to virus–host co-
evolution is an isolated, closed honey bee population located at the tip of the Näsudden
peninsula in the south of Gotland, a Swedish island in the Baltic sea. After implementing
the Bond test in 1999, these honey bee colonies evolved an increased tolerance for DWV
infections [38,44]. In addition, BQCV and SBV infections were less abundant in the autumn
and early spring, possibly due to the reduced colony size of the Gotland colonies in these
seasons [45].

Each response to a parasite influences transmission dynamics within and between
honey bee colonies. As honey bees live in large groups, the transmission of viruses through
trophallaxis, feeding or body contact occurs frequently. This form of transmission between
individuals of the same generation is defined as horizontal transmission. However, trans-
mission between generations by either eggs or semen is defined as vertical transmission [27].
Virus infections of queens, or their eggs, have been shown to interfere with normal egg
development, to elicit a stress response in eggs [46] and to cause important health risks for
the queen herself [47–50]. The importance of the honey bee queen in the viral dynamics
of the colony was recently highlighted with the discovery of the ‘suppressed in ovo virus
infection’ trait (SOV) [49]. This trait is described by the virus status of a sample containing
10 pooled drone eggs, and it reflects the degree of vertical transmission of viruses at the time
of sampling. Colonies headed by a queen laying virus-free eggs have been found to show
fewer and less severe DWV infections in almost all developmental stages of both drones
and workers [49]. In addition, this potential to suppress viral infections is heritable [49]
and alters the tissue specificity of DWV [50]. Drone eggs are unfertilized and therefore only
reflect the vertical virus transmission of the queen to her offspring [51]. As drone eggs are
only produced in the spring and summer, the choice of drone eggs compared to worker
eggs includes the limitation of when samples can be collected.
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The aim of this study was to compare virus infections in eggs collected from naturally
surviving colonies (NSCs) and traditionally managed colonies (TMCs) across Europe, along
with an analysis of the effects that queen age and sampling season have on infection patterns
in these eggs. The previously described SOV phenotyping protocol [49] was used to screen
for the presence of viruses after implementing two improvements: First, the detection of
viral pathogens using qPCR instead of end-point PCR allowed for the quantification of the
viral load of the eggs and lowered the detection threshold. Second, as the SOV trait is
associated with increased virus resistance across DWV genotypes [50], a shift was made
from screening for DWV-A only to a generic screening for the DWV complex. Overall, this
research improved our understanding of how the patterns of the vertical transmission of
viruses differ across Europe and in different breeding program selection strategies.

2. Materials and Methods
2.1. Virus Screening in Eggs

The 187 samples collected as part of the Flemish bee-breeding program in 2020 were
used to compare the transition from an end-point PCR to a qPCR approach and to compare
the quantification of DWV infections using primers specific to DWV-A or DWV-B and a
generic DWV primer (DWV-Fam). All samples were collected following the phenotyping
protocol for the SOV trait, as described by de Graaf et al. (2020), and they were screened
using qPCR for DWV-A, DWV-B, DWV-Fam, SBV, ABPV and BQCV. To compare the
performance of the end-point PCR to that of the qPCR, positive samples covering a 101–
108/10 egg range were selected and analyzed using end-point PCR for SBV, ABPV, DWV-A
and BQCV.

