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ABSTRACT 
BACKGROUND: Management of pesticide resistance is a major issue in modern agricultural 
systems, particularly in the context of the broader challenge of reducing pesticide use. However, 
such management must be adapted to resistance dynamics, which remains challenging to predict 
due to its dependence on many biological traits of pests, interactions with the environment and 
pesticide use. We retrospectively studied the evolution of reported resistances to four modes of 
action (benzimidazoles, quinone outside inhibitors, sterol demethylation inhibitors  and succinate 
dehydrogenase inhibitors); in French populations of the wheat pathogen Zymoseptoria tritici.  

RESULTS: We used  statistical models to analyse the Performance trial network dataset (2004-2017; 
~70 locations in France yearly). They highlighted contrasting behaviours between phenotypes, such 
as: (i) stable spatial distributions and colonization front structures over time; (ii) different frequency 
growth rates at the national scale and between regions. 

CONCLUSION: We provide here a quantitative description of the spatiotemporal patterns of 
resistance evolution, for fungicides with several modes of action. Moreover, we highlight some 
unexpected resistance dynamics in France, with major differences between the north and south. 
This complex pattern of resistance evolution in French populations is consistent with previous 
descriptions of dynamics at the European scale. These results should make it easier to anticipate the 
evolution locally and to improve the management of resistances. 
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1 INTRODUCTION 

In modern agricultural systems, pesticides, or 
plant protection products (PPPs), make a major 
contribution to the maintenance of crop 
productivity, by reducing the impact of pests 
on yields and quality. However, human health 
and environment protection issues have driven 
national and European authorities to adopt 
policies limiting pesticide registration and use, 
as in the Ecophyto II plan in France and the 
2009/128/CE directive 
(www.agriculture.gouv.fr). The emergence of 
resistance is an additional unintended issue of 
the widespread use of PPPs in agriculture1. 
Pesticide resistance is the intrinsic, inheritable 
ability of some pest genotypes to survive 
pesticide concentrations that kill or inhibit the 
development of sensitive genotypes of the 
same species. It results from the adaptive 
evolution of pest populations under pesticide 
pressure, leading to the selection and increase 
in frequency of the least sensitive genotypes2,3. 
This phenomenon may lead to practical 
resistance, defined as a decrease in the efficacy 
of a pesticide in the field. In practice, field 
resistance may lead to an increase in the 
number of sprays and the dose of pesticide 
used to maintain the same level of protection, 
with a greater toxicological and 
ecotoxicological impact. The development of 
resistance management strategies is clearly a 
major challenge, if we are to adhere to a long-
term vision of more environmentally friendly 
agriculture and to avoid the dilemma of “the 
Tragedy of the Commons” in which multiple 
individuals acting independently and 
exclusively in their own interests deplete a 
limited shared resource, even though this 
outcome is clearly in no-one’s long-term 
interest4. For the effective management of 
pesticide resistance, we therefore need to 
consider the ability of particular management 
strategies to limit the selection of resistance to 
a given pesticide in a given pest, and the factors 
determining sustainability. Resistance 
dynamics results from interactions between 
selection pressures, and biological and 
agronomic system factors promoting 
resistance5. A better understanding of these 
interactions is a prerequisite for the 
identification of the most suitable strategies 

for a given situation. Unfortunately, 
quantitative information about resistance 
dynamics is often limited, because the 
collection of such information requires long-
term comprehensive monitoring over large 
territories, funding and stakeholder 
coordination. 
In this context, we focused on the example of 
fungicide resistance in Zymoseptoria tritici 
(formerly Septoria tritici; teleomorph, 
Mycosphaerella graminicola). Z. tritici is an 
ascomycete that causes Septoria tritici blotch 
(STB) on winter wheat. During the cropping 
season, Z. tritici mostly disseminates over short 
distances by producing pycnidiospores 
(generated by asexual reproduction and 
dispersed by splashing on wheat plants), but it 
can also disseminate over larger distances 
through the production of ascospores 
(produced by sexual reproduction, 
predominantly on crop debris during the short 
period between crops, but also on the first 
senescent leaves of wheat during the cropping 
season6). Z. tritici is a relevant model system for 
addressing the issues raised above, for a 
number of reasons. First, it is a pathogen of 
considerable agronomic relevance. STB is the 
most damaging disease of wheat in Europe, 
causing yield losses of up to 50%7–9. Second, 
STB is mostly controlled by fungicides in 
Western Europe, with up to 70% of all fungicide 
use linked to STB control in the EU9. Third, Z. 
tritici presents biological traits that facilitate its 
adaptation to selective pressures, particularly 
those exerted by fungicides: a large population 
size, considerable genetic diversity, two modes 
of reproduction and an ability to disperse over 
long distances10. Finally, this pathogen has 
developed diverse resistance mechanisms, 
resulting in a range of contrasting adaptation 
dynamics that can be analysed.  
 
Z. tritici has developed various extents of 
resistance to fungicides with four of the five 
authorised modes of action in France: 
benzimidazoles (e.g. thiophanate-methyl, 
acting on microtubules), sterol-14α-
demethylase inhibitors (DMIs; e.g. 
cyproconazole, epoxiconazole, metconazole, 
propiconazole, prothioconazole, 
tebuconazole), respiration complex III or 
cytochrome b inhibitors (QoIs; e.g. 



azoxystrobin, pyraclostrobin, trifloxystrobin) 
and respiration complex II or succinate 
dehydrogenase inhibitors (carboxamides or 
SDHIs; e.g. benzovindiflupyr, bixafen, boscalid, 
fluopyram, fluxapyroxad, isopyrazam). The last 
group of fungicides, for which resistance has 
not yet developed, is multisite fungicides (e.g. 
chlorothalonil, folpet and mancozeb), which 
are known to be less prone to resistance 
development than molecules acting at single 
sites11.  
 
Resistance was selected and became 
generalized in the late 1980s for anti-
microtubule agents (benzimidazole-resistant 
phenotype: BenR) and in the early 2000s for 
QoIs (strobilurin-resistant phenotype: StrR), 
resulting in field resistance and the progressive 
abandonment of these modes of action for 
treating STB in cereal crops in Western Europe. 
Resistance to SDHIs (carboxamide-resistant 
phenotypes: CarR) is just emerging in Europe 
and its frequency remains at or close to zero in 
most countries, including France. The BenR, 
StrR and CarR phenotypes are associated with 
unique point mutations of the genes encoding 
their targets (i.e. tub2 E198A12; cytb G143A13; 
many single changes in SdhB or SdhC), with a 
large effect on phenotype14,15. They are 
associated with qualitative resistance (a 
disruptive shift or single-step resistance), 
resulting in a bimodal distribution of 
phenotypes (individuals either sensitive or 
resistant), with the resistant phenotype rapidly 
invading the population16. By contrast, DMIs 
have been used intensively for STB control 
since the late 1970s; the first resistant strains 
were selected in the 1980s, and field efficacy 
has since gradually declined, but this decline 
has differed between molecules and between 
sites17,18. A continuum of decreased sensitivity 
phenotypes (triazole-resistant phenotypes: 
TriR) has arisen through the progressive 
accumulation of mutations in the cyp51 target 
gene, with an overexpression of cyp51 due to 
insertions in its promoter region, with or 
without enhanced efflux correlated with three 
possible insertions in the promoter region of 
the transporter MFS119–23.  This last mechanism 
induces a multidrug-resistant (MDR) pattern, 
with cross resistance between DMIs, QoIs and 
SDHIs19. The variable assortment of these 

independent mutations, possibly favoured by 
sexual reproduction, which occurs annually in 
this pathogen, and their selection after three 
decades of continuous DMI use, has led to 
highly diverse phenotypes in the field. This 
diversity accounts for the observed 
quantitative (progressive or slow-shifting), 
resistance with a multimodal distribution of 
phenotypes, succeeding and replacing each 
other, generally with an increase in resistance 
factors over time. More detailed information 
about resistance to the fungicides used to treat 
STB is provided in Supplementary Information 
1. 
 
Several phenotypic or molecular methods for 
detecting and quantifying fungicide resistance 
in Z. tritici have been reported and can be used 
to investigate resistance dynamics. Several 
studies have described the variation over space 
and/or time of the mean EC50 (half maximal 
effective concentration: dose at which 50% of 
the maximal growth inhibition is observed) and 
its derivatives (“resistance intensity-based 
approaches”16,18,24–28), whereas other studies 
have described variations in the prevalence of 
several mutations or phenotypes (“resistance 
frequency-based approaches”17,18,24,27,29–33). 
Resistance intensity-based approaches 
characterize resistance phenotypes clearly, but 
require strain isolation, which is labour-
intensive and time-consuming. These 
approaches are therefore subject to limitations 
due to the assessment of relatively small 
numbers of isolates sampled from the 
population, whereas other tools (e.g. 
molecular-based quantitative tools or 
microbiological tests using spore bulks) can 
quantify resistance frequency without the 
need for strain isolation, resulting in a more 
representative sample. Moreover, many of 
these studies have reported snapshot analyses 
of resistance status or changes in resistance 
over a short period17,24,26,30,33 (~1-3 years) or in 
a limited territory25,27–29,32,33 (~2-100 locations), 
using about 10-50 samples per date or location. 
Thus, in the studies published to date, the 
principal limitations to the description of 
resistance dynamics have been sample size and 
spatiotemporal scale, whereas the sample 
selected should be as exhaustive as possible, to 



make it possible to obtain quantitative 
descriptions of resistance evolution. 
 
Mathematical modelling can also be used to 
describe and to predict resistance, as it allows 
to compare the relative efficacy of different 
resistance management strategies. Most of the 
models reported to date describe the selection 
phase once the resistance has already 
emerged34, but provide theoretical predictions 
of its evolution, and only one of the published 
models took field data into account35. Far 
fewer studies have focused on resistance 
emergence5,36,37, but the first detection of 
resistance is now predicted reasonably well. 
Finally, these models focused on the temporal 
dimension and rarely take spatial 
heterogeneity into account38–41, even though 
such heterogeneity of resistance is frequently 
observed in Z. tritici populations, especially at 
the scale of regional/national 
surveys17,18,26,28,31,32,42. This may result from the 
regional heterogeneity in crop environment 
but also in pesticide use. There is, therefore, a 
need for comprehensive biological datasets 
over appropriate and heterogeneous 
spatiotemporal scales and for models 
specifically designed for the quantitative 
description and prediction of resistance 
evolution in heterogeneous environments. 

 
We retrospectively investigated the evolution 
of fungicide resistance in French populations of 
Z. tritici. We used a “frequency-based 
approach” comparing resistance dynamics 
between phenotypes for various fungicides 
corresponding to the different modes of action 
used for STB control, over wide temporal and 
regional spatial scales. We used the dataset 
provided by the “Performance” network, which 
has operated in France since 2004 providing 
the annual resistance status in the populations 
of Z. tritici sampled on winter wheat. A detailed 
statistical analysis was performed to study how 
phenotypes resistant to benzimidazoles, QoIs 
or DMIs dispersed spatially, the speed of such 
dispersion and differences between regions.  
 
 

2 MATERIALS AND METHODS 

2.1 POPULATION SAMPLING 

2.1.1 PERFORMANCE NETWORK DATASET 
Most of the Z. tritici populations used for the 
analysis were provided by the “Performance” 
network. This trial network includes per year 
37-70 very diverse partners, including technical 
institutes, advisers, merchants, farm co-
operatives and chemical companies, and is run 
by the ARVALIS-Institut du Végétal (technical 
institute) and INRA BIOGER (for the resistance 
analyses). According to a common protocol 
applied annually between 2004 and 2017, this 
network recorded the efficacy and yield 
associated with 4-10 sets of fungicide spraying 
conditions, which were compared with 
unsprayed plots, in winter wheat. Trials 
consisted in a randomized block design with 3-
4 replicates and a minimum of 20 m2 for 
elementary plots. Then, the frequency of 
resistant phenotypes (see Section 2.2) was 
determined by analysing infected leaves 
collected from the plots. Administrative 
information (e.g. supplier, site and sampling 
date) and agronomic details (e.g. cultivar, leaf 
layer sampled) were also recorded. The 
network conducted 1029 trials in total 
between 2004 and 2017, throughout France. 
Sampling matched the pattern of winter wheat 
cultivation (Figure 1).  
 

