
HAL Id: hal-04100410
https://hal.inrae.fr/hal-04100410v1

Submitted on 17 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Simulating contact networks for livestock disease
epidemiology: a systematic review

William T M Leung, James W Rudge, Guillaume Fournié

To cite this version:
William T M Leung, James W Rudge, Guillaume Fournié. Simulating contact networks for livestock
disease epidemiology: a systematic review. Journal of the Royal Society Interface, 2023, 20 (202),
pp.20220890. �10.1098/rsif.2022.0890�. �hal-04100410�

https://hal.inrae.fr/hal-04100410v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

17
 M

ay
 2

02
3 
royalsocietypublishing.org/journal/rsif
Review
Cite this article: Leung WTM, Rudge JW,
Fournié G. 2023 Simulating contact networks

for livestock disease epidemiology: a systematic

review. J. R. Soc. Interface 20: 20220890.
https://doi.org/10.1098/rsif.2022.0890
Received: 14 December 2022

Accepted: 24 April 2023
Subject Category:
Life Sciences–Mathematics interface

Subject Areas:
biomathematics

Keywords:
livestock production, network model,

epidemiology, network simulation model,

livestock trade, infectious disease
Author for correspondence:
William T. M. Leung

e-mail: william.leung2@lshtm.ac.uk
© 2023 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.6631153.
Simulating contact networks for livestock
disease epidemiology: a systematic review

William T. M. Leung1,2, James W. Rudge1,3 and Guillaume Fournié2,4,5

1Communicable Diseases Policy Research Group, Department of Global Health and Development, London School
of Hygiene and Tropical Medicine, London WC1E 7HT, UK
2Veterinary Epidemiology, Economics and Public Health Group, Pathobiology and Population Sciences
Department, Royal Veterinary College, London AL9 7TA, UK
3Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand
4INRAE, VetAgro Sup, UMR EPIA, Université de Lyon, Marcy l’Etoile 69280, France
5INRAE, VetAgro Sup, UMR EPIA, Université Clermont Auvergne, Saint Genes Champanelle 63122, France

WTML, 0000-0003-1616-175X; JWR, 0000-0002-3031-3820; GF, 0000-0002-6998-1201

Contact structure among livestock populations influences the transmission of
infectious agents among them. Models simulating realistic contact networks
therefore have important applications for generating insights relevant to live-
stock diseases. This systematic review identifies and compares such models,
their applications, data sources and how their validity was assessed. From
52 publications, 37 models were identified comprising seven model frame-
works. These included mathematical models (n = 8; including generalized
random graphs, scale-free, Watts–Strogatz and spatial models), agent-based
models (n = 8), radiation models (n = 1) (collectively, considered ‘mechanistic’),
gravity models (n = 4), exponential random graph models (n = 9), other forms
of statistical model (n = 6) (statistical) and random forests (n = 1) (machine
learning). Overall, nearly half of the models were used as inputs for net-
work-based epidemiological models. In all models, edges represented
livestock movements, sometimes alongside other forms of contact. Statistical
models were often applied to infer factors associated with network formation
(n = 12). Mechanistic models were commonly applied to assess the interaction
between network structure and disease dissemination (n = 6). Mechanistic,
statistical and machine learning models were all applied to generate networks
given limited data (n = 13). There was considerable variation in the
approaches used for model validation. Finally, we discuss the relative
strengths and weaknesses of model frameworks in different use cases.
1. Introduction
Livestock holdings may be epidemiologically connected through both direct
and indirect contacts. Direct contact typically pertains to the movement of live-
stock between holdings, while mechanisms for indirect contact include the
transfer of biological material, equipment or personnel [1]. These contact pat-
terns can be conceptualized as networks in which nodes may represent
livestock populations (given that livestock are often managed in groups or
are otherwise spatially clustered) and edges represent the contact(s) of interest
between those populations. It is well recognized that the structure of livestock
contact networks has important implications for infectious disease transmission
dynamics [2–6]. Characterizing the structure of these networks therefore plays a
crucial role in understanding transmission patterns of infectious diseases in
livestock and, consequently, for informing disease risk assessments and control
strategies. This may involve the use of disease transmission models which
explicitly account for contact network structure [3,7–11].

Insights about the epidemiological importance of livestock contact networks,
especially livestock movement (e.g. trade) networks [1,12–15], have been gener-
ated by the analysis of routinely recorded livestock movement data collected via
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livestock identification and traceability systems (LITS) [14,16–
19]. Where such routine data are unavailable (or insufficient),
targeted network surveys can also be conducted [7,20–24].

Such empirical approaches are, however, associated with
major challenges. In certain settings, LITS may not be
implemented as data collection, and sharing may be restricted
by commercial interests and related data privacy concerns
[3,25–27]. The costs and infrastructure required to implement
and sustain routine systems also constrains their feasibility,
especially in low- and middle-income countries [28]. The
analysis and utility of such data may be constrained by its
vastness [28]. Moreover, a lack of updated or complete data
may also limit its use for supporting decision making during
disease outbreaks [28–30]. While network surveys have
been used when such data are unavailable, these are usually
targeted towards specific geographical locations and
time periods. Indeed, both routine and non-routine network
data capture activities are highly resource intensive and are
therefore likely to be targeted towards livestock species or pro-
duction types of particular interest from a national livestock
disease-management perspective [28,31–33].

