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Global modeling of the socioeconomic, political, and
environmental relations of farmer seed systems
(FSS): Spatial analysis and insights for sustainable
development

Karl S. Zimmerer'-%34* Steven J. Vanek®, Megan Dwyer Baumann®’,
and Jacob van Etten®

Accessible, high-quality seed is vital to the agricultural, food, and nutrition sovereignty needed for justice-based
sustainable development. Multiregion, interdisciplinary research on farmers’ seed systems (FSS) can complement
case-based and thematic approaches. This study’s goalsare to (1) provide a synthetic overview of current major FSS
concepts; (2) design and evaluate a novel social- and political-ecological model of FSS using globally representative
data from mountain agricultural areas of Africa, Asia, and Latin America; (3) model and evaluate FSS relations to
socioeconomic, political, and environmental factors including main food crops (rice, wheat, maize, potato, and
common bean); (4) generate new spatial, geographic, and demographic estimates; and (5) strengthen FSS for
justice-based sustainable development of agriculture, land use, and food systems. The conceptual framework of
FSS-related factors guided the global modeling of data from 11 countries in Africa, Asia, and Latin America. A
multiple regression model explained FSS utilization (R = 0.53, P < 0.0001), specifying the significant inverse
relations to mean farm area (strong), per-capita Gross Domestic Product at the district level (strong), and urban
distance (moderate). FSS showed strong positive relations to aridity and topographic ruggedness. FSS were
positively related to elevation in a 5-country Andean subsample. Results estimated FSS utilization by 136 million
farmers within the 11 countries. Novel insights to strengthen FSS policies and programs are the importance of
FSS to extremely small farm-area subgroups and other distinct FSS stakeholders, global-region geopolitical
distinctness of FSS-farm area relations, multidistrict FSS concentrations that enable extralocal FSS spatial
connectivity, FSS capacities in climate-change hot spots, and high FSS encompassing periurban areas.
Policy-relevant results on global geographic and demographic extensiveness of FSS and key spatial,
socioeconomic, political, and environment relations demonstrate that globally FSS are key to supporting
agrobiodiversity, agroecology, nutrition, and the sustainability of food systems. These advise strengthening
FSS through pro-poor and linked urban-rural policies at regional scales in addition to expanding local initiatives.

Keywords: Farmers' seed systems (FSS), Informal seed systems, Local seed systems, Sustainable development,
Land use and food systems, Agrobiodiversity and biodiversity, Social-ecological systems and political ecology,
Climate change, Urbanization, COVID-19, Spatial analysis
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Accessible, high-quality seed of food crops is vital to
justice-based sustainable development and the combined
quality and sovereignty of agriculture, land use, food,
nutrition, and livelihoods. Potential seed-centered trans-
formations advancing these goals are open-source seed
and seed commons (van Etten, 2011; Girard and Frison,
2018; Scoones et al., 2018; Montenegro de Wit, 2019);
community seed activism and seed organizations practic-
ing care ethics (van Zwanenberg, 2018; Aistara, 2019;
Isbell et al., 2021; Baumann, 2022); seed networks (Zim-
merer, 2003; Helicke, 2015; Wencélius et al., 2016;
Labeyrie et al., 2021); seed movements, public institu-
tions, and policy support (de Boef et al., 2010;
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Almekinders et al., 2019b; Sperling, 2020; Sperling et al.,
2020b; Zimmerer and de Haan, 2020; Lyon et al., 2021);
freelance breeders, community seed hubs, and seed banks
(Song et al., 2021); seed systems for strengthening gen-
dered, smallholder and indigenous food, nutrition, biodi-
versity, and agroecological capacities (Delaquis et al., 2018;
Nyantakyi-Frimpong, 2019; Zimmerer et al., 2020; Otieno
et al., 2021); endogenous development, biocultural, and
heritage approaches (Graddy, 2013; Thomas and Caillon,
2016; Nishikawa and Pimbert, 2022; Swiderska and Argu-
medo, 2022); seed-system underpinning for biosafety
approaches involving new biotechnology (Montenegro
de Wit, 2020; Rock, 2023); and biodiversity conservation
(Curry, 2019).

“Farmers’ seed systems” (FSS) refer to interlinked land
use and farm-based seed production and care (including
seed selection and storage), processing, distribution and
exchange, and procurement of propagating materials. This
definition is a synthesis of elements in previous works
(Almekinders and Louwaars, 2002; de Haan and Thiele,
2005; McGuire, 2007; Louwaars, 2017; Westengen et al.,
2018; Baumann, 2022). Additional defining FSS practices
are the governance of propagating materials (e.g., infor-
mal institutions for seed quality) and capacities for adap-
tation, change, and innovation. The use or utilization of
seed is highlighted in the FSS perspective (Westengen et
al,, 2018, p. 11). FSS are also termed local, informal, tra-
ditional, and farmer-managed seed systems (Almekinders
et al.,, 1994; Louwaars and De Boef, 2012; McGuire and
Sperling, 2016; Labeyrie et al., 2021) and they incorporate
farmer seed saving (Tin et al., 2011; Kansiime and Masten-
broek, 2016). Local FSS provide extensive socioeconomic,
nutrition, agroecological, and agrobiodiversity benefits
(detailed in the next section), thus fueling the ongoing
production of the great majority of the global biodiversity
of food in land use and agriculture (“agrobiodiversity”;
Louwaars, 2017; Zimmerer and de Haan, 2017; Zimmerer
et al,, 2019). Local FSS initiatives can potentially become
expanded in global programs, institutions, and policies on
biodiversity, food and nutrition, agriculture, and city-
region agri-food systems (Diaz et al., 2018; e.g., Intergov-
ernmental Science-Policy Platform on Biodiversity and
Ecosystem Services [IPBES]; Consultative Group on Inter-
national Agricultural Research [CGIAR]; UN panels and
organizations on food, nutrition, and agriculture), which
serves as a main motivation for this study.

FSS occur globally yet comparable, large-scale esti-
mates across multiple global regions have been lacking.
Analyzing FSS across a globally representative sample of
African, Asian, and Latin American countries with signifi-
cant tropical and subtropical mountains areas, this study
estimates approximately 136 million FSS-utilizing farmers
(detailed in the following). This demographic estimate of
FSS utilization across Africa, Asia, and Latin America offers
novel global region-level support of high FSS-utilization
reported in case and theme-focused research (Almekinders
et al., 1994; Food and Agriculture Organization of the
United Nations, 2016; McGuire and Sperling, 2016).
Finally, as noted in other studies, significant FSS utiliza-
tion has continued to persist even where the formal seed-
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system is common (e.g., Mexico maize farming, Hoogen-
doorn et al., 2018), thus reflecting the current continua-
tion of high FSS demand (Almekinders et al., 2019a).

This study addresses a series of five related gaps in
current research on FSS, which is defined to include sys-
tems of informal, local, and traditional seeds. First, we
provide a focused synthetic overview of evolving FSS con-
ceptual themes that guides the design of a broad-scale FSS
framework. Second, global modeling and spatial analysis
are undertaken using data from 11 countries representing
tropical and subtropical mountain areas of Africa, Asia,
and Latin America. This modeling and analysis focuses
on five major foods (rice, wheat, maize, potato, and com-
mon bean). Multiple data sources, including agricultural
surveys and census reports, are used to model FSS utiliza-
tion in relation to the framework’s socioeconomic,
political, and environmental factors. Global representa-
tiveness of this FSS analysis is a novel complement to
extensive local, within-region, and case and thematic stud-
ies (Almekinders and Louwaars, 2002; McGuire, 2007; De
Boef et al., 2010; Louwaars and De Boef, 2012; McGuire
and Sperling, 2016; Westengen et al., 2018; Sperling et al.,
2020b). Third, this study is novel in its model-based test-
ing and specification of FSS relations to a suite of globally
common socioeconomic, political, and environmental fac-
tors. Fourth, it provides original spatial, geographic, and
demographic estimates of FSS across countries of Africa,
Asia, and Latin America. Fifth, this study offers new large-
scale insights to strengthen FSS for the justice-based sus-
tainable development of food systems, land use, agricul-
ture, and biodiversity.

The next section (Concepts) outlines thematic areas
and design elements that guide the identification of socio-
economic, political, and environmental factors to model
and estimate FSS relations (Study Design and Methods).
The Results section presents the findings on the tested
relations of these predictive factors to FSS utilization
using the sample of multiple countries and crops across
global regions. Comprehensive results of our model of FSS
utilization are then evaluated at the end of the section.
The Discussion interprets results and compares them to
related research in identifying ten areas of significant new
insights to strengthen FSS policy and program recommen-
dations. These insights focus on FSS utilization for sustain-
able development and as responses to the COVID-19
pandemic and climate change. The Conclusion distills the
principal research results and major recommendations for
policy and programs to strengthen FSS.