 
Figure 1. Distribution of Performance network 
trials between 2004 and 2017 in mainland 
France. 
Dots represent trials and lines the regional structure 
before the reorganisation of French regions in 2015. 
Acronyms denote regions: ALS, Alsace; AUV, Auvergne; 
AQU, Aquitaine; BNO, Basse-Normandie; BOU, 
Bourgogne; BRE, Bretagne; CEN, Centre, CHA, 
Champagne-Ardennes; FCO, Franche-Comté; HNO, 



Haute-Normandie; IDF, Ile-de-France; LAR, Languedoc-
Roussillon; LIM, Limousin; LOR, Lorraine; MPY, Midi-
Pyrénées; NPC, Nord-Pas-de-Calais; PCH, Poitou-
Charentes; PDL, Pays de la Loire; PIC, Picardie; RAL, 
Rhône-Alpes. The colour gradient indicates the intensity 
of wheat cultivation in each region 
(agreste.agriculture.gouv.fr). The correlation between 
sampling effort and wheat production is strong 
(coefficient of 0.85). Regions are coloured in grey if no 
monitoring was performed. 

 
We used resistance data of control plots only 
for this study. Indeed, as these plots were not 
treated with fungicides, their pathogen 
populations (i.e. the frequencies of the 
different resistances) can be considered 
representative of those in the surrounding 
environment. From 2006 to 2011, control plots 
were sampled twice: the first sample (T0; 
n=332 trials) was collected just before the first 
spray (at about stage Z32 or stem elongation 
phase, in mid-April to mid-May) and the second 
(TNT; n=719 trials) 20-30 days after the last 
spray (at about stage Z39-Z55 or booting and 
heading stages, in mid-May to mid-June). From 
2004 to 2005 and from 2012 to 2017, only the 
later of these two samples was collected. 
 
2.1.2 ADDITIONAL DATASETS 
Some resistant phenotypes arose before 2004. 
We therefore retrieved, for this analysis, data 
from previous INRA monitoring programs and 
from the AFPP network (network of the French 
Association for Plant Protection). Additional 
information on resistance frequency was then 
considered for 1980, 1986, 1991, 1994, 1997 
and 1999. For these years, mean resistance 
frequency was calculated from the observation 
of 10-20 plots annually, distributed throughout 
the area under wheat. These data were used to 
plot changes in resistance status over time, 
together with the Performance dataset, but 
were not considered in statistical models (see 
section 2.4). 
 

2.2 RESISTANCE CHARACTERISATION 
2.2.1 FUNGICIDES, MEDIA AND CHEMICALS 
Fungicides were used as technical-grade 
compounds at one or two discriminating 
concentrations, and were kindly provided by 
their manufacturers: boscalid (1 ppm), 
carbendazim (5 ppm) and epoxiconazole (0.2 
ppm) from BASF Agro (Germany); bixafen (0.5 

ppm), prochloraz (0.005 ppm) and 
tebuconazole (0.05 ppm) from Bayer 
CropScience (Germany); azoxystrobin (0.5 
ppm) and pyrifenox (0.01 and 0.15 ppm) from 
Syngenta Agro (Switzerland); triflumizole 
(0.032 ppm and 0.4 ppm) from Nippon Soda 
(Japan); terbinafine (0.01 ppm) from Sandoz 
(Switzerland). Tolnaftate (0.25 ppm) was 
purchased from Sigma Aldrich, St Louis (USA). 
These fungicides, at the doses indicated, 
formed a set of discriminatory doses, which 
were used to test the population. These doses 
were chosen on the basis of the dose-response 
curves for individual strains, in which the 
resistance-associated mutations of target 
genes were characterised. They were validated 
by showing that only strains bearing the 
resistant allele could grow in their presence. 
Inhibitors of sterol biosynthesis were selected 
so as to reveal the negative or positive cross-
resistance specific to some genotypes. 
 
Compounds were dissolved in 80% ethanol and 
added to molten medium after autoclaving. 
The concentration of ethanol in the medium, 
including that used for the controls without 
fungicides, was 0.5 mL L-1. Penicillin (5 ppm) 
and streptomycin (5 ppm), both purchased 
from Sigma Aldrich (St Louis, USA), were added 
to the medium for all conditions tested, to 
prevent contamination with bacteria present 
on infected leaves.  
 
The PG nutrient medium contained 10 g L-1 
glucose, 2 g L-1 K2HPO4, 2 g L-1 KH2PO4 and 12.5 
g L-1 agar (pH = 6.3). The medium, to which the 
antibiotics and fungicides were added at their 
discriminatory doses, was dispensed into 5.5 
cm diameter Petri dishes. 
 
2.2.2 MEASUREMENT OF RESISTANCE 
FREQUENCY 
A “sample” was defined as a population 
constituted from pycnidiospores produced by 
30-40 infected leaves, corresponding to the 3-
4 repetitions of the control and kept dried at 
4°C until use, one to three months after its 
collection. Leaves were cut into 2-3 cm pieces 
with scissors, soaked in 10 ml sterile water for 
ten minutes and then shaken vigorously. The 
leaf fragments were then removed. The 
concentration of pycnidiospores in each bulk 



sample was estimated with an 
haematocytometer and adjusted to 5 x 106 

spores ml-1. For each population, 300 µl of the 
bulk spore suspension was spread over a set of 
Petri dishes, each dish containing a distinct 
discriminatory dose of fungicide, previously 
optimized on characterized pure strains to 
allow the growth of a given resistant genotype, 
or group of resistant genotypes (see below and 
Supplementary Information 2). Petri dishes 
were then incubated in the dark at 17°C. After 
48 h of incubation, the dishes were observed 
under a light microscope (magnification x200). 
For each discriminatory concentration, 
sensitive pycnidiospores did not germinate or 
produced only short germ tubes, whereas 
resistant pycnidiospores produced long germ 
tubes (>40% control). Taking into account the 
percentage of the spores germinating in the 
control, we estimated the proportion of spores 
resistant to a given fungicide in the bulk with 
manual counts, based on ~100 spores in each 
Petri dish. We calculated the proportions of 
several phenotypes in the spore mixture. This 
protocol was used in every experiment during 
2004-2017, which ensures the standardization 
and uniformity of the data. A full description of 
these phenotypes and associated genotypes is 
available from Leroux & Walker 19, but, in short, 
this test was found to be able to distinguish the 
following phenotypes, or groups of 
phenotypes: 

- BenR phenotype (specific resistance to 
antimicrotubule agents): growth in 5 
ppm carbendazim  

- StrR phenotype (specific resistance to 
QoIs): growth in 0.5 ppm azoxystrobin  

- CarR phenotype (specific resistance to 
SDHIs): growth in 1 ppm boscalid and 
0.5 ppm bixafen  

- TriR phenotypes (specific resistance to 
DMIs): growth in 0.01 ppm pyrifenox  

• TriLR phenotypes (low 
resistance to DMIs): no growth 
in 0.4 ppm triflumizole  

 TriR1 and TriR3: no 
growth in 0.032 ppm 
triflumizole  

 TriR5: no growth in 
0.05 ppm 
tebuconazole  

 TriR2 and TriR4: 
growth in 0.032 ppm 
triflumizole and 0.05 
ppm tebuconazole  

• TriMR phenotypes (moderate 
resistance to DMIs): growth in 
TriLR conditions and in the 
presence of 0.4 ppm 
triflumizole  

 TriR6: growth in 0.005 
ppm prochloraz  

 TriR7 and TriR8 (TriR7-
TriR8): no growth in 
0.005 ppm prochloraz  

• TriHR phenotypes (high 
resistance to some DMIs): 
growth in TriR6 conditions and 
in 0.15 ppm pyrifenox and 0.2 
ppm epoxiconazole; no growth 
in 0.25 ppm tolnaftate and 
0.01 ppm terbinafine  

• MDR phenotypes (resistance 
to DMIs; weak resistance to 
QoIs and SDHIs): growth in all 
TriHR conditions; growth in 
0.25 ppm tolnaftate and 0.01 
ppm terbinafine. 

As correlations are established between each 
phenotype (defined as the ability to grow 
under a set of discriminatory concentrations) 
and a genotype or group of genotypes 
(Supplementary Information 2) and yearly 
updated with new genotypes, these phenotype 
groups can be used as proxies, to follow the 
evolution of specific mutations of target genes 
associated with resistance. Indeed, some 
mutations, or combinations of mutations, were 
specific to our phenotype groups. 
 
2.2.3 STRAIN ISOLATION AND GENOTYPING 
Each year, 50-100 strains were isolated from 
randomly selected populations (at about 20 
sites). Infected leaves were placed in a damp 
chamber for 24 h to promote cirrhus 
exudation. Cirrhi were collected with a sterile 
needle and subcultured on malt-yeast agar 
medium (MYA: 20 g l-1 malt extract, 5 g l-1 yeast 
extract and 12.5 g l-1 agar; pH = 5.9) three 
times, until purity was achieved. Isolated 
colonies with long germ tubes were also 
collected from media supplemented with the 
discriminatory concentrations described 



above, with a sterile needle, under a 
stereomicroscope. Colonies were then purified 
as previously described. Pure strains were 
stored as spore suspensions in 20% glycerol at 
-80°C. 
 
DNA was extracted and cyp51 sequences were 
established as described by Leroux & Walker19, 
to update the list of genotypes presented in 
Supplementary Information 2. We analysed the 
phenotype of pure strains of established 
genotype, as described above, checking against 
categories listed. As at least three genotypes 
(type I, II or III, depending on the length of the 
insertion in the MFS1 promoter) may 
determine MDR, we established these 
genotypes systematically, for all strains 
phenotyped as MDR, by PCR with the primers 
described by Omrane et al.22. sdhB, sdhC and 
sdhD sequences were established after Dooley 
et al.43. 
 

2.3 ESTIMATION OF FUNGICIDE USE 
Information about fungicide use collected via 
internal panels was provided by Bayer 
CropScience. Fungicide use was estimated 
from field surveys carried out on 
representative farms. The internal panels 

compiled, for each compound used for STB 
control, the amounts used in the region (in kg) 
and the corresponding deployed surfaces (in 
hectares). For a given fungicide, deployed 
hectares correspond to the number of sprays 
multiplied by the treated area, without regard 
to the dosage. For instance, 200 deployed 
hectares can mean either two applications of a 
single active ingredient over 100 ha, or one 
application of two different fungicides from the 
same mode of action at once over the same 
100 ha. Panel data were available for all regions 
of France, from 1990 onwards. As an indicator 
of fungicide use, we calculated the national 
deployed hectares per mode of action (sum 
over all regions of the deployed surfaces for all 
the active ingredients sharing the same mode 
of action, used for STB control) divided by the 
area under wheat in France (from the AGRESTE 
database: agreste.agriculture.gouv.fr). This 
indicator, denoted 𝐻𝐴𝐷

𝐶

 (deployed hectares 

divided by cultivated hectares), represents the 
mean number of sprays of a mode of action in 
France for a given year. As the use of SDHIs is 
recommended to one spray per year in France, 
𝐻𝐴𝐷

𝐶

 for SDHIs represents the proportion of 

surfaces sprayed with this class of fungicides. 

 
Table 1. Data used in the statistical analysis, extracted from the Performance database. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.4 STATISTICAL METHODS FOR 
ASSESSING RESISTANCE DYNAMICS 
2.4.1 GENERAL FEATURES OF STATISTICAL 
MODELS 

The frequency of each resistant phenotype in 
Z. tritici populations was considered as the 
dependent variable in our models. We 
excluded only the TriR1-TriR3 and CarR 
phenotypes, for which we had too few non-

Phenotype 
First year 
observed 

Number of 
years 

observed 

Number of regions 
monitored 

Number of regions 
monitored yearly 

Number of 
observations 

BenR  2007 11 16 6 772 

StrR  2004 9 16 9 860 

TriLR 

Total 2005 12 16 7 963 

TriR2-TriR4 2006 10 16 9 860 

TriR5 2006 10 16 9 861 

TriMR 

Total 2005 13 16 6 985 

TriR6 2006 12 16 6 912 

TriR7-TriR8 2006 12 16 6 853 

TriHR   2010 8 14 6 360 

MDR  2013 5 6 4 116 

Total      7542 



zero observations for modelling (n=23 and n=4 
observations, respectively) in our dataset 
relative to other phenotypes (n=755 
observations in average, see Table 1).  We used 
a logistic regression framework where the 
observations followed a binomial distribution 
of probability p and where the logit of p 

(𝑙𝑜𝑔𝑖𝑡(𝑝) = ln (
𝑝

1−𝑝
)) is a linear combination of 

explanatory factors. Three models were 
studied here: a SPATIAL MODEL to determine the 
spatial structure of each resistant phenotype; 
an ANOVA MODEL to evaluate the variability of 
frequencies among years and regions; and a 
DYNAMIC MODEL to model the dynamics of 
resistant proportions. The SPATIAL MODEL was 
considered in a frequentist framework, 
whereas the ANOVA and DYNAMIC MODELS were 
analysed in a Bayesian framework. 
 