2.2. Egg Sample Collection across Europe

Egg samples were collected in 9 countries across Europe during either the spring (the
beginning of March to the end of May) or summer (the beginning of June to the end of
July) of 2020, depending on the presence of drone brood in each country and in each season
(Table 1). Each country sampled between 6 and 12 TMCs (colonies managed following local
standard practices, including treatment against the Varroa mite) and, if present, between 4
and 13 NSCs (colonies from populations that survive without treatment against the Varroa
mite). In total, 53 samples were collected from NSCs, and 160 were collected from TMCs
(including 72 from Slovenia). The samples from Slovenia were collected in the scope of a
different project, hence the larger sample size. The colonies were managed following local
standard practices, and the queens descended from locally adapted or native stock. The
treatment of the TMCs against the Varroa mite was performed with registered products in
each country. The management of the NSCs was conducted according to the ‘Darwinian
black box’ selection method [43] or the ‘Bond’ test [39]. From each of the 213 sampled
colonies, a pooled sample of 10 drone eggs was collected following the phenotyping
protocol of the SOV trait, as described by de Graaf et al. (2020). If drone eggs were not
present in the spring or summer and if attempts to induce drone laying did not succeed,
worker eggs were collected instead (as was the case for 34 colonies). All samples were
immediately stored at −20 ◦C and kept in a cold chain during transport to Belgium, where
they were analyzed for DWV-Fam, BQCV, SBV and ABPV using RT-qPCR. For each sampled
colony, information was gathered on the sampling season (spring or summer), subspecies,
queen age, beekeeping method (for both TMCs and NSCs) and the presence of clinical
signs at the time of sampling. This information was used to explain possible outliers and to
look for correlations between multiple factors. Additional samples were collected if the
apiary was composed of more than 10 colonies with drone eggs present during sampling.
Supplementary Table S2 provides an overview of the sampled populations and countries,
the number of worker egg samples collected in each country and the presence of clinical
signs at the time of sampling, and it lists the location of the sampled populations, including
the year of establishment of the NSC populations.
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Table 1. Virus prevalence in pooled egg samples from each participating country for both naturally surviving colonies (NSCs) and traditionally managed colonies
(TMCs).

Country Sampling
Season NSC/TMC

No. of
Sampled
Colonies

No. of
Virus-Free
Samples

No. of Samples Positive For: Mean Infection Load
(Log10/Egg)

DWV BQCV SBV ABPV DWV BQCV SBV ABPV

Belgium Spring NSC 10 1 9 (90%) 0 0 0 4.3
TMC 11 4 7 (64%) 2 (18%) 0 0 6.1 4.2

Croatia Summer TMC 10 3 4 (40%) 3 (30%) 1 (10%) 0 4.7 5.3 3.3

France
Spring NSC 13 2 7 (54%) 11 (85%) 0 0 5.6 5.5

TMC 10 2 1 (10%) 8 (80%) 0 0 5.8 6.4

the Netherlands

Partly in
spring and

summer
NSC 10 2 8 (80%) 3 (30%) 0 0 6.2 5.4

TMC 6 1 5 (83%) 3 (50%) 0 0 5.4 4.9

Norway Summer NSC 10 1 9 (90%) 1 (10%) 0 0 5.1 4.9
TMC 10 5 4 (40%) 3 (30%) 0 0 4.3 4.7

Portugal Spring TMC 10 1 8 (80%) 1 (10%) 0 0 5.1 3.3

Romania
Spring NSC 4 1 0 3 (75%) 0 0 4.5

TMC 9 4 2 (22%) 4 (44%) 0 0 4.0 4.0
Slovenia Spring TMC 72 27 38 (53%) 11 (15%) 2 (2%) 2 (2%) 5.3 5.2 3.2 3.8

Spain Spring TMC 10 4 5 (50%) 1 (10%) 0 0 5.5 4.8

Sweden
Summer NSC 6 5 1 (16%) 0 0 0 5.0

TMC 12 11 1 (8%) 0 0 0 4.3
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2.3. RNA Extraction and cDNA Synthesis

All samples were first homogenized in the presence of zirconium beads in 0.5 mL
QIAzol lysis reagent (Qiagen, Hilden, Germany). RNA was extracted using an RNeasy
Lipid Tissue Mini Kit (Qiagen) according to the manufacturer’s instructions, including a
DNAse step, and it was finally eluted in 30 µL elution buffer. The concentration of the total
RNA was measured using Nanodrop (Isogen, De Meern, The Netherlands). Using random
hexamer primers, 200 ng of RNA was retro-transcribed with a RevertAid H Minus First
Strand cDNA Synthesis Kit (Thermo Scientific, Waltham, MA, USA). Honey bee β-actin
was used to control RNA integrity.

