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a species-level trait dataset of bats 
in Europe and beyond
Jérémy S. P. Froidevaux et al.#

Knowledge of species’ functional traits is essential for understanding biodiversity patterns, 
predicting the impacts of global environmental changes, and assessing the efficiency of 
conservation measures. Bats are major components of mammalian diversity and occupy a 
variety of ecological niches and geographic distributions. However, an extensive compilation 
of their functional traits and ecological attributes is still missing. Here we present EuroBatrait 
1.0, the most comprehensive and up-to-date trait dataset covering 47 European bat 
species. The dataset includes data on 118 traits including genetic composition, physiology, 
morphology, acoustic signature, climatic associations, foraging habitat, roost type, diet, 
spatial behaviour, life history, pathogens, phenology, and distribution. We compiled the 
bat trait data obtained from three main sources: (i) a systematic literature and dataset 
search, (ii) unpublished data from European bat experts, and (iii) observations from large-
scale monitoring programs. EuroBatrait is designed to provide an important data source for 
comparative and trait-based analyses at the species or community level. the dataset also 
exposes knowledge gaps in species, geographic and trait coverage, highlighting priorities for 
future data collection.

Background & Summary
Functional traits are becoming increasingly important in large-scale ecological and evolutionary analyses, nota-
bly because they allow integrating individual-level information to species level1. Functional traits can be defined 
as any feature measurable at the individual level that can influence fitness2. Trait-based approaches functionally 
link individual organisms to community structure and dynamics through their physiological, morphological, or 
life-history attributes3 and facilitate generalisations across species and their assemblages4. Trait-based approaches 
have become increasingly popular in biogeography5, community ecology1, macroecology6, evolution7,  
conservation biology8 and ecosystem functioning9. They are now widely used to estimate biodiversity patterns 
and trends10,11, as well as to unveil the mechanisms underlying species assemblages12. By understanding how 
traits covary and are related to environmental variables we can infer general ecological principles that overcome 
taxonomic gaps. The use of a species-level trait dataset is particularly relevant when working at the community 
level and in the context of rapid environmental changes.

With 1,439 species distributed across the globe13, bats (order Chiroptera) account for ca. a fifth of global 
mammalian diversity. While bats are the second richest taxonomic order of mammals, they have been so far 
understudied compared to other groups14. In the absence of in-depth knowledge of how species respond to envi-
ronmental gradients, we can make inferences on understudied species using traits of the most closely related taxa.  
Trait-based approaches are becoming more common in bat research15–91 (Fig. 1). For example, Conenna, et al.92 
investigated the traits that favour bat persistence in arid environments across the globe. Similarly, Blakey, et al.93 
investigated traits that explain bat community changes after wildfires. Jung and Threlfall55 studied traits relevant 
for tolerance of urban environments in bats. These studies help overcome the taxonomic knowledge gaps and 
derive general principles that can explain patterns of bat distribution and abundance, and their responses to the 
environment. This is especially important in the context of global change, where there is a pressing need for 
large-scale predictions of biodiversity responses to environmental change94.

The application of trait-based approaches in bat research and the inclusion of bats in wider trait-based stud-
ies in Europe and elsewhere (Fig. 1) have been limited to date due to lack of relevant and reliable trait data 
for most bat species. Many European bats have been studied extensively, but the most reliable information on  
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their functional traits has been scattered across the scientific and grey literature and unpublished data held by 
researchers and special interest groups. There are several ongoing national95,96 and regional97 bat monitoring 
programs across Europe that are now old enough to provide highly reliable data on population trends and dis-
tributions. These programs also collect systematic and standardised data on morphology, echolocation, hiber-
nation patterns and roost selection that are extremely useful to bat functional ecology.

Here, we present EuroBaTrait 1.0, a comprehensive open-access dataset of 118 traits for 47 European bat 
species built by compiling data from (i) a systematic literature and dataset search, (ii) unpublished data from 
pan-European bat experts and (iii) large-scale bat monitoring programs in France. EuroBaTrait 1.0 aims to 
fill the current knowledge gap to facilitate integrative trait-based evolutionary and ecological research on bat 
species, and mammals more generally, at the European scale and beyond. As our objective was to build a living 
dataset, EuroBaTrait 1.0 is intended to be updated annually and its geographic and taxonomic scope can be 
expanded over time.