We considered three main factors in these 
models: year, region and sampling date. For 
sampling date, TNT (early summer samplings) 
was used as the reference (i.e. this parameter 
was set to 0), because TNT was observed every 
year in the dataset. We therefore actually 
estimated the difference between TNT and T0 
(mid-spring samplings) effects within a year. 
 
In this study we focused on periods and 
locations for which resistance was evolving (i.e. 
after emergence and before fixation). Thus, we 
selected appropriate years and regions among 
the dataset. For each phenotype, we defined a 
time range gathering years for which at least a 
quarter of the regions were monitored with 
frequencies differing from 0% and 100% (see 
time ranges in Table 1). In ALS, FCO, LAR and 
LIM regions, only one trial per year was 
conducted over three years or less, unlike in 
other regions where three trials were 
conducted over at least five years.  For the 
ANOVA and DYNAMIC MODELS, these four regions 
were removed from the dataset for all the 
phenotypes. Then, for each phenotype, we 
selected regions whose frequency data 
differed from 0% and 100% during at least a 
quarter of the years of the previously defined 
time range (see the number of remaining 
regions in Table 1). Finally, this selection only 
removed a bit less than 5% of the observed 
data that were different from 0% and 100%. 

 
Due to the logit link function involved in these 
models, values of 0 and 100 were 
overweighted, making parameters difficult to 
estimate for several phenotypes (e.g. when 
resistance was emerging or when resistance 
was completely generalised). We therefore 
added 0 and 100 inflation parameters44,45 to 
the last two models. These two inflation 
parameters are linked to the proportions of 0 
and 100 values observed in the dataset. 
 
The models described below were run for each 
phenotype, with over-dispersion parameters in 
the binomial distribution for the ANOVA and 
DYNAMIC MODELS. Statistical analyses were 
performed with R software46 and the rjags 
package47 for Bayesian statistics. Parameter 
estimates were considered significant at the 
5% level (or, alternatively, the 2.5% or 0.1% 
level) if 0 lay outside the 95% (97.5% or 99.9%, 
respectively) confidence interval for the 
parameter. Qualitative factors were tested at 
the same significance levels (5%, 2.5% and 
0.1%), using Wald tests48. The goodness-of-fit 
of models was assessed using the coefficient of 
determination (R²) which varies between 0 and 
1. We used the following definition of the R²: 
𝑆𝑆𝑀

𝑆𝑆𝑇
, where SSM corresponds to the explained 

sum of squares (squared differences between 
predictions and the average of observations), 
and SST corresponds to the total sum of 
squares (squared differences between 
observations and the average of observations). 
The closer its value is to 1, the better the 
goodness-of-fit will be. 
 
2.4.2 MODELLING THE SPATIAL STRUCTURE 
OF RESISTANCE 
This model was designed to visualize the spatial 
clustering of resistances over time on 
individual maps. We used a geostatistics 
method to interpolate from sparse sample data 
by kriging to produce maps along a regular 
grid49. This method principle is that « data that 
are close together are usually more correlated 
than those that are far apart »50. The spatial 
dependency of variables is modeled by a 
variogram (a function only dependent on 
distance). We estimated variogram parameters 
using a Matérn space covariance matrix51 



modelling the covariance among observations 
in a generalized linear mixed model52 taking 
year and sampling date into account as 
qualitative factors. Using the estimated 
variogram, we obtained by kriging an unbiased 
linear prediction of minimum variance50 of 
resistance frequencies over the monitored 
area for a given year. We then used the SpODT 
method (spatial oblique decision tree) to 
estimate lines that delimit areas as different as 
possible53. Based on a non-parametric method 
of classification, this algorithm partitions the 
area by a line that gives the two spatial classes 
which maximize the interclass variance. This 
analysis involved the use of two packages: 
spaMM54 for spatial interpolation, and SPODT53 
for spatial partitioning, and is referred to 
hereafter as the “SPATIAL MODEL”. 
 
2.4.3 MODELLING VARIATIONS OF 
RESISTANCE FREQUENCY BETWEEN YEARS 
AND REGIONS 
This second model was designed to identify 
specific years or regions deviating significantly 
from an estimated national mean resistance 
frequency. This model ranked years and 
regions according to their observed resistance 
frequencies. Year and region were considered 
as qualitative factors. The interaction between 
year and region, and the impact of sampling 
date in control plots (T0 vs. TNT) were also 
included in this model. The statistical form of 
the model is given in Supplementary 
Information 3.1 and this model is referred to 
hereafter as the “ANOVA MODEL”.  For each 
phenotype, the estimated model parameters 
permit to compute adjusted mean i.e. to 
compensate for data imbalances. Thus, the 
interannual and national mean frequency is 
given by (1-π0-π100)*(logit-1(µ) + π100, where 
logit-1(x)= exp(x)/(1+exp(x)) and µ is the 
intercept of the model. The mean frequency 
for T0 (mid-spring samplings) is given by (1-π0-
π100)*logit-1(µ-αTNT-T0)) + π100, where αTNT-T0 is 
the effect of the sampling date. The adjusted 
frequency for the year j is given by (1-π0-
π100)*(logit-1(µ+αj) + π100 where αj is the effect 
of the year j. The adjusted frequency for the 
region k is given by (1-π0-π100)*(logit-1(µ+βk) + 
π100 where βk is the effect of the region k. More 
generally, the frequency estimated for a year j 

and a region k is (1-π0-π100)*(logit-1(µ+αj+βk) + 
π100. 
 
2.4.4 MODELLING THE RATE OF INCREASE IN 
RESISTANCE  
The aim of this third model was to estimate and 
compare the rates of evolution of the different 
phenotypes in France and between regions. As 
above, the model included year, region and 
sampling date effects, but year was treated 
here as a quantitative variable. The model was 
therefore dynamic because the years were 
ordered. This model provided estimates of 
growth rates of resistance frequency 
(hereafter named “growth rate”) at national 
and regional scales. The exponential of these 
growth rates could be interpreted as the 
apparent relative fitness of phenotypes or, in 
other words, how much faster the resistant 
phenotype evolved than the rest of the 
population55. As we consider a relative growth, 
estimates will be close to 1 if the frequency of 
the phenotype remains stable in the 
population, above 1 if the frequency increases 
over time and below 1 otherwise. The 
statistical form of the model is given in 
Supplementary Information 3.2. This model is 
hereafter referred to as the “DYNAMIC MODEL”. 
 
 

3 RESULTS 

3.1 COMPARISON BETWEEN SAMPLING 
DATES 
For each phenotype, the ANOVA and DYNAMIC 

MODELS gave similar estimates of the “TNT-T0” 
parameter. This parameter informs on the 
intra-annual evolution of resistance frequency 
in control plots by estimating a constant 
difference between mid-spring and early 
summer samples (Table 2 and Supplementary 
Information 4 and 5). Hereafter, we therefore 
provided the results for the ANOVA MODEL only. 
Estimates were significantly positive for the 
StrR, TriR6 and TriMR phenotypes, with 
increase in frequencies between TNT and T0 of 
4.7% (P < 0.001), 8.9% (P < 0.001) and 3.5% (P 
< 0.025), respectively (Table 2). By contrast, 
estimates were significantly negative for the 
TriR2-TriR4 and TriLR phenotypes, with  
decrease in frequencies between TNT and T0 of 



-1.87% (P < 0.025) and -2.2% (P < 0.025), 
respectively (Table 2).  
 
Furthermore, a strong positive correlation 
(Pearson’s correlation coefficient of 0.82, P = 
0.004) was found between estimated “TNT-T0” 
parameter and the national growth rate, for all 
phenotypes. The frequency of resistance 
between T0 and TNT (intra-annual variation) 

thus followed the same pattern as general 
inter-annual variation. The correlation 
coefficient reached 0.90 (Pearson’s correlation 
coefficient, P = 0.006) if only the phenotypes 
displaying significant inter-annual evolution 
were considered (Supplementary Information 
5). 
We focus below on TNT observations, unless 
otherwise indicated.

 
Table 2. Frequencies and frequencies differences estimated from the ANOVA model for year, region and 
sampling date effects.   
 

  Phenotype 

Factor  BenR StrR TriLR 
TriR2-
TriR4 

TriR5 TriMR TriR6 
TriR7-
TriR8 

TriHR MDR 

  

Inter-annual 
national mean 
frequency % 

89.90*** 89.63* 11.01*** 7.64*** 4.47*** 78.31*** 56.07  17.50*** 7.08*** 4.69*** 

Year 
 
 

 Tests (p.values)  0.894  0*** 0*** 0.065 · 0*** 0*** 0*** 0*** 0.034* 0.972  

2004  -42.87**         

2005  -25.27* 27.95***   -16.53**     

2006  -8.99 13.55* 2.38* 2.25 -4.43 -3.4 -0.95   

2007 -1.85 -5.17 9.66· 2.04· 4.04* -0.84 -3.4 2.31   

2008 -1.27 -5.06 9.66· 2.38* 2.88* -0.5 -3.4 1.28   

2009 1.15 -2.84 3 -0.2 2.38· 6.2* 10.6 -4.35   

2010 0.26 4.84 1.32 -1.26 1.05 5.94* 10.6 -4.46 -5.19**  

2011 0 6.52· -0.57 -1.08 -0.16 7.21* 11.76 -2.48 -2.87  

2012 1.9 8.3*** -0.38 -0.27 -1.06 2.7 7.58 -8.12** -2.2  

2013 1.31  1.86 1.31 -0.4 0.66 -12.57* 8.23* 0.31 -0.69 

2014 0.26  -4.25 -1.92 -2.18· 2.39 9.61 -2.36 2.67 -0.32 

2015 -1.66  -8.19** -1.81 -3.13** 5.54 8.4 5.15 0.84 0.99 

2016 0.26  -10.31***   -10.41* -3.17 -6.32 9.35* 0.43 

2017 -0.8     -7.54 -32.74*** 25.04*** 6.46· -0.2 

Region Tests (p.values) 0*** 0.224  0.004** 1 0.018* 0.99  0.01* 0*** 1 1 

NPC 4.06* 5.22* -3.93* -0.4 -1.43 2.7 11.38* -7.25* 2.36 -0.08 

PIC 3.95** 2.89 -4.56* -1.14 -1.93* 2.55 8.6· -6.12· 1.83 0 

HNO 4.23· 4.3* -2.59 -0.4 0.08 2.39 9.41· -5.21 0.06  

BNO 1.46 1.55 0.8 0.63 -0.28 -2.41 3.98 -7.43* 2.75  

LOR 2.67 -0.15 1.53 0 -0.65 -0.5 7.37 -5.52 -1.09  

CHA 1.97 1.3 -0.47 -0.27 -0.72 0.82 6.33 -5.42· 0.97 -0.12 

IDF 2.12 2.68 -0.93 -0.2 0.13 1.14 11.19* -5.52 -1.5 -0.2 

BRE -7.25** 1.43 -2.36 -0.14 -1.19 1.14 -5.23 6.49 0.77  

CEN 0.26 2.53 3.73* 0.14 1.85· -1.19 -0.68 -2.11 -1.89 0.04 

PDL -4.89· -11.57* 3 0.14 3.2* -2.95 -8.45· 4.66 -0.3 0.38 

BOU 0.42 -1.76 1.75 0.35 0.66 -0.33 -0.9 -1.86   

PCH -1.85 -4.42 6.79** -0.27 3.61** -3.87 -10.29 10.23* -0.76  

AUV 0.34 -0.68 2.42 0.63 0.76 -2.95 -1.81 -2.85 0.97  

RAL -3.09 -0.76 1.43 0.28 -0.12 -0.5 3.98 -0.95 -1.79  

The table gives the inter-annual national mean frequency and the difference between the adjusted frequency and the mean 
frequency for each level of each factor. Frequencies are expressed in percentage. Estimates of interactions between region 
and year are not shown because the factor was not significant for all phenotypes. Empty cells indicate that no data were 
available for estimation. Factors tests P-values are indicated in bold and italic. P-value thresholds: “·” (P < 0.1), “*” (P < 0.05), 
“**” (P < 0.025), “***” (P < 0.001).



