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A B S T R A C T   

Digital soil mapping has been increasingly advocated as an efficient approach to deliver fine-resolution and up- 
to-date soil information in evaluating soil ecosystem services. Considering the great spatial heterogeneity of soils, 
it is widely recognized that more representative soil observations are needed for better capturing the soil spatial 
variation and thus to increase the accuracy of digital soil maps. In reality, the budget for the field work and soil 
laboratory analysis is commonly limited due to its high cost and low efficiency. In the last two decades, being an 
alternative to wet chemistry, soil spectroscopy, such as visible-near infrared (Vis-NIR), mid-infrared (MIR) 
spectroscopy has been developed in measuring soil information in a rapid and cost-effective manner and thus 
enable to collect more soil information for digital soil mapping (DSM). However, spectroscopically inferred (SI) 
data are subject to higher uncertainties than reference laboratory analysis. Many DSM practices integrated SI 
data with soil observations into spatial modelling while few studies addressed the key question that whether 
these non-errorless soil data improve map accuracy in DSM. In this study, French Soil Monitoring Network 
(RMQS) and Land Use and Coverage Area frame Survey Soil (LUCAS Soil) datasets were used to evaluate the 
potential of SI data from Vis-NIR and MIR in digital mapping of soil properties (i.e. soil organic carbon, clay, and 
pH) at a national scale. Cubist and quantile regression forests were used for spectral predictive modelling and 
DSM modelling, respectively. For both RMQS and LUCAS Soil dataset, different scenarios regarding varying 
proportions of SI data and laboratory observations were tested for spectral predictive models and DSM models. 
Repeated (50 times) external validation suggested that adding additional SI data can improve the performance of 
DSM models regardless of soil properties (gain of R2 proportion at 3–19%) when the laboratory observations are 
limited (≤50%). Lower proportion of SI data used in DSM model and higher accuracy of spectral predictive 
models led to greater improvement of DSM. Our results also showed that a greater proportion of SI data lowered 
the prediction intervals which may result in an underestimation of prediction uncertainty. The determination of 
accuracy threshold on SI data for the use in DSM needs to be explored in future studies.   

1. Introduction 

In the 21st century, soils are at the nexus for ensuring ecosystem 
services and achieving sustainable development goals (McBratney et al., 
2014; Keesstra et al., 2016; Bouma et al., 2019). Up-to-date and fine- 
resolution soil information is urgently needed to support relevant sci
entific research and evidence-based decision-making (Sanchez et al., 
2009; Arrouays et al., 2014). As the way to produce conventional soil 

maps is rather labor- and cost-intensive, time-consuming, and hard to be 
updated, digital soil mapping (DSM, McBratney et al., 2003) has been 
developed based on Jenny’s soil-forming theory (Jenny, 1941). Under 
the conceptual framework of Scorpan, soil classes or soil attributes can 
be predicted at unvisited positions by their relationships to environ
mental covariates, such as other soil information, climate, organisms, 
relief, parent materials, age and spatial position. With the significant 
advances in Geographic Information Systems, remote sensing, 
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geostatistics, machine learning, and high-performance computing ca
pacity, the DSM technique has been increasingly used for delivering 
high-resolution and recent soil information across scales over the last 
two decades (e.g., Minasny and McBratney, 2016; Arrouays et al., 2017; 
Chen et al., 2022; Liu et al., 2022; Zhang et al., 2023). 

Under the same sampling protocol, it is widely admitted that a larger 
number of soil samples could capture more spatial heterogeneity, thus 
improving the map accuracy when using the DSM technique. However, 
constrained by the budget for the soil measurement, the number of soil 
samples would be greatly limited when using standard laboratory 
analysis, which is usually expensive and time-consuming (Stenberg 
et al., 2010; Viscarra Rossel et al., 2016). As an alternative, soil spec
troscopic techniques, such as visible-near infrared (Vis-NIR, 350–2500 
nm) and mid-infrared (MIR, 400–4000 cm− 1) spectroscopy, have shown 
great potential in measuring soil information (e.g., clay, soil organic 
carbon, iron content) in a rapid and cost-effective manner under labo
ratory condition (e.g., Grinand et al., 2012; Stevens et al., 2013; Shi 
et al., 2014; Nocita et al., 2015; Ji et al., 2016; Demattê et al., 2019; 
Chen et al., 2020b). In light of the advantages shown by soil spectro
scopic techniques, soil surveyors can afford greater soil sampling density 
to provide a better understanding of soil spatial variation for DSM 
practices (Somarathna et al., 2018). 

As shown in Table 1, SI soil data from Vis-NIR or MIR measurement 
has been used as a data source together with laboratory soil observations 
in DSM from field to national scales in previous studies. Somarathna 
et al. (2018) and Wadoux et al. (2019) noted that SI soil data has a 
greater measurement error, which is associated with the spectral pre
dictive model, than the laboratory analysis. Here comes a question: can 
additional SI soil data improve map accuracy in DSM? Under the context 
of the on-going build-up of soil spectral libraries worldwide, this issue is 
becoming critical to evaluate the practical potential of SI data in DSM. 
Nevertheless, most relevant studies (Table 1) have not addressed this 
issue, while the results from Somarathna et al. (2018) and Paul et al. 
(2019) were rather opposite. Therefore, more efforts are still needed to 
answer the question mentioned above. To this end, the French Soil 
Monitoring Network (RMQS) (Jolivet et al., 2006) and Land Use and 
Coverage Area frame Survey Soil (LUCAS Soil) (Tóth et al., 2013) 
datasets where both laboratory physico-chemical measurements and 
spectral data are available for more than 2000 sites in France, were used 
to assess the potential of SI data in mapping soil organic carbon (SOC), 
clay and pH in mainland France. Using 50 times repeated consistent 
external validation sets from two datasets, we assessed (1) whether the 
ratio share between SI data and laboratory observations will affect the 
map accuracy and uncertainty estimates? (2) whether the results are 
specific for different soil properties and datasets? 

2. Materials and methods 

2.1. Soil data and environmental covariates 

Considering the potential effect of sampling design, the RMQS (grid 
sampling) and LUCAS Soil (stratified sampling) datasets were tested in 
this study (Fig. 1). 