2. Concepts

The term FSS is chosen based on several rationales intro-
duced briefly above and detailed here: (1) current FSS
definitions (Almekinders and Louwaars, 2002; de Haan
and Thiele, 2005; McGuire, 2007; Kansiime and Masten-
broek, 2016; Westengen et al., 2018) are consistent with
a nonteleological perspective, whereas “informal” can sug-
gest lesser status; (2) FSS highlights the overlap, rather
than dichotomy, of the existing seed systems and future
scenarios; and (3) FSS is compatible with the data sources
used in this study.
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The first guiding insight is that extensive FSS utiliza-
tion benefits seed accessibility, affordability, versatile pro-
curement via varied networks (including markets), and
wide-ranging sourcing of diverse seed at individual, net-
work, community, and multicommunity scales (Sperling
and McGuire, 2010; Smale et al., 2012; Gill et al., 2013;
Coomes et al., 2015; McGuire and Sperling, 2016; Sperling,
2020; Sperling et al., 2020a; Labeyrie et al., 2021). This
study is critically cognizant through the perspectives of
seed, food, and social justice that FSS utilization is usually
sharply differentiated spatially, socioeconomically, and
culturally (e.g., wealth and gender differentiation; Zim-
merer, 2003; Helicke, 2015; Violon et al., 2016; Wencélius
et al., 2016; Tadesse et al., 2017; Delaquis et al., 2018;
Nyantakyi-Frimpong, 2019; Sperling et al., 2020a;
Labeyrie et al., 2021; Mulesa et al., 2021; Otieno et al.,
2021). FSS benefits underpin its widespread role in par-
ticipatory plant breeding, farmer field schools, community
seed banks, and citizen-science approaches as well as
grassroots and benefits-sharing governance (Cleveland,
2014; Westengen et al., 2018; Mushita and Thompson,
2019; van de Gevel et al., 2020; Tsioumani, 2021; Ceccar-
elli and Grando, 2022). This study’s global modeling and
spatial analysis are a novel focus and complement that we
integrate with the robust array of existing FSS research
that tends to be case study- and local knowledge-based
(e.g., van Etten et al., 2017; Baumann, 2022).

FSS benefits for vulnerable smallholders specifically
can address global political-ecological crises. These
include: (1) FSS benefits to address the gendered poverty-
and policy-induced crises of the COVID-19 pandemic and
postpandemic that include disrupted seed and food-
growing supplies (Sperling and McGuire, 2010; Adhikari
et al, 2020; Jumba et al., 2020; Sperling et al., 2020b;
Zimmerer and de Haan, 2020; de Boef et al., 2021), (2)
increased distribution and spatial connectivity of adaptive
agrobiodiversity to respond to climate change (Halewood
et al., 2016; Kansiime and Mastenbroek, 2016; Ravera et
al,, 2019; Westengen et al., 2019; Zimmerer et al., 2019;
Acevedo et al,, 2020), and (3) FSS-utilization for sustain-
able development including gender, food, and nutrition
goals (Croft et al., 2018; Shayanowako et al., 2021). FSS
benefits are also shown for conflict/postconflict societies
with displaced communities (Tamariz and Baumann,
2022) and social movements recognizing FSS as an inter-
national human right (Food First Information and Action
Network International, 2021; Kuhlmann and Dey, 2021;
Lokhandwala, 2022).

The second conceptual theme that guides our study is
the supportive yet complex relation of FSS to agrobiodi-
versity and agroecology (Toledo and Barrera-Bassols, 2017,
Barrett et al., 2020). FSS “nourish” agrobiodiversity
through mutual benefits that lead FSS to account for the
seeds of most biodiversity in global food, land use, and
agriculture (Zimmerer and de Haan, 2017; Zimmerer et al.,
2019). FSS also supply “improved varieties” derived from
modern breeding. In Nepal, only 15% of farmers acquired
wheat seed through formal systems even though
“improved varieties” yield 78% of national wheat produc-
tion (Garapaty et al., 2021). Numerous modern varieties
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have been locally adapted in FSS for local conditions (e.g.,
“creolized” maize, Bellon et al., 2006). That a substantial
share of FSS seed originates from modern breeding has
been confirmed by DNA fingerprinting (Floro et al., 2018;
Hodson et al.,, 2020; Jaletta et al., 2020; Garapaty et al.,
2021). Overall, versatile and wide-ranging FSS are vital for
agrobiodiversity, thus motivating this study's goal to open
policy-relevant dialogues about FSS support and focus in
global programs and policies (e.g., IPBES, CGIAR, UN
Panels and organizations on food, nutrition, and agricul-
ture) in addition to expanding local initiatives.

The third insight informing this study is that FSS are
notably important to certain global geographic areas
while previous studies suggest potentially high levels of
spatial variation. Case studies of tropical and subtropical
mountains illustrate this tendency in case studies of the
highlands of East Africa (Westengen and Brysting, 2014;
Westingen et al., 2019), the Himalaya and uplands of
South and Southeast Asia (Bisht et al., 2007; Sthapit et
al., 2010), and the Andes and other mountainous areas of
Latin America (Thiele, 1999; de Haan and Thiele, 2005;
Badstue et al., 2006; Bellon et al., 2011; Arce et al., 2018;
Chambers and Brush, 2010). FSS benefits are shown to be
potentially extensive and varied among individuals,
households, communities, and regions in these mountain
environments. This focus of our study reflects the authors’
participation in mountain-based projects that can poten-
tially include and expand FSS support through these inno-
vative organizations (e.g., Bioversity, Carasso Foundation,
and, recently, the Andes Community of Practice [2023]).

The fourth insight is centered on extensive FSS co-
occurrence and interaction with formal seed. The latter
is tested, evaluated, certified, and sold by commercial seed
companies and agribusiness (Almekinders et al., 1994;
Almekinders and Louwaars, 2002; Sperling and McGuire,
2010; Louwaars and De Boef, 2012; McGuire and Sperling,
2013). It includes hybrid seed in major crops such as maize
and sorghum. The context-dependent linkages of FSS to
formal seed (including high-quality seed becoming
adopted in informal seed systems; Ahmad et al.,, 2022)
are extensively illustrated (Almekinders et al., 1994;
Jones et al., 2001; Almekinders and Louwaars, 2002;
Zimmerer, 2003; de Haan and Thiele, 2005; Bellon et
al., 2006; Louwaars and De Boef, 2012; Pautasso et al.,
2013; Coomes et al., 2015; Croft et al., 2018; Fadda et al.,
2020; McEwan et al., 2021; Mulsea et al., 2021; Sperling
et al., 2021). Policy and program designs for an
“integrated seed system” are a principal goal of Ethiopia's
2017 Pluralistic Seed System Development Strategy
(Mulesa et al., 2021). Seed developed in the formal sys-
tem can become selectively adopted and strengthen FSS
(Ahmad et al., 2022).

At the same time, FSS are often marginalized in gov-
ernment programs and formal, private-sector seed systems
including campaigns for certified “improved varieties” and
hybrid seed (Waldman et al., 2017; Hoogendoorn et al.,
2018). Other threats to FSS are transforming intellectual
property rights and seed enclosures (Wattnem, 2016; Mon-
tenegro de Wit, 2019). Conversely, FSS co-occurrence can
be facilitated by integrated initiatives such as Quality
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Declared System and farmers’ rights (Tripp et al., 2007),
including protection of Article 9 of the International
Treaty on Plant Genetic Resources for Food and Agricul-
ture (Kuhlmann and Dey, 2021). The extents and type of
FSS interactions are influenced further by country-level
and international seed policies and legislation (Visser,
2016; Visser et al., 2019). For this reason, the interactions
of FSS that are subject to potential biotechnology impacts,
such as introductions of genetically modified and gene-
edited seeds (Cleveland et al., 2005; Scurrah et al., 2008;
Mercer et al., 2012; Visser et al., 2019; Rock et al., 2023),
need to inform national and international biosafety reg-
ulations. More generally, the inaccessibility of formal seed
systems to smallholder farmers globally (e.g., Maredia et
al,, 2019) is a consequence of both the neoliberal privat-
ization of seed production and markets (Louwaars and De
Boef, 2012) and the decline of public-sector seed pro-
grams (Pingali, 2012).

3. Study design and methods

The study was designed to construct and evaluate a model
of FSS relations to socioeconomic, political, and environ-
mental factors applied to a sample of countries represent-
ing global regions with substantial tropical and
subtropical mountains and uplands. Guidance for study
design was provided through FSS case studies, identifica-
tion of specific factors that are potentially influential (first
and third through sixth columns of Table 1), and rele-
vance to sustainable development. Thematic categories
of the FSS model variables were guided by the conceptual
orientations described in the preceding section and inte-
grative social-ecological and political-ecological
approaches applied to FSS and agrobiodiversity (e.g., the
Agrobiodiversity Knowledge Framework; Zimmerer et al.,
2022b). Finally, the public availability of data also influ-
enced the choices of model factors and countries in the
tropical and subtropical mountains of Africa, Asia, and
Latin America.

The abovementioned inputs led to the specification of
seven types of variables for the FSS model (Table 1). These
were as follows: average farm size, association with global
region, Gross Domestic Product (GDP) per capita (district
scale), distance from major city, crop type (for food-
producing crops), aridity, elevation, and the variation of
topography (ruggedness). Four of these variables represent
socioeconomic and political factors (farm size, association
with global region, GDP per capita, and distance from
major city). The final three variables are environmental
factors. Crop type was distinct since its role in FSS reflects
both socioeconomic and political factors that determine
seed-sector development, plant-level traits associated with
FSS (e.g., crop breeding system), and environmental influ-
ences. The hypothesized directionality of each of the seven
variables as a positive or negative influence is shown in
Table 1 (third column). Also noted are the examples of
the webs of influences on each variable (fourth column)
and the general relevance of each variable’s relation to FSS
for sustainable development (fifth column).