3.2 RESISTANCE TO ANTIMICROTUBULE 
AGENTS (BENZIMIDAZOLES) 
Benzimidazoles were introduced into France in 
the mid-1970s to control STB (Supplementary 
Information 1). They have marginal use on 
wheat with an 𝐻𝐴𝐷

𝐶

 index of 0.0081 on average 

over the last five years (residual use against 
Fusarium head blight). Over the last decade, 

the frequency of BenR in Z. tritici populations 
has remained very high and stable (Figure 2), as 
already observed in the 1990s56. Inter-annual 
national frequency has been estimated at 90% 
(Table 2). The stabilisation of this resistance is 
confirmed by the lack of a significant effect of 
the year factor (Table 2) and by an estimated 
increase in frequency not significantly different 
from 1 at national scale (Figure 3).

 

 
Figure 2. Changes in fungicide use and resistance frequency in Z. tritici populations in France. 
Thick ticks along the x-axis indicate years for which resistance frequency was assessed by monitoring. Lighter ticks indicate 
that information was obtained or extrapolated from sources other than the Performance database. BZ: benzimidazoles 
(antimicrotubule agents); DMI: sterol demethylation inhibitors; QoI: inhibitors or respiration complex III; SDHI: inhibitors of 
respiration complex II. Phenotypes as described in section 2.2. 



A regional effect was detected, with 
differences between the western and northern 
regions (P < 0.001; Table 2; Supplementary 
Information 6.1). Indeed, the estimated 
frequency of resistance was significantly lower 
than the inter-annual national mean in the 
AQU and BRE regions (-10.75% (P < 0.025) and 
-7.25% (P < 0.025), respectively). Resistance 
frequency was significantly higher than the 
inter-annual national mean in the NPC and PIC 

regions (+4.1% (P < 0.05) and +3.9% (P < 0.025), 
respectively). The rate of increase in the 
frequency of BenR was similar to the national 
trend for all regions, with the exception of PDL, 
which displayed a greater increase in frequency 
than the other regions (estimate = 0.07; P < 
0.05), and CEN, in which the increase in the 
frequency of BenR was significantly lower and 
negative (estimate = -0.07; P < 0 .05) (Figure 3 
and Supplementary Information 5).

 

 
 

Figure 3. Apparent relative fitness estimates (increases in frequency of resistance) for different 
resistant phenotypes.  
The apparent relative fitness is equal to the exponential of frequency growth rate from the DYNAMIC MODEL, and it 
represents how much faster the resistant phenotype evolved compared to the rest of the population (see Section 2.4.4). 
When the apparent relative fitness is close to 1, resistance frequency tends to be constant in the population. Vertical lines: 
apparent relative fitness estimates at the national scale for each phenotype; lines are continuous if parameters are significant 
(P < 0.05), dashed otherwise. Dots: estimates of the regional adjustment of the national apparent relative fitness; s. means 
significant (P < 0.05), n.s. means non-significant. Regions on the vertical axis are organized according the North-South 
gradient.

 

3.3 RESISTANCE TO QUINONE OUTSIDE 
INHIBITORS (QoIs) 
QoI fungicides were first used to control STB in 
France in 1997 (Supplementary Information 1) 
and the first resistant strains were detected in 
200256. QoIs use is currently half as high as in 
the early 2000s. It decreased substantially 
between 2005 and 2007 because of their poor 
efficacy on resistant populations (Figure 2). The 
remaining use of fungicides with this mode of 
action is chiefly to control rusts and Fusarium 
head blight. 

 
The national frequency of StrR increased 
sharply between 2002 and 2012, as shown by 
the estimates of the year parameters in the 
ANOVA MODEL (from -43% in 2004, to + 8.3% (P < 
0.001) in 2012), with a frequency of 95% 
already attained in 2010 (Table 2). The DYNAMIC 

MODEL confirmed this trend, with a significant 
and positive growth rate of 0.68 (P < 0.001, 
Supplementary Information 5), indicating that 
the StrR population grew twice (e0.68 ≈ 2) as fast 
as the rest of the population over the study 
period (Figure 3). Furthermore, StrR increased 



in frequency significantly more rapidly than all 
the other phenotypes (at least P < 0.05, data 
not shown). 
 
The ANOVA MODEL (Table 2) detected a spatial 
structure, with northern regions, such as NPC 
and HNO, having a significantly higher StrR 
frequency on average over time (+5.2% and 
+4.3%, respectively; P < 0.05), and south-
western regions, such as AQU and PDL, having 
a lower StrR frequency on average over time (-
13.2% (P < 0.1) and -11.6% (P < 0.05), 
respectively).  
 
Based on the output of the DYNAMIC MODEL 

(Figure 3 and Supplementary Information 5), 
increases in frequency were significantly lower 
than the national rate for the northern PIC and 
CHA regions (estimates = -0.35 (P < 0.001) and 
-0.34 (P < 0.05), respectively), whereas the 
south-western regions MPY and PCH had 
significantly higher rates of frequency increase 
(estimates of 0.53 (P < 0.025) and 0.34 (P < 
0.05), respectively). The coefficient of 
determination (R²) for this model is much 
higher (0.86) than those of the other 
phenotypes (TriR6: 0.53, TriHR: 0.52, TriLR and 
TriR5: 0.51, MDR: 0.49, TriR7-TriR8: 0.48, 
TriMR≤2011: 0.45, BenR: 0.4, TriR2-TriR4: 0.33 
and TriMR≥2011: 0.25; see Supplementary 
Information 5). 
 
Resistance frequency followed a north-south 
gradient between 2004 and 2008, with clear 
delimitations (advancing front) highlighted by 
the SPATIAL MODEL (Figure 4 and Supplementary 
Information 6.2). The speed of the progression 
line (i.e. the distance between the fronts of two 
successive years) was 120-145 km/year 
(depending the timeframe used: 2004-2007 or 
2004-2008). 
 

3.4 RESISTANCE TO SUCCINATE 
DEHYDROGENASE INHIBITORS (SDHIs) 
SDHIs were first used to control STB in France 
in 2007 (boscalid, a pyridine-carboxamide). The 
group of SDHIs available for application 
increased with the release of pyrazole-
carboxamides (e.g. benzovindiflupyr, bixafen, 
fluxapyroxad, penthiopyrad) from 2011, and of 
the benzamides fluopyram in 2017 

(Supplementary Information 1). The first strain 
displaying specific resistance (CarR; genotype 
SdhC-T79N) to be isolated in France was 
obtained in 2012 (source: FRAC). CarR strains 
were detected only four times and at low 
frequency (but not isolated) in our study: in a 
population sampled in PDL in 2016 (10% 
frequency) and then in three populations from 
CHA, PIC (5%) and NPC (2%) in 2017. SDHIs use 
was stable between 2008 and 2011, with 25% 
of the surfaces under wheat sprayed with at 
least one SDHI (Figure 2). It increased again to 
reach 75%, since 2012, i.e. at the time when 
pyrazole SDHIs, exhibiting higher intrinsic 
activity, were authorized in France.  
 
Due to the rarity of CarR strains in our dataset, 
we did not run any models for this phenotype. 
Sequencing of pure strains (2013-2018) 
pinpointed the changes N225I in SDH-B, T25N, 
I29V, N33T, N34T, T79N, H152R in SDH-C, and 
T18N, A126D, D129G and K186R in SDH-D, 
compared to the IPO-323 reference sequence. 
The changes at codons T79 and H152R (SDH-C) 
and D129 (SDH-D) are associated with lower 
SDHI sensitivity14,57,58. 
 

3.5 RESISTANCE TO STEROL 14α-
DEMETHYLATION INHIBITORS (DMIs) 
DMIs include imidazoles (e.g. prochloraz), 
triazoles (e.g. cyproconazole, epoxiconazole, 
metconazole and propiconazole) and a 
triazolinethione (prothioconazole, which is 
metabolised to generate prothioconazole-
desthio, a triazole). These compounds have 
been used to control STB on winter wheat in 
France since the early 1980s, with new 
molecules regularly released onto the market 
(Supplementary Information 1). DMIs are the 
most widely used fungicides in France 
compared to the other modes of action. We 
noticed a steady increase in the use of this 
mode of action, with the index 𝐻𝐴𝐷

𝐶

 ranging 

from ~2 in the early 1990s to over 3 currently 
(Figure 2). This observation suggests an 
increase in DMIs doses and/or in the number of 
compounds mixed in spraying treatment. 
 
3.5.1 TriLR 
TriLR phenotypes include strains with weak 
specific resistance to DMIs: phenotypes TriR1 



to TriR5. These strains were first detected in 
the late 1980s (Figure 2).  As we had too few 
non-zero frequencies observed for TriR1 and 
TriR3, we focused our analysis on the TriLR 
group in general and on phenotypes TriR2, 
TriR4 (grouped into the TriR2-TriR4 group) and 
TriR5. The estimated inter-annual national 
frequency of TriLR according to the ANOVA 

MODEL was 11% (7.6% for TriR2-TriR4 and 4.5% 
for TriR5; Table 2). For TriLR, annual estimates 
decreased from +28% in 2005 (P < 0.001) to -
10.3%  in 2016 (P < 0.001). This trend was also 
valid for TriR5 (P < 0.001, for the year factor), 
but was less pronounced for TriR2-TriR4 (P < 
0.1, for the year factor). The national rates of 
frequency increase from the DYNAMIC MODEL 

confirmed these trends, as they were 
significantly negative for TriLR, TriR2-TriR4 and 
TriR5 (estimates of -0.21, -0.1 and -0.14, 
respectively; P < 0.001; Figure 3 and 
Supplementary Information 5). 
 
Spatial differentiation was significant for TriLR 
and TriR5 (P < 0.05, for the region factor in the 
ANOVA MODEL), but not for TriR2-TriR4 (Table 2). 
Similar estimates were obtained for the TriLR 
and TriR5 phenotypes, with differences 
between northern regions and central-western 
regions (Table 2 and Supplementary 
Information 6.3, 6.5). For example, the region 
parameters for TriLR were significantly 
negative for PIC and NPC (-4.6% and -3.9% 
respectively; P < 0.05). This phenotype was 
therefore less present in these regions than in 
other regions over the study period. By 
contrast, it was significantly more present in 
the PCH and CEN regions (+6.8% (P < 0.025) and 
+3.7% (P < 0.05), respectively). 
 
For the TriR2-TriR4 and TriR5 phenotypes, 
none of the regional rates of increase in 
frequency differed significantly from the 
national trend (Supplementary Information 5). 
Nevertheless, the rate of increase in frequency 
of the TriLR phenotype was significantly less 
negative than the national rate in the northern 
region NPC (estimate = 0.12; P < 0.05), whereas 
significant counter-selection against this 
phenotype was observed in the southern 
region RAL (estimate = -0.13; P < 0.05). Overall, 
there was counter-selection against TriLR 
strains nationally during the timeframe of this 

study, because all regional growth rates (the 
sum of the national growth rate and regional 
adjustments, Supplementary Information 5) 
were negative. 
 
3.5.2 TriMR 
TriMR strains display moderate resistance to 
azoles. They include the TriR6, TriR7 and TriR8 
phenotypes, which were selected in the late 
1990s (Figure 2). Between 2005 and 2017, the 
estimated inter-annual national frequency of 
TriMR was 78%  (with 56% for TriR6 and 17.5% 
for TriR7-TriR8). TriMR, and TriR6 in particular, 
were the most frequent group of TriR strains 
between the mid-2000s and 2017 (Table 2). 
 
The ANOVA MODEL provided increasing estimates 
of annual frequency for TriMR between 2005 (-
16.5% 0.83 in 2005; P < 0.025) and 2011 (+7%; 
P < 0.05). These estimates then decreased to 
reach -10.4% in 2016 (P < 0.05). This dynamic 
led us to split the TriMR data into two 
subgroups (TriMR≤2011 and TriMR≥2011), to 
estimate growth rates more reliably over these 
two periods.  
 