Methods
taxon and geographic coverage. Our dataset includes the complete bat fauna of Europe based on the 
Handbook of the Mammals of Europe98. This represents 47 bat species from 12 genera (Table 1). The taxonomic 
nomenclature follows the Handbook of the Mammals of Europe. The geographic coverage is mainland Europe 
and European islands, including the British Isles, Mediterranean islands and Macaronesia (Supplementary 
Material 2). The dataset is based mainly on recent publications, following recent taxonomic revisions (i.e. 2021)13

trait categories. Based on the literature and expert-knowledge, we selected a comprehensive set of relevant 
traits, including both commonly used and bat-specific traits. These traits reflect a variety of ecological strategies, 
niches, and functional roles that are routinely collected for bats and other taxa to enable joint analyses with other 
datasets. Traits were divided into 13 categories: genetic composition (N = 9), physiology (N = 12), morphology 
(N = 8), acoustic signature (N = 14), climatic associations (N = 4), foraging habitat (N = 29), roost type (N = 12), 
diet (N = 7), spatial behaviour (N = 7), life history (N = 6), pathogens (N = 3), phenology (N = 2), and distribu-
tion (N = 5). While in theory a given trait can fall into different categories, we affiliated each trait to a single, most 
relevant category for clarity and to simplify analysis.

Dataset entry. All traits are given at the species and country/European level in the final dataset, but we also 
provide individual-level data (when available). Each trait value (i.e. dataset entry) is accompanied (whenever pos-
sible and applicable) by (i) a location (x,y coordinates and/or country), (ii) contextual characteristics, (iii) source, 
and (iv) estimates of precision. For aggregated values such as means and medians, we also provide the number of 
replicates and a measure of dispersion.

Data sources and acquisition. We followed three strategies to compile the EuroBaTrait 1.0 dataset. First, 
we conducted a systematic literature and dataset search and retrieved trait data from published books, taxo-
nomic monographs, scientific articles, online resources, and existing datasets. Second, we put out a call to request 
unpublished data from European bat experts via the network of COST Action Network CA18107 “ClimBats” 
(https://climbats.eu/). Third, we used data from two large-scale French standardised bat monitoring programs 
(“Vigie-Chiro” and “CACCHI” programs; https://www.vigienature.fr/fr/chauves-souris & https://croemer3.wix-
site.com/teamchiro/cacchi) to retrieve key traits and to derive traits that could not be collected following the first 
two strategies. The first version of the trait dataset was finalised after the three strategies had been completed for 
all taxa.

Fig. 1 Number of peer-reviewed studies per year (a) and per geographic area (b) that implemented a trait-
based approach to study bats15–91. Data were extracted from a systematic literature search conducted in Web of 
Science and Google Scholar on the 15th of November 2021 using the following search string terms: (Bat* OR 
Chiroptera) AND (“trait-base*” OR “trait diversity” OR “functional diversity” OR trait*). The black solid line 
represents the LOESS (locally weighted scatterplot smoothing) fit to the observed relationship. See raw data and 
details in Supplementary Material 1.
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Literature and dataset search. We conducted the literature and dataset search using Web of Science and Google 
Scholar. We implemented a multi-step approach to target our search. In step 1, we based our search at the trait 
category level using the search string “(Bat* OR Chiroptera)” in addition to the name of a given trait category 
(see section 2.2 Trait categories) (e.g. “(Bat* OR Chiroptera)” and “acoustic*”). In step 2, we looked for each 
specific trait name (e.g. “(Bat* OR Chiroptera)” and “call duration”). In step 3, we focused our search on miss-
ing data. For this we used as a search string the name of the missing trait and the Latin name of the target bat 
species (e.g. “Plecotus auritus” and “call duration”). Altogether, we included trait data from six published books, 
nine taxonomic monographs, 378 scientific articles (published in indexed journals that were checked using 

Family Species: scientific name Species: vernacular name Taxon URI

Miniopteridae Miniopterus schreibersii Schreibers’ bent-winged bat https://www.gbif.org/species/9796816