The abovementioned criteria led to the selection of 11
countries in the three world regions of Africa (Ethiopia,
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Uganda, and Rwanda), Asia (Nepal, Laos, and Cambodia),
and Latin America (Colombia, Peru, Ecuador, Nicaragua,
and Bolivia). At least 30% of the national territory of each
of these countries consists of tropical and subtropical
mountains and uplands. Each country had completed an
agricultural survey or census report specifying the levels of
FSS utilization at the geographic scale of subnational
administrative units (henceforth districts; Table 2). In
total, the number of districts across all censuses with
usable data was 265.

Study design was focused on FSS for each crop as spec-
ified in the surveys and census reports, leading to the
focus on 5 major food-producing species—rice (Oryza
sativa), wheat (Triticum aestivum), maize (Zea mays),
potato (Solanum tuberosum), and common bean (Phaseo-
lus vulgaris; Table 2). Each crop is a vital, major producer
of foods for the nutrition and energy of large populations.
Finally, the 11 census reports were also chosen because
they co-occurred in the 5-year period of 2008-2013
(Table 2). Agricultural census reports incorporating FSS
estimations at the district level have not been available
since this time for a sample of countries with similar size
and scope.

The estimates of FSS-utilization rates were based on
information in country-level agricultural surveys and cen-
sus report (sixth column, Table 2). These estimates were
then used to construct FSS as a response variable in
hypothesized relations to the socioeconomic, political,
and ecological predictors. The surveys and reports, as well
as other data described in the following, were used to
estimate the values of FSS utilization and the seven vari-
ables at the levels of the subnational administrative units
referred to here as districts. Subnational districts were
defined at one or two geographic levels below the
national level and depended on actual census units.

The estimation of FSS utilization was calculated as the
proportion of farm households in a district utilizing
sources other than the ones providing seed recognized
as certified, hybrid, improved, and modern varieties
seed—all major examples of the formal seed system (Alme-
kinders et al., 1994; Almekinders and Louwaars, 2002;
Sperling and McGuire, 2010; Louwaars and De Boef,
2012; McGuire and Sperling, 2012). FSS utilization was
then specified as 100 minus the percent households
responding they used at least some seed recognized as
sourced through the formal system or as improved
varieties.

This estimation provided a lower-level estimate of FSS
utilization since, as mentioned above, the seed types rec-
ognized as certified and hybrid as well as improved or
modern varieties can in fact be a part of FSS. Also, if any
such seed types were utilized, then the household was
characterized as non-FSS. The tendency in our methods
to create a lower-level estimate of FSS was consistent with
a focus on FSS functions that contain local and agrobio-
diverse seed. Overall FSS utilization for each subnational
administrative unit was calculated by incorporating the
data across all crop types and taking the weighted average
of the proportion of FSS for each specific crop. The
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Table 1. Socioeconomic, political, and environmental predictors of farmer’s seed systems (FSS), hypothesized
influence on the utilization of FSS and relevance to sustainable development derived from supporting
research studies

Hypothesized Effect
on FSS Utilization

Concept and Con-
text of the Predic-

Relevance of FSS
Variable to Justice-

Supporting FSS
Research (Case

Predictor Type of (With Predicted tor Variable (From  Based Sustainable Studies and

Variable Variable Sign) Literature) Development Overviews)

1. Mean farm  Continuous  FSS common among  Variation of FSS FSS-utilizing Almekinders (1994);
area larger size utilization within smallholders Almekinders and

producers within the heterogeneous vulnerable to Louwaars (2002);

smallholder category of small- COVID-19 Etwire et al. (2016);

category (+ within scale farmers pandemic, climate McGuire and

smallholder (smallholders) change, and Sperling (2016);

category) development Nagarajan and Smale
failure such as food (2007); Wencélius et
insecurity al. (2016)

2. GDP per Continuous  Farmers in areas with  Potential interaction ~ Poor farmer reliance ~ Etwire et al. (2016);

capita lower values of effects with farm on FSS in multiple Stromberg et al.

socioeconomic area associated strategies, (2010); Tadesse et al.
resources rely more with development including food and (2017); Wencélius et
commonly on FSS change (e.g., part- nutrition security, al. (2016); Zimmerer
utilization (—) time farming) and in specific (1991, 1996, 2003)

responses to

climate change

and COVID-19

3. Distance Continuous  Farm area at larger Periurban and short-  Distance from major  Coulibaly et al. (2014);
from major distances from distance rural areas city can be McGuire and
large city major cities rely less well-known associated with Sperling (2013);

more commonly on since case studies differing levels of Mulesa et al. (2021);
FSS (+) and overviews to- need for FSS seed Nagarajan and Smale
date focus on aid and support of (2007); Sperling et
conventional rural rural return al. (2020a);
areas migrants in Stromberg et al.
contexts such as (2010); Wencélius et
the COVID-19 al. (2016); Zimmerer
pandemic et al. (2022a)

4. Type of Categorical ~ Crop breeding system  Complex webs of FSS utilization in Almekinders et al.
major food and influence of institutional, major crop types (1994); Almekinders
crop non-FSS seed economic, and and sources of et al. (2019b); Bellon

sector contribute to political influence local food sources et al. (2011); Forbes
higher or lower FSS on seed in need of et al. (2020); Garine
(%) development and multicrop et al. (2018); de Haan
non-FSS versus FSS comparison across and Thiele (2005);
determinants in global regions Hoogendoorn et al.
major crops (2018); McGuire and
Sperling (2016)

5. Aridity Continuous  Farmers in more arid ~ Basic research needed  higher aridity, such as  Acevedo et al. (2020);

Index areas rely to since FSS occurs more widely Bellon et al. (2011);

a distinct degree
(either more or less
commonly) on the
utilization of FSS
(+)

utilization has not
yet been analyzed
across aridity
gradients

and frequently
under climate
change, exerts
impacts that can
either rely on FSS
utilization (if
adaptive capacity
exists) or,

Kansiime and
Mastenbroek (2016);
McGuire (2007);
Nagarajan and
Smale (2007); Otieno
et al. (2021); Ravera
et al. (2019);
Waldman et al.

(continued)
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Table 1. (continued)

Predictor
Variable

Type of
Variable

Zimmerer et al: Farmer seed systems (FSS) model and insights for sustainable development

Hypothesized Effect
on FSS Utilization
(With Predicted
Sign)

Concept and Con-
text of the Predic-
tor Variable (From
Literature)

Relevance of FSS
Variable to Justice-
Based Sustainable
Development

Supporting FSS
Research (Case
Studies and
Overviews)

6. Elevation

7. Variation of

Continuous

Continuous

Farmers in
environments at
higher elevations
rely more
commonly on the
utilization of
FSS (+)

Farmers in areas with

topography more rugged
(rugged- topographic
ness) conditions rely

more extensively

Research needed on
FSS utilization
across elevation
gradients in
multiple world
regions

Basic research needed
since FSS
utilization has not
yet been analyzed
across gradients of

alternatively,
expand non-FSS
utilization

Agriculture at higher
elevations, such as
occurs under
climate change,
can exert influence
associated with
either low or high
levels of FSS
utilization

Rugged topography
can influence the
types of locally
suitable crop
species and
varieties; can also
influence the
feasibility and type

(2017); Westengen
and Brysting (2014);
Westengen et al.
(2019)

Arce et al. (2018);
Bellon et al. (2011);
Bisht et al. (2007); de
Haan and Thiele
(2005); Samberg et
al. (2013); Zimmerer
(2003)

Arce et al. (2018); Bisht
et al. (2007); de Haan
and Thiele (2005);
Hellin et al. (2014);
Samberg et al.
(2013); Zimmerer
(2003)

on FSS and, in the topographic
case of seed aid, variation
require FSS- (ruggedness)
sensitive

interventions (+)

of seed and food
aid in contexts
such as the COVID-
19 pandemic

weighted average was calculated as the proportion of
farms growing the specific crop in the subnational district.

Mean arable farm area (Ha) was estimated as a predic-
tive factor (detailed conceptualization of this factor and
others in Table 1) using the national surveys by dividing
the estimate of arable farm area across the surveyed dis-
trict by the number of surveyed farms. Additional spatial,
socioeconomic, political, and ecological predictors were
estimated for each of the districts in the 11-country sam-
ple. Per-capita GDP of districts was estimated in US$ as
mean purchasing power parity (PPP) using data from the
Organisation for Economic Co-operation and Develop-
ment, World Bank, and national sources. These were
adjusted to 2011 value as a standardized time point repre-
senting the mean date of the agricultural survey and cen-
sus data, by using the annual trends in national-level, per-
capita GDP (World Bank, 2016). We assessed distance from
the nearest large city by spatially determining the cen-
troids of district polygons in a Universal Transverse Mer-
cator projection using QGIS open-source software and
then calculating the Euclidean distance in kilometer to
the nearest city with a population greater than 500,000
persons.

Mean elevation and mean topographic ruggedness
index (Riley et al., 1999) were also calculated over each

district polygon using QGIS software and the NASA Shut-
tle Radar Topography Mission digital elevation model data
at 500-m resolution. Aridity index (Al), an integrated mea-
sure of rainfall and evapotranspiration potential of cli-
mate that assesses drought stress on agriculture, land
use, and natural vegetation, was assessed as the average
value for each district polygon using the CGIAR Global
Aridity and Global Potential Evapotransporation (PET)
databases (https://cgiarcsi.community/data/global-
aridity-and-pet-database/).