The sites of RMQS program are located following a systematic square 
grid of 16 km which resulted in around 2,200 sampling sites collected 
from 2001 and 2009 covering France under different pedo-climatic, 
relief, and land cover conditions (Jolivet et al., 2006). From a 20 m 
square located at the centre of each 16 km grid, topsoil (0–30 cm) and 
subsoil (30–50 cm) layers were collected by merging 25 sub-samples 
based on an unaligned sampling design (Chen et al., 2018a). After air- 
drying and sieving to <2 mm, SOC was measured by the dry combus
tion method using an automated C:N analyzer, pH was determined in a 
1:5 soil:water mixture (AFNOR, 1994), and clay (0–2 μm) was measured 
with the pipette method (AFNOR, 2003). A total of 2036 topsoil samples 

Table 1 
Summary of previous studies integrating spectroscopically (vis-NIR and/or MIR) inferred data in DSM.  

Reference Country Scale Soil property No. samples (Obs/Spec)* Accuracy improvement 

Cambule et al. (2013) Mozambique Regional SOC 104/281 NA 
Viscarra Rossel et al. (2014) Australia National SOC stock 4487/1101 sites NA 
Viscarra Rossel et al. (2015) Australia National Sand, silt, clay, BD, SOC, TN, TP, pH, ECEC, AWC NA NA 
Knadel et al. (2015) Demark Field SOC, clay, silt, sand 30/12000 NA 
Priori et al. (2016) Italy Field SOC stock 36/176 NA 
Ramifehiarivo et al (2017) Madagascar National SOC NA NA 
Somarathna et al. (2018) Australia Regional SOC 681/998 (Topsoil) 

43/987 (Subsoil) 
No 

Wadoux et al. (2019) Australia Regional TOC 645/1743 NA 
Paul et al. (2019) Canada Field Sand, silt, clay, pH, EC, SOM, TN 62/308 Yes 
Gray et al. (2019) Australia Regional SOC fractions 427/372 profiles NA 
Zhang et al. (2020) Canada Local SOM, clay, soil moisture 32/148 profiles NA 
Chatterjee et al. (2021) USA Local SOC, pH, clay, silt, sand, TN 25/25 profiles NA 
Ma et al. (2021) Australia Regional SOC 100/2682 NA 
Sanderman et al. (2021) USA Regional SOC fractions 659/8500 NA 
Filippi et al. (2021) Australia Regional SOC 353/118 NA 
Takoutsing et al. (2022b) Cameroon Regional SOC, clay, pH 48/432 NA  

* Obs and Spec represent for soil observations (laboratory analysis) and spectroscopically inferred soil data (spectral prediction) respectively. 

Fig. 1. Sampling sites from RMQS (red cross) and LUCAS Soil (blue point) 
located in mainland France. 
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located in mainland France were used in this study. 
The LUCAS Soil data was sampled in 2009, and it contains a total of 

19,967 samples collected in topsoil (0–20 cm) from 25 EU member states 
by stratified random sampling according to topography and land use 
(Tóth et al., 2013). All the soil samples were air-dried and sieved to a 
fraction of <2 mm, and then SOC, pH and clay (0–2 μm) were deter
mined using ISO standard methods (Stevens et al., 2013). In this study, 
2685 LUCAS Soil samples located in mainland France were used. 

Fig. 2 shows the statistics of SOC, clay and pH in the RMQS and 
LUCAS Soil. SOC had similar distributions (Mann-Whitney test, p =
0.76) in the RMQS and LUCAS Soil with 1st quartile (Q1) of 13.1 and 
13.2 g kg− 1, median of 19.5 and 19.8 g kg− 1, 3rd quartile (Q3) of 30.3 
and 30.70 g kg− 1, and mean of 25.5 and 24.4 g kg− 1, respectively. The 
RMQS had a slightly wider SOC range (1.5 to 243.0 g kg− 1) than the 
LUCAS Soil (2.2 to 165.7 g kg− 1) because the first LUCAS Soil survey did 
not fully cover the mountainous regions (e.g., the Alps, the Pyrénees) 
shown in Fig. 1. Significant differences (p = 0.02) were observed for clay 
between RMQS and LUCAS Soil (Q1 of 15.3 and 15.0%, median of 21.2 
and 21.0%, Q3 of 32.2 and 30.0%, and mean of 24.6 and 23.2 %, range 
of 0.2–81.5% and 2.0–77.0%). Divergent distributions (p < 0.001) were 
found for pH between RMQS and LUCAS Soil, resulting from the greater 
proportion of forest samples in RMQS. With similar pH ranges, the 
RMQS had a much larger interquartile range (Q3-Q1, 2.4) than the 
LUCAS Soil (1.78), and its median pH (6.2) was also much lower than 
that of the LUCAS (6.75). 

Based on previous DSM studies in France, fifteen environmental 
covariates (Table 2) related to five Scorpan factors, namely, soil, climate, 
organisms, relief, parent material, were used in this study (Mulder et al., 
2016; Chen et al., 2019; Chen et al., 2020a). These environmental 
covariates were reprojected to the Lambert 93 coordinate system and 
resampled into 90 m resolution raster images. 

2.2. Spectral measurement, pre-processing and modelling 

For the RMQS dataset, soil samples were further sieved to <0.2 mm 
before measuring MIR absorbance spectra using a Nicolet 6700 Diffusive 
Reflectance Fourier Transform Spectrophotometer (Thermo Fisher Sci
entific Inc., USA) (Grinand et al., 2012). The MIR spectra ranged from 
4000 to 400 cm with a spectral resolution of 3.86 cm. Thirty-two scans 
of spectra were recorded for each soil sample, and the average was taken 
as the representative spectra. The Vis-NIR absorbance spectra 
(350–2500 nm with a special resolution of 1 nm) for RMQS dataset were 
measured on the soil samples sieved to <1 mm using a NIRSystems 6500 
spectrophotometer (Foss Analytical, Sweden) (Gogé et al., 2012; Gogé 
et al., 2014). The spectral ranges of 350–399 nm and 2451–2500 nm 
were removed due to their low signal-to-noise ratio. Based on previous 

studies on spectral modelling for RMQS dataset and after initial com
parison, Savitzky-Golay algorithm (window size of 11 and 21 points for 
MIR and Vis-NIR, and a 2nd order polynomial) with the 1st derivative 
followed by Standard Normal Variate was chosen to smooth both MIR 
and Vis-NIR spectra and enhance the signal. The processed MIR and Vis- 
NIR spectra were resampled to a spectral resolution of 20 cm− 1 and 10 
nm, respectively, for speeding the computation efficiency while not 
losing the predictive performance (Yang et al., 2012). 