Molossidae Tadarida teniotis European free-tailed bat https://www.gbif.org/species/2433009

Pteropodidae Rousettus aegyptiacus Egyptian fruit bat https://www.gbif.org/species/2432953

Rhinolophidae Rhinolophus blasii Blasius’ horseshoe bat https://www.gbif.org/species/2432666

Rhinolophidae Rhinolophus euryale Mediterranean horseshoe bat https://www.gbif.org/species/2432621

Rhinolophidae Rhinolophus ferrumequinum Greater horseshoe bat https://www.gbif.org/species/2432655

Rhinolophidae Rhinolophus hipposideros Lesser horseshoe bat https://www.gbif.org/species/2432614

Rhinolophidae Rhinolophus mehelyi Mehely’s horseshoe bat https://www.gbif.org/species/2432667

Vespertilionidae Barbastella barbastellus Barbastelle bat https://www.gbif.org/species/2432582

Vespertilionidae Eptesicus anatolicus Anatolian serotine bat https://www.gbif.org/species/5787592

Vespertilionidae Eptesicus bottae Botta’s serotine bat https://www.gbif.org/species/2432346

Vespertilionidae Eptesicus isabellinus Isabelline serotine bat https://www.gbif.org/species/5787585

Vespertilionidae Eptesicus nilssonii Northern bat https://www.gbif.org/species/7261816

Vespertilionidae Eptesicus serotinus Common serotine bat https://www.gbif.org/species/2432359

Vespertilionidae Hypsugo savii Savi’s pipistrelle https://www.gbif.org/species/7261861

Vespertilionidae Myotis alcathoe Alcathoe bat https://www.gbif.org/species/4266346

Vespertilionidae Myotis bechsteinii Bechstein’s bat https://www.gbif.org/species/2432427

Vespertilionidae Myotis blythii Lesser mouse-eared bat https://www.gbif.org/species/2432414

Vespertilionidae Myotis brandtii Brandt’s bat https://www.gbif.org/species/7261875

Vespertilionidae Myotis capaccinii Long-fingered bat https://www.gbif.org/species/2432430

Vespertilionidae Myotis crypticus Cryptic myotis https://www.gbif.org/species/9918569

Vespertilionidae Myotis dasycneme Pond bat https://www.gbif.org/species/2432452

Vespertilionidae Myotis daubentonii Daubenton’s bat https://www.gbif.org/species/2432439

Vespertilionidae Myotis davidii David’s myotis https://www.gbif.org/species/4266349

Vespertilionidae Myotis emarginatus Geoffroy’s bat https://www.gbif.org/species/2432470

Vespertilionidae Myotis escalerai Escalera’s bat https://www.gbif.org/species/8181305

Vespertilionidae Myotis myotis Greater mouse-eared bat https://www.gbif.org/species/2432416

Vespertilionidae Myotis mystacinus Common whiskered bat https://www.gbif.org/species/9754263

Vespertilionidae Myotis nattereri Natterer’s bat https://www.gbif.org/species/2432389

Vespertilionidae Myotis punicus Maghreb mouse-eared bat https://www.gbif.org/species/4266337

Vespertilionidae Nyctalus azoreum Azorean bat https://www.gbif.org/species/5218523

Vespertilionidae Nyctalus lasiopterus Greater noctule https://www.gbif.org/species/5218525

Vespertilionidae Nyctalus leisleri Leisler’s noctule https://www.gbif.org/species/5218522

Vespertilionidae Nyctalus noctula Common noctule https://www.gbif.org/species/5218524

Vespertilionidae Pipistrellus kuhlii Kuhl’s pipistrelle https://www.gbif.org/species/5218464

Vespertilionidae Pipistrellus maderensis Madeira pipistrelle https://www.gbif.org/species/5218476

Vespertilionidae Pipistrellus nathusii Nathusius’ pipistrelle https://www.gbif.org/species/5218471

Vespertilionidae Pipistrellus pipistrellus Common pipistrelle https://www.gbif.org/species/5218465

Vespertilionidae Pipistrellus pygmaeus Soprano pipistrelle https://www.gbif.org/species/5707150