Multiple linear regression was used as the principal
approach to analyze the relationship of FSS utilization
to hypothesized predictor variables (Table 1). Methodo-
logically similar approaches to the spatial-demographic
analysis of environmental and agricultural outcome vari-
ables include Hird and Reese (1998), Hubal et al. (2022),
and Zheng et al. (2021). We used this approach to assess
the potential relation of FSS utilization at the district level
to mean farm area as a factor emphasized in the thematic
and case study-based literature (Table 1), while control-
ling for the district-level effects of per-capita GDP, distance
to larger cities, aridity, elevation, and ruggedness. Added
variable plots (Gallup, 2020), also called partial regression
plots, were created for these geographic and climate cov-
ariates to examine their effects on FSS utilization while
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Table 3. Descriptive statistics for variables in this study’s model of the utilization of farmer’s seed system

(FSS) at the subnational district level of 11 countries

Sample Size (n) Range Median Mean Standard Deviation
Independent variable
FSS utilization 265 1.0-99.5 78.7 73.9 19.5
Farm size (Ha) 265 0.08-23.8 0.99 1.83 241
GDP per capita (US$) 265 210-27,261 1,764 2,966 3,302
Distance from major city (km) 265 3-987 201 231 166
Aridity index (0-2.5) 265 0.04-2.22 0.95 0.96 0.38
Elevation (masl)-All countries 265 9-4,840 1,412 1,409 1,032
Elevation (masl)-Andean countries 63 58-3,936 1,609 1,676 1,146
Elevation (masl)-Africa 95 475-2,428 1,715 1,659 387
Elevation (masl)-Asia 117 9-4,840 746 1,176 1,247
Ruggedness (index, 0 to ~ 150) 265 3-145 46 54 37
Percent FSS Use, By Crop
Rice 117 17.7-98.7 81.2 774 16.1
Maize 138 1.0-99.0 81.1 71.0 26.8
Potatoes 112 7.7-100.0 76.0 68.9 247
Beans 22 33.0-98.1 88.1 78.2 20.2
Wheat 75 30.7-99.4 75.8 734 16.3
All crops 265 1.0-99.5 78.7 74.0 19.5

n = number of districts.

controlling for the other predictors in the model. The
interaction terms of mean farm area with world region
and GDP per capita were assessed for significance since
these combined effects can potentially influence FSS uti-
lization (Delaquis and Almekinders, 2020). When the
hypothesized variables were statistically insignificant (P
> 0.15), they were removed from the model. The Akaike
(1981) information criterion (AIC) was used to assess the
addition of each term to this model to avoid overfitting
(addition of terms stopped at the minimum AIC). The
potential geopolitical influence of global region (Africa,
Asia, and Latin America) was included in the models as
a categorical term. In addition, the dependent variable of
percent FSS-utilization was arcsine-square root trans-
formed for assessing the significance of model terms to
adjust for inhomogeneity of variance with data points
clustered near to 100% FSS utilization.

The first regression analysis was conducted using sur-
vey data on the combination of all crops. A second analysis
was completed using only the surveys with crop-specific
data (Table 2) to examine whether there were any signif-
icant differences in FSS utilization among globally com-
mon staple food crops. Continuous predictors were
assessed for significance using P values, while differences
among categories such as crop types were assessed using
Tukey tests for multiple simultaneous comparisons among
all levels. Analysis focused on linear relationships as a first
estimation of the relationships between potential drivers

and FSS utilization. The effect size of these linear trends
was also assessed using standardized B coefficients with
a heuristic for the effect size of B coefficients (Acock,
2014): B* < 0.2, weak, B* between 0.2 and 0.5, moderate,
and B* > 0.5, strong. Partial regression plots based on the
overall regression analysis were used to visualize these
linear relationships.

In addition to multiple linear regression, a between-
class principal components analysis (BCA, Chessel et al.,
2004) was used to visualize both linkages of FSS to differ-
ent predictors and overall differences in these predictors
among the 3 global regions that were examined in the
study. After initial principal components analysis, BCA was
used to rotate the ordination analysis to maximize vari-
ability among classes—in this case, the 3 world regions—
thus permitting a visualization of differences in relation to
the combined predictor and response variables. This anal-
ysis was designed to yield results suited to visualization as
a biplot of the first 2 components of variability created by
this rotation. For the BCA analysis, variables with skewed
distributions were transformed to better satisfy the
requirements of normality.

4. Results

4.1. Multifactor model accounts for the majority of
FSS variability across 11 countries

Table 3 gives the summary values and variation that are
the results of the broad-scale modeling of FSS-utilization
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Table 4. Parameter estimates, significance, range, and effect-size measure (3* coefficient) for model of farmer
seed system (FSS) utilization in 11 countries of Africa, Asia, and Latin America

Variation
Overall P Value Explained
Overall Multiple Linear Regression Model Results P<0.0001 R* = 0.53
Standardized
Effect Magnitude of B* Coefficients for
Parameter Significance  Change Over Min to  Continuous, Linear
Predictor Estimate Units of Parameter (P Value) Max of Predictor Predictors
Farm size —-17.9% % Seed use/ P < 0.0001 —-52.5% -0.29
LOGo(Ha) of farm
area
World region — (categorical) — P < 0.0001 - -
Farm area x world — (interaction) — P < 0.001 - -
region
GDP per capita (GDP —14.0% % Seed use/LOG1g P < 0.0001 —24.4% —-0.19
as PPP US$/yr.) (per capita GDP)
Farm area x GDP per  — (interaction = — P < 0.0001 —
capita term)
Distance to nearest —2.0% % Seed use per 100 P < 0.001 —18.7% —0.12
major city km distance
(>500,000
inhabitants)
Aridity index —13.4% % Seed use per index P < 0.0001 —27.0% —0.21
unit change
Elevation (all -2.0% % Seed use per 1,000 P = 0.12 NS — —0.10
countries) masl
Topographic 0.147% % Seed use per P =0.0073 +19.7% 0.28
variation/ change in index
ruggedness (range is O to
~ 140)
Elevation (Andean 7.8% % Seed use per 1,000 P = 0.008 +33.4% 0.27
countries?) masl

All predictors except for the elevation variable when applied separately to the 4 Andean countries were used within a single multiple
linear regression to explain the dependent variable of percentage utilization of FSS.

A separate regression analysis was conducted using only the Andean countries in the database to relate FSS utilization to the mean

elevation of subnational districts.

and the predictor factors derived from data on 265 sub-
national administrative districts (hereafter districts) in 11
tropical and subtropical mountain countries of Africa,
Asia, and Latin America. This global modeling of socioeco-
nomic, political, and environmental factors demonstrated
distinctive values and large ranges of these parameters
across districts as well as specific subsets analyzed at the
crop level and world region level (Table 3). With an R*
value of 0.53 and P < 0.0001, the overall model accounted
for more than one half the variation in district-level FSS
utilization across all districts of the 11 countries and 3
global regions (multiple regression results, Table 4). FSS
utilization displayed distinct, significant statistical rela-
tionships with several predictor factors (Table 4), each
described briefly in the following.

4.2. Farm area explains a significant proportion of
the variability of FSS utilization

Low values of mean farm area characterized most districts
across the sampled countries and global regions. Median
and mean values were 0.99 hectares and 1.83 hectares,
respectively (Table 3). Large divergences between mean
and median farm-area values in addition to GDP per capita
(reported in the following) reflected the skewed distribu-
tions of these district-level indicators of farm resources.
Regression analysis showed the inverse relation of FSS
utilization to mean farm area that was highly significant
across countries and world regions (P < 0.0001, Table 4).
Maximum FSS utilization was characteristic of the districts
with the lowest values of mean farm areas (<1.0 hectares;
Figure 1a). The axis showing mean farm area has been set
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Figure 1. Utilization of farmers’ seed systems (FSS) in relation to (a) mean farm area and (b) interactions with
global region. Two plots showing the relationship of the utilization of FSS to mean farm area in 265 subnational
administrative districts of 11 countries in Africa (Ethiopia, Rwanda, and Uganda), Asia (Cambodia, Laos, and Nepal),
and Latin America (Bolivia, Colombia, Ecuador, Nicaragua, and Peru). Vertical lines represent the thresholds of mean
farm areas of <1.0 Ha (small), between 1.0 and 5.0 Ha (medium), and >5.0 Ha for slightly larger mean farm areas. (a)
Graph showing overall relationship and countries as indicated, as well as an overall fit line and R? value for the overall
trend. (b) Graph showing data categorized by global region, with trend lines for each region as well as region means
(large diamond markers) and standard deviations indicated by error bars. Each point represents a district.

to display a log scale to visualize the low values below 1.0
hectares and between 1.0 and 5.0 hectares.

FSS utilization declined by 52.5% across the range of
mean farm areas (Table 4), while the rate of this decline
was just under 18% with each logo(Ha) change of farm
area (Table 4). Even districts with values of mean farm
areas that categorized as medium (1.0-5.0 hectares) dem-
onstrated the predominant utilization of FSS. The preva-
lence of FSS is also notable, where mean farm areas are
slightly larger than 5.0 hectares (Figure 1a). As a single
predictor omitting other factors in the regression model,
mean farm area accounted for approximately 22% of the
variability of FSS utilization across the data set (R* =
0.217, Figure 1a). Within the overall linear regression,
meanwhile, the effect of mean farm area on FSS utiliza-
tion was moderately strong in terms of its standardized
beta coefficient (f* = —0.29, Table 4).