Model-based approaches are increasingly being used to
help address some of these challenges. We therefore con-
ducted a systematic review to provide an overview of the
state-of-the-art in modelling livestock contact networks. Our
objectives were to identify the main types of models and
methods used, compare their applications and data require-
ments, and examine the extent to which such models have
been validated. Based on the findings, we also discuss key
challenges and opportunities for future research in this
area. In this review, we focus on studies which have
employed empirically informed, model-based approaches of
network (re)-construction or inference, with a primary inter-
est in epidemiologically relevant (i.e. potentially infectious)
contacts between livestock populations.
2. Methods
2.1. Systematic search strategy
This systematic review followed the PRISMA 2020 guidelines for
the reporting of systematic reviews [34]. Search terms were devel-
oped around four key topics: (i) livestock and poultry, (ii)
networks, (iii) models, and (iv) disease. Four databases—Med-
line, Embase, Web of Science and Scopus—were queried using
title, abstract and keyword searches on 22 January 2021 and no
date limits. Database searches were repeated on 27 January
2023 to cover all records published up to this date. Relevant sub-
ject headings were applied to databases using subject heading
indexing (i.e. Medline and Embase; electronic supplementary
material, table S1). Search terms within the ‘networks’ topic
were informed by previous reviews of the use of network simu-
lation models in different contexts [35–39]. However, broad terms
were also included to ensure identified records were not
restricted to known model types. Within each search topic, Boo-
lean ‘OR’ operators were used to combine search terms and
subject headings, while different topics were combined using
‘AND’ operators (electronic supplementary material, table S1).
Wildcards, truncations and adjacency searches were applied
using the relevant syntax for each database. Peer-reviewed
papers and conference proceedings were all eligible for inclusion.
The screening process was expanded to include the reference lists
of the included publications, as well as any papers that cited
them. For full search terms see electronic supplementary
material, table S1.
2.2. Inclusion and exclusion criteria
Inclusion and exclusion criteria were agreed by all authors. A
single reviewer screened records but discussed any records for
which inclusion was uncertain with the other authors. Screening
was split into two stages:

Stage 1: Titles, abstracts and keywords were screened; records
were rejected if any of the following statements were true: (i)
there was no reference to livestock; (ii) there was no reference
to contacts between livestock, contact networks or infectious
disease dynamics on networks; (iii) the record was not peer-
reviewed, and (iv) the record was not written in English.

Stage 2: Full texts were screened; records were retained if all fol-
lowing statements were true: (i) a model was used to simulate
a network of epidemiologically relevant contacts between live-
stock subpopulations; (ii) the model attempted to reproduce
structural properties of an empirical network and/or its
underlying generating mechanisms, and (iii) these properties
or mechanisms were informed empirically.

Hence, we did not review records which simulated theoreti-
cal networks (e.g. to be used as reference or null models) and/or
which randomized some aspects of a network to make compari-
sons with empirical networks (e.g. [40,41]). We also excluded
studies that solely reconstructed transmission networks, since
these are subsets of the contact networks which are the focus
of this review. Where multiple models were used in papers,
each model was screened individually for inclusion.

2.3. Data extraction
Information from each study was systematically recorded in a
data extraction table. This was designed to record information
about: (i) the type of model used; (ii) the applications of
models; (iii) characteristics of the empirical network under
study (livestock type, geographical location and disease focus);
(iv) definition of network nodes and edges; (v) data types and
variables used for model fitting, and (vi) how the performance
of models was assessed (table 2). Descriptive analyses and
visualizations of the frequency of key study characteristics were
conducted using R v. 4.2.0 [42].

2.4. Model classifications
Following exploratory scoping of the literature, particularly pre-
vious reviews on network simulation models in other disciplines
[36–39], we classified models into three groups: mechanistic, stat-
istical and machine learning. Though these categories are not
mutually exclusive (e.g. mechanistic model parameters may be
estimated using statistical methods), they are useful for describ-
ing the general characteristics of the reviewed models, as
described below.

Mechanistic models are here defined as mathematical
equations or an algorithmic set of rules, a ‘mechanism’, used to
generate a set of edges between nodes, i.e. a network. We include
in this grouping mechanistic models that span from (i) abstracted
and intentionally simplified ‘mathematical models’ [38], such as
scale-free and small-world models (and which include the ‘prob-
abilistic’ and ‘idealized’ models/networks described by others)
[37,39], to (ii) complex agent-based models (ABMs) explicitly
modelling individual-level contact processes. Notably, across
both of these subgroups, the generating mechanisms may
simply serve as an arbitrary algorithmic tool used to generate
networks exhibiting a certain topology, or else they may be con-
figured to reproduce the emergent processes (assumed or
otherwise) that generated the observed network, that is, based
on ‘first principles’ [43,44].

Statistical models describe a network as a function of factors
hypothesized to be associated with edge formation. They start



12 226 publications
retrieved by database

searching

7 publications 
from citations

7981 publications after removing duplicates 
7521 publications rejected (screen 1) 

463 full-text articles assessed for eligibility

418 publications rejected (screen 2) with reasons:

– did not simulate a livestock contact network (n = 378)
– simulated a network of individual animals (n = 7)
– constructs a transmission network (n = 15)
– simulates the timing of movements on a fixed 

network (n = 3)
– did not aim to reproduce an empirical network (n = 6)
– not empirically informed (n = 3)
– not in English (n = 2)
– could not access (n = 4)

52 publications included
in this review

MEDLINE (n = 3660)
EMBASE (n = 3605)

Web of Science (n = 4540)
Scopus (n = 421) 

Figure 1. PRISMA flow diagram.