While in the LUCAS Soil database, the vis–NIR absorbance spectra 
were measured on the air-dried and sieved (<2 mm) soil samples using a 
FOSS XDS rapid content analyzer (FOSS NIRSystems Inc., Denmark) 
(Nocita et al., 2014). The Vis-NIR spectra had a range of 400–2500 nm 
with a spectral resolution of 0.5 nm. The 400 to 500 nm spectra were 
removed due to instrument artefacts (Stevens et al., 2013). The Savitz
ky–Golay algorithm (window size of 101 points and a 2nd order poly
nomial) with the 1st derivative was adopted for spectral pre-processing 
as suggested by previous studies (Notica et al., 2014; Chen et al., 2021b). 

Cubist is a commonly used spectroscopic modeling approach to 
modelling Vis-NIR and MIR data (Viscarra Rossel et al., 2017; Liu et al., 
2019). Cubist iteratively splits the target variable into several partitions 
within which the predictor variables are similar. Within a given 

Fig. 2. Boxplots of laboratory-measured SOC (a), clay (b) and pH (c) in RMQS and LUCAS Soil located in mainland France.  

Table 2 
Environmental covariates used for DSM.  

Covariates Scorpan 
factors 

Resolution/ 
scale 

Reference 

Soil type Soil 1:1 M IUSS Working Group 
WRB (2006) 

Erosion rates Soil 1:1 M Cerdan et al. (2010) 
Mean Annual 

Precipitation 
Climate 1 km Hijmans et al. (2005) 

Mean Annual 
Temperature 

Climate 1 km Hijmans et al. (2005) 

Net Primary 
Production 

Organisms 1 km NASA LD (2001) 

Corine Land Cover 
2006 

Organisms 250 m Feranec et al. (2010) 

SRTM DEM Relief 90 m Jarvis et al. (2008) 
Aspect Relief 90 m Jarvis et al. (2008) 
Slope cosines Relief 90 m Jarvis et al. (2008) 
Curvature Relief 90 m Jarvis et al. (2008) 
Exposition Relief 90 m Jarvis et al. (2008) 
Roughness Relief 90 m Jarvis et al. (2008) 
Compound 

Topographic Index 
Relief 90 m Jarvis et al. (2008) 

Topographic Wetness 
Index 

Relief 90 m Jarvis et al. (2008) 

Parent material Parent 
material 

1:1 M King et al. (1995)  
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partition, the standard deviation of the target variable is used as a node 
splitting criterion. The split that maximizes the reduction in the standard 
deviation is chosen in Cubist. Afterwards, pruning and smoothing pro
cesses are conducted to build the final model. We refer to Quinlan 
(1992) for more details. A list of hierarchically structured rules defines 
partitions in the final Cubist model. The form of the rule is listed as 
below: 

IF {condition}, THEN {linear regression model}. 
ELSE {apply next rule}. 
Here, the linear regression model is applied to predict the target 

variable when the case satisfies the condition defined in the rule. The 
“Cubist” package (Kuhn and Quinlan, 2020) was used for Cubist 
modelling in R (R Core Team, 2019). 

The measurement error variances of spectral predictions were esti
mated from residual variance of the Cubist model (Takoutsing and 
Heuvelink, 2022). The Cubist residual variance was estimated by the 
equation below: 

varCubist =
1
n

∑n

i=1
(
(

ŷi − yi)
2) (1)  

where n is the number of samples to be predicted by Cubist model, yi and 
ŷi are the measured and spectral predicted values for sample i. 

2.3. Predictive model for DSM 

Quantile Regression Forests (QRF, Meinshausen, 2006) has been 
increasingly used for DSM modelling from regional to global scales as it 
enables to provide uncertainty estimates at users’ defined prediction 
intervals (e.g., 90%) with reasonable accuracy (e.g., Vaysse and 
Lagacherie, 2017; Loiseau et al., 2019; Nauman and Duniway, 2019; 
Chen et al., 2021a; Kasraei et al., 2021; Poggio et al., 2021). 

We define X and Y as the predictor variables and target variables, 
QRF generates a large number of trees (b) using bootstrapping (random 
sampling with replacement) from p training samples (Xi, Yi), i = 1, …, p. 
A random subset of the predictor variables is then used to select split- 
point for each node of the bootstrap tree. For a new sample N = Xn, its 
prediction for each bootstrap tree is the conditional mean estimate of Y. 
The mean predictions of b bootstrap trees are used to represent the final 
prediction of the new sample N. Using the weighted samples, QRF can 
also derive a conditional distribution from which the probability of Y 
being lower than a given percentile can be determined and thus to 
calculate the prediction intervals. We refer to Meinshausen (2006) for 
more details relevant to the calculation of conditional distribution. The 
number of trees (num.trees) was set to 500 which was large enough to 
generate a stable model performance. Based on 5-fold cross-validation, 
number of variables to possibly split in each node (mtry) and minimal 
node size (min.node.size) were optimized to 4 and 5 respectively for 
both RMQS and LUCAS Soil. The “caret” (Kuhn, 2020) and “ranger” 
(Wright and Ziegler, 2017) packages were used for optimizing and 
running QRF in R (R Core Team, 2019). 

Since the spectral prediction are subjected to prediction error, the 
measurement error-filtered QRF (MEF-QRF) approach proposed by van 
der Westhuizen et al. (2022) was used for the measurement error of SI 
soil data. In traditional QRF, each calibration sample has the same 
weight in model training process because all the calibration samples are 
treated as error-free and the residual variance of QRF model is assumed 
as constant. Therefore, the QRF model is trained by minimizing the sum 
of squared prediction errors (SSPE) of the calibration data, and each 
calibration sample has the same contribution to SSPE. In MEF-QRF, the 
measurement error variance is included in the loss function and each 
calibration sample is assigned a weight by the inverse of the sum of the 
residual variance and the measurement error variance. In this study, we 
regarded the laboratory observations as errorless, so the measurement 
error variance was set to 0 for laboratory observations. While for the SI 
data, measurement error variance for each soil property was estimated 

from the residual variance of Cubist model on external validation data 
according to Takoutsing and Heuvelink (2022), Takoutsing et al. (2022) 
(Eq. (1)). Proposed by van der Westhuizen et al. (2022), the residual 
variance was estimated by an iterative procedure: (1) calibrate the 
standard QRF to estimate the model parameters; (2) estimate the re
sidual variance from standard QRF using the conditional log-likelihood; 
(3) update the model parameters by minimizing the weighted sum of the 
squared residuals; (4) repeat step 1 to step 3 until convergence. For more 
details about the MEF-QRF, we refer to van der Westhuizen et al. (2022). 
Once the weight is assigned for each calibration sample, the “case. 
weights” in the “ranger” R package can be used to set the probability of 
each calibration sample to be used in the bootstrapping procedure. That 
means a calibration sample with a high measurement error will have a 
low probability to be sampled in the bootstrapping. 