4.3. Global regions (Africa, Asia, and Latin America)
differ significantly in FSS —farm area relationship
Regression analysis demonstrated that the relation of FSS
utilization to mean farm area varied to a highly significant
degree among the countries in Africa, Asia, and Latin
America (P < 0.0001, Table 4). Equally significant was the
interaction of world region with the values of the mean
farm areas of districts (P < 0.001, Table 4; noting the farm
area x world region interaction term), with FSS utilization
typically the most high in the African countries followed
by those of Asia and Latin America (Figure 1b; crosshair
plots around the regional mean values; see also the align-
ment of African countries with maximum FSS utilization
in Figure 5). Figure 1b highlights the steeper rates of FSS
decline with estimated mean farm areas in districts of the
countries of Africa (Ethiopia, Uganda, and Rwanda) and

Latin America (Colombia, Peru, Ecuador, Nicaragua, and
Bolivia) compared to Asia (Nepal, Laos, and Cambodia).

4.4. Per-capita GDP adds significantly to
explanation of FSS utilization
GDP per capita annually, estimated as PPP (see Methods),
is characterized by a wide range of mean values in the
sampled districts (US$210-US$27,261 per year: Table 2).
The commonness of low values (mean US$1,764 and
median US$2,966 per year; Table 3) reflects the charac-
teristic, widespread poverty levels of tropical and subtrop-
ical mountain countries. LOG;, transformation highlights
this prevalence of low GDP per capita as clustered values
at the left and middle of the plot (Figure 2a; note skewed
distribution of GDP per capita as seen in difference of
median and mean values in Table 3). FSS utilization
declined in a highly significant way at the rate of 14.0%
per LOG1o(GDP per capita/yr; P < 0.0001; Table 4). A
partial regression plot allows visualization of this FSS-
utilization decline with increased income levels (Figure
2a). This analysis, which controls for other predictive fac-
tors in the model, estimates the effect size of GDP per
capita as near-moderate strength (f* = —0.19; Table 4).
The significant interaction of mean farm area and GDP
per capita in association with FSS utilization (P < 0.0001,
Table 4) was visualized through the comparison of dis-
tricts with low and high values of low-capita GDP, in com-
bination with low and high mean farm areas (Figure 3).
Examples of low GDP per-capita units in the sample were
Potosi and Beni in Bolivia; the Ngetta and Serere zones of
north-central Uganda; Narifio and Cauca in Colombia;
Xayabury, Luang Prabang, Phongsaly in northern Laos; and
Huancavelica, Ayacucho, Huanuco, and Apurimac in Peru.
Examples of high GDP per-capita units in the sample were
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Figure 2. Utilization of farmers’ seed system (FSS) in relation to (a) GDP per capita, (b) distance to major city,

(c) Aridity index, and (d) topographic ruggedness. These graphs are added-variable (partial regression) plots for
the regression model of the utilization of Farmers' Seed System (FSS) related to (a) per-capita GDP, (b) distance to
major city (population >500,000), (c) Aridity index, in which arid-to-humid climates appear from left to right on the
graph, and (d) topographic ruggedness, in which higher values are more topographically varied. See text for full
definitions of variables. The partial regression plot indicates the variability associated with each predictor, controlling
for other predictors in the multiple regression. Partial regression plots were created in which the adjusted values on
the x-axis display the residual variability of the predictor variable regressed against all the other variables in the model
and the adjusted values on the y-axis display the residual variability for FSS utilization for a model including all the
variables except the predictor in question. The graphs are based on data from 265 subnational administrative districts
in total of 11 countries of Africa (Ethiopia, Rwanda, and Uganda), Asia (Cambodia, Laos, and Nepal), and Latin America
(Bolivia, Colombia, Ecuador, Nicaragua, and Peru). Each point represents a district.

Tarija in Bolivia, Valle de Cauca and Antioquia in Colom-
bia, Mbarara district in Uganda, and Vientiane in Lao.
The visualization in Figure 3 uses the 20th and 80th
percentile of both GDP per capita and mean farm area as
representing high and low values. Figure 3 demonstrates
that in the districts with relatively high values of mean
farm area, the districts with high and low GDP per capita
diverged significantly in terms of FSS utilization. Districts
distinguished by the combination of larger mean values of
farm areas and lower GDP per capita were found to have
relatively higher levels of FSS utilization than those with

the combination of larger farms and higher GDP per
capita (Figure 3).

4.5. Urbanization effects are related positively and
significantly to FSS utilization

Estimated spatial distance of the district to the nearest
major city with more than 500,000 inhabitants ranged
from locations in proximity (3 km) to extremely distant
(987 km; Table 3). Utilization of FSS corresponded
inversely to this distance in a significant fashion (P <
0.001; Figure 2b). This FSS decline was estimated at the
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Figure 3. Interaction effect of the mean farm area of districts and the GDP per capita on the utilization of
farmers’ seed systems (FSS). Interaction plot of the combined influence of the mean farm area and GDP per capita
on FSS in districts of the 11-country sample of the global regions of Africa, Asia, and Latin America. The mean farm
area and mean GDP per capita are set at low (20th percentile) and high (80th percentile) levels within the data set
statistical model fit to evaluate effects at different rates of utilization.

rate of 2.0% of decreased FSS utilization with each 100
km of distance from the nearest major city (Figure 2b).
This minor rate of decline meant that FSS utilization was
slightly higher in the near-city districts located in periur-
ban spaces, whereas FSS exhibited levels approximately
18.7% lower in the most remote districts that were char-
acterized by the greatest distance from cities (Table 4).
Although significant, distance to the nearest major city
exerted standardized effect size that was relatively small
(B* = 0.12; Table 4).

4.6. Crop type significantly influences FSS

utilization

The mean rates of FSS utilization were determined to be
high in each of the five major food crops (rice, wheat,
maize, potato, and common bean) that were distinguished
in the agricultural surveys and reports. The highest rates of
FSS utilization characterized common beans (Table 3).
Rank orders of FSS utilization in the five food crops were
similar in value but not identical in the estimated ranges
of both median values (75.8%-88.1%) and mean values

(76.0%-78.2%; see the last 5 rows, Table 3). A separate
regression analysis of FSS utilization applying crop type as
a predictor showed that small yet significant variation of
FSS utilization was found among the crops (P < 0.0001,
Supplemental Table S1), with common bean and maize
higher than potato and wheat, while rice was intermediate
(means differentiation with Tukey's test at o = 0.05).

4.7. Aridity correlates with higher FSS utilization

The estimated values of the Al in the sampled districts
ranged from near zero (hyperarid climate) to 2.22 (high
year-round rainfall and humidity) across the districts in the
sample (Table 3). FSS utilization declined by 27% across
this range in effective rainfall, being highest in districts of
the lowest Al values (i.e., most arid climate; Figure 2c).
Increased aridity, represented by smaller values of the Al
was shown to be significantly associated with higher FSS
utilization (P < 0.0001, Table 4) and had a moderately
strong effect size (3* = —0.21; Table 4). The value of this
parameter was estimated as —13.4% of FSS per unit of Al
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Figure 4. Utilization of farmers' seed systems (FSS) in relation to elevation in Andean countries (Colombia,
Peru, Ecuador, and Bolivia). Plots showing the utilization of FSS in relation to elevation in Andean countries
(Bolivia, Colombia, Ecuador, and Peru): (a) partial regression plot showing the variability of elevation only,
controlling for all other predictors in a multiple regression; (b) relationship of original elevation data and FSS
utilization controlling for other predictors. Each point represents a district.

4.8. Elevation relates to higher FSS utilization in
Andean subsample, but not across the full sample
Mean and median elevation values (1,412 and 1,409 m
above sea level, respectively) characterized mountain
environments of sampled districts (Table 3). While FSS
utilization did not vary significantly with elevation when
considering the full model of 11 countries in three global
regions (Table 4), the analysis of this relation in a subsam-
ple of the countries of the Andes Mountains (Bolivia,
Colombia, Ecuador, and Peru) was undertaken because
of the wide elevation ranges characterizing multiple crops
and countries in this region.! The FSS-elevation relation
showed significant statistical variation across crops in
this subset of the Andean countries (P = 0.008; Table
4).The standardized effect size of elevation as a predictor
was moderate in this subset of countries (f* = 0.27,
Table 4), where mean FSS-utilization increased more
than 30% from near sea level to nearly 4,000 masl (Table
4; Figure 4).

4.9. Topographic ruggedness significantly
strengthens the model’s prediction of FSS

utilization

Values of topographic variation reflected in the index of
topographic ruggedness were found to range widely
from 3.1 (nearly flat) to 145 (extremely rugged topogra-
phy such as in the high valleys of Nepal) in the sampled
districts (Table 3). FSS utilization showed statistically
significant increase with topographic ruggedness at

1. By contrast, the range of elevation is less in scope in the
sample of African countries; in Asia, only one country shows
a wide range of elevation (Nepal).

a per-unit rate of 0.147% (P = 0.007; Table 4). The
partial regression plot of FSS to ruggedness values in
Figure 2d, controlling for other factors, indicates
district-level values that are distributed widely in rela-
tion to different degrees of varied topography. Overall,
the effect size of this predictor factor is moderately
strong (* = 0.28; Table 4).

4.10. Clustering occurs among predictor variables
and global regions in explaining FSS utilization
Between-class PCA analysis of the six predictor factors
possessing continuous variables in addition to the
dependent variable of FSS utilization showed degrees
of relatedness and global-region level clustering in Fig-
ure 5. This analysis visualizes predictor and response
variables as vectors within the two-dimensional plot. Dis-
tricts are shown as the data points that are grouped by
world region. Proximity of districts and world regions to
vectors denotes influential variables. As shown in Figure
5, the socioeconomic and political factors of mean farm
area and GDP per capita were most related to one
another in the most important first axis of variation (Fig-
ure 5, horizontal axis or PC1), and in opposition to FSS
utilization, as displayed in the lower left quadrant. In
other words, mean farm area and GDP per capita were
the most important clustered predictors explaining FSS-
utilization among global world regions.