The DYNAMIC MODEL estimated a significant 
positive growth rate of 0.22 for the period 
before 2011 (P < 0.001), indicating that this 
population of strains grew 1.25 times (e0.22 ≈ 
1.25) faster than the rest of the population 
(Figure 3). The rate of increase in frequency 
was significantly negative after 2011 (estimate 
= -0.17; P < 0.025). 
 
By contrast, no significant trends were 
observed for the TriR6 and TriR7-TriR8 
phenotypes in the DYNAMIC MODEL (non-
significant growth rates close to 0, 
Supplementary Information 5). However, the 
structure of the TriMR group varied over time. 
Indeed, the estimates of some year parameters 
were significant for TriR6, and either positive, 
when this phenotype was present at higher 
frequencies than the inter-annual national 
mean (as in 2009, 2010 and 2011; P < 0.05, 
about 67% on the frequency scale), or negative, 
when this phenotype was present at lower 
frequencies (as in 2013 and 2017; P < 0.05 and 
P < 0.001 respectively, 44% and 23% on the 
frequency scale). Conversely, the TriR7-TriR8 
phenotypes were present at higher 



frequencies than the inter-annual national 
mean in 2013 and 2017 (P < 0.05 and P < 0.001 
respectively, 26% and 43% on the frequency 
scale), and lower frequencies in 2012 (P < 
0.025, 9% on the frequency scale).  
 
The SPATIAL MODEL revealed a strong 
geographical partitioning of TriMR subgroups, 
with TriR6 strains found mostly in north-
eastern regions, and TriR7-TriR8 strains found 
mostly in south-western areas, particularly 
before 2014 (Figure 4 and Supplementary 
Information 6.7-8). Furthermore, estimates of 
TriR6 frequencies (ANOVA MODEL) were 

significantly greater in the northern regions 
NPC and IDF, than the inter-annual national 
mean frequency (+11.4% and +11.2% 
respectively; P < 0.05). By contrast, estimates 
for the TriR7-TriR8 phenotypes in the southern 
regions MPY, AQU and PCH were significantly 
higher than the inter-annual national mean 
frequency (+35.3% (P < 0.025), +16.2% (P < 
0.05) and +10.2% (P < 0.05), respectively). 
Estimates for the northern regions BNO and 
NPC were significantly below the inter-annual 
national mean frequency (estimates of -7.4% (P 
< 0.05) and -7.25% (P < 0.05), respectively).

 

 
Figure 4.  Spatial partitioning over time for the StrR, TriR6 and TriR7-TriR8 phenotypes in France.  
Background maps with colour gradient are obtained by kriging methods, from real observations (points). The colours within 
the observation points indicate the true frequency observed in trials. The lines are obtained by the SPODT method (spatial 
oblique decision tree53) and split space into two homogeneous blocks, one with lower frequencies than the other (or no 
resistance at all for the StrR phenotype). Left: background map and points representing the status of StrR resistance in 2006; 
colonization fronts from 2004 to 2007 are shown; for 2008, we show only the farthest trial from the 2007 front, because no 
more trials were found with frequencies close to 0% in this year. Middle: background map and points representing the status 
of TriR6 resistance in 2013; delimitation lines from 2006 to 2013 are shown. Right: background map and points representing 
the status of TriR7-TriR8 resistance in 2013; delimitation lines from 2006 to 2013 are shown.  
 

Contrasting selection patterns were observed 
between regions with the DYNAMIC MODEL 

(Figure 3 and Supplementary Information 5) for 
the TriMR phenotypes, particularly for the 
TriR6 and TriR7-TriR8 subgroups. For example, 
TriR6 strains were selected, as shown by the 
positive rates of increase in their frequency, in 
RAL (estimate = 0.16; P < 0.05) and PCH 
(estimate = 0.13; P < .05), but counter-selected 
in MPY (estimate = -0.15; P < 0.05) and CHA 
(estimate = -0.13; P < 0.025). Similarly, TriR7-
TriR8 phenotypes were selected in MPY 
(estimate = 0.22, P < 0.001) and BOU (estimate 
= 0.14; P < 0.05), but counter-selected in IDF 
(estimate = -0.16; P < 0.05). 
 

3.5.3 TriHR 
TriHR strains are highly resistant to some DMIs 
and are associated with the most complex 
cyp51 genotypes (Supplementary Information 
2). They were first detected in our dataset in 
2008. Since 2010, their frequency has 
increased, and the estimated inter-annual 
national frequency of these strains was 7% 
(Table 2). According to the ANOVA MODEL, TriHR 
frequency increased from 1.9% in 2010 (7.1-
5.2%, P < 0.025) to 16.4% in 2016 (P < 0.05). The 
DYNAMIC MODEL confirmed this national 
tendency, with a significant positive rate of 
increase in frequency of 0.37 (P < 0.001), 
indicating that the TriHR population grew 



almost 1.5 times (e0.37 ≈ 1.5) faster than the rest 
of the population (Figure 3). 
 
No significant differences in TriHR frequency 
between regions were noted over the studied 
period (Table 2). Similarly, no regional 
adjustment parameter for the national rate of 
increase in frequency was significant (Figure 3). 
Maps from the SPATIAL MODEL are provided in 
Supplementary Information 6.9. 
 

 
 Figure 5. Distribution of mutations (insertion 
into the promoter of the MFS1 transporter 
gene) among MDR and non-MDR phenotypes 
in isolated Z. tritici strains (2008-2017; n=303). 
 

3.6 MULTIDRUG RESISTANCE 
In France, MDR phenotypes were first detected 
in 2008, at about the same time as TriHR strains 
emerged. MDR is based on an original 
mechanism of enhanced efflux, giving rise to 
cross-resistance between DMIs, QoIs and 
SDHIs. As this mechanism was selected in TriR 
and StrR backgrounds, resistance factors are 
high only for DMIs and QoIs, due to the 
combination of resistance mechanisms. The 
national frequency of MDR over the study 
period was estimated at 4.7% (Table 2). No 
significant year or region effects able to 

account for the spatiotemporal distribution of 
this phenotype were identified (Table 2). MDR 
frequency tended to increase in France, but 
this trend was not significant (Figure 3 and 
Supplementary Information 5). Likewise, there 
was no significant regional effect on the 
national rate of increase in the frequency of 
MDR (Figure 3). Maps from the spatial model 
are provided in Supplementary Information 
6.10.  
 
The systematic genotyping of pure MDR strains 
collected since 2008 revealed that the type I 
mutation (519 bp insertion in the promoter 
region of MFS1) was the most frequent allele 
associated with MDR in French populations 
(frequency greater than 75% in the dataset; 
Figure 5). 
 
 

4 DISCUSSION 
We performed a retrospective study of 
changes in resistance frequency in Z. tritici 
populations collected from control plots in the 
Performance national field trial network. The 
populations studied were not treated with 
fungicides, and the resistance frequencies 
presented here therefore probably 
underestimate those in farmer’s plots treated 
with chemicals, in which field resistance may 
occur. We adopted this approach as a means of 
studying unconstrained resistance dynamics in 
a population subject to little or no fungicide 
selection pressure.  In the presence of such 
selection pressure, it would have been difficult 
to separate out the respective weights of 
general variation in the population and local 
selection in treated plots.  
 
Resistance to benzimidazoles (BenR), QoIs 
(StrR), DMIs (TriR) and SDHIs (CarR) has been 
monitored and analysed in France since 2004. 
Our analysis, based on three statistical models, 
provided a quantitative description of 
resistance dynamics in time and space. 
 
We found a significant difference in resistance 
frequencies between the first sampling in 
spring (T0) and the second sampling in early 
summer (TNT). The direction of this change 
within the year depended on the phenotype 



considered, and was positively correlated with 
the between-year dynamics of this phenotype. 
Plots are continually contaminated with 
extrinsic ascospores during the cropping 
season6, and these ascospores may have 
contributed to the observed changes in 
resistance frequency, depending on fungicide 
selection history within their area of origin. 
These findings also suggest a possible 
correlation between fungicide resistance and 
virulence, as already suggested by Yang et al.59 
and Zhan et al.60. Indeed, as recombination is 
minimal during the cropping season, host 
selection, leading to an increase in virulent 
strains61 may be accompanied by an increase in 
the frequency of resistance mutations 
associated with the such genetic backgrounds. 
These intra-annual variations were taken into 
account in our models and should be 
integrated into measurements of selection 
pressures. 
 
The emergence of resistance in France was 
consistent with fungicide use, as resistance 
emerged with a time lag of about six years after 
the authorisation of QoIs (1996 to 2002) and 
SDHIs (2006 to 2012). Regarding resistance to 
DMIs, the first mutant strains (TriLR 
phenotypes) were observed in the early 1990s, 
about ten years after registration. TriMR 
phenotypes, which first contributed to the 
erosion of DMIs efficacy, were detected in 
populations since the early 2000s, almost 20 
years after the mode of action registration, 
whilst TriHR and MDR, associated to the 
greatest resistance factors emerged only in the 
late 2000s. In our dataset, resistance dynamics 
differed between phenotypes in terms of the 
speed at which resistance developed and its 
spatial progression, often with differences 
between northern and southern regions. 
 
Resistance to benzimidazoles (BenR 
phenotype) is well established in French 
populations, with a stable inter-annual national 
mean frequency of about 90%. There seems to 
be no fitness penalty associated with this 
resistance, as benzimidazole use is minimal and 
mostly restricted to Fusarium head blight 
control. BenR frequency was relatively 
homogeneous over the entire country, with 
frequencies slightly lower in the Western 

regions. By contrast, resistance to SDHIs is just 
emerging and was detected only at a few sites 
in northern France, and remains negligible. This 
slow evolution might be the consequence of 
the recommendation to use only one SDHI 
spray per season, massively followed by 
farmers in France. 
 
Resistance to QoIs (StrR phenotype) emerged 
in the north of France in 2002, one year after it 
was first reported in the UK and Ireland, and it 
has since progressively invaded populations 
(progression of 120-145 km per year), with a 
clear delimitation each year between the area 
invaded by resistant strains and a resistance-
free area. This is the first time that such a 
colonization front structure has been 
quantitatively described for resistance. QoI 
resistance, which has reached fixation over the 
entire country since 2009, was found to be 
increasing in frequency significantly more 
rapidly than the other resistances, highlighting 
the high risk of resistance associated with this 
mode of action. The resistance dynamics for 
QoIs can be explained by regular selection 
pressure (two reduced-dose applications of 
strobilurin associated to a DMI active 
ingredient, per year, in the early 2000s, in areas 
with high disease pressure) and the maternal 
inheritance of the mutation leading to the 
G143A change (affecting the mitochondrial 
gene encoding cytochrome b), enhancing the 
transmission of this mutation. This resistance 
remains fixed in French populations (>95%), 
possibly due to a very small or non-existent 
cost of resistance and the non-negligible 
residual use of QoIs against rusts and Fusarium 
head blight, which may maintain the selection 
pressure on Z. tritici populations for this 
phenotype. QoI resistance has been reported 
to occur in a limited number of independent 
genetic and/or geographic backgrounds, 
through at least four recurrent mutations in Z. 
tritici31 in Europe. The multiple emergences of 
such resistance was recently confirmed in 
North American populations, in which 
significant mitochondrial genome bottlenecks 
were observed62. We found that the StrR 
phenotype spread very quickly from northern 
to eastern regions in France, but that its 
progression in the south and west was much 
slower. This anisotropic dissemination 



highlights a preferred direction of migration, 
from north-western regions to eastern regions, 
consistent with earlier results  showing that 
gene flow occurs mostly in a west-to-east 
direction31. The lower levels of southward 
migration may be explained by several factors, 
including the prevailing direction of the wind, 
which carries the ascospores63,64; lower local 
selective pressure (only one QoI application 
yearly) due to smaller epidemics in the south; 
or the occurrence of large durum wheat areas, 
on which Z. tritici populations have been shown 
to be genetically different from those on bread 
wheat populations in analyses based on neutral 
markers65. The propagation speed of 120-145 
km/year calculated here is, thus, almost 
certainly a minimal estimate, because the 
north-to-south gradient observed in our 
dataset is not the preferential axis for 
propagation.  
 