Table 1. Model frameworks applied to simulate livestock contact networks
across 52 included studies. ABM = agent-based model; (T)ERGM =
(temporal) exponential random graph model; GM = gravity model; RF =
random forests.

category
model
framework

number of
models

number of
publications

mechanistic mathematical

models

8 7

ABMs 8 15

radiation models 1 1

statistical (T)ERGMs 9 7

GMs 4 4

other statistical 6 17
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with observations of an empirical network and fit the par-
ameters of a selected model framework to the data through
formal statistical inference [36,38,39]. Within this group, we
include standard statistical models (e.g. generalized linear
models) which may be used to estimate the probability or
strength of an edge between nodes given a set of covariates,
in addition to network-specific statistical models which expli-
citly account for the dependencies inherent to network data
[36,38,39].

Machine learning models learn patterns in the data without
the model being specified by the user and commonly place an
emphasis on predictive accuracy rather than causal inference
[45,46]. These can be broadly categorized according to whether
the model fitting is ‘supervised’, where the value of the
dependent variable is known (i.e. data are ‘labelled’ in machine
learning-terminology), or ‘unsupervised’, which use ‘unlabelled’
data and commonly include clustering algorithms [45]. In the
context of network simulation, they may be used to solve
classification and regression problems.
models

machine

learning

RF 1 1

total - 37 52
3. Results
3.1. Screening process
Database searches retrieved 12 226 publications of which 7981
(65%) were unique. Title, abstract and keyword screening
excluded 7521 (94%) unique records (figure 1). A further 418
(5%) were excluded after screening full texts, mostly because
they did not simulate a livestock contact network but presented
descriptive analyses of empirical networks or simulated infec-
tious disease transmission on empirical networks (figure 1).
Six additional publications were identified from the citations
of included papers. A single additional publication citing
these publications was then identified. Therefore, a total of 52
publications published between 2009 and 2022 were eligible
for inclusion (see electronic supplementary material, table S2
for all exclusion reasons).

To identify the number of different models used across all
included studies, we considered a model to be ‘distinct’ from
others when a specific framework was applied to a particular
dataset. Hence, analyses in 20 publications were based
on previously published models (table 2), while two
publications presented multiple models, applying different
model types to a single setting [47], or the same model
type to different settings [29]. Consequently, 37 distinct
models (tables 1 and 2) were identified and reviewed across
the 52 included publications. We refer to unique models
using the first published instance.

Following the PRISMA checklist, we highlight nine
studies that might appear to meet the inclusion criteria,
but were excluded. Three studies rewired empirically
observed networks without also attempting to simulate
the empirical network [93–95]. Three studies simulated the
timing or volume of livestock movements on a predefined
(non-modelled) network [96–98]. Two used mechanistic
models with entirely hypothetical parameter values
[99,100]. One study applied random forests (RFs) to
predict the timings of trading events, without using this
information to simulate a network [101].
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3.2. General model characteristics
The identified models were applied to 20 countries in four
continents; no eligible models were applied to Australia or
South America. The USA was the most well-represented
country, with 11 distinct models applied (figure 2a). Most
models were applied to a single livestock type, including
pigs (n = 17), cattle (n = 13) and poultry (n = 3). Three
models were applied to multiple livestock types (figure 2d).
All models were applied in a disease context, related to
specific (n = 18), non-specific (n = 13) or hypothetical diseases
with specific characteristics (n = 6). Infectious disease trans-
mission was simulated on the networks generated by 18
models (13 mechanistic; 5 statistical; table 2).

In 25 models, nodes represented farms or herds, with 14
of these also accounting for other units such as markets,
slaughterhouses and/or livestock traders. Nodes were
livestock populations in given administrative areas (e.g. vil-
lages, provinces and counties) in the other 12 models.
Edges represented livestock movements in all models:
either movements of animals among populations (n = 24),
or transhumant movements of whole livestock populations
between geographical areas (n = 3). Seven models simulated
multi-layer networks with additional sets of edges represent-
ing epidemiologically relevant contacts via vehicles,
personnel or feed providers. A single model broadly defined
an edge as any type of potentially infectious contact in the
context of avian influenza without defining transmission
routes specifically [72]. Most models (n = 27) generated
static networks. However, the timing of trades on the simu-
lated static network was sometimes time varying, e.g. based
on a probability of trading [49]. Alternatively, nodes or
edges were sometimes added or removed by copying empiri-
cal records exactly (i.e. without modelling these) [44,52].
Contrastingly, eight ABMs and two statistical models
generated dynamically evolving networks.

Most models were statistical (n = 19), with the most
common frameworks being exponential random graph
models (ERGMs; n = 9), gravity models (GMs) (n = 4) and
other statistical models (n = 6). Only one machine learning
model, based on RFs, was identified. The mechanistic
models (n = 17) included mathematical models (n = 8),
ABMs (n = 8) and a radiation model (n = 1) (table 1). The
first model was published in 2009, but most (n = 31; 84%)
were published between 2015 and 2022 (figure 2c).

In the following sections, we first review the objectives
addressed by the different model frameworks and the data
sources used. We then introduce the key methodological
characteristics of each modelling framework, including how
they have been calibrated to data, and review the degree to
which their performance was assessed.

3.3. Model applications
Network simulation models were used for a range of appli-
cations which varied according to the model type used
(figure 3a; table 2). For 13 models, multiple applications
were identified.