In summary, a traditional QRF was used when all the calibration data 
were laboratory observations while MEF-QRF was applied when inte
grating SI data with laboratory observations. 

2.4. Model evaluation 

Modeling efficiency (R2), which indicates the amount of explained 
variance, and root mean square error (RMSE) were used to evaluate both 
spectral predictive models and DSM models. Prediction interval 
coverage percentage (PICP) and prediction interval width (PIW) were 
used to validate the quantifications of uncertainty for DSM models. PICP 
describes the percentage of the validation observations located between 
pre-defined lower and upper limits of PIs. As 90% PIs was used in this 
study, we should expect PICP around 90%. PIW (95% quantile minus 5% 
quantile) gives a measure of absolute model uncertainty and a greater 
PIW indicates a higher model uncertainty. The average of these in
dicators calculated from 50 repeats was taken for final model evalua
tion. As mentioned in the general framework (section 2.2), model 
evaluation in both spectral predictive models and DSM models was 
performed on the consistent external validation data (D2, see more de
tails in section 2.5). 

R2 = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i
(ŷi − yi)

2
√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i
(yi− y)2

√ (2)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(ŷi − yi)

2

√

(3)  

where n is the number of external validation samples, yi and ŷi are the 
measured and predicted values for external validation sample i, and y is 
the mean of measured values for all external validation samples. 

2.5. General framework 

The general framework of this study is present in Fig. 3 (created with 
BioRender.com), which involves five steps as follows.  

(1) RMQS and LUCAS Soil were both randomly divided into D1 
(75%) and D2 (25%). Here D2 was used as consistent external 
data to evaluate the accuracy of spectral predictive models and 
DSM models while D1 was used to create four scenarios (see 
details in step 2). This random split was repeated 50 times for a 
robust evaluation (Xiao et al., 2022);  

(2) Based on D1 dataset, four scenarios were created to evaluate the 
effect of ratio share between SI data and laboratory observations. 
Scenario 0 was a benchmark where no data was SI and all D1 was 
used for DSM modelling. The proportion of soil samples assumed 
with spectra only (to be predicted by the spectroscopic model) 
increased from 1/3 in scenario 1 (S1U) to 1/2 in scenario 2 (S2U) 
and 2/3 in scenario 3 (S3U) by random sampling (50 repeats as 
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we did in step 1), while the remaining data in D1 was used to the 
calibrate the spectral models accordingly (S1C, S2C and S3C);  

(3) The spectral predictive models were calibrated using Cubist 
model, and the model performance was evaluated by the 
consistent external data D2;  

(4) The soil samples assumed with spectra only were predicted by 
relevant Cubist models (S1P, S2P, and S3P);  

(5) In scenarios 1, 2 and 3, two strategies were compared. Strategy 1 
only used a part of the laboratory observations (2/3, 1/2 and 1/3 
of observations for S1C, S2C, and S3C, respectively) for DSM 
modelling, while strategy 2 used both laboratory observations 
and SI data (S1M, S2M, and S3M). It should be noted that S1M, 
S2M and S3M had the sample size to S0, while S1C, S2C, and S3C 
comprised of 2/3, 1/2 and 1/3 samples of S0. This allowed us to 
check whether the additional SI data can improve the DSM 
model. QRF was used for while DSM modelling, and the model 
performance was evaluated by the consistent external data D2. 
Please note that traditional QRF was used when all the data was 
laboratory observations while the MEF-QRF was used when 
including SI data with laboratory observations. 

3. Results 

3.1. Performance evaluation for spectral models 

Based on the consistent external validation set D2 (Fig. 3), the per
formance of spectral models for SOC, clay, and pH under different sce
narios is shown in Table 3. Regarding spectral modelling, the 

Fig. 3. General workflow of this study. Five steps are numbered in the octagons. The data included in different scenarios are listed below: S0 (all observations), S1M 
(2/3 observations and 1/3 spectroscopically inferred data), S1C (2/3 observations), S2M (1/2 observations and 1/2 spectroscopically inferred data), S2C (1/2 
observations), S3M (1/3 observations and 2/3 spectroscopically inferred data), S3C (1/3 observations). 

Table 3 
The performance (in R2 and RMSE) of spectral models for SOC, clay, and pH 
under different scenarios using data from RMQS and LUCAS Soil located in 
mainland France. The proportion of calibration samples decreases from 2/3 of 
all laboratory observations in Scenario 1 to 1/3 in Scenario 3. The numbers in 
brackets indicates the width of 90% confidence intervals of 50 repeats. The units 
of RMSE for SOC and clay are g kg− 1 and %.  

Dataset Soil 
property 

Scenario 1 Scenario 2 Scenario 3 

R2 RMSE R2 RMSE R2 RMSE 

RMQS 
Vis- 
NIR 

SOC 0.73 
(0.11) 

10.32 
(3.60) 

0.68 
(0.20) 

11.20 
(4.22) 

0.67 
(0.18) 

11.42 
(4.12) 

Clay 0.69 
(0.11) 

7.35 
(1.38) 

0.68 
(0.11) 

7.56 
(1.43) 

0.65 
(0.12) 

7.85 
(1.43) 

pH 0.81 
(0.05) 

0.57 
(0.07) 

0.80 
(0.06) 

0.58 
(0.08) 

0.78 
(0.05) 

0.62 
(0.08)  

RMQS 
MIR 

SOC 0.93 
(0.05) 

5.26 
(2.42) 

0.93 
(0.05) 

5.53 
(2.63) 

0.91 
(0.07) 

5.96 
(2.41) 

Clay 0.88 
(0.05) 

4.61 
(0.90) 

0.87 
(0.05) 

4.79 
(0.96) 

0.85 
(0.04) 

5.12 
(0.82) 

pH 0.92 
(0.03) 

0.37 
(0.07) 

0.91 
(0.03) 

0.38 
(0.07) 

0.90 
(0.03) 

0.41 
(0.07)  

LUCAS SOC 0.71 
(0.08) 

8.51 
(1.26) 

0.69 
(0.11) 

8.81 
(1.78) 

0.67 
(0.12) 

9.05 
(1.49) 

Clay 0.70 
(0.09) 

5.96 
(0.98) 

0.68 
(0.07) 

6.20 
(0.67) 

0.63 
(0.06) 

6.63 
(0.67) 

pH 0.87 
(0.03) 

0.37 
(0.04) 

0.86 
(0.03) 