2.4. End-Point PCR

All end-point PCR reaction mixtures contained 2 µM of each primer (see Supplementary
Table S1), 1 mM MgCl2, 0.2 mM dNTPs each, 1.2 U HotStarTaq Plus DNA polymerase
(Qiagen) and 2 µL cDNA product. The end-point PCR assays were performed using the
following cycling conditions: 95 ◦C for 5 min; 94 ◦C for 30 s, 55 ◦C for 30 s, 72 ◦C for 1 min,
35 cycles; final elongation 72 ◦C for 10 min, hold 4 ◦C. The end-point PCR amplicons were
analyzed by electrophoresis using 1.5% agarose gels stained with ethidium bromide and
visualized under UV light. Positive and negative controls were included in each run.

2.5. qPCR

The virus load qPCR determination was performed using Platinum™ SYBR™ Green
qPCR SuperMix-UDG (Thermo Scientific). Each reaction consisted of 0.4 µM of each primer
(sequences provided in Supplementary Table S1), 11.45 µL RNase-free water, 12.5 µL SYBR
Green and 1 µL of cDNA template. All samples were run in duplicate in a three-step
RT-qPCR. The thermal cycling conditions started with an initial activation stage at 95 ◦C
for 2 min, followed by 35 cycles of a denaturation stage at 95 ◦C for 15 s, an annealing stage
at 58 ◦C for 20 s and an extension stage at 72 ◦C for 30 s. This procedure was followed by a
melting curve analysis to confirm the specificity of the product (55–95 ◦C with increments
of 0.5 ◦C s−1). Each plate included a no-template control and a positive control. A standard
curve obtained through an 8-fold 5× serial dilution of a known amount of viral plasmid
loads (range of 104–1010 copies/µL) was used for absolute quantification. All data were
analyzed using CFX Manager™ 3.1 software (Bio-Rad). Baseline correction and threshold
setting were performed using the automatic calculation offered by the same software. The
maximum accepted quantification cycle (Ct) difference between replicates was set to two
Ct. The successful amplification of the β-actin internal reference gene was used to confirm
RNA integrity throughout the entire procedure [52]. For each sample, the virus load for
the 200 ng RNA included in the cDNA reaction was multiplied to account for the total
volume of RNA per sample, and it was subsequently divided by 10 to represent data as
total viral load per individual egg. The linear standard equations for the plasmid standards
and primers specific for each virus were as follows: Ct = −3.519 × +47.762, R2 = 0.997 for
DWV; Ct = −4.458 × +50.946, R2 = 0.865 for ABPV; Ct = −4.260 × +55.151, R2 = 0.943 for
BQCV; and Ct = −4.571 × +45.651, R2 = 0.938 for SBV.

2.6. Statistics

The viral loads for each sample were Log10-transformed to improve data visualization.
Detection thresholds for all pathogens were set at 30 Ct (corresponding to 103 copies for
DWV, BQCV, SBV and APBV). Below this threshold, samples cannot be reliably quantified
using qPCR [53]. RStudio version 3.6.1 was used for data analyses and visualization.
Analyses of the differences in the number of infections between groups were conducted
using chi-squared tests. For comparisons between the infection loads, T-tests were used.
All tests were checked for and complied with the required assumptions.
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3. Results
3.1. SOV Phenotyping Method

The virus detection thresholds on the end-point PCR (based on the end-point PCR
of the samples positive on the qPCR along a 101–108 copy/reaction range of the start-
ing template) were 102 for DWV-A, 107 for BQCV, 106 for ABPV and 108 for SBV (see
Supplementary Figure S1). A total of 187 samples were screened for DWV-A, DWV-B
and DWV-Fam (generic DWV primer). Of these, 153 (82%) showed amplification when
screening with DWV-Fam. One sample was only amplified with the DWV-A assay, and
two samples were only amplified with the DWV-B assay. Of the 153 samples that were
amplified with the DWV-Fam assay, 98 (64%) were also amplified with the DWV-B assay,
2 (1%) were amplified with the DWV-A assay, and 6 (4%) were amplified with both the
DWV-A and DWV-B assays. The remaining 47 samples (25%) were only amplified with the
DWV-Fam assay and not with either the DWV-A or DWV-B assay. The median infection
load for DWV-Fam was 5.8 Log10 virus copy number/egg and was on average 1.69 Log10
higher than the sum of DWV-A and DWV-B.