Approximately half of models (16/37) were used to gener-
ate networks based on limited data, for example where total
network data was not available but descriptive statistics of
that network were, or where models based on complete net-
works were used for prediction in other settings. These
included all model frameworks described above, except
ERGMs. A single study used artificially constrained data on
indirect contacts among farms to explore how inferring these
contacts using different levels of information and assumptions
influenced the outputs of disease transmission models [51].

A third of models (n = 13), mostly statistical (n = 12), were
applied to explore network-generating processes, specifically,
the inference of factors associated with network (or edge)
generation. For the RF model, the relative importance of pre-
dictors was assessed by comparing prediction accuracies of
models with and without a given predictor. Nine models,
mostly mechanistic (n = 7), were applied to analytically
explore the relationship between network structure and
diffusion of phenomena (e.g. disease) on networks.

Models were also applied to test scenarios related to (i)
assessing the impact of disease control strategies (n = 7) such
as targeted livestock movement restrictions, culling or vacci-
nation; (ii) using simulated livestock movement patterns to
inform optimal sites for directing disease surveillance activities
(n = 1; [80]), and (iii) comparing the impact of alternative
network configuration scenarios on simulated disease trans-
mission patterns (n = 2; all mechanistic). These scenarios
involved, for example, rewiring nodes [44] and changing the
composition of the farm population [53]. Mechanistic models
were applied to explore the interaction between agents’ adap-
tive behaviour, and network formation or disease spread.
Examples of such applications included modelling of farmers’
decisions to implement biosecurity measures in response to
disease risk [54], or trigger sales in anticipation of movement
restrictions [49]. In Knight et al. [64], farmers’ adaptive behav-
iour (i.e. anticipatory response to disease control interventions)
influenced the formation of the network itself.

Three models were presented as a proof of principle to
demonstrate their ability to reproduce structural features of
an empirical livestock contact network, without further appli-
cation [50,59,61]; these models were therefore omitted from
figure 3a.

3.4. Data sources used
Different data sources were exploited for calibrating models,
with some variation seen between model types (figure 3b).
Most models (n = 30) were informed by empirical network
data, including data from network surveys (n = 13), LITS
(n = 12), censuses with some data on livestock trade, i.e. cap-
turing total number of animals ‘sold or moved’ by actors in a
given year (n = 2), and livestock movement permits which are
used in some countries for recording and regulating move-
ments, e.g. across administrative borders (n = 1; figure 3b).
Contrastingly, mechanistic models sometimes did not use
network data, but instead used data to parametrize model
processes influencing edge formation (e.g. herd demographic
processes (n = 6; table 2)).

While models sometimes exploited similar data types, the
way that these data were used to calibrate models varied sub-
stantially according to model type as detailed in the next
section (§3.5).

3.5. Model frameworks
3.5.1. Mechanistic

3.5.1.1. Mathematical models (n = 8)
3.5.1.1.1. Generalized random graphs. Random graphs generate
edges between sets of nodes at random, either by assigning a
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fixed number of edges [102,103] or by assigning edges with a
fixed uniform probability [104]. These models therefore con-
trol for network density alone, and the resulting networks
fail to capture some important structural features of empirical
networks, especially high clustering and a right-skewed
degree distribution [38,105,106].

Generalizations may, however, be applied to control for
other network structural features beyond density thus permit-
ting the generation of more ‘realistic’ networks [38,106]. The
configuration model, or matching algorithm [107,108], allows
for degree distribution to be fixed by algorithmically assigning
a number of incoming and outgoing connections (stubs) to
nodes, while randomly matching in- and out-stubs between
different nodes. Other structural features can be controlled
for: for example, in the pig movement network generated in
Ferdousi et al. [48], connections were only permitted between
certain stub combinations, thus additionally controlling for
selective mixing among nodes (assortativity). Gates & Wool-
house [44] also adopted a modified configuration algorithm
to generate cattle trade networks, preserving farms’ empirical
daily amounts of purchases and sales, while selectively
matching those reported to have exchanged cattle of the
same type (dairy/beef) in the same market, on the same day.

3.5.1.1.2. Scale-free models. Other types of mathematical model
seek to reproduce stylized topologies that are common in
empirical networks. A key example is the scale-free property
which results from the network degree distribution following
a power law: pk∼ k−γ; where k denotes degree and γ the
scaling parameter. The Barabasi & Albert [109] preferential-
attachment model generates scale-free networks by progress-
ively adding nodes to a network, with new nodes
preferentially forming edges with high-degree nodes. This
generates hub-like structures observed in many empirical net-
works, including those of livestock, where most nodes are
poorly connected and a small number of nodes (e.g. markets
and breeding farms) have a very high number of connections
[105,110].

Thakur et al. [47] used the Barabasi–Albert model to simu-
late scale-free pig trade networks, fitting the model with a
scaling parameter derived from empirical studies. The result-
ing network was altered in a second step by randomly
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rewiring edges connecting node types that were not con-
nected in the empirical network, while preserving
clustering coefficient and mean degree of the Barabasi–
Albert model simulation. Tago et al. [49] generated a scale-
free cattle trade network using an empirically derived scaling
parameter and mimicked the real network by classifying
nodes as markets, dealers or farms, based on the degree of
these nodes determined empirically.
3.5.1.1.3. Watts–Strogatz model. The Watts–Strogatz model is
another example of a model which reproduces particular
features of empirical networks—in this case, ‘small-world’
properties. The latter refers to networks with short average
path lengths, as observed in random graphs, but with higher
clustering than is found in random graphs of equivalent size
and the same mean degree [111].