0.38 
(0.04) 

0.85 
(0.03) 

0.41 
(0.03)  
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performance for both RMQS (Vis-NIR and MIR) and LUCAS Soil (Vis- 
NIR) showed a slightly decreasing trend when the spectral calibration 
size reduced from scenario 1 to scenario 3, and this decreasing trend was 
more evident for LUCAS Soil and RMQS Vis-NIR data. The spectral 
predictive models for the RMQS MIR data (R2 of 0.91–0.93, 0.85–0.88, 
0.90–0.92 and RMSE of 5.26–5.96 g kg− 1, 4.61–5.12%, 0.37–0.41 for 
SOC, clay and pH, respectively) performed better than these for the 
RMQS Vis-NIR (R2 of 0.67–0.73, 0.65–0.69, 0.78–0.81 and RMSE of 
10.32–11.42 g kg− 1, 7.35–7.85%, 0.57–0.62 for SOC, clay and pH, 
respectively) and LUCAS Soil (R2 of 0.67–0.71, 0.63–0.70, 0.85–0.87 
and RMSE of 8.51–9.05 g kg− 1, 5.96–6.63%, 0.37–0.41 for SOC, clay 
and pH, respectively). 

3.2. Performance evaluation for DSM models 

Table 4 presents the performance of the DSM model for SOC, clay, 
and pH under different scenarios. When using all the soil observations 
for DSM modelling (S0), the performance of the RMQS data (R2 of 0.41, 
0.36 and 0.53 for SOC, clay and pH respectively) was generally better 
than the LUCAS Soil (R2 of 0.33, 0.27 and 0.46 for SOC, clay and pH, 
respectively). Table 4 also shows that, regardless of datasets (i.e. LUCAS 
Soil, RMQS) and soil properties (i.e. SOC, clay, pH), including additional 
SI data to laboratory observations (i.e. S1M, S2M, S3M) in DSM models 
slightly improved performance (gain of R2 proportion at 3–19%) when 
compared to these models using only equal-sized laboratory observa
tions (i.e. S1C, S2C, S3C). In addition, these improvements resulting 
from additional SI data were more evident for both RMQS and LUCAS 
Soil datasets when more SI data and less laboratory observations were 
used in modelling from S1M (2/3 observations and 1/3SI) to S2M (1/3 
observations and 2/3SI). It is also clear that these models using both 
laboratory observations and SI data (i.e. S1M, S2M, S3M) had close 
performance to those using all the laboratory observations (S0) while a 
slight decrease of performance can be seen when the proportion of SI 
data increased (e.g. S1M, S2M, S3M for RMQS Vis-NIR in clay predic
tion). When comparing the two spectroscopic techniques for RMQS 
dataset, we found that the DSM models including MIR inferred pre
dictions always performed better than models including Vis-NIR infer
red predictions (i.e. S1M, S2M, S3M). 

3.3. Uncertainty qualification for DSM models 

As shown in Table 5, all the median PICP indicators derived from 
QRF models were located between 86.8% and 94.4%, which were quite 
close to the pre-defined 90% PIs. The predictive models of LUCAS Soil 
using all the soil observations (S0) for DSM modelling had similar un
certainty quantifications to those of RMQS data for SOC and clay, and a 
slightly greater PICP (94.3%) was found for RMQS than that of LUCAS 
Soil (92.2%). The PICP for the DSM models using different proportions 
of soil observations (i.e. S1C, S2C, S3C) were close to the DSM models 
using all the soil observations (S0) for both RMQS and LUCAS Soil 
datasets, and a slightly decreasing PICP trend was found when less soil 
observations were used for DSM (S1C to S2C and then to S3C). When the 
proportion of RMQS MIR inferred data was low (S1M), the PICP for these 
DSM models was quite close to S0 (ΔPICP <0.7%), while a greater 
decrease of PICP (ΔPICP of 0.7–1.7%) was found for the DSM models 
with higher proportion of RMQS MIR inferred data (S2M, S3M). In 
comparison to S0, RMQS Vis-NIR related DSM models showed a greater 
decrease of PICP (ΔPICP of 0.5–4.0%), and this decreasing trend was 
more evident for the DSM models with more Vis-NIR inferred data 
(S3M). LUCAS Soil dataset showed a similar pattern of PICP to RMQS 
Vis-NIR with a greater decreasing trend (ΔPICP of 0.7–5.9%). The most 
significant decrease of PICP for LUCAS Soil and RMQS (Vis-NIR and 
MIR) datasets was found for these DSM models in predicting clay. 

As shown in Table 5, PIW gradually increased when the number of 
observations decreased from S0 (all observations) to S1C (2/3 obser
vations) and then to S3C (1/3 observations), including an increasing 
model uncertainty. When gradually increasing the proportion of SI data 
increased from S1M (2/3 observations and 1/3SI) to S3M (1/3 obser
vations and 2/3SI), it was evident that PIW showed a decreasing trend, 
implying a deceasing absolute model uncertainty. 

3.4. The difference of spatial pattern for soil properties 

To better visualize the effect of additional SI data on the spatial 
distribution of soil properties using DSM modes, we present the SOC, 
clay and pH maps for S0 and their difference to other three scenarios (S1, 
S2, S3) using data from RMQS and MIR inferred data in Fig. 4, Fig. 5 and 
Fig. 6 (maps for RMQS Vis-NIR and LUCAS are present in Figs. S1 to S6). 

Table 4 
Model performance of DSM models for SOC, clay, and pH under different scenarios using data from RMQS and LUCAS Soil located in mainland France. The numbers in 
brackets indicates the width of 90% confidence intervals of 50 repeats. The units of RMSE for SOC and clay are g kg− 1 and %. The data included in different scenarios 
are listed below: S0 (all observations), S1M (2/3 observations and 1/3 spectroscopically inferred data), S1C (2/3 observations), S2M (1/2 observations and 1/2 
spectroscopically inferred data), S2C (1/2 observations), S3M (1/3 observations and 2/3 spectroscopically inferred data), S3C (1/3 observations).  