By contrast, DMI resistant strains have been 
present throughout France since at least 
199756, but probably for longer, given that DMI 
selection pressure began in the late 1970s. In 
UK, progressive decrease in strains sensitivity 
has been measured over the last 12 years16. 
Quantitative dynamics analysis revealed that 
some phenotypes were probably counter-
selected (negative rates of increase in 
frequency regularly recorded during the 2004-
2017 period, e.g. TriLR, associated with 
deletions or changes in Cyp51 at codons 459, 
460 or 461, or the Y137F or V/C136A variants; 
TriMR after 2011, associated with the I381V 
and A379G variants), whereas some others 
were positively selected (positive rates of 
increase in frequency regularly recorded, e.g. 
TriMR before 2011; combined changes in TriHR 
genotypes, including D134G, V/C136A or 
S524T; MDR, associated with three mfs1 
alleles). This situation is consistent with 
selective replacement favouring a high 
diversity of resistant genotypes over the last 30 
years. Novel cyp51 resistance genotypes 
evolved through de novo mutation and 
intragenic recombination. They are thought to 
have arisen locally (putatively in UK or 
Denmark) only once or twice and to have 
dispersed eastwards across Europe through 
wind-dispersed ascospores. Regular 
recombination associated with sexual 

reproduction, and the continuous use of azoles 
have led to increases in resistance frequency, 
particularly for novel genotypes64. Similar 
patterns of diversifying selection and 
intragenic recombination, leading to the 
emergence of new genotypes with a selective 
advantage, have recently been observed in 
North America62. The observed dynamics are 
consistent with the general gradual erosion of 
azole efficacy observed in several European 
countries16,24,28,29. Results from a European trial 
network demonstrated major variations in 
azole performance across Europe correlated 
with a clear eastward pattern of decrease in 
the frequency of all cyp51 mutations, with the 
exception of the I381V and A379G variants 
(TriMR genetic background18). Spatial 
heterogeneity in azole efficacy, correlated with 
population structure for the frequency of 
resistant genotypes, was also observed in our 
dataset at the scale of France. Indeed, from 
2005 to 2013, static front structures were 
detected for TriR6 strains, present mostly in 
North-East France, and for TriR7 and TriR8 
strains, present mostly in the South-West. 
TriR7 and TriR8 strains were found to be 
moderately resistant to all DMIs, with the 
exception of prochloraz66, potentially 
accounting for the higher efficacy of this 
fungicide in this area (Arvalis-Institut du 
Végétal, unpublished). This spatial structure 
may result from a founder effect, bringing 
TriR7 and TriR8 genotypes from northern 
Europe to the South of France, where they are 
adapted to the local environment (e.g. climatic 
conditions, cultivars, low prochloraz use). This 
hypothesis should be explored by performing 
fitness tests and analysing cyp51 diversity 
between strains from northern and southern 
populations. In more recent French 
populations from the North and South, 
contrasting azole efficacies were also 
observed, with reduced epoxiconazole, 
prothioconazole, metconazole and 
tebuconazole efficacy positively associated 
with higher frequencies of the CYP51 V/C136A 
and D134G changes, largely present in TriHR 
genotypes, in the North, compared to the 
South, in 201618,67. 
 
The large amount of data made it possible to 
perform a fine quantitative and exhaustive 



description of resistance dynamics over time 
and space in this study. To our knowledge, this 
is the first population study on Z. tritici 
including  resistance phenotyping to all unisite 
modes of action used to control STB, related 
selection pressures, a large temporal scale (13 
years) and a fine spatial coverage (including 
regional scales for the entire wheat growing 
area in France), in contrast to previously 
published snapshot analysis. Our resistance 
frequency-based approach allowed to 
phenotype hundreds of populations per year, 
without the need for laborious strain isolation, 
thereby providing sufficient spatial coverage 
annually. The data were collected in a long-
term network including diverse stakeholders, 
demonstrating the power of collective action 
for monitoring and managing fungicide 
resistance. Our analysis, based on field data, 
detected some original spatial cryptic 
structures and differences in the rate of 
increase of resistance frequencies between 
phenotypes and regions, making it possible to 
describe resistance status in France more 
precisely than the partial short-term analyses 
generally performed. This approach should 
improve regional resistance management. It 
offers a vision complementary to that provided 
by the theoretical models of resistance 
evolution generally proposed, and may also 
provide empirically validated parameter such 
as estimates of growth rates. Moreover, the 
three statistical models used here are not 
specific to Z. tritici and may be considered as 
generic tools, suitable for use in similar studies 
of other resistances. The value of this approach 
for describing resistance dynamics is now well 
established. Future studies should seek to 
explain the sources of variation in local 
resistance evolution, and to identify the 
extrinsic or intrinsic factors determining 
resistance dynamics, as these factors may be 
useful operational levers for resistance 

management. This could be achieved by 
developing the DYNAMIC MODEL further. Regional 
selective pressure (i.e. the regional use of 
fungicides) should be explored, together with 
demographics (e.g. the intensity of local 
epidemics) and local agronomic and 
environmental factors. Such improvement to 
the model would facilitate prediction of the 
structure of resistant populations year after 
year, while incorporating any context changes 
that could affect resistance evolution. Its 
outputs may help farmers to yearly adapt their 
spray programs while implementing 
sustainable local strategies before resistance 
reaches fixation in population. Indeed, 
according to the regional resistance dynamics 
and pesticide use, tailor-made strategies may 
be recommended, as mixture or alternation 
regimes may differ in efficacy locally. Like Hicks 
et al.68, in their long-term nationwide study of 
herbicide resistance, we conclude that there is 
a need to use “an evolutionarily informed 
approach in a proactive not reactive manner”. 
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Supplementary Information 1. Fungicides used to control STB in France and associated resistance phenomena. 

Description and resistance mechanisms are detailed in the following references: BenR1,2; TriR3,4; StrR2,5–7; CarR8–10; MDR3,11–13. Amino-acid changes were 

described in the corresponding publications. 

 

Fungicides Resistance¤ 

Biochemical mode of action§ Chemical structures§ 

Active 
ingredient† 

Authorisation in France‡ Codes 

R
e

si
st

an
t 

p
h

e
n

o
ty

p
e

 

ab
b

re
vi

at
io

n
 

Target site resistance 
Non target site 

resistance 

Main 
processes 

Target site and 
mode of action 

A
b

b
re

vi
at

io
n

 

Main classes Secondary classes 

R
e

gi
st

ra
ti

o
n

 

Fi
rs

t 
ye

ar
 

o
f 

u
se

 

R
em

o
va

l 

R4P§ FRAC† Target alteration 

Ta
rg

e
t 
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ve

re
xp

re
ss

io
n

 

C
o

m
p

en
sa

ti
o

n
 

En
h

an
ce

d
 

e
ff

lu
x 

(M
D

R
) 

M
it

o
ch

o
n

d
ri

al
 r

e
sp

ir
at

io
n

 

Complex II or 
succinate 

dehydrogenase. 
Binding site of 

ubiquinone 
involving the 

subunits SdhB, 
SdhC and SdhD. 

SDHI Carboxamides 

Benzamides Fluopyram 2016 2017 - 

U-A2a C2/7 CarR + 

[LR] 
SdhB: N225I, R265P, 
T268A/I 
SdhC: T79N, W80S, N86A/S 
R151M/S/T, I261S, V166M, 
T168R 
SdhD: R47W, I50F, M114F 
 
[MR-HR] 
SdhC: T79I, H152R 

- - 

+ 
[LR when 

alone] 
MFS1 

promoter: 
types I, II 

or III 
inserts 

Nicotinamides (syn. 
Pyridine-
carboxamides) 

Boscalid 2006 2007 - 

Pyrazole-
carboxamides 

Benzovindiflupyr 2016 2017 - 

Bixafen 2011 2011 - 

Penthiopyrad 2014 2014 - 

Fluxapyroxad 2011 2011 - 

Complex III or 
cytochrome bc1. 

Binding site of 
ubiquinone to 

cytochrome b at 
the “o” center 

(proton output) 
in the heme bl 

proximal domain 

QoI (or 
QoI-P 

Synthetic 
strobilurins 
and analogs 

Methoxy-acrylates 
Azoxystrobin 1996 1997 - 

U-A5a C3/11 StrR + 

[LR] 
Cytb: F129L 
 
[HR] 
Cytb: G143A 

 
 
 
 
 

 
 
 

- 
 
 
 

 
 
 

 

+  

[LR]  
AOX over-
expression 

+ 
[LR when 

alone] 
MFS1 

promoter: 
types I, II 

or III 
inserts 

Picoxystrobin 1999 2000 - 

Methoxy-carbamates Pyraclostrobin 2000 2000 - 

Oximino-acetates 
Kresoxim-methyl 1996 1997 2013 

Trifloxystrobin 2001 2002 - 

Oximino-acetamides 

Dimoxystrobin 2009 2010 - 

Fluoxastrobin 2006 2006 - 



St
e

ro
l b

io
sy

n
th

es
is

 

Binding to sterol 
14α-

demethylase 
(syn. CYP51) 

DMI or 
SBI-DM 

Heterocyclic 
compounds 

Imidazoles Prochloraz 1980 1980? - 

U-E2 G1/3 TriR + 

[LR] 
Cyp51: one change (e.g. 
Y137F, Y459C/D/H, 
G460D/S, Y461H/S, 
ΔY459/G460) or two 
changes (V136A+Y461H/S 
or ΔY459/G460) 
 
 [MR] 
Cyp51: two changes 
including 
I381V+Y459S/D/N, Y461H/S 
or ΔY459/G460) 
 
[HR] 
Cyp51: three to six changes 
including those reported for 
TriLR and TriMR 
phenotypes, combined with 
D107V, D134G and/or 
S524T. 

+ 
[LR when 

alone] 
Cyp51 

promoter:  
120 bp or 
1000 bp 
inserts 

- 

+ 
[LR when 

alone] 
MFS1 

promoter: 
types I, II 

or III 
inserts 

Triazoles 

Bromuconazole 1994 1995 - 

Cyproconazole 1987 1987 - 

Difenoconazole 1988 2011 - 

Epoxiconazole 1992 1992 - 

Fenbuconazole 1991 1992 - 

Fluquinconazole 1997 1998 2016 

Flusilazole 1985 1986 2013 

Flutriafol 1983 1984 2015 

Hexaconazole 1990 1990 2007 

Metconazole 1993 1994 - 

Propiconazole 1980 1980? - 

Tebuconazole 1988 1989 - 

Tetraconazole 1991 1991? - 

Triadimenol 1987 1988 2014 

Triazolinethiones Prothioconazole 2006 2006 - 

C
e

ll 
d

iv
is

io
n

: 
m

ic
ro

tu
b

u
le

s 
o

f 
th

e
 

m
it

o
ti

c 
sp

in
d

le
 

Binding to β-
tubulin 

MBC  
Benzimidazole
s and 
precursors 

Benzimidazoles 

 
Carbendazim 
 
 

1972 1972? 2009 

U-K2b B1/1 BenR + 
[HR] 
Tub2: E198A 

- - - 

Thiophanates 

 
Thiophanate-
methyl 
 

1973 1980? - 

M
u

lt
is

-s
it

e
 

ac
ti

vi
ty

 

Fungicide acting 
non specifically 

on multiple 
targets, 

especially 
respiratory 
enzymes 

MSI 

Dithio-
carbamates 

Akylene-bis-
dithiocarbamates 

Mancozeb 1980 1980? - 
U-W11 M3 

NC NC 
NC 

NC NC NC 

Maneb 1988 1988? - 

Chloronitriles Phthalonitriles Chlorothalonil 1980 1980? - U-W14 M5 

Halogenated 
alkyl-thio 
coumpounds 

Phthalamides Folpet 2003 2003 2009 U-W10 M4 

? Approximate date. 

NC: Not concerned. 
§According to the R4P classification (http://www.r4p-inra.fr). 
†According to the FRAC classification (http://www.frac.info). 
‡Legal authorisation of the active ingredient in France. Year the molecule was registered in France, year it was first used in the field and year it was removed 

from French registration (http://www.ephy.anses.fr). 