This is achieved by taking a ring lattice network, which
exhibits high clustering, and randomly rewiring a proportion
of its edges such that average path length is reduced. The
edge rewiring probability ( p) is the single parameter by
which the network can be interpolated between the highly
clustered lattice and random graph [36,105]. Thakur et al.
[47] used this model to generate pig trade networks, choosing
a value for p to reproduce clustering coefficients observed in
empirical networks.
3.5.1.1.4. Other mathematical models. Other network simulation
model frameworks have been devised within different fields
of study. Lennartsson et al. [50] describe an algorithm which
generates spatially explicit networks of a defined number of
nodes and mean degree which can then be tuned to target
specified levels of degree-assortativity (selective mixing
between nodes of similar degree), clustering coefficient, frag-
mentation index and spatial aggregation of nodes (random to
aggregated). As a proof of principle, the authors generated
networks matching values of these statistics as observed in
an empirical swine transportation network.

3.5.1.1.5. Spatial models. With the models described above, the
influence of nodes’ spatial locations is irrelevant for edge for-
mation. In reality, however, the probability of a connection
between livestock populations is likely to be influenced by
the geographical distance between them [51,86,112]. While
distance may be a variable in other types of model, some of
the simplest spatial models express the probability of an
edge between nodes as a function of distance alone. For
example, in Hu et al. [52], edges between nodes were
simply assigned if the Euclidean distance was lower than
an empirically informed threshold. In Rossi et al. [51], the
probability of contacts between farms via veterinary staff
visits was estimated by fitting a logistic regression with
distance as the predictor variable.
3.5.1.2. Agent-based models (n = 8)
In ABMs, a set of autonomous agents interact with one
another and their environment according to defined rules
and processes [113,114]. A key feature of ABMs is that they
allow complex phenomena to emerge from such processes
[114]. Indeed, a livestock contact network can be considered
to emerge from the multitude of economic, demographic,
husbandry or other behavioural processes occurring at the
level of individual agents operating in the system. This may
be explicitly modelled within an ABM framework.

In six identified ABMs, network evolution was driven by
herd demographic processes (e.g. livestock births, ageing/
growth and deaths), and agent trade or partnership gener-
ation processes (e.g. selection of trade partners according to
geographical distance, and compatibility in terms of industry
role and current need to buy or sell) [53,56,57,59–62]. In these
models, agents could be defined with distinct industry roles,
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holding capacities and geographical locations. In an
additional model layer in Liu et al. [60], individual animal
contacts during grazing were modelled using random
walks. In Knight et al. [63,64], a dynamic trade network
was generated from defined partnership rules—with the
rate at which trade partnerships formed and dissolved,
dependent on farms’ in- and out-flow of animals (i.e.
supply and demand). In the most recent paper, farm-level
demand, and consequently farmers’ edge forming and dissol-
ving behaviours, were adaptive to market shocks such that
farms with high-demand sought partnerships at a higher
rate. Kim et al. [65] simulated a population of mobile pastor-
alist agents based on seasonal movement rules informed by
field surveys. Edges (contact between herds via grazing)
were then considered between agents setting up camp
within a given distance from one another.
Interface
20:20220890
3.5.1.3. Radiation models (n = 1)
Radiation models, which were initially developed in the
human mobility literature as an alternative to GMs ([115];
see next section), represent a mechanistic approach to predict
human movements based on population distributions alone
(i.e. distance is not used directly). This method takes analogy
from radiation emission and absorption processes in physical
sciences and was initially used to describe human commut-
ing patterns, with commuters being ‘emitted’ from an
origin and ‘absorbed’ by employment opportunities [115].
The model stipulates that the commuting flow (Tij) between
an origin (i) and destination ( j ) is a function of the size of
their respective populations (mi and nj) and, notably, the
‘intervening opportunities’ between i and j (alternative
employment sinks). The latter are represented by the popu-
lation (sij) in the area of the circle with radius rij, centred at
i (excluding mi and nj) (equation (3.1)). The variable, Ti

represents the overall count of individuals starting their
journey at location i Ti ;

P
j=i Tij

� �
, which is taken as a

proportion of mi.

Tij
� � ¼ Ti

minj
(mi þ sij)(mi þ nj þ sij)

: ð3:1Þ

Kong et al. [67] adapted the radiation model to predict
country-scale poultry flows in China, with poultry popu-
lation representing supply (mi), and human populations
representing demand (nj) and ‘intervening’ demand (sij).
3.5.2. Statistical

3.5.2.1. Gravity models (n = 4)
GMs were initially developed to model the flow of commod-
ities between pairs of discrete geographical areas (Cij, from
origin i to destination j ) as a function of their distance (dij)
and Gross National Products representing supply (push) at
origin and demand (pull) at destination ( pi and pj), with
normalizing constant k and coefficients α, β and γ (equation
(3.2)) [116,117]. The standard formulation of the flow of
commodities from node i to j (Cij) is