Dataset Soil 
property 

S0 S1M S1C S2M S2C S3M S3C 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

RMQS 
Vis- 
NIR 

SOC 0.41 
(0.12) 

15.39 
(5.35) 

0.39 
(0.12) 

15.67 
(5.71) 

0.39 
(0.12) 

15.68 
(5.28) 

0.38 
(0.10) 

15.78 
(5.80) 

0.38 
(0.10) 

15.80 
(5.49) 

0.38 
(0.10) 

15.89 
(5.75) 

0.37 
(0.14) 

15.95 
(5.28) 

Clay 0.36 
(0.10) 

10.64 
(1.64) 

0.35 
(0.10) 

10.75 
(1.61) 

0.35 
(0.10) 

10.75 
(1.63) 

0.34 
(0.11) 

10.82 
(1.66) 

0.33 
(0.11) 

10.90 
(1.59) 

0.33 
(0.11) 

10.92 
(1.70) 

0.30 
(0.12) 

11.08 
(1.60) 

pH 0.53 
(0.08) 

0.90 
(0.08) 

0.52 
(0.08) 

0.91 
(0.09) 

0.51 
(0.09) 

0.92 
(0.09) 

0.52 
(0.08) 

0.91 
(0.08) 

0.50 
(0.08) 

0.93 
(0.08) 

0.51 
(0.09) 

0.92 
(0.09) 

0.47 
(0.09) 

0.95 
(0.09)  

RMQS 
MIR 

SOC 0.41 
(0.12) 

15.39 
(5.35) 

0.40 
(0.11) 

15.59 
(5.47) 

0.39 
(0.12) 

15.68 
(5.28) 

0.39 
(0.11) 

15.73 
(5.67) 

0.38 
(0.13) 

15.80 
(5.49) 

0.39 
(0.11) 

15.69 
(5.55) 

0.37 
(0.14) 

15.95 
(5.28) 

Clay 0.36 
(0.10) 

10.64 
(1.64) 

0.35 
(0.10) 

10.69 
(1.58) 

0.35 
(0.10) 

10.75 
(1.63) 

0.35 
(0.11) 

10.71 
(1.64) 

0.33 
(0.11) 

10.90 
(1.59) 

0.35 
(0.10) 

10.72 
(1.54) 

0.30 
(0.12) 

11.08 
(1.60) 

pH 0.53 
(0.08) 

0.90 
(0.08) 

0.52 
(0.08) 

0.91 
(0.08) 

0.51 
(0.09) 

0.92 
(0.09) 

0.52 
(0.08) 

0.91 
(0.09) 

0.50 
(0.08) 

0.93 
(0.08) 

0.52 
(0.08) 

0.91 
(0.09) 

0.47 
(0.09) 

0.95 
(0.09)  

LUCAS 
Soil 

SOC 0.33 
(0.09) 

12.90 
(1.98) 

0.32 
(0.08) 

12.98 
(2.03) 

0.32 
(0.08) 

13.00 
(2.02) 

0.32 
(0.07) 

13.01 
(1.92) 

0.31 
(0.09) 

13.07 
(1.87) 

0.31 
(0.06) 

13.06 
(2.00) 

0.30 
(0.08) 

13.16 
(2.06) 

Clay 0.27 
(0.08) 

9.35 
(1.06) 

0.26 
(0.07) 

9.40 
(1.10) 

0.25 
(0.07) 

9.48 
(1.04) 

0.26 
(0.07) 

9.43 
(1.12) 

0.24 
(0.08) 

9.57 
(1.06) 

0.25 
(0.07) 

9.49 
(1.14) 

0.23 
(0.09) 

9.65 
(1.20) 

pH 0.46 
(0.06) 

0.77 
(0.06) 

0.46 
(0.06) 

0.77 
(0.05) 

0.45 
(0.07) 

0.78 
(0.05) 

0.46 
(0.06) 

0.77 
(0.06) 

0.43 
(0.07) 

0.79 
(0.05) 

0.46 
(0.07) 

0.77 
(0.06) 

0.41 
(0.07) 

0.80 
(0.06)  

S. Chen et al.                                                                                                                                                                                                                                    



Geoderma 433 (2023) 116467

7

As shown in Fig. 4a, high SOC was found in mountainous regions 
(eastern, southwestern and central France) while low SOC was mainly 
located in agricultural region (northern and southwestern France). The 
southwestern and central France had low clay content and highly clayey 
soil was sparsely distributed in western France and southern France near 
Mediterranean (Fig. 5a). Acid soil was mainly located in mountainous 
regions (eastern, southwestern and central France) and alkaline soil 
could be found in the region near Mediterranean and northern France 
(Fig. 6a). 

The result showed that the difference to S0 gradually increased from 
S1 to S3 for three soil properties using data from RMQS and MIR inferred 
data (Fig. 4, Fig. 5 and Fig. 6). The difference was much more evident for 
pH, SOC than for clay. It was clear that including additional SI data into 

DSM model (S1M, S2M and S3M) led to closer spatial pattern to S0 than 
that of using different proportion of observations only (S1C, S2C and 
S3C). 

4. Discussion 

4.1. The impact of spectroscopic techniques in spectral prediction 

We observed a similar spectral predictive performance between 
LUCAS Soil and RMQS when using Vis-NIR spectra for modelling. The 
spectral predictive performance for RMQS using MIR spectra performed 
substantially better than LUCAS Soil and RMQS using Vis-NIR spectra, 
especially for SOC and clay (Table 3). Our result is in line with the 

Table 5 
Uncertainty qualification of DSM models for SOC, clay, and pH under different scenarios using data from RMQS and LUCAS Soil located in mainland France. The 
numbers in brackets indicates the width of 90% confidence intervals of 50 repeats. The data included in different scenarios are listed below: S0 (all observations), S1M 
(2/3 observations and 1/3 spectroscopically inferred data), S1C (2/3 observations), S2M (1/2 observations and 1/2 spectroscopically inferred data), S2C (1/2 ob
servations), S3M (1/3 observations and 2/3 spectroscopically inferred data), S3C (1/3 observations).  

Dataset Soil 
property 

S0 S1M S1C S2M S2C S3M S3C 

PICP PIW PICP PIW PICP PIW PICP PIW PICP PIW PICP PIW PICP PIW 

RMQS 
Vis-NIR 

SOC 91.8 
(4.3) 

42.8 
(3.7) 

91.3 
(4.6) 

42.5 
(5.0) 

91.7 
(3.9) 

43.2 
(4.6) 

90.8 
(4.4) 

41.7 
(6.6) 

91.5 
(4.4) 

43.4 
(6.4) 

90.1 
(5.7) 

41.1 
(7.4) 

91.5 
(4.6) 

43.9 
(7.1) 

Clay 92.3 
(4.0) 

36.1 
(1.5) 

90.8 
(4.8) 

34.7 
(2.1) 

92.4 
(4.2) 

36.7 
(2.0) 

89.7 
(5.3) 

33.5 
(2.1) 

92.2 
(4.3) 

37.1 
(2.4) 