3.2. Virus Prevalence

Table 1 shows an overview of the different virus prevalence across all samples, and it
presents the number of collected samples per country, the number of infections for each
virus, and the mean infection load for each country and for each selection strategy (TMCs or
NSCs). In total, 53 samples were collected from NSCs, and 160 were collected from TMCs
(including 72 from Slovenia). Of the 213 pooled egg samples screened, most infections
were with DWV (51%), followed by BQCV (25%). Only three samples were infected with
SBV, and two samples were infected with ABPV. Multiple virus infections in the same
sample occurred in only 14% of the samples (28 samples were infected with two viruses,
and one was infected with three viruses). No virus infections were found in 35% (74/213)
of the samples. The differences in infection frequencies varied considerably between
and within countries. The worker egg samples from Norway and Sweden had lower
infection frequencies (11/34) than the drone egg samples from other locations (61/107).
The Slovenian samples were collected in the scope of a different project, hence the larger
number of samples. To avoid an uneven distribution of the sample size across groups, the
Slovenian samples were not included for further analyses in this study. The differences
between subspecies could not be analyzed due to the high variability between countries and
the hybridization between subspecies. Due to bad weather conditions or the inaccessibility
of some locations, some countries (The Netherlands, Romania and Sweden) were not able
to sample the requested number of colonies.

Figure 1 shows the percentage of virus infections occurring in the two sampling seasons
(spring and summer). The samples collected in the spring had significantly higher infection
frequencies than the samples collected in the summer for both DWV (X2 (1, N = 141) = 9.4,
p < 0.05) and BQCV (X2 (1, N = 141) = 12.3, p < 0.05) but not for SBV.

3.3. Natural Survivors vs. Traditionally Managed Colonies

Figure 2 shows the percentage of virus infections (A) and the infection loads (B) for
both NSCs and TMCs and for each virus. The infection frequencies were significantly higher
in NSCs than in TMCs for DWV (X2 (1, N = 111) = 8.6, p < 0.05) but not for BQCV (X2 (1,
N = 111) = 0.1, p = 0.75). No significant differences were found between the infection loads
of TMCs and NSCs for DWV (t (68) = -0.6, p = 0.52; TMCs = 5.2 ± 0.4, NSCs = 4.9 ± 1.6)
and BQCV (t (33) = 1.6, p = 0.11; TMCs = 4.4 ± 0.9, NSCs = 4.8 ± 0.1). On average, most
infections hovered around 105 for both DWV and BQCV in this sample cohort.
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3.4. Queen Age

Figure 3A shows the frequency of infection with DWV or BQCV for each queen age
and for both TMC and NSC groups. For DWV, a significant decrease in the percentage of
infected samples was found in TMCs between queens aged 0 and 1 year (X2 (1, N = 59) =
3.9, p < 0.05). This trend continued with a lower infection frequency in queens aged 2 years
(1/10) than in queens aged 1 year (14/42), albeit not significant. No differences in infection
frequencies were found between queen ages in NSCs. Figure 3B shows the infection loads
of DWV and BQCV for each queen age for both TMC and NSC groups. As previously
shown, the infection load did not differ between the two groups. Comparing infection
loads between queen ages showed significantly higher infection loads in queens aged 0
years (M = 5.7, SD = 0.2) than in queens aged 1 year for DWV (M = 4.8, SD = 1.6; t (29) = 2.6,
p < 0.05) for both TMCs and NSCs. Albeit not significant, the mean DWV infection load for
queens aged 2 years (M = 5.3) was lower than the mean of queens aged 1 year (M = 6.2).
No significant differences in infection frequencies or infection load were found for BQCV.
The infection load did however show a similar general trend, with mean infection loads
decreasing with age (5.0 in queens aged 0 years, 4.6 in queens aged 1 year and 4.4 in queens
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aged 2 years). Interestingly, the spread in the infection loads of queens aged 0 years largely
lacks infection loads lower than 107 for DWV and BQCV. Seasonal differences in sample
collection did not influence the infection frequency of DWV in queens aged 0 years (X2 (1,
N = 25) = 1.69, p = 0.16) and older queens (X2 (1, N = 97) = 2.2, p-value = 0.14). Queen age
was unknown for 19 out of 141 samples (13%).
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4. Discussion