Vespertilionidae Plecotus auritus Brown long-eared bat https://www.gbif.org/species/5218507

Vespertilionidae Plecotus austriacus Gray long-eared bat https://www.gbif.org/species/5739437

Vespertilionidae Plecotus gaisleri Gaisler’s long-eared bat https://www.gbif.org/species/10893276

Vespertilionidae Plecotus kolombatovici Balkan long-eared bat https://www.gbif.org/species/5739445

Vespertilionidae Plecotus macrobullaris Alpine long-eared bat https://www.gbif.org/species/5787719

Vespertilionidae Plecotus sardus Sardinian long-eared bat https://www.gbif.org/species/5739436

Vespertilionidae Plecotus teneriffae Tenerife long-eared bat https://www.gbif.org/species/5218519

Vespertilionidae Vespertilio murinus Parti-coloured bat https://www.gbif.org/species/2432564

Table 1. List of the 47 bat species included in EuroBaTrait 1.0.
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clarivate https://mjl.clarivate.com/), 84 articles from the grey literature, 19 unpublished data sources, and three 
datasets (AnAge99, date of access: 02/02/2021, IUCN100, date of access: 20/01/2021; DBatVir101, date of access: 
18/01/2021).

ClimBats COST Action network. Morphological measures taken from bats captured for research and monitor-
ing are rarely published, so we asked European bat experts to provide data for traits that are usually not found 
in the literature. We contacted experts through the ClimBats network (representing 28 countries and ca. 100 
experts), organised meetings to explain the project goals, and asked for raw or summarised unpublished trait 
data (e.g. morphological measurements). Data were also provided by the UK Bat Conservation Trust National 
Bat Monitoring Programme (https://www.bats.org.uk/our-work/national-bat-monitoring-programme). In 
total, we retrieved 279 trait values (i.e. dataset entry) for two morphological traits (mean forearm length and 
body mass) measured on 37 species in 12 countries (Bulgaria, Germany, Ireland, Italy, Luxembourg, Moldova, 
Norway, Poland, Portugal, Slovakia, Spain and the United Kingdom).

Large-scale bat monitoring programs. We used “CACCHI” (capture data) and the French national-scale 
citizen-science bat monitoring program “Vigie-Chiro” (acoustic data) which are coordinated by the French 
National Museum of Natural History (MNHN) to retrieve data on key traits and identify missing ones. CACCHI 
is a French bat monitoring program that aims to achieve national consistency regarding technical and ethical 
aspects of capture practices and data collection. French bat workers contribute to this program by providing data 
collected in a local context, thus giving the opportunity to build a dataset on a large spatio-temporal scale. We 
retrieved four traits from CACCHI, including mean forearm length and body mass (>60,000 and >6,000 data-
set entries, respectively). Vigie-Chiro is one of the largest citizen-science bat monitoring programs in Europe 
with a standardized stationary point survey (among three) corresponding to a total of 16,349 sites acoustically 
monitored during 2015–2021 by >500 participants (see an overall description of Vigie-Chiro in Supplementary 
Material 3). We retrieved 33 species-level traits from the data collected by Vigie-Chiro, including acoustic sig-
nature, climatic associations, foraging habitat, and phenology (see full details in Supplementary Material 3). In 
brief, traits related to acoustic signature (i.e. buzz duration, buzz peak frequency, buzz rate, call duration, call 
maximum/minimum frequency, call frequency at half call duration, call peak frequency, call slope and inter-
pulse interval) were directly extracted from the reference library of calls using TADARIDA software102. For traits 
related to climatic associations (i.e. responses to nightly temperature, precipitation, and wind speed) and for-
aging habitats (i.e. responses to deciduous forest, coniferous forest, dense urban area, freshwater, cropland and 
grassland at three spatial scales (50 m, 500 m and 5000 m radius buffer scale)), we used data from the stationary 
point protocol. We conducted a series of univariate generalized linear mixed models (‘glmmTMB’ R package103) 
with species-specific bat activity as response variables and foraging habitat and weather conditions as explan-
atory ones. The latter were standardized (mean = 0, SD = 1) and we extracted the slope of the relationship to 
inform the trait value. Finally, we derived the traits related to phenology (Kurtosis index and Skewness index 
of the seasonal activity pattern) with the ‘moments’ R package104, which required plotting bat activity obtained 
from the stationary point protocol as a function of Julian day.