88.3 
(6.0) 

32.4 
(3.3) 

91.8 
(4.6) 

37.6 
(3.6) 

pH 94.3 
(3.7) 

3.1 
(0.1) 

93.5 
(3.9) 

3.1 
(0.1) 

94.4 
(3.9) 

3.2 
(0.1) 

92.8 
(4.7) 

3.0 
(0.1) 

94.3 
(4.3) 

3.3 
(0.2) 

92.0 
(6.1) 

3.0 
(0.1) 

94.3 
(4.1) 

3.3 
(0.2)  

RMQS 
MIR 

SOC 91.8 
(4.3) 

42.8 
(3.7) 

91.5 
(4.0) 

43.6 
(3.8) 

91.7 
(3.9) 

43.2 
(4.6) 

91.1 
(4.4) 

43.5 
(4.5) 

91.5 
(4.4) 

43.4 
(6.4) 

90.8 
(5.0) 

43.5 
(4.7) 

91.5 
(4.6) 

43.9 
(7.1) 

Clay 92.3 
(4.0) 

36.1 
(1.5) 

91.6 
(4.1) 

35.7 
(1.6) 

92.4 
(4.2) 

36.7 
(2.0) 

91.2 
(3.9) 

35.2 
(1.8) 

92.2 
(4.3) 

37.1 
(2.4) 

90.8 
(4.5) 

34.9 
(2.5) 

91.8 
(4.6) 

37.6 
(3.6) 

pH 94.3 
(3.7) 

3.1 
(0.1) 

93.7 
(3.8) 

3.1 
(0.1) 

94.4 
(3.9) 

3.2 
(0.1) 

93.2 
(4.3) 

3.1 
(0.1) 

94.3 
(4.3) 

3.3 
(0.2) 

92.6 
(4.5) 

3.1 
(0.2) 

94.3 
(4.1) 

3.3 
(0.2)  

LUCAS 
Soil 

SOC 91.2 
(3.8) 

38.9 
(2.1) 

90.5 
(4.8) 

37.9 
(2.7) 

91.1 
(4.3) 

39.4 
(2.7) 

89.7 
(4.9) 

36.1 
(3.1) 

91.2 
(4.0) 

39.7 
(2.6) 

89.1 
(4.0) 

35.6 
(3.6) 

90.8 
(4.3) 

39.9 
(3.8) 

Clay 92.7 
(3.4) 

31.3 
(1.0) 

90.8 
(4.1) 

29.6 
(1.4) 

92.6 
(3.2) 

31.6 
(1.7) 

89.2 
(4.3) 

27.7 
(1.9) 

92.4 
(3.7) 

31.8 
(1.9) 

86.8 
(4.7) 

25.9 
(2.1) 

92.1 
(3.7) 

32.1 
(2.3) 

pH 92.2 
(3.1) 

2.6 
(0.1) 

91.2 
(3.4) 

2.6 
(0.1) 

91.9 
(3.7) 

2.7 
(0.1) 

90.3 
(4.6) 

2.5 
(0.1) 

91.8 
(3.2) 

2.7 
(0.1) 

89.6 
(4.3) 

2.4 
(0.1) 

91.6 
(4.4) 

2.7 
(0.2)  

Fig. 4. Spatial distribution of SOC in mainland France for scenario 0 (a) and its difference to other scenarios (b to g) using data from RMQS and MIR inferred data.  
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previous findings (Viscarra Rossel et al., 2006; Vohland et al., 2014; 
Barthès et al., 2016; Barthès et al., 2020; Clairotte et al., 2016; Hutengs 
et al., 2019; Ng et al., 2019; Gomez et al., 2020; Gomez et al., 2022) that 
MIR had higher predictive ability than NIR and Vis-NIR using RMQS 
data. From this point of view, the MIR technique is preferred for the 
spectral measurement in the laboratory condition when the budget is 
enough, as the soil sample preparation (e.g. fine grinding to <0.2 mm or 
smaller) is more important for MIR than Vis-NIR (Viscarra Rossel et al., 
2006; Soriano-Disla et al., 2014). 

Compared to SOC and clay, the large difference of spectral prediction 
on pH using Vis-NIR spectroscopy for RMQS and LUCAS Soil may result 
from the much greater variation of pH observed in RMQS than LUCAS 
Soil (Fig. 2c). It seems that grid sampling of RMQS and stratified sam
pling of LUCAS Soil had a much stronger effect the distribution of pH 
than SOC and clay. It was also affected by the fact that LUCAS Soil 

primarily targeted agricultural lands so that it did not cover the regions 
with low pH (southwestern France, mountainous regions) during the 
first sampling campaign in 2009 (Fig. 1, Fig. 6a, Tóth et al., 2013). When 
making the best use of soil samples from different sources, combining 
data simply is not a good idea since the sampling or analytical protocols 
are different. In this case, the linear model of coregionalization can be a 
good tool for spatial modelling by elucidating the effects of different 
sample support (Lark et al., 2019). 

4.2. The value of spectroscopically inferred soil data in DSM 

Our results confirmed the added value of additional SI soil data in 
improving model performance using DSM at a national scale. This added 
value was observed for SOC, clay, and pH; therefore, it was not specific 
to a particular soil property, at least for these soil properties that can be 

Fig. 5. Spatial distribution of clay in mainland France for scenario 0 (a) and its difference to other scenarios (b to g) using data from RMQS and MIR inferred data.  

Fig. 6. Spatial distribution of pH in mainland France for scenario 0 (a) and its difference to other scenarios (b to g) using data from RMQS and MIR inferred data.  
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well predicted by spectroscopic techniques. We summarize several fac
tors that might impact the magnitude of performance improvement of 
the DSM model when incorporating SI soil data.  

(1) the proportion of SI data. The improvement was negligible (gain 
of R2 at 0–4%) when their proportion was low (S1M vs. S1C). It 
implies that the added value of SI data is rather limited when 
having a large set of observation data. However, noticeable 
improvement (gain of R2 at 3–19%) could be achieved for clay 
and pH when the proportion of observation data was getting 
smaller (S2M vs. S2C, and S3M vs. S3C), while the improvement 
was somewhat marginal for SOC.  