In comparison with the previously described SOV phenotyping protocol [49], this
study implemented two improvements for virus screening in honey bee eggs. Measuring
virus prevalence with qPCR showed, as expected, a higher detection sensitivity than when
measuring virus prevalence with end-point PCR. The detection threshold of the qPCR was
around 103 (30 Ct) for all viruses, while the end-point PCR showed significantly higher
detection thresholds for SBV, BQCV and ABPV (108 for SBV, 107 for BQCV and 106 for
ABPV). This implies that phenotyping using end-point PCR underestimated the number
of virus infections for these viruses. There was no difference between both detection
thresholds for DWV. It should be noted that samples negative on qPCR can still be infected
below the detection threshold and that positive samples might be infected with viruses in a
dormant state. An important advantage of qPCR is that breeding programs can manually
set threshold values based on the breeding goal and the virulence of the virus. Each
breeding program can thus determine the degree of positive or negative selection desired.
Infection loads in eggs are linked with the infection status of the queen [53,54] and have
been shown to reduce virus infections in the colony as a whole [49]. Nevertheless, the
impact of different virus infection loads in eggs on subsequent developmental stages is
currently unknown. Further research, where eggs with different virus infections are reared
in vitro, could improve our understanding of the impact that vertical transmission has on
antiviral responses and honey bee health.

The comparison between individual DWV genotypes and the generic DWV showed a
large underestimation of DWV infections in this sample cohort when screening for either
one of the genotypes or the sum of DWV-A and DWV-B. This can be seen in terms of the
underestimation of the number of infected samples (25% of the samples) and the lower
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infection loads (on average 1.69 Log10 lower). In comparison, a previous study in the
UK found 40% higher DWV titers when screening with a universal DWV-complex assay
than when pooling the results of screening with specific DWV-A and DWV-B assays [55].
Possible explanations for this could be the presence of different genotypes, DWV-C or
DWV-D, neither of which has to date been detected in Belgium [26,27], or mutations in
the primer region that hamper correct primer hybridization [56]. A study on the genetic
diversity within a DWV population in a colony showed that 82% of the genome had >1
sequence variant present in the frequency of >1%, and 39% of the genome had >1 sequence
variant present in a frequency of >10% [8]. In addition, shifts in the sequence space of
the DWV-A quasispecies have been shown after injection in honey bee pupae [57]. The
rapid shifts in the DWV quasispecies are consistent with the punctuated evolution theory,
whereby the infection of a new host causes a selective sweep, followed by diversification
towards an increased genetic heterogeneity that has potentially adapted to the host-specific
antiviral defenses [28]. This implies that primer regions, although being in conserved
regions, may evolve over time and reduce the primer amplification efficiency.

With regard to the virus prevalence in drone eggs collected across Europe, virus-free
samples were found in all countries and in both TMC and NSC groups in the sample
cohort studied herein. According to the SOV protocol, queens laying virus-free eggs at
the time of sampling were phenotyped as SOV-positive (SOV+) [49]. The low number of
infections in the Gotland population (located in Näsudden) and in the TMC (located in
Sigarve) populations from Sweden was remarkable, as both groups only had one sample
infected with DWV despite multiple studies recording high viral loads in the worker bees
of Gotland throughout the years [35,38,44,45,58–60]. The presence of SOV+ queens across
Europe serves as a possible starting point for local breeding programs to perform selection
within the variation in virus resistance present within honey bee populations [49,61].
Including subsequent generations descending from SOV+ queens in breeding programs
is crucial to maximize selection on the heritable genetic contribution [49] behind virus
resistance. This is because the SOV trait does not differentiate between samples that are free
of viruses due to the virus resistance of the queen or due to other non-genetic circumstances.
In this study, virus abundance and prevalence were based on one sampling time point.
However, for accurate SOV phenotyping, multiple samples could be collected at different
time points to differentiate between queens that temporarily lay virus-free eggs and queens
that do so consistently. This is an important consideration, as virus dynamics have been
shown to change across the seasons [62].