Cij ¼ k
pai p

b
j

dgij
: ð3:2Þ

This concept has been applied to model livestock trade as
a function of livestock population at an origin (supply) and
human population at a destination (demand) [15,28,69,70],
with different functional relationships (e.g. exponential and
power law) between distance and flows having been investi-
gated [15]. Beyond the basic principles of mass and distance,
the actual specification of GMs has been loosely defined
[118]. GMs may be parametrized in equation (3.2) by fixing
the coefficients α, β and γ; an approach which essentially rep-
resents a mechanistic parametrization. More often, however,
these coefficients are estimated by statistical inference. For
example, Qiqi Yang et al. [58] used both mechanistic and stat-
istical GM parametrizations to model poultry movements.
Equation (3.2) is commonly linearized by logarithmic trans-
formation allowing additional covariates, hypothesized to
be relevant for edge formation, to be included in the model
(equation (3.3)).

logðCijÞ ¼ k þ a log ( pi)þ b log ( pj)þ g log (dij)þ . . . ð3:3Þ

The coefficients of such models may then be estimated by
ordinary least-squares (OLS) regression (e.g. [28,69,70]).
3.5.2.2. Exponential random graph models (n = 9)
Under an ERGM formulation, the observed network is
considered as just one realization of possible networks
(configurations of edges given a set of nodes) with certain
characteristics that result from an unknown stochastic process
[119]. The ERGM defines a model of this network generation
process and a probability distribution over all possible net-
works. Parameters are selected and estimated, such that the
probability of the observed network being generated under
the defined model is maximized. It may take a general form
as in equation (3.4). Here, the dependent variable is the
whole network (the probability of drawing the observed net-
work y from the distribution Y ), which is modelled as a
function of covariates zk(y) hypothesized to be relevant for net-
work formation. The covariates are weighted by coefficients θk,
with c being a normalizing constant [119,120].

Pu(Y ¼ yjn nodes) ¼ ceu1z1(y)þ...þukzk(y): ð3:4Þ

A model with a covariate for network density alone is
equivalent to a random graph model [119]. However,
additional covariates may describe attributes of edges,
nodes or notably, local structural features, such as the ten-
dency for reciprocated edges, or the tendency for triangles
to form (i.e. where three nodes are completely connected)
[121]. Network simulation is achieved by drawing from the
probability distribution of possible network configurations
given a set of nodes and their attributes. This is the basis
for model fitting and assessment of goodness-of-fit: coeffi-
cients are fit and the model goodness-of-fit checked based
on comparison between characteristics of the simulated
and empirical networks [122]. ERGM output is analogous
to a logistic regression making their interpretation
straightforward [29,71].

ERGMs have been fitted to networks of livestock move-
ments between aggregated spatial units [32,71,73], or actors
such as livestock holdings [29,72,74]. These models have
sometimes been applied to livestock networks of entire
countries (e.g. [29,74]). The use of ERGMs in this context
has allowed livestock contact networks to be modelled and
simulated as a function of the tendency of farms to form
(dis-)assortative trade partnerships with respect to farm
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size, type, management practices, company affiliation or
location [29,74], in addition to local structural factors
[29,32,71,73].

An extension of ERGMs, temporal exponential-family
random graph models (TERGMs), enables the statistical mod-
elling of tie dynamics [123]. Here, ERGMs are used to model
both tie formation and dissolution, with potentially distinct
models for each process. Separable-TERGMs (STERGMs)
are used in the latter case. While these models were devel-
oped for the statistical modelling of empirical dynamic
networks, model parameters may alternatively be defined
without being inferred statistically i.e. similar to mechanistic
modelling. Lee et al. [75] applied TERGMs in this way to
simulate dynamic contact networks among pig farms accord-
ing to a defined mean degree (overall and by node type) and
the frequency of contacts.
Interface
20:20220890
3.5.2.3. Other statistical models (n = 6)
In a series of developments, [86–90] applied a hierarchical
Bayesian model to Swedish pig and cattle movement net-
works incorporating data on between-holding distances,
origin and destination production types, and the number of
animals in each holding.

Building on these, the USAMM model [25], which has
been applied and modified extensively [76–84], uses a Baye-
sian kernel approach to reconstruct the US cattle trade
network. Similarly to GMs, movement probabilities were
modelled as a function of the number of cattle premises at
the origin and destination, and the distance between them,
while also incorporating data on historical state-level cattle
inflows. Sellman et al. [85] adapted these methods to recon-
struct the national US pig movement network.

Xiao et al. [91] modelled pastoralists’ movements by fit-
ting statistical models to detailed movement survey data.
Distinct seasonal movement trajectories were modelled
according to different movement models. For example,
origin-destination movements were modelled using a Brow-
nian bridge motion model. This movement model was used
to generate dynamic daily contact networks among mobile
herds in a separate study [66], with ‘contacts’ between
herds being considered when pastoralists set up camp
within a given distance from one another on a given day—
corresponding to grazing distances observed in field surveys.