(2) the accuracy of the spectral predictive model. When the spectral 
predictive model had a low accuracy (e.g. R2 <0.72 for SOC 
spectral modelling using LUCAS Soil data, Fig. 4), the improve
ment of the DSM model was somewhat limited (gain of R2 <3%). 
In contrast, a more substantial improvement (gain of R2 at 
5–15%) of the DSM model was observed for a spectral predictive 
model with higher accuracy (e.g. R2 >0.9 for SOC spectral 
modelling using RMQS data, and R2 of 0.87 for pH using LUCAS 
Soil data, Table 4). This confirmed the study of Paul et al. (2019) 
that coupling SI soil data from a good spectral model (R2 of 0.88 
for soil organic matter) can improve DSM model even under the 
condition of high proportion of SI data (Table 1).  

(3) the accuracy of the DSM model. The added value of SI data with 
similar quality (R2 of 0.92–0.93 in SOC and pH prediction for 
RMQS using MIR spectra, Table 4) would be higher for a DSM 
model with better performance (R2 of 0.41 and 0.53, gain of R2 at 
1–5% and 2–11% for SOC and pH, respectively). 

When comparing the DSM models integrating SI data (S1M, S2M, 
S3M, Table 4) with those using same number of soil observations (S0), 
we conclude that SI data can provide similar function as soil observa
tions in the DSM model when the spectral predictive model has a good 
accuracy (R2 >0.85 for RMQS MIR, Table 4). This means that a large 
part of soil laboratory observations could be replaced with cheaper SI 
data without losing too much prediction precision. It may result from the 
relatively low accuracy of current DSM models (R2 <0.55 in this study) 
that the small prediction error of SI data will not impact that much on 
the DSM model. Therefore, it can be expected that a higher quality of SI 
data would be needed for DSM models with higher accuracy. We suggest 
that the opposite result (adding SI data did not improve DSM model) 
from Somarathna et al. (2018) might result from low spectral predictive 
model, and another reason may be linked to the high proportion 
(60–95%) of SI data (Table 1) in DSM models, especially for the subsoil. 

We found that integrating more SI data into DSM modelling lowers 
the PICP and PIW, which may result in underestimation of prediction 
uncertainty as quantified with a given PI. In this study this underesti
mation becomes apparent when the SI data make up a larger proportion 
of the model calibration data, with PICP values dropping below the 90% 
for some of the RMQS Vis-NIR and LUCAS Soil S3M models. The PICP 
values of the RMQS MIR S3M models remain around 90%, indicating 
that the magnitude of the effect of including SI data on the PI is related 
the performance of the spectral predictive model. Therefore, caution 
should be taken when using the uncertainty maps created from a DSM 
model based on a large proportion of SI data because the pre-defined PI 
of these maps can be probably underestimated. Since statistical models 
(including machine learning) always overestimate low values and un
derestimate high values, it will result in an SI data with smaller vari
ability. When merging such an SI data with observations, the overall 
variability of merged data will decrease, leading to narrower PIW 
subsequently. 

4.3. Limitations and way forward 

Our results clearly showed that the improvement of model 

performance was quite limited when the SI data had low accuracy. It is 
possible that integrating SI data with low accuracy would even decrease 
the performance of the DSM model. Therefore, further research is 
needed to investigate the effect of low-quality SI data in DSM modelling. 
It could be solved by determining the most likely accuracy threshold or 
criteria (e.g. R2) for excluding the data from a low-quality spectral 
predictive model in DSM practices. These unknown samples beyond the 
validity domain (e.g. 95% confidence intervals in first two principal 
components of spectra) of a good spectral predictive model should also 
be avoided in DSM modelling (Chen et al., 2018b). The trade-off will be 
there to find the right way to incorporate more or less large uncertain 
datasets without reducing the prediction performance. These large 
datasets may provide the advantage of better covering the geographical 
space, because they can be acquired at a low cost for a large range of 
locations, but they should not reduce the performance of the DSM 
model. It should be also noted that most of current spectroscopic tech
niques are still conducted in the laboratory condition that means we still 
need to collect soil data from field work (i.e. getting sampling staff into 
the field, collecting soil, bringing it back to the lab, air-drying, grinding 
and sieving). As a result, the reduction of cost from laboratory obser
vations to SI data can be quite small when compared to the total cost of 
the whole procedure. The in-situ and on-the-go spectroscopic techniques 
can greatly reduce the cost as it avoids sample transportation and pre- 
treatment (Li et al., 2015; Viscarra Rossel et al., 2017; Nawar and 
Mouazen, 2019; Guerrero et al., 2022). Being greatly impacted by 
external factors (e.g., soil moisture, surface roughness), the accuracy of 
in-situ and on-the-go spectroscopic techniques are relatively lower than 
laboratory spectroscopic techniques. Therefore, how to improve the 
accuracy of in-situ and on-the-go spectroscopic techniques needs to be 
urgently explored in future study. 

Apart from proximal sensing platforms, more and more multispectral 
or hyperspectral data are available in large quantities from remote 
sensing platforms, such as Landsat 8, Sentinel 2, GF-5. Previous studies 
have demonstrated the potential and efficiency of these data in pre
dicting soil properties for large-scale studies while their accuracy was 
still lower than proximal sensing based predictions (Lagacherie et al., 
2019; Dkhala et al., 2020). Therefore, it will become more and more 
urgent to find the suitable way to incorporate this massive but still rather 
inaccurate data into DSM modelling. 

Finally, the results presented in this study can be a reference for 
broad-scale DSM practices while it remains to be validated in more local 
DSM studies where the pedo-climate conditions are much more 
homogeneous. 

5. Conclusions 

We have evaluated the value of additional SI data for mapping soil 
properties using DSM technique at a national scale. Based on two soil 
databases, namely, RMQS and LUCAS Soil, we summarized the main 
messages as below.  

(1) Complementing laboratory observations with SI data could 
improve the performance of DSM model when the ratio of SI data 
was greater than 50%, otherwise the improvement was 
negligible;  

(2) The magnitude of model improvement was greatly influenced by 
the proportion of SI data used in DSM model and by the accuracy 
of spectral predictive models;  

(3) A large part of laboratory observations could be replaced with 
cheaper SI data for DSM modelling when the spectral predictive 
model does not lose too much prediction precision;  

(4) Increasing the proportion of SI data in DSM model lowered the 
PICP and PIW, which may result in underestimation of prediction 
uncertainty for a given prediction interval, and thus caution was 
needed when using the uncertainty maps derived from such a 
DSM model for decision making; 
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(5) Further research is needed to better assess how much uncertainty 
of SI data is acceptable for DSM modelling. 
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Gogé, F., Joffre, R., Jolivet, C., Ross, I., Ranjard, L., 2012. Optimization criteria in sample 
selection step of local regression for quantitative analysis of large soil NIRS database. 
Chemometrics and Intelligent Laboratory Systems 110 (1), 168–176. 
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