The environmental factors representing by the mean
values of ruggedness, elevation, and aridity were aligned
with a second axis of variation (Figure 5, vertical axis or
PC2). A correlation matrix shows r values among the 6
factors (Supplemental Table S2). The between-class PCA
analysis most strongly distinguished between the
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Figure 5. Between-class principal components analysis (BCA) of farmers’ seed systems (FSS) model variables
in relation to global regions of Africa, Asia, and Latin America. This graph shows the BCA of the FSS model
variables used in this study in relation to world region (Africa, Asia, and Latin America). The first two principal
components of variation in the 7 variables (PC 1 and PC2) are rotated to maximize the separation of the 3 regional
classes. The BCA is based on data from 265 subnational districts in 11 countries of Africa (Ethiopia, Rwanda, and
Uganda), Asia (Cambodia, Laos, and Nepal), and Latin America (Bolivia, Colombia, Ecuador, Nicaragua, and Peru). Each

point represents a district.

countries of Latin America and those of Africa with the
Asian countries as intermediate (Figure 5). The differen-
tiation of these global regions in the multivariate ordina-
tion was statistically confirmed at a level of P < 0.001 by
the result of a Monte-Carlo test using the ADE 4 package
of the R statistical platform.

5. Discussion

5.1. FSS global modeling is strategically situated

and shows robust results in research comparisons
This section uses the insights of our FSS results to (1)
situate results in the existing FSS research (including the

closely related research on informal, local, and tradi-
tional seed systems); (2) interpret the FSS-related
mechanisms and processes contributing to the FSS
results; (3) discuss how to strengthen FSS, including pol-
icy and program recommendations, using this study’s
insights; and (4) use results to reflect on FSS capacities
to address the current issues of justice-based sustainable
development, climate change, and the COVID-19 pan-
demic/postpandemic.

Overall, this study is situated in a vibrant, rapidly
expanding research community—both highly interdisci-
plinary and notably transdisciplinary—on FSS in
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agriculture, land use, and food systems. This study made
use of 100+ works that were referenced in the first 2
sections alone of this study. These works abound with
contributions to multiple facets of sustainable develop-
ment (e.g., SDGs 1, 2, 3, 5, 10, 15, 16) and powerful
synergies with social justice. Moreover, this study's socio-
economic, political, and environmental model was
robust in explaining substantial variability in FSS utiliza-
tion (R* = 0.53; P < 0.0001). This explanatory level
equals and exceeds the existing FSS case-study models
of household-level FSS utilization (Wencélius et al., 2016)
and non-FSS variety adoption (Okello et al., 2016). This
study’'s FSS model and analysis thus contribute the first
large-scale modeling of FSS utilization in countries across
multiple global regions.

5.2. FSS serve a dominant proportion of smallholder
subgroups across the global sample and
concentrate among often-overlooked smallest
farms and women-headed households
This study demonstrated high FSS utilization among the
heterogeneous group of famers referred to generically as
smallholders whose populations predominate in the 11-
country sample of tropical and subtropical mountain
countries representing the global regions of Africa, Asia,
and Latin America. Generally distinguished as farms less
than 5.0 hectares (Berdegué and Fuentealba, 2011; Zim-
merer et al., 2015), smallholders are globally central to
sustainable development given their social-ecological and
demographic importance (Gill et al., 2013; Scoones et al.,
2018) as well as key functions and adaptive capacities (e.g.,
climate change; Acevedo et al., 2020). This study’s identifi-
cation of the predominance of FSS-utilizing smallholders
aligns with the dominance of smallholders, including many
women-headed households, among the 1.5-2.0 billion per-
sons employed in agriculture that are categorized as
extremely small scale (<2.0 hectares). It also corresponds
to many of the 1.1 billion persons living in moderate or
extreme poverty while working in agriculture and the addi-
tional 119-163 million persons impoverished by COVID-19
pandemic-related shocks (Rapsomanikis, 2015; Zimmerer et
al,, 2015; Castafieda et al.,, 2018; Lakner et al., 2021).
Globally, the prevalence of FSS—136 million farmers
are estimated in the 11-country sample of this study
(Table 2)—combines with the extreme social and ecolog-
ical precarity and widespread importance of smallholder
populations including many women-headed households.
These conditions urge the prioritization and fast-track
development of policies and programs to strengthen FSS
among these populations. Specific insights below detail
these insights. Moreover, our findings recommend that
the strengthening of smallholder FSS become a foundation
for understanding and assessing new biotechnology
impacts including the potentially expanding and quickly
evolving biotechnology impacts of genetically modified
and gene-edited seeds (Scurrah et al., 2008; Mercer et
al., 2012; Montenegro de Wit, 2019; Visser et al.,, 2019;
Montenegro de Wit et al., 2020; Rock et al., 2023). Spe-
cifically, results highlight that biosafety risks may poten-
tially become concentrated among FSS-utilizing places
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and households, which in many cases will include severely
land-poor and highly vulnerable populations (see the fol-
lowing discussion).

Results of this study demonstrated the preponderance
of FSS utilization in districts characterized by the smallest
farms (mean farm area <0.5 hectares) in each of the stud-
ied countries and global regions (Figure 1a and 1b;
Tables 2 and 3). These results contradict the study's
hypothesis (Table 1) of predicted variability in FSS-farm
area relations associated with the range of landholding
sizes in smallholder agriculture and land use. Studies
to-date generally recognize FSS (including informal, local,
and traditional seed systems) as crucial to smallholders en
toto and vice versa (Almekinders and Louwaars, 2002;
Etwire et al., 2016; McGuire and Sperling, 2016). But the
existing studies focused on farm extent have tended to
emphasize the role of smallholders with relatively
medium-size and larger landholdings due to their impor-
tance to FSS production, distribution, and networks
(Almekinders, 1994; Nagarajan and Smale, 2007; Wencé-
lius et al., 2016). This study’s results therefore offer a novel
insight on the most highly concentrated importance of
FSS for the populations of smallholders that are extremely
land poor and economically marginalized (see the
following).

Consideration of potential mechanisms leading to
these results on FSS relations to farm area suggests a pair
of predominant processes. First, the widespread and
extreme poverty of districts populated by those with the
lowest values of farm area often restricts access to seed
other than FSS since the latter is typically most affordable
and available. This factor was most probably a principal
mechanism behind this study’s finding of district-level
differences revealing the within-smallholder variability
of FSS-utilization rates. Influences likely impacting the
places with populations having somewhat higher values
of mean farm area (e.g., mean farm area >5.0 hectares)
presumably included production characteristics such as
increased use of agricultural machinery and other input
technologies that can result in reduced FSS utilization.

This study’s FSS-farm area results provide key insights
to strengthen FSS policies and programs. FSS utilization
across smallholder populations is aligned with broad-
based international legal frameworks and global small-
holder social movements supporting FSS such as the
2018 Peasant Rights Declaration and Via Campesina. At
the same time, concentrated FSS utilization in districts
characterized by populations with the lowest values of
mean farm area and often most gendered and extreme
poverty indicates the need to strengthen their capacities
using collective-action initiatives and inclusive pro-poor
policy and sustainability approaches (McGuire and Sper-
ling, 2016). FSS seed and care initiatives (such as seed-and-
cooking groups) need to tailor approaches for the extreme
resource poverty and social-ecological vulnerability of
subgroups (Healy and Dawson, 2019; Mulesa et al.,
2021), rather than assuming generalizable capacities of
broad social categories such as smallholders sui generis.

Additional insight to strengthen FSS stems from the
finding on 60% or more FSS utilization characterizing
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districts with mean values of smallholder farm areas as
large as 5.0 hectares. These districts often represent con-
centrated farming populations of relatively powerful
social actors that can promote FSS utilization and leverage
benefits economically and politically (Etwire et al., 2016).
Therefore, one policy challenge to strengthen FSS is to
harness the capacities of this subgroup while supporting
the more concentrated FSS utilization of places with
populations characterized by the smallest-scale and often
poorest producers.

5.3. Differences of FSS-farm area relations among
global regions suggest correspondence to capital
intensity and labor availability

Results on the geographic dimensions of the FSS relation to
mean farm area indicate significant differences among the
geopolitically designated global regions (Figure 1b). The
highest FSS rates associated with districts having the lowest
values of mean farm area occurred among the smallholder
populations in the African countries of this study’s analysis
(90%-95% in Ethiopia, Uganda, Rwanda, and Figure 1b;
see also Scoones and Thompson, 2011; McGuire and Sper-
ling, 2016). Lesser though still high rates of FSS utilization
were similar among the lowest value, farm-areas districts
(70%-75% in Figure 1b) in the countries of Asia (Nepal,
Laos, and Cambodia; see also Gill et al., 2013; Delaquis et
al., 2018) and Latin America (Colombia, Peru, Ecuador,
Nicaragua, and Bolivia; see also Bellon et al.,, 2005; de Haan
and Thiele, 2005). This result is interpreted as documenting
the general importance of FSS among smallholder popula-
tions that is globally widespread yet significantly varied
among these three global, geopolitical regions.