Data records
The EuroBaTrait 1.0 dataset is available at figshare105 and through the R Shiny App (https://jasja.shinyapps.io/
ClimBats/) under the terms of a Creative Commons Attribution 4.0 International waiver. The CC-BY-4.0 waiver 
facilitates the discovery, re-use, and citation of the dataset. As this is a dynamic and living dataset, future updates 
of the dataset will be made directly on figshare and associated R Shiny App. We will follow the same technical 
validation as described hereafter.

Dataset structure. We followed the general recommendations proposed by Schneider, et al.106 to organise the 
dataset. The dataset consists of 16 tables linked by unique identifiers. The “Taxon” table includes the full scientific 
name and family of all taxa and a uniform resource identifier linked to GBIF (https://www.gbif.org/, Table 1). The 
“Trait description” table represents the metadata, in which we describe the different traits (name, category, unit, 
data type) and define each trait following (when available) current glossaries (e.g. we followed Blatteis, et al.107 for 
physiology). The “Trait reference” table lists the full references used to build the dataset. The dataset also includes 
one table per trait category – namely, genetic composition, physiology, morphology, acoustic signature, climatic 
associations, foraging habitat, roost type, diet, spatial behaviour, life history, pathogens, phenology, and distri-
bution – with the core observation values (SD, CV and N referring to standard deviation, coefficient of variation 
and sample size, respectively) and associated information. We decided not to impute missing values to highlight 
research gaps and data needs.

Dataset completeness. Assessing dataset completeness is crucial for identifying knowledge gaps and high-
lighting future data collection priorities. The overall completeness of the dataset can be assessed based on species 
coverage, geographic coverage, and trait resolution. The EuroBaTrait 1.0 dataset has broad taxonomic coverage 
(Fig. 2). At the trait category level, the species coverage of trait information is (i) complete or nearly complete (i.e. 
at least one trait from these categories encompasses >95% of the species) for foraging habitat (100%), diet (100%), 
distribution (100%), acoustic signature (98%), roost type (98%), genetic composition (96%) and morphology 
(96%), (ii) moderately complete (between 75% and 95%) for life history (94%) and pathogens (72%), and (iii) at a 
low level of completeness (<75%) for spatial behaviour (66%), climatic associations (60%), phenology (60%) and 
physiology (55%). Note that the number of traits documented differ greatly amongst trait categories (see section 
2.2 Trait categories and Fig. 2). At the trait level, species coverage ranges from 100% (e.g. geographic range in 

https://doi.org/10.1038/s41597-023-02157-4
https://mjl.clarivate.com/
https://www.bats.org.uk/our-work/national-bat-monitoring-programme
https://jasja.shinyapps.io/ClimBats/
https://jasja.shinyapps.io/ClimBats/
https://www.gbif.org/


5Scientific Data |          (2023) 10:253  | https://doi.org/10.1038/s41597-023-02157-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

distribution) to 2% (e.g. heart rate during flight or rest in physiology). The physiology category has the lowest 
number of traits covered per species (Fig. 2) and it is evident that more research effort is needed to improve our 
knowledge on bat physiology. Regardless of trait type, we lack information on the four island endemic species 
(Nyctalus azoreum, Pipistrellus maderensis, Plecotus sardus, and Plecotus teneriffae) with >75% of traits miss-
ing for these species. Regarding geographic coverage, there is a clear longitudinal bias for many trait catego-
ries with most data originating from Western Europe (Fig. 3). Nevertheless, this bias is more evident for some 
traits (e.g. foraging habitat and spatial behaviour) than others (e.g. roost type and pathogens, Supplementary 
Material 4) because few traits and species have been comprehensively measured in many locations throughout 
Europe. Finally, when looking at the trait resolution, quantitative data (continuous and discrete) were available 

Fig. 2 Trait by species matrix illustrating the EuroBaTrait 1.0 dataset completeness.
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for 71% of the traits. This proportion, however, largely varies between trait categories (e.g. 0% for roost and 
100% for morphology). Increasing species and geographic coverage as well as trait resolution (from categorical 
to quantitative data, whenever possible) remains a real challenge that needs to be overcome to implement a more 
robust trait-based approach108. To that end, enhancing collaboration among researchers/practitioners is the way 
forward, as witnessed here with the collection of the largest morphological dataset on bats in Europe if not in the 
world (measurements on body mass of ca. 55,000 individuals from 37 species and forearm length of ca. 120,000 
individuals from 39 species).