¤Phenotypes are described in section 2.2 of the main document. [LR]: low resistance levels (<25); [MR]: moderate resistance level (25<RL<100); [HR]: high 

resistance level (>100). 
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Supplementary Information 2. cyp51 genotypes in a collection of pure strains. 

Strains were isolated by INRA between 1969 and 2017 (n=314). This list is not exhaustive. Other genotypes may exist in populations and have been reported 

in other studies. 

 
Main 

phenotype 
class† 

Historical 
phenotype† 

Genotype 
number 

Genotype in 
nomenclature¤ 

cyp51 codon‡ Number 
of 

changes 

Insert detection§ 

134 136 137 379 381 459 460 461 524 
 cyp51 
120 bp 

cyp51 
1000 bp 

mfs1 
type 1 

 mfs1 
type 2 

mfs1 
type 3 

TriS TriS 
G1 - D V Y A I Y G Y S 0           

G2 A5 D V Y A I Y - Y S 1           

TriLR TriR2 G3 A1 D V Y A I Y D Y S 1           

TriLR 

TriR3 G4 A6 D V F A I Y G Y S 1           

TriR4 

G5 D1, D4,D5, E1, E14 D V Y A I - - Y S 1           

G6 - D V Y A I H G Y S 1           

G7 B8, D24 D V Y A I Y G S S 1           

G8 A11, B9, D3 D V Y A I Y G H S 1           

G9 E16, F3, F13 D C Y A I - - Y S 1           

G10 B10 D C Y A I Y G H S 1           

TriR5 

G11 C7 D A Y A I Y G H S 2           

G12 B2, C6 D A Y A I Y G S S 2           

G13 C10, D8, E6, E11, E15, F5 D A Y A I - - Y S 2           

TriMR 

TriR6 

G14 
B12, C1, C8, C16, D20, 

D21 
D V Y A V Y G H S 2 X   X     

G15 - D V Y A V Y G S S 2           

G16 B4, C2 D V Y A V S G Y S 2           

G17 B3, C4, D22 D V Y A V D G Y S 2           

G18 - D V Y A V N G Y S 2           

TriR7 G19 E17, E22, F2, F14 D V Y A V - - Y S 2 X   X     

TriR8 G20 
E20, F11, F16, G1, G4, H1, 

H2, H3, H5, H8 
D V Y G V - - Y S 3     X     

TriHR 

TriR9 G21 C11, D7 D A Y A I Y G S T 3           

- G22 - D C Y A I Y G H T 2           

TriR10 G23 C12, D10 D A Y A V Y G H S 3   X X     

- G24 - D A Y A V Y G S S 3   X     X 

- G25 E5 D A Y A V Y G H T 4   X X X   

TriR12 G26 E3 D A Y A V Y G S T 4           

TriR11 G27 D18, E4 G A Y A V Y G H S 4     X X X 

- G28 F8, G5 G A Y A V Y G H T 5         X 

- G29 D13, E7, F4 D C Y A V Y G H T 3           

- G30 - G V Y A V Y G H S 3   X X     

- G31 F7, G7 D A Y G V Y G S T 5           

- G32 E9 G A Y A V S G Y S 4           

- G33 F1 D V Y G V D G Y T 4           



TriR9 G34 E23, F6, G3 D A Y A I - - Y T 3           

TriRz G35 F12 G A Y A I - - Y S 3           

- G36 - G C Y A I - - H S 3           

- G37 G2, H9 D V Y A V - - Y T 3           

- G38 - G V Y A V - - H S 4 X         

- G39 H4, I1 D A Y G V - - Y T 5           

- G40 F9, H6, I3 D C Y G V - - Y T 4           

- G41 - G C Y G V - - H T 6   X       

- G42 - G V Y G V - - H S 5   X       
†Nomenclature described in Leroux et al.1 and Leroux & Walker2. 
‡Numbers indicate codons affected by mutation or deletion within the cyp51 sequences of the strains of the collection. Letters indicate amino acids according 

to standard nomenclature. For the sake of simplicity, only codons relevant for azole resistance are reported, according to Cools et al.3 and Cools et al.4 with 

the exception of changes affecting the DYGYG motif. The L50S, D107V, N178S, S188N, S208T, S259F, N284H, H303Y, A311G, G312A, A410T, G412A, G476S, 

V490L, N504K, G510C and/or N513K variants are not related to azole resistance but are regularly reported in most genotypes, and would therefore greatly 

increase the total number of genotypes if reported. 
¤Nomenclature described in Huf et al.5. As more codons are considered in this nomenclature, several codes were possible to match with our genotype numbers. 
§Description of additional resistance mechanisms possibly affecting strain susceptibility to azoles. Two types of insertion have been described in the promoter 

sequence of cyp51 and the shortest one has been shown to lead to cyp51 overexpression6,7. Three insertions (types 1-3) in the promoter sequence of mfs1 

have been shown to induce overexpression, causing multidrug resistance (enhanced efflux from the membrane transporter MFS1,8,9). ‘X’ indicates that the 

insertion was regularly found in the corresponding cyp51 background, as the three resistance mechanisms are independent. Some combinations may be 

missing.
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Supplementary Information 3.1. ANOVA MODEL 

 

Model: 

 
 

R Script (JAGS): 
model{ 

 # 

 # Likelihood 

 # 

 for(i in 1:n){ 

  y[i] ~ dbin(P[i], 100) 

 # 

  P[i] <- p0[i] * 1.0E-10  +  pp[i] * p[i]  +  p100[i] * (1-1.0E-10) 

 # 

  p0[i]   <- equals(inflated[i, phenotype[i]], 1) 

  pp[i]   <- equals(inflated[i, phenotype[i]], 2) 

  p100[i] <- equals(inflated[i, phenotype[i]], 3) 

  inflated[i, phenotype[i]] ~ dcat(pi[, phenotype[i]]) 

 # 

  p[i] <- exp(eta[i])/(1 + exp(eta[i])) 

 # 

  eta[i] ~ dnorm(mu[i], Phenotype_tau[phenotype[i]]) 

  mu[i] <- Phenotype.YearXPhenotype.RegionXYearXPhenotype[region[i], year[i], 

phenotype[i]] + 

    RegionXPhenotype[region[i], phenotype[i]] + 

    Sampling.dateXPhenotype[sampling.date[i], phenotype[i]] 

 } 

 # 

 # Inflated parameters 

 # 

 for(i in 1:n_phenotype){ 

  pi[1:3, i] ~ ddirch(alpha[]) 

 } 

 # 

 for(i in 1:3){ 



  alpha[i] <- 1/2 

 } 

 # 

 # Priors 

 # 

 for(i in 1:n_phenotype){ 

  Phenotype[i] ~ dnorm(0, 1.0E-6) 

 # 

  for(j in 1:n_year){ 

   Phenotype.YearXPhenotype[j, i] ~ dnorm(Phenotype[i], 

invVar.YearXPhenotype[i]) 

   YearXPhenotype[j, i] <- Phenotype.YearXPhenotype[j, i] - Phenotype[i] 

  # 

   for(k in n_region){ 

    Phenotype.YearXPhenotype.RegionXYearXPhenotype[k, j, i] ~ 

dnorm(Phenotype.YearXPhenotype[j, i], invVar.RegionXYearXPhenotype[k, i]) 

    RegionXYearXPhenotype[k, j, i] <- 

Phenotype.YearXPhenotype.RegionXYearXPhenotype[k, j, i] - Phenotype.YearXPhenotype[j, i] 

   } 

  } 

 # 

  for(k in 1:n_region){ 

   RegionXPhenotype[k, i] ~ dnorm(0, invVar.RegionXPhenotype[i]) 

  } 

 # 

  Sampling.dateXPhenotype[1, i] ~ dnorm(0, 1.0E-6) 

 # 

 # 

 # 

  invVar.YearXPhenotype[i] <- 1/(Sigma.YearXPhenotype[i]*Sigma.YearXPhenotype[i]) 

  Sigma.YearXPhenotype[i] ~ dlnorm(0, 1) 

 # 

  invVar.RegionXPhenotype[i] <- 

1/(Sigma.RegionXPhenotype[i]*Sigma.RegionXPhenotype[i]) 

  Sigma.RegionXPhenotype[i] ~ dlnorm(0, 1) 

 # 

  for(k in 1:n_region){ 

   invVar.RegionXYearXPhenotype[k, i] <- 1/(Sigma.RegionXYearXPhenotype[k, 

i]*Sigma.RegionXYearXPhenotype[k, i]) 

   Sigma.RegionXYearXPhenotype[k, i] ~ dlnorm(0, 1) 

  } 

 # 

  Phenotype_tau[i] <- 1/(Sigma.Phenotype_tau[i]*Sigma.Phenotype_tau[i]) 

  Sigma.Phenotype_tau[i] ~ dlnorm(0, 1) 

 } 

 # 

 # Constraints 

 # 

 for(i in 1:n_phenotype){ 

  Sampling.dateXPhenotype[2, i] <- 0 

 } 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Information 3.2. DYNAMIC MODEL 

Model:  

 



 

R script (JAGS): 
model{ 

 # 

 # Likelihood 

 # 

 for(i in 1:n){ 

  y[i] ~ dbin(P[i], 100) 

 # 

  P[i] <- p0[i] * 1.0E-10  +  pp[i] * p[i]  +  p100[i] * (1-1.0E-10) 

 # 

  p0[i]   <- equals(inflated[i, phenotype[i]], 1) 

  pp[i]   <- equals(inflated[i, phenotype[i]], 2) 

  p100[i] <- equals(inflated[i, phenotype[i]], 3) 

  inflated[i, phenotype[i]] ~ dcat(pi[, phenotype[i]]) 

 # 

  p[i] <- exp(eta[i])/(1 + exp(eta[i])) 

 # 

  eta[i] ~ dnorm(mu[i], Phenotype_tau[phenotype[i]]) 

  mu[i] <- Phenotype.RegionXPhenotype_T0[region[i], phenotype[i]] + 

    Phenotype.RegionXPhenotype[region[i], phenotype[i]]*time[i] + 

    Sampling.dateXPhenotype[sampling.date[i], phenotype[i]] 

 } 

 # 

 # Inflated parameters 

 # 

 for(i in 1:n_phenotype){ 

  pi[1:3, i] ~ ddirch(alpha[]) 

 } 

 # 

 for(i in 1:3){ 

  alpha[i] <- 1/2 

 } 

 # 

 # Priors 

 # 

 for(i in 1:n_phenotype){ 

  Phenotype_T0[i] ~ dnorm(0, 1.0E-6) 

 # 

  Phenotype[i] ~ dnorm(0, 1.0E-6) 

 # 

  for(j in 1:n_region){ 

   Phenotype.RegionXPhenotype_T0[j, i] ~ dnorm(Phenotype_T0[i], 

invVar.RegionXPhenotype_T0[i]) 

   RegionXPhenotype_T0[j, i] <- Phenotype.RegionXPhenotype_T0[j, i] - 

Phenotype_T0[i] 

  # 

   Phenotype.RegionXPhenotype[j, i] ~ dnorm(Phenotype[i], 

invVar.RegionXPhenotype[i]) 

   RegionXPhenotype[j, i] <- Phenotype.RegionXPhenotype[j, i] - 

Phenotype[i] 

  } 

 # 

  Sampling.dateXPhenotype[1, i] ~ dnorm(0, 1.0E-6) 

 # 

 # 

 # 

  invVar.RegionXPhenotype_T0[i] <- 

1/(Sigma.RegionXPhenotype_T0[i]*Sigma.RegionXPhenotype_T0[i]) 

  Sigma.RegionXPhenotype_T0[i] ~ dlnorm(0, 1) 

 # 

  invVar.RegionXPhenotype[i] <- 

1/(Sigma.RegionXPhenotype[i]*Sigma.RegionXPhenotype[i]) 

  Sigma.RegionXPhenotype[i] ~ dlnorm(0, 1) 

 # 

  Phenotype_tau[i] <- 1/(Sigma.Phenotype_tau[i]*Sigma.Phenotype_tau[i]) 

  Sigma.Phenotype_tau[i] ~ dlnorm(0, 1) 

 } 

 # 

 # Constraints 

 # 

 for(i in 1:n_phenotype){ 

  Sampling.dateXPhenotype[2, i] <- 0 

 } 

} 
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Supplementary Information 4. Estimates for the ANOVA MODEL, for year, region and sampling date 

effects.  