Moreover, the distinctness of the overall shapes of FSS-
farm area relations as displayed in the three curves of
Figure 1b (Africa, Asia, and Latin America) is interpreted
to reflect the variation of global region-level influences of
capital intensity and labor availability. Agriculture in dis-
tricts with the higher values of mean farm area that are
common in Latin America, for example, are usually char-
acterized by relatively higher capital intensity (e.g., farm
machinery) and less labor availability. This difference is
interpreted as a geopolitical-historical influence of colo-
nial latifundia in Latin America, in which the present-day
prominence of large landholdings is seen in the preva-
lence of mean farm areas >5.0 hectares in Figure 1b. It
contributes to Latin America’s steeper drop-off of FSS uti-
lization in the districts with higher values of mean farm
areas (Figure 1b). By contrast, high FSS-utilization rates
are maintained in districts with greater values of mean
farm area in Africa and Asia (Figure 1b). The latter reflect
a reduced degree of the political-historical impact of set-
tler colonialism. Strengthening the policies and programs
of FSS requires understanding its distinct relations to land
resources and access in each global region.

Finally, results on the widespread geographic occur-
rence of high FSS highlight the potential viability of
FSS-utilizing connectivity approaches to support sustain-
able development and pro-poor climate resilience through
medium- and long-distance seed flows (Zimmerer, 2003;
van Etten and de Bruin, 2007; Chambers and Brush, 2010;
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Wencélius et al., 2016; Garine et al., 2018; Porcuna-Ferrer
et al., 2020; Sperling et al., 2020b; Labeyrie, 2021; Otieno
et al,, 2021; Zimmerer et al., 2022a). Strengthening cross-
district FSS connectivity at landscape, region, multicom-
munity, and village-area scales needs to become an FSS
policy priority to address development and climate-
change challenges (described further below). This study's
results on multidistrict FSS prevalence are evidence of
strong existing viability of potential FSS connectivity
initiatives at intermediate geographic scales that are
needed to complement policy and program emphasis to-
date on local FSS spaces (e.g., individual community and
agroecosystem) and national programs (Almekinders and
Louwaars, 2002; Hodgkin et al., 2007; De Boef et al.,
2010).

Variability in FSS-utilization relates to interactions of
GDP per capita and mean farm area, highlighting distinct
smallholder subgroups for FSS interventions and policy.
Results demonstrating the significant correspondence of
maximum FSS utilization to low GDP per capita (Table 3;
Figure 2a) confirm this study's hypothesis (Table 1) and
align with its findings on farm-area effects (see previous
subsections). This study's results across global regions offer
important similarities and differences in comparison to
existing research case studies based on a single site or
region. The latter are used here to reflect on FSS in rela-
tion to income (Etwire et al., 2016), wealth estimates
(Tadesse et al., 2017), and socioeconomic status (Wencé-
lius et al., 2016). Other case-study comparisons are drawn
from research on FSS-based agrobiodiversity using income
measures (Stromberg et al., 2010) and resource-level esti-
mates (Zimmerer et al., 2019).

The above case studies show the important relations of
FSS to individuals and groups of smallholders at the ends
of the spectrum of extremely reduced and greater wealth
and resource status. This study’s results in Figure 2a are
similar since there are several points showing the latter
tendency (areas characterized by populations of greater
GDP per capita related to greater FSS utilization) while
they differ since the significant relation is toward the most
concentrated FSS utilization at the lowest GDP levels. To
strengthen FSS, these results counsel the importance of
significant yet varied FSS utilization among districts char-
acterized by subpopulations of smallholders whose per-
capita GDP ranges severalfold (Table 3; Figure 2a).

The interaction results highlight further dynamic influ-
ences of these first two predictive factors (mean farm area
and GDP per capita; Figure 3). Divergence of their inter-
action occurs where higher than expected FSS utilization
distinguishes the districts with combined low GDP per
capita and relatively larger mean values farm areas. This
combined effect can potentially strengthen FSS through
further tailoring policies and programs to account for
influential interactions.

5.4. Novel results on the positive relation of
urbanization to FSS reveal new insights and
opportunities for policy and interventions
Urbanization-focused results demonstrating the inverse
relation of FSS utilization to distance from the nearest
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major city (Table 3; Figure 2b) countervail the hypothe-
sized higher rates of FSS utilization as urban proximity
declines. These results reflect the important role of FSS
markets and traders located in urban and periurban
spaces, which has been described in case-study research
(Nagarajan and Smale, 2007; Stromberg et al., 2010;
McGuire and Sperling, 2013; Sperling et al., 2020a; Mulesa
et al., 2021) and a recent urbanization-agrobiodiversity
conceptual framework (Zimmerer et al., 2021).

These results can be interpreted to offer specific geo-
graphic recommendations for strengthening FSS in rela-
tion to urbanization. First, we interpret the influences of
urbanization as a powerful force of global change that
encompasses the extensive areal coverage of periurban
spaces including large numbers of FSS-utilizing small-
holders in mixed land use (Zimmerer et al., 2022a). Social-
and political-ecological approaches for FSS support need
to be expanded and modified to build a focus on these
periurban spaces of mixed smallholder farming. Second,
the sizeable concentration of FSS among smallholder
farmers in closer proximity to urban areas suggests the
important role of smallholders whose livelihoods are dis-
tinguished by part-time farming (on the increase and
widespread importance of part-time farming to FSS; see
Zimmerer et al., 2015; Arce et al., 2018). This result recom-
mends new FSS-support and policies for smallholders in
periurban and adjoining rural landscapes. Third, these
urban-influenced populations of smallholders include
social movements focused on FSS (e.g., the Red Andaluza
de Semillas or Andalucian Seed Network, in southern
Spain; Zimmerer et al., 2022a) that can offer new partner-
ships well-suited to the support of FSS policies, programs,
and initiatives.

5.5, Extensive and varied FSS utilization in major
foods underpins global food production (rice,
wheat, maize, potato, and common bean)
This study’s results on the rates of FSS utilization among
five major types of food crops (rice, wheat, maize, potato,
and common bean) offer a first comparative analysis using
spatially extensive data from countries across multiple
global regions. These results show predominant FSS utili-
zation in each of these staple food sources, with high rates
of FSS at approximately 75% and above. The geographic
scope of the crop-type results representing three major
global regions across the Global South is novel, building
on existing crop-type comparisons of seed systems offered
in multicountry studies in Sub-Saharan Africa and field-
based, case-study and survey data (Almekinders et al.,
1994; McGuire and Sperling, 2016; Garine et al., 2018).
This study's focus on the FSS of multiple crop types fur-
ther complements FSS research to-date on single-crop FSS.
Finally, focus on major crops is a complement to FSS
research on important, the so-called minor crops (also
referred to as underutilized, and orphan crops; Mabhaudhi
et al,, 2019).

Based on the literature referenced above—see also row
4 in Table 2—this study's results on different FSS-
utilization rates among crop types, especially common
bean and potato, are interpreted to reflect factors of the
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non-FSS seed sector (least influential in common bean)
and crop breeding system (e.g., clonal and self-
pollination in potato and common bean, respectively).
Together, these factors contribute to our results that show
relative rates of FSS as higher (common bean and potato),
intermediate (rice), and lower (maize and wheat). These
results suggest strengthening FSS by recognizing key var-
iation and differentiated FSS dynamics among major food-
crop systems, including root and tuber crops such as
potato (Bentley et al., 2018; Almekinders et al., 2019b).
Our results highlight that the production of key nutri-
tional crops such as common bean is highly dependent
on FSS (Zimmerer et al., 2020). Also, crops such as maize
can depend significantly on FSS in certain geographic
areas such as tropical and subtropical mountain countries
even though this crop is generally prone to lower FSS
utilization rates (Hoogendoorn et al., 2018). These results
can be used to strengthen FSS policies and programs
through early-stage design that anticipates the influence
on FSS of crop-specific variation.

5.6. Aridity effects reveal FSS importance for
climate-change policy and interventions

This study’s result revealing the Aridity Index as a powerful
predictor of FSS-utilization rates is interpreted to reflect
a significant degree of environmental influence on FSS
exerted through effective precipitation. This focus of our
research is engaged with expanding studies on FSS-based
responses to aridity-stressed conditions and climate
change (McGuire, 2007; Nagarajan and Smale, 2007; Bel-
lon et al., 2011; Westengen and Brysting, 2014; Kansiime
and Mastenbroek, 2016; Waldman et al., 2017; Ravera et
al., 2019; Westengen et al., 2019; Acevedo et al., 2020;
Otieno et al., 2021). Our interpretation leads to specific
recommendations to strengthen FSS for the purpose of
enabling responses to climate change. These recommen-
dations encompass both FSS-based agroecological adapta-
tion as well as FSS-based accessibility and suitability that
can contribute to seed, climate, and social justice called
for in transitions and potential transformations of sustain-
able development.

The first recommendation is to urge strengthening FSS
across the wide gradient of arid environments utilizing
FSS-based smallholder varieties. Attention to FSS-related
environmental gradients and varietal types can provide
both local agrobiodiverse varieties (landraces) and ones
adopted into FSS from the formal sector (Nagarajan and
Smale, 2007; McGuire and Sperling, 2013; Croft et al.,
2018). Strengthening FSS of this type can support innova-
tions that include new varieties and social-ecological
adaptation capacities (Teeken et al., 2012). Second, this
result can strengthen FSS by illustrating the smallholder
use of FSS-based varietal types of the major crop species.
Support for this FSS usefulness can strengthen policies
and programs for justice dimensions of climate change
combined with seed and food security and sovereignty.