Current limitations. We acknowledge that many traits could not be compiled for the EuroBaTrait dataset 1.0 
at their finest resolution. This is particularly the case for the diet trait category. There are many published and 
unpublished studies in different languages depicting European bat diets using traditional (e.g. microscopic fae-
cal or stomach content analysis) or molecular (e.g. DNA metabarcoding) methods. However, gathering such 
a large amount of information at the highest resolution was not feasible at this stage, and we aim to provide a 
much more comprehensive treatment of this trait category in future releases of the EuroBaTrait dataset.

Trait quality, here defined as the degree of confidence in a trait value, is another important component to 
consider when assessing dataset completeness. However, evaluation of trait quality is subject to a certain degree 
of subjectivity. To allow future users of the dataset to evaluate trait information quality, we provide for each 
trait value the original sources and contextual characteristics that may include (when available) sample size  
(e.g. number of individuals) associated with the trait values. For quantitative continuous data, we also derived 
the coefficient of variation as a standardised measure of dispersion of the values around the mean.

Data visualization. We created a R Shiny app to help the users visualizing the trait data. It is freely accessible 
at the following URL: https://jasja.shinyapps.io/ClimBats/.

technical Validation
We employed two main strategies to ensure the accuracy in the data included in the EuroBaTrait 1.0 dataset. 
First, we looked for erroneous data in the dataset using a series of plots (e.g. boxplots and frequency histo-
grams to detect potential outliers across species in continuous data) alongside traditional statistical validation 
techniques (e.g. outlier test) in R v4.1.1109. When an outlier was detected, we looked at the original sources and 

Fig. 3 Number of trait categories (genetic composition, physiology, morphology, acoustic signature, climatic 
associations, foraging habitat, roost type, diet, spatial behaviour, life history, pathogens, phenology, and 
distribution) provided at the country level across all species. For sake of clarity and for highlighting gaps in 
geographic coverage, we did not consider in this map traits provided across a given species’ range or at regional 
level. Details on each trait category are provided in Supplementary Material 4.
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cross-checked with other sources (e.g. Handbook of the Mammals of Europe) the plausibility and reliability of 
the observation. Second, we asked several experts to conduct data quality control and error detection in their 
field of expertise. Experts on a given bat species revised the trait associated with that species, while experts 
on a given trait category revised all traits from that category. This allowed us to cross validate the full dataset. 
Furthermore, as we provide the original references for each trait value collected during the literature and data-
set search and describe in detail the methods used for the traits computed with data from the large-scale bat 
monitoring programs, users can assess the validity and accuracy of the original sources (note that >75% of our 
data sources are peer-reviewed articles published in indexed scientific journals) and method used. Finally, we 
strongly encourage users to report any errors and additional data sources directly to the corresponding authors. 
As it is a living dataset, the inclusion of new data will rigorously follow the same technical validation as described 
above.

Usage Notes
overview. Here we present the first comprehensive dataset of functional traits in European bats (Fig. 4). The 
dataset has numerous applications in community ecology, macroecology, biogeography, conservation biology, 
ecophysiology, evolutionary biology, and virology/epidemiology for species and/or community approaches. For 
example, the dataset enables researchers to investigate functional redundancy and complementarity of coexist-
ing bat species, to establish linkages among functional traits, as well as between functional traits and ecosystem 
functioning, and to assess trait-environment relationships and their impacts on bat distributional patterns92.  
This in turn is relevant for addressing relevant questions in conservation and global change biology. The paucity 
of trait data on bats has, until now, prevented the testing of large-scale correlations between the intrinsic charac-
teristics of species and major drivers of decline in this taxon11,110,111. The EuroBaTrait dataset will contribute to 
assessing and quantifying the role of each trait in determining bats’ risk of extinction.