In addition to the high prevalence of DWV, the second most common virus found in this
study was BQCV. This virus is the most common cause of queen larval death [63,64], but it
has not been found to cause overt symptoms in queens despite the detection of high infection
loads [65]. Viruses of the ABPV complex and SBV have been found in eggs [54,66–68], but they
were rarely detected in this study. The higher virulence of BQCV, SBV and ABPV [4,48,69–72]
compared to the lower virulence of DWV [69] could explain why they are less likely to be
transmitted vertically without causing queen supersedure or colony health issues [73].

Differences in infection patterns between countries can be caused by climatic con-
ditions, by the seasonality of honey bee viruses [34,56,74–80] or by the low number of
samples per country. This is reflected in the significant differences in infection frequencies
between the spring and summer sampling seasons in this study. Interestingly, infection fre-
quencies with DWV were higher in spring, contrasting with the generally higher infection
frequencies reported for adult bees during the summer and autumn [62,75,77,80]. These
findings indicate that conclusions based on SOV phenotyping should always take the time
of sampling into account when interpreting results and that the SOV status can change
between seasons. Other factors affecting virus abundance are nutritional quality and avail-
ability [81,82], connectivity between colonies [83], colony demography [84,85], population
heterogeneity [86–90], colony management [91], the degree of local adaptation [92], indi-
vidual and colony-level immune responses [93] and other stress factors (such as exposure
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to neonicotinoids) [94]. In this study, worker eggs did not have higher infection loads than
drone eggs despite the possible occurrence of trans-spermal virus transmission [25].

By comparing naturally surviving with traditionally managed populations in the same
local context, insights can be gained into which evolutionary adaptations are needed for
honey bees to survive without treatment against the Varroa mite. Typical for naturally
surviving populations is that they harbor higher mite numbers that serve as an important
vector for viruses [39,95]. Honey bee colonies react to these high disease pressures with
adaptations in their antiviral responses or by forms of social immunity [96]. This study
shows that, in this sample cohort, infection frequencies were significantly higher in NSCs
than in TMCs for DWV but that infection loads did not differ between the two groups.
Honey bee queens appear to avoid increased vertical transmission loads despite increased
infection frequencies. Virus loads in worker bees were not studied here. Therefore, it re-
mains uncertain if the higher infection frequencies are a result of increased virus circulation
in the naturally surviving populations. The high variability between both groups in each
country could be caused by previously mentioned factors affecting virus abundance, the
time since colonies were left untreated [36,37] or the degree of genetic divergence between
TMCs and NSCs within a country [52,62,90].

Honey bee queens accumulate viral infections and infection loads during queen
rearing [97,98], during mating flights [47,99,100] or as they become older [47,51,68], despite
increased immune responses [101]. In contrast to what was expected, both the infection
frequency of DWV and the infection load in the eggs of queens from TMCs decreased with
increasing queen age. This difference is not caused by the mortality of queens with high
infection loads, as the distribution of the egg infection loads does not overlap between
queens aged 0 years and 1 year. Queens from NSCs showed the same trends in infection
loads across all queen ages but did not show differences in infection frequencies. For BQCV,
only the infection load was significantly lower in queens aged 0 years than in queens aged
1 year from TMCs. In beekeeping practices, queens are often renewed yearly, as young
queens are associated with lower winter mortality [66,102]. This study suggests that older
queens from colonies that are treated against the Varroa mite might be able to adapt their
antiviral responses to DWV and thereby reduce the infection loads transmitted via their
eggs. If so, the frequent renewal of queens could limit this potential as opposed to selecting
towards increased queen longevity.

By focusing on the role of honey bee queens, this research adds to the growing
literature on the relationship between viral infections and honey bee health. Evolutionary
patterns of resistance and tolerance can form the theoretical foundation to incorporate virus
resilience in breeding programs. This is a promising perspective, as shown by the variability
of vertical transmission over time, across queen ages and under different evolutionary
conditions.
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