Finally, this result on the major role of FSS in arid
environments and potential climate-change adaptation
underscores the importance of supporting FSS capacities
for medium- and long-distance seed exchange as well as
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potential population movements (Mwongera et al., 2014).
Relatedly, the viability of FSS capacity at the extralocal
scale is shown above in the subsection on FSS Utilization.
Finally, it recommends strengthening the FSS of major
crops in spatially coordinated policies and programs on
climate change that complement focus on minor crops
(Mabhaudhi et al., 2019) and non-FSS approaches (dis-
cussed in Acevedo et al., 2020).

5.7. Global-region contrasts in elevation effect

yield insight for FSS utilization amid climate change
The results on FSS-elevation relations, which were statis-
tically validated in the Andean countries though insignif-
icant overall, are interpreted to reflect the role of
agroecological and social factors on FSS. In the Andean
countries, FSS prevalence increases in this way in the
potato crop since seed quality improves in conjunction
with the agroecology of disease and pest levels, including
soil-borne nematode, virus, and bacteria infestations, that
are reduced at the cooler temperatures of high elevations
(Zimmerer, 2003; de Haan and Thiele, 2005; Arce et al.,
2018; Forbes et al., 2020). In addition, high-elevation
FSS-producing locales in the Andean countries are often
located in relatively close proximity to mid- and low-
elevation areas, so that high-elevation seed can be trans-
ported. The general FSS-elevation relation is probably
applicable, albeit to lesser extents, to other specific
global highland contexts such as maize in Mexico (Bellon
et al., 2011) and diverse crops in East Africa (Samberg et
al.,, 2013).

These results offer specific inputs to strengthen FSS
policy and programs since climate change is impacting
the role of elevation among smallholder agriculturalists
and land users in tropical and subtropical mountains.
Mountain-based food production utilizing FSS is generally
shifting to higher elevations as a principal form of small-
holder adaptation to global climate change (de Haan and
Thiele, 2005; Bellon et al., 2011; Arce et al., 2018).
Strengthening FSS in high-elevation environments will
depend on utilizing both highly agrobiodiverse varieties
as well as incorporating types associated with the formal
seed sector. In the case of the Andean potatoes from lower
elevation production, this versatility of FSS already exists
and can be further strengthened. Additionally, the upslope
movement of the production of other crops—such as
maize and common bean in the Andes—requires strength-
ening the capacity of their high-elevation FSS as a key
strategy for adaptations to climate change.

5.8. Role of topographic ruggedness is important to
FSS policies and interventions

This study’s results demonstrating the positive relation
to topographic ruggedness are interpreted to suggest
that FSS is being utilized in association with the envi-
ronmental and social conditions associated with this
variation. The heterogeneity of soils, vegetation, and
climate, as well as the predominance of smallholder
agriculture and land use in these environments, is asso-
ciated with high levels of FSS utilization. Several case
studies have demonstrated or suggested this relation of
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FSS to topographic variation (de Haan and Thiele, 2005;
Bisht et al., 2007; Samberg et al., 2013; Arce et al.,
2018; Baumann et al., 2020; Zimmerer et al., 2020),
though multicountry analysis has not previously been
undertaken with this focus. These results recommend
that strengthening this role of FSS can be combined
with promoting sustainable development and humani-
tarian interventions in these kinds of places. They rein-
force calls to strengthen FSS policies and programs in
difficult-to-access place due to crises such as the 2015
Nepal earthquake (Gauchan et al., 2016; Joshi et al,,
2020).

5.9. Identifying limitations of this study and
promising future research directions

This study recognizes limitations as well as recommenda-
tions for policy and guidance for future research. One
limitation is the circumscribed information on FSS in
existing national agricultural surveys and census reports.
We urge policymakers, governments, and civil-society
groups involved in the design and implementation of
this important information to consider FSS-utilization
data that will enable policy and program support to
strengthen FSS. FSS-related information should include
FSS seed data (seed quality, affordability, access, and
potentially such factors as seasonality) as well as infor-
mation about FSS use and users that are necessary to
strengthen FSS. While this study’s model yielded a robust
level of overall explanation relative to related research
(as discussed above), other untested characteristics could
potentially affect FSS.

Finally, future research can build upon this study’s key
findings of the global extensiveness and variation of FSS,
multiple key FSS relations (socioeconomic, political, and
environmental, as well other types of potential influ-
ences), and the complex linkages of FSS to agrobiodiver-
sity, agroecology, nutrition, and urbanization. Here, this
study recommends research on the policy-sensitive insti-
tutional capacity to innovate, share, and utilize new FSS
knowledge systems, such as the ones highlighted in this
study and its recommendations. Examples include
strengthening FSS linkages beyond singular rural places
to incorporate the multiscale connectivity of FSS exchange
and flows, promote FSS for periurban and urban food
producers, and facilitate FSS partnering with allied biodi-
versity and agroecology approaches (e.g., IPBES, CGIAR;
Diaz et al., 2018). This study’s results promote mixed-
methods FSS knowledge approaches (e.g., Jones, 2017)
that integrate global modeling and large-scale analysis
with descriptive, comparative, local knowledge-based, and
ethnographic research (e.g., Zimmerer, 2003; van Etten et
al., 2017; Almekinders et al., 2019a; Baumann et al., 2020;
Sperling et al., 2020b; de Boef et al., 2021). Other direc-
tions stemming from this study can further research how
FSS support and analysis can serve as a new and expanded
focus for global biodiversity, food, nutrition, and agricul-
ture institutions (e.g., Diaz et al., 2018; IPBES, CGIAR, UN
Panels, and organizations on food, nutrition, and
agriculture).
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6. Conclusion

The results of this large-scale research contribute new
scientific understandings as well as specific recommenda-
tions for policies and programs. Synthesis of current FSS
conceptual themes was used to productively guide the
broad-scale, data-compatible model framework of the
socioeconomic, political, and environmental relations of
FSS in globally representative areas of tropical and sub-
tropical mountains and uplands in Africa, Asia, and Latin
America. This modeling yielded rigorous results, showing
the significant inverse spatial relations of FSS to mean
values of farm area (strong) and per-capita, district-level
GDP (strong) as well as distance to major city (moderate).
FSS showed strongly positive relationships to aridity and
topographic ruggedness. FSS was positively related to ele-
vation in a five-country Andean subsample. Overall, the
multiple regression model was rigorous in explaining the
variation of FSS utilization to a significant degree (R* =
0.53, P < 0.0001).

Additional highlights of the results are that FSS utili-
zation was being undertaken by approximately 136 mil-
lion farmers in the globally representative sample of
tropical and subtropical mountain areas in 11 countries
in Africa, Asia, and Latin America at the time of data
collection. Detailed analysis demonstrated the extensive
relations of FSS utilization to socioeconomic, political, and
environmental predictors. These include: (1) different
rates of FSS utilization among smallholder populations
that range from places with extremely low values of mean
farm area as well significantly higher values, (2) global
region-level differentiation of FSS-farm area interactions
(e.g., Africa, Asia, Latin America), (3) FSS and farm-area
interactions with income variation that highlight the geo-
graphic associations of FSS with low-income smallholders
that include many of the world's poorest people, (4) mod-
eling results showing that FSS utilization is high for all
crop types in the study though significantly varied among
common bean and potato (highest) to rice (intermediate)
and wheat and maize (significantly lower though still
high), (5) inverse relations of FSS to the factor of distance
from major city and thus high rates of FSS utilization in
periurban spaces and surrounding nonremote locations,
and (6) specific environmental associations (e.g., high
importance in arid environments and hence climate
change-prone contexts). We note the aforementioned con-
clusions are drawn from the first modeling analysis of its
type using data from a globally representative sample of
countries and major crops in Africa, Asia, and Latin
America.

Finally, we conclude that our results have yielded sev-
eral recommendations to strengthen FSS policies and pro-
grams including ones that respond to the COVID-19
pandemic/postpandemic and global climate change as
well as goals of transitions and transformations toward
justice-based sustainable development. For FSS to address
these needs, we recommend identifying and directing pol-
icies and programs to vulnerable, FSS-utilizing small-
holder populations and subgroups (particularly those
with both extremely small and mid-size farm areas),
accounting for global region-level distinctiveness of FSS-

Zimmerer et al: Farmer seed systems (FSS) model and insights for sustainable development

farm area relations, leveraging multidistrict connectivity
through medium- and long-distance FSS connectivity,
incorporating FSS relation to aridity to improve climate-
change response capacities, and focusing on the
urbanization-related effect of high FSS in periurban areas,
adjoining spaces, and rapidly changing rural areas. Sup-
portive FSS relations, which are interpreted as nourishing
FSS (broadly defined), suggest the need for FSS projects
and policies to incorporate periurban spaces and adjoin-
ing rural areas as well as the FSS of major crop types
(complementing recently increased emphasis on underu-
tilized crops), extremely small farm sizes, and arid and
semi-arid environments.

Concluding recommendations argue for expanding the
scope and strategic integration of interdisciplinary and
transdisciplinary knowledge frameworks to strengthen
FSS. This study illustrates convergent insights generated
through the selectively integrated approaches of social—
ecological systems and global modeling, political ecology
and social justice, demography and spatial analysis, and
the combined use of socioeconomic, political, and envi-
ronmental data. We conclude that the knowledge integra-
tion and policy insights of this study establish the promise
of future synthesis and dialogue using FSS analytical mod-
els, such as this study, together with the suite of diverse,
vibrant FSS approaches currently being developed.
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