EuroBaTrait is also designed to be used to investigate functional responses of bat assemblages to various 
environmental drivers of change and their impacts on ecosystem functions and services5. This could be done by 
relating environmental variables or processes to traits, i.e. either by calculating complementary and integrative 
functional diversity metrics such as functional richness, evenness or dispersion112 or by computing individual 
Community-Weighted Mean trait values113. Such trait-based approaches allow the inference of several key prop-
erties of bat communities including effective functional originality based on both rarity and distinctiveness of 
species in functional trait spaces to better support bat conservation programmes114,115. Three-table ordination 
methods can also be used to directly link bat trait syndromes to spatial or temporal environmental gradients 
(e.g.43–48). These trait-based analyses constitute a methodological corpus that is still seldom used by bat ecolo-
gists, while it can provide a relevant standard analysis approach to study the response of bat functional diver-
sity and trait assemblages to bioclimatic variables, or environmental degradation and conservation measures 
(Fig. 1; see for example17,20,30,32,38,41,51,67,83,89,116). Finally, bats are increasingly acknowledged for performing key 
ecological functions in semi-natural habitats as well as in production forests and agroecosystems, that ultimately 
provide valuable ecosystem services117–120. As a result, the functional trait-based characterisation of bat commu-
nities to determine their role in ecological networks will greatly benefit from the EuroBaTrait dataset in future 
bat ecological research.

From a static to a dynamic trait dataset. The data descriptor was peer reviewed in 2023 based on the 
data available on the platform at the time105. It is our intention to keep improving and enriching the dataset over 
time, so while the paper presents version 1, new versions may be released in the future. For this reason, we invite 
anyone to (i) share their data in a standardized way via the R Shiny app at https://jasja.shinyapps.io/ClimBats/ 
and (ii) cite the dataset stored at figshare according to the specific version used as well as this publication, when 
using all or part of the dataset. We also encourage the wider bat research community to build on this first version 
and engage in updating it via meetings and workshops during dedicated bat congress (e.g. European Bat Research 
Symposiums).

towards an open access individual-level trait dataset. We encourage researchers and practitioners 
to collect, store publicly and publish trait values at the individual level. As most functional traits tend to vary 
greatly among individuals according to age, sex, condition, state, gene pool and behavioural personality121, this 
individual-level variation may persist across time and space and upscale at the local community level (e.g. mean 
individual specialisation or mean home range size and composition)122,123. Natural populations of a given spe-
cies are composed of sets of individuals that occupy subsets of the species’ niche. For instance, several studies 
of bats provide evidence of individual specialisation in diet124. Furthermore, trait-based approaches accounting 
for within-individual variation in species traits can inform us about the role of phenotypic plasticity in species’ 
responses to anthropogenic threats and drivers of global change (e.g.125–127). Within-individual data are particu-
larly valuable in seasonal species like bats, which have to cope with reproduction, hibernation and/or migration. 
While we acknowledge that some traits can only be measured at the species level, the lack of individual-level trait 
information we observed during data collection likely arises from the fact that: (i) only summarised information 
(e.g. mean/median, accompanied with an estimate of precision at best) has traditionally been provided in the 
published literature, (ii) researchers/practitioners and/or institutions have limited time and resources, as well as 
almost no formal recognition (although the situation is now improving in many countries), for publishing such 
data128. We provide in Supplementary Material 5 trait information collected at the individual level, but we strongly 
encourage the bat expert community and associated institutions to share and open their data (FAIR Data princi-
ples) to enable the progression from a species-level trait dataset to an individual-level trait dataset.
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code availability
The code to create the R Shiny App is available on GitHub (https://github.com/J4SJA/ClimBatsApp).
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Fig. 4 Representativeness of the EuroBaTrait 1.0 dataset. Summary of the 13 trait categories included in the 
trait dataset and their coverage in terms of number of traits included under the category, number of species and 
genera with data for at least one of the traits under the category, number of countries with data for at least one 
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(individuals, calls or nights) used to generate values for the traits, and number of data sources on which the trait 
values are based.
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