 

Estimates of interactions between region and year are not shown because the factor was not 

significant for all phenotypes. Estimates are given on a logit scale. Disregarding the value of the 

Year:Region interaction parameter, frequencies can be recovered (in %) by calculating the inverse logit 

of estimates, weighting by the estimated proportions of 0 and 100 (π0 and π100, respectively), and 

multiplying the value obtained by 100. For instance, the frequency estimated for StrR in 2011, in PCH 

at the T0 sampling time was: [0.02*0 + (1-0.02-0.29) *logit-1(1.98+1.61-0.5-0.53)*)*(1-0.29-0.02)0.69 

+ 1*0.29*1 + 0*0.02]*] * 100 = 93%. Empty cells indicate that no data were available for estimation. 

Factors tests P-values are indicated in bold and italic. P-value thresholds: “·” (P < 0.1), “*” (P < 0.05), 

“**” (P < 0.025), “***” (P < 0.001). 

 

  Phenotype 

Factor Parameter BenR StrR TriLR 
TriR2-
TriR4 

TriR5 TriMR TriR6 
TriR7-
TriR8 

TriHR MDR 

  
Inter-annual 
national mean 

1.78*** 1.98* -1.97*** -2.1*** -2.52*** 1.19*** 0.31  -1.32*** -1.87*** -1.99*** 

Year   0.894  0*** 0*** 0.065 · 0*** 0*** 0*** 0*** 0.034* 0.972  

2004   -3.04**                 

2005   -1.93* 1.7***     -0.83**         

2006   -0.89  0.99* 0.31* 0.45  -0.25  -0.15  -0.07      

2007 -0.2  -0.57  0.76 · 0.27 · 0.72* -0.05  -0.15  0.16      

2008 -0.14  -0.56  0.76 · 0.31* 0.55* -0.03  -0.15  0.09      

2009 0.14  -0.34  0.28  -0.03  0.47 · 0.42* 0.5* -0.35      

2010 0.03  0.94  0.13  -0.2  0.23  0.4* 0.5* -0.36  -1.43**   

2011 0 1.61 · -0.06  -0.17  -0.04  0.5* 0.56* -0.19  -0.58    

2012 0.24  4.84*** -0.04  -0.04  -0.29  0.17  0.35  -0.74** -0.42    

2013 0.16    0.18  0.18  -0.1  0.04  -0.55* 0.52* 0.05  -0.18  

2014 0.03    -0.54  -0.32  -0.71 · 0.15  0.45  -0.18  0.38  -0.08  

2015 -0.18    -1.46** -0.3  -1.26** 0.37  0.39  0.34  0.13  0.22  

2016 0.03    -2.87***     -0.55* -0.14  -0.54  1.07* 0.1  

2017 -0.09          -0.41  -1.57*** 1.37*** 0.8 · -0.05  

Region   0*** 0.224  0.004** 1 0.018* 0.99  0.01* 0*** 1 1 

NPC 0.58* 1.06* -0.49* -0.06  -0.41  0.17  0.54* -0.64* 0.34  -0.02  

PIC 0.56** 0.47  -0.59* -0.18  -0.6* 0.16  0.4 · -0.52 · 0.27  0 

HNO 0.61 · 0.79* -0.3  -0.06  0.02  0.15  0.44 · -0.43  0.01    

BNO 0.18  0.23  0.08  0.09  -0.07  -0.14  0.18  -0.66* 0.39    

LOR 0.35  -0.02  0.15  0 -0.17  -0.03  0.34  -0.46  -0.19    

CHA 0.25  0.19  -0.05  -0.04  -0.19  0.05  0.29  -0.45 · 0.15  -0.03  

IDF 0.27  0.43  -0.1  -0.03  0.03  0.07  0.53* -0.46  -0.27  -0.05  

BRE -0.67** 0.21  -0.27  -0.02  -0.33 · 0.07  -0.23  0.42  0.12    

CEN 0.03  0.4  0.34* 0.02  0.38 · -0.07  -0.03  -0.16  -0.35  0.01  

PDL -0.48 · -1.08* 0.28  0.02  0.6* -0.17  -0.37 · 0.31  -0.05  0.09  

BOU 0.05  -0.22  0.17  0.05  0.15  -0.02  -0.04  -0.14      

PCH -0.2  -0.5  0.57** -0.04  0.66** -0.22  -0.45  0.63* -0.13    

AUV 0.04  -0.09  0.23  0.09  0.17  -0.17  -0.08  -0.22  0.15    

RAL -0.32  -0.1  0.14  0.04  -0.03  -0.03  0.18  -0.07  -0.33    

AQU -0.91** -1.19 · 0.06  0.07  0.1  0.03  -0.64 · 0.94* -0.12    

MPY -0.33  -0.53  -0.21  0.06  -0.27  0.18  -1.1 · 1.88**     

Year:Region   1 0.661  1 1 1 1 1 1 1 1 

Sampling date  TNT-T0 0.04  0.53*** -0.21** -0.25** -0.06  0.2** 0.39*** -0.11  0.61    

  π0 0 0.02  0.1  0.3  0.4  0 0.05  0.17  0.47  0.61  

π100 0.3  0.29  0 0 0 0.07  0.03  0 0 0 

R² 0.45 0.84 0.59 0.41 0.53 0.42 0.64 0.58 0.47 0.6 

 



Supplementary Information 5. Estimates for the DYNAMIC MODEL.  

Regional adjustments of the initial national frequency were also estimated but are not shown here. 

Estimates are given on a logit scale. Initial frequency refers to frequencies observed in the column 

“First year” of Table 1. To recover frequencies (in %) the inverse logit of estimates must be calculated, 

weighted by the estimated proportion of 0 and 100 (π0 and π100, respectively), and the value obtained 

should then be multiplied by 100. For instance, for the estimated frequency of StrR in 2011 in PCH at 

the T0 sampling: [logit-1(-1.04+(0.68+0.34)*7-0.58)*0.69 + 1*0.3 + 0*0.02]*100 = 98%. Empty cells 

indicate that no data were available for the estimation. P-value thresholds: “·” (P < 0.1), “*” (P < 0.05), 

“**” (P < 0.025), “***” (P < 0.001). 

 

  Phenotype 

Factor Parameter BenR StrR TriLR 
TriR2-
TriR4 TriR5 

TriMR 
≤2011 

TriMR 
≥2011 TriR6 

TriR7-
TriR8 TriHR MDR 

  

Initial national 
frequency 

1.65*** -1.04* -0.59** -1.62*** -1.79*** 0.59** 1.71*** 0.29  -1.43*** -3.11*** -2.05*** 

  

National 
growth rate 

0.03  0.68*** -0.21*** -0.1*** -0.14*** 0.22*** -0.17** 0 0.03  0.37*** 0.09  

Regional 
adjustment 

NPC 0 -0.26 · 0.12* 0.04  -0.01  -0.13 · 0.03  -0.06  -0.03  -0.04  -0.02  

PIC -0.01  -0.35*** 0.01  0.01  -0.06  -0.13* -0.04  -0.08 · -0.03  -0.07  -0.04  

HNO 0.02  -0.05  0.06  0.04  0.02  -0.09  -0.04  0.05  -0.07  -0.01    

BNO 0 -0.02  -0.04  -0.02  -0.02  0 -0.02  -0.01  -0.12  -0.05    

LOR 0.01  -0.13  -0.05  0 0.01  0.1  0.02  0 0.04  0   

CHA 0.01  -0.34* -0.02  0.01  0 0.12 · -0.13 · -0.13** 0.04  0.09  -0.02  

IDF 0 -0.05  -0.07  -0.01  0.02  0.03  0 0.08  -0.16* -0.01  0 

BRE 0.02  0.17  0.06  0.03  0.02  -0.07  -0.08  -0.04  -0.06  0.06    

CEN -0.07* -0.1  -0.01  0.01  0 0.01  0.06  0 0.03  0.05  -0.04  

PDL 0.07* 0.16  -0.02  0 -0.02  0.06  -0.03  0.09 · -0.02  0.03  0.11  

BOU 0.03  -0.15  0.03  0 0.02  -0.08  0.1  -0.05  0.14*     

PCH -0.04  0.34* -0.02  -0.02  -0.01  0.09  0.05  0.13* 0.03  -0.13    

AUV 0.01  -0.1  0.07  0.02  0.04  -0.08  -0.08  0.01  -0.07  0.07    

RAL -0.02  0.11  -0.13* -0.05  -0.03  0.19* 0.04  0.16* 0.02  0.01    

AQU -0.02  0.2  0.05  -0.02  0.02  -0.05  0.04  0.01  0.02  0.01    

MPY -0.02  0.53** -0.03  -0.02  0 0.01  0.09  -0.15* 0.22***     

Sampling date TNT-T0 0.06  0.58*** -0.08  -0.16* -0.12 · 0.16* 0.07  0.29*** -0.13  0.58 ·   

  π0 0 0.02  0.12  0.3  0.41  0 0 0.05  0.17  0.49  0.61  

  π100 0.3  0.3  0 0 0 0.06  0.09  0.03  0 0 0 

R² 0.4 0.86 0.51 0.33 0.51 0.45 0.25 0.53 0.48 0.52 0.49 

 



Supplementary Information 6.1. Dynamics of resistance to antimicrotubule agents (BenR phenotype) 

in Z. tritici in France between 2007 and 2017. Output of the SPATIAL MODEL. Colours correspond to 

extrapolated resistance frequencies. 

 

 
 

 

 

 

 

 



Supplementary Information 6.2. Dynamics of resistance to QoIs (StrR phenotype) in Z. tritici in France 

between 2004 and 2012. Output of the SPATIAL MODEL. Colours indicate extrapolated resistance 

frequencies. Lines split the territory into two homogeneous compartments for resistance frequency. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Information 6.3. Dynamics of resistance to DMIs (TriLR phenotypes) in Z. tritici in 

France between 2005 and 2016. Output of the SPATIAL MODEL. Colours indicated extrapolated resistance 

frequencies. Lines split the territory into two homogeneous compartments for resistance frequency. 

 
 

 

 

 

 

 

 

 



Supplementary Information 6.4. Dynamics of resistance to DMIs (TriR2-TriR4 phenotypes) in Z. tritici 

in France between 2006 and 2015. Output of the SPATIAL MODEL. Colours indicate extrapolated 

resistance frequencies. Lines split the territory into two homogeneous compartments for resistance 

frequency. 

 
 

 

 

 

 

 

 

 



Supplementary Information 6.5. Dynamics of resistance to DMIs (TriR5 phenotype) in Z. tritici in 

France between 2006 and 2015. Output of the SPATIAL MODEL. Colours indicate extrapolated resistance 

frequencies. Lines split the territory into two homogeneous compartments for resistance frequency. 

 
 

 

 

 

 

 

 

 

 



Supplementary Information 6.6. Dynamics of resistance to DMIs (TriMR phenotypes) in Z. tritici in 

France between 2005 and 2017. Output of the SPATIAL MODEL. Colours indicate extrapolated resistance 

frequencies. 

 



Supplementary Information 6.7. Dynamics of resistance to DMIs (TriR6 phenotype) in Z. tritici in 

France between 2006 and 2017. Output of the SPATIAL MODEL. Colours indicate extrapolated resistance 

frequencies. Lines split the territory into two homogeneous compartments for resistance frequency. 

 
 

 

 

 

 

 

 

 



Supplementary Information 6.8. Dynamics of resistance to DMIs (TriR7-TriR8 phenotypes) in Z. tritici 

in France between 2006 and 2017. Output of the SPATIAL MODEL. Colours indicate extrapolated 

resistance frequencies.  Lines split the territory into two homogeneous compartments for resistance 

frequency.

 
 

 

 

 

 

 

 



Supplementary Information 6.9. Dynamics of resistance to DMIs (TriHR phenotypes) in Z. tritici in 

France between 2010 and 2017. Output of the SPATIAL MODEL. Colours indicate extrapolated resistance 

frequencies.  Lines split the territory into two homogeneous compartments for resistance frequency. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Information 6.10. Dynamics of resistance to DMIs, QoIs and SDHIs (MDR phenotypes) 

in Z. tritici in France between 2013 and 2017. Output of the SPATIAL MODEL. Colours indicate 

extrapolated resistance frequencies.  Lines split the territory into two homogeneous compartments 

for resistance frequency. 
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