Moon et al. [26] and Schumm et al. [92] used a statistical
inferential method of maximum entropy (which is designed
to estimate probability distributions from highly dimensional
data) to estimate the movement probabilities of pigs within
and between geographical units from census data. Based on
the size and number of farms within each county, these move-
ment probabilities were then used to simulate a farm-to-farm
pig movement network.
3.5.3. Machine learning

3.5.3.1. Random forest (n = 1)
The probability or strength of an edge between two nodes can
be treated, respectively, as a classification or regression pro-
blem which may be addressed using machine learning
models such as classification or regression tree-based
approaches. These models perform repeated partitions of
the data based on the values of predictor variables, such
that the observations in each partition are increasingly
homogeneous with respect to the outcome of interest [124].
The values of observations in the resulting terminal tree-
nodes are used as the basis of prediction. RF models combine
multiple trees to reduce the variance of predictions and
increase predictive performance [124,125]. Predictors may
take the form of node or edge attributes. Valdes-Donoso
et al. [68] used a RF to classify whether livestock movement
occurred between pairs of nodes (farms or markets) as a func-
tion of geographical distance, node type mixing patterns (i.e.
farm, market) and whether or not nodes were under shared
ownership. This fitted model was then used to predict
edges among nodes in the larger region, for which relevant
node attributes were available.
3.6. Model validation
Adopting definitions by Porgo et al. [126], model validation
(i.e. ‘how well a model performs and how applicable the
results are to a particular situation’) was performed for
around two-thirds (23/37) of models. We do not consider
model calibration here (see §3.5). There was considerable
variation in the methods by which model performance was
assessed. This extended from the types of network properties
considered, the methods of validation used, and the rigour to
which this was carried out.

In terms of the types of validation used, 17 models were
internally validated, while nine were externally validated.
Approaches for external validation included splitting the
data into training and validation sets (e.g. [68]), or through
comparison with different datasets [15,56,65,67], such as for
different time points [74,85,87]. A single GM was externally
validated by assessing whether observed changes in livestock
movements resulting from demand changes (i.e. closure of a
terminal swine-processing facility) could be reproduced in
the model [70]. Lastly, for two models, cross-validation was
performed by comparing networks simulated by different
models [65,91].

Regarding the types of network statistic considered, a
third of models were validated by comparing structural net-
work statistics of simulated and empirical networks (n = 14;
electronic supplementary material, table S3). For example,
model goodness-of-fit for ERGMs (n = 9) was assessed by
comparing distributions of structural metrics not used for
calibration such as in- and out-degree, geodesic distances,
edgewise shared partnership and triad census.

Other models were internally validated at the level of the
dyad (n = 6). Examples of approaches here included comput-
ing the predictive accuracy of binary or weighted edges based
on, respectively, the area under the receiver operating charac-
teristic curve, or correlation coefficients ([69] GM, [25] other
statistical, [68] RF; Kong et al. [67] radiation model). Distri-
butions of observed and predicted geographical distances
between connected dyads were also sometimes compared
([86] other statistical, [68] RF, [56] ABM).

Alternatively, the outcomes of epidemics modelled on simu-
lated networks were compared (n= 4) with either (i) epidemics
modelled on empirical networks ([51] spatial), or (ii) empirical
disease incidence. For example, the outputs of epidemics simu-
lated on the pastoralist ABM by Kim et al. [65] were compared
with annual disease incidence data. Meanwhile, Qiqi Yang et al.
[58] assessed the statistical association between a GM-inferred
poultry trade network and the geographical distribution of
different avian influenza virus subtypes.
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4. Discussion
In this systematic review, we present an overview of empiri-
cally informed, model-based approaches of network
generation and inference that have been applied to simulate
networks of contacts between livestock populations. We
found 52 publications presenting 37 distinct models and
seven model frameworks being used in this context. The
increasing number of publications identified over the past
decade illustrates the growing interest in this area. This
reflects the considerable interest in applying network science
to study the contact networks of livestock more broadly [2,3].

All models were applied to generate insights relevant to
livestock diseases, with nearly half being used as inputs of
infectious disease transmission models. However, the reviewed
models varied greatly in their formulation, complexity and
realism, use of data, and in the methods by which their per-
formance was assessed. Consequently, we now turn to a
comparison of model frameworks and discuss how their
particular features can present opportunities and challenges in
different use cases. Finally, we discuss issues and possible
solutions around model assessment and validation.

A major application of reviewed mathematical models
was to explore the relationship between network structure
and disease transmission dynamics. Indeed, the relative sim-
plicity of some of these models and, in particular, their ability
to yield analytical solutions, lends them towards such appli-
cations. These types of models have consequently been
applied extensively to explore the diffusion of phenomena
on networks in the network literature [38,105,106]. This sim-
plicity—in particular the ability of these models to be
calibrated using few parameters—has also resulted in their
application towards generating networks when empirical
data are limited [47,48,51], or else totally absent, through
the adoption of hypothesized parameter values (e.g.
[99,100]). Mechanistic approaches, such as ABMs and radi-
ation models, can also be used in cases where network data
are unavailable but the processes underlying the formation
of the network are understood and can be parametrized,
i.e. based on first principles.

Notably, mechanistic models based on first principles
may be more suitable for extrapolating beyond the data to
which they were calibrated [127]. Hence, by altering their
generative rules, such models can be applied to explore, for
example, how counterfactual network configuration scen-
arios influence disease transmission dynamics [53]. Explicit
modelling of the assumed generative mechanisms of the net-
work further allows for an examination of its emergent
properties. This makes it possible to explore realistic farm
(or node) level disease control interventions that act to
modify network structure [44]. Importantly, such approaches
also allow complex adaptive properties of the system to be
explored [113]. This includes agents’ behavioural adaptations
as a response to disease [49,54], or as an unintended
consequence following regulatory changes or top-down
interventions (e.g. [64]), as has been observed empirically
[128–131].

Despite these important functions, purely mechanistic
approaches commonly rely on calibration to select structural
features (e.g. degree distribution and clustering coefficients)
with no attempt to assess whether these features are necess-
ary, or adequate, for representing an empirical network
[36,39]. A comparative strength of statistical network
models lies in their utility for assessing which features are rel-
evant for network generation, as well as allowing for a
measure of the uncertainty of these estimates given the data
[36,38–40,132]. This also allows networks to be simulated
while accounting for and incorporating this uncertainty
which, in the context of infectious disease modelling, can
help avoid overfitting epidemic outcomes to observed net-
works [39,133,134]. Despite this utility, less than a third of
models being applied to simulate networks for infectious dis-
ease modelling were statistical models, with the remaining
being mechanistic. This may broadly reflect the contrasting
applications of these different model groupings in our
included studies; namely, the emphasis on hypothesis testing
for the statistical models, particularly ERGMs which were the
most well-represented model framework in this grouping.

As noted, the major application and strength of statistical
models reviewed here was the inference of factors associated
with network formation. An important limitation that was
not addressed in the reviewed literature is that traditional stat-
istical methods, such as GMs using OLS specifications, assume
statistical independence between observations. Due to depen-
dencies inherent to network data, such assumptions may not
hold, potentially resulting in biased estimates and hence pre-
dictions [40,116,135,136]. While standard OLS specifications
of GMs cannot explicitly model these dependencies, correc-
tions have been proposed to account for the effects of
assumptions about non-independence (summarized by Broe-
kel et al. [116]). However, to our knowledge, these have not
been used in GMs applied to livestock contact networks.

A major strength of ERGMs lies in their ability to expli-
citly model and account for such dependencies; networks
can be modelled and simulated as a function of parameters
describing structural characteristics (e.g. transitivity or
mutuality effects) in addition to node and edge factors
[120,136,137]. ERGMs are therefore a powerful means of
assessing the statistical significance of a range of factors on
edge formation, as well as for simulating networks from
these parameterizations. In practice, however, it is not
always possible to generate a well-fitting model. This can
be due to issues with ‘model degeneracy’ which can occur
when high correlations between network effects result in
unrealistically dense or sparse networks [29,120,136].

We identified a single model applying RFs to predict and
simulate livestock contact networks. More broadly across the
network simulation modelling literature, a variety of super-
vised machine learning approaches have demonstrated high
predictive utility when applied to the movements of
humans [138,139] and wild animals [140]. Given increasingly
widespread application of machine learning approaches
across the network prediction literature and the growing
volume and complexity of livestock data, including move-
ment data [141], there is likely to be considerable scope in
applying machine learning methods to predict and simulate
livestock contact networks.

This review has highlighted significant variation in how
models were calibrated and assessed. This is of course strongly
reflective of the availability of empirical network data and the
purpose or intended application of models. In the context of
simulating networks relevant for epidemiological study, how-
ever, given the fundamental relationship between network
structure and disease transmission dynamics, it is clear that
meaningful and realistic outputs rely on simulated networks
accurately reproducing epidemiologically relevant features of
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the empirical networks. A remaining challenge then is under-
standing which structural features are epidemiologically
relevant, and which we should therefore seek to reproduce.
Indeed, the importance of these features may be highly disease
and context specific [121,122,134,142]. Calibration and vali-
dation based on a few select network statistics is unlikely to
be sufficient to reproduce networks exhibiting similar structure
and diffusion patterns as their empirical counterparts [143–
145]. Comparisons based on multiple structural characteristics
are likely to be more robust, especially when the selection of
these metrics is based on their relevance for diffusion pro-
cesses, as is routine practice for ERGMs [121,122]. A highly
valuable and interpretable form of validation, where data are
available, is the comparison of epidemic outcomes on simu-
lated and empirical networks. Comparison of simulated and
observed disease incidence or prevalence is also particularly
valuable, given that a transmission network is necessarily a
subset of the potentially infectious contact network [146].

This review has some limitations. Despite our efforts to
keep search terms broadly relevant to network simulation
modelling, the lack of standardization in terminology
means additional papers may have been missed using our
search criteria. We have adopted the term ‘network simu-
lation model’ from Bellerose et al. [35] and suggest its use
in future publications on this topic. This would help to
make this area of research more visible and avoid overlap
with the related, yet distinct, context in which the term ‘net-
work modelling’ is commonly applied, i.e. simulating disease
spread on (empirical or simulated) networks. To keep the
scope adequately focused and the synthesis feasible, we
have focused on models which were used to simulate empiri-
cal-like and empirically informed contact networks of
livestock populations. Hence, we highlight that this review
does not present a complete compendium of all possible
modelling frameworks, nor was it intended to. Alternative
frameworks could be identified from the broader literature,
such as from related reviews on network simulation models
in other contexts [35–39].

This review serves to synthesize and categorize the
heterogeneous group of models that have been applied to
simulate the contact networks among livestock populations
in the context of livestock disease epidemiology. Despite
the important remaining challenges with model validation,
this review highlights a number of unique functions afforded
by network simulation models which enable us to advance
beyond simple descriptive analyses of livestock networks,
or infectious disease modelling on empirical networks.
With increasing recognition of the need for evidence-based
approaches to livestock production and health, particularly
in the context of multitudinous high-profile, and often
economically devastating, livestock and zoonotic disease out-
breaks in recent decades, it seems reasonable to assume that
efforts towards livestock network data collection will con-
tinue to gain ground. The types of modelling approaches
reviewed here are well positioned to derive key insights
from this data. Furthermore, such models can be used to
inform the design of future empirical studies and livestock
tracking systems, in order to optimize their efficiency and
utility in generating data needed for effective disease
surveillance and control [26,28].
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