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Abstract
Background and goals
Lake Erie Concord growers have access to high-
resolution spatial soil and production data, but 
lack protocols and information on the optimum 
time to collect these data. This study examines 
the type and timing of sensor information to sup-
port in-season management.

Methods and key findings
A three-year study in a 2.6 ha vineyard collected 
yield, pruning mass, canopy vigor, and soil data, 
including yield and pruning mass from the previ-
ous year, at 321 sites. Stepwise linear regression 
and random forest regression approaches were 
used to model site-specific yield and pruning 
mass using historical spatial production data, 
multi-temporal in-season canopy vigor, and soil 
data. The more complex yield elaboration pro-
cess was best modelled with non-linear random 
forest regression, while the simpler develop-
ment of pruning mass was best modelled by 
linear regression.

Conclusions and significance
Canopy vigor in the weeks preceding bloom 
was the most important predictor of the current 
season’s yield and should be used to generate 
stratified sampling designs for crop estimation 
at 30 days after bloom. In contrast, pruning mass 
was not well-predicted by canopy vigor; even 
late-season canopy vigor, which is widely advo-
cated to estimate pruning mass in viticulture. The 
previous year’s pruning mass was the dominant 
predictor of pruning mass in the current season. 
To model pruning mass going forward, the best 
approach is to start measuring it. Further work is 
still needed to develop robust, local site-specific 
yield and pruning mass models for operational 
decision-making in Concord vineyards.

Key words: Concord, proximal canopy sensing, 
random forests

Introduction
High-resolution agri-data sets, especially from proximal, terrestri-

al-mounted sensing systems, are available to vineyard managers, but 
not yet widely adopted commercially (Tardaguila et al. 2021). Following 
trends in precision agriculture in other cropping systems, spatial can-
opy vigor data and apparent soil electrical conductivity (ECa) data have 
tended to be the main types of data collected (Arnó et al. 2009, Matese 
and Di Gennaro 2015). These data helped build systems for zonal man-
agement (sub-block) to promote differential management (Martínez-
Casasnovas et al. 2012, Targarakis et al. 2013, Bonilla et al. 2014) and 
have also been linked to production attributes, particularly grape yield 
and quality attributes (e.g., Lamb et al. 2008, Hall et al. 2011, Bonilla et 
al. 2015). With a few exceptions, most attempts to link ancillary canopy 
and soil data to vineyard production have focused on data collection at 
specific phenological stages. For example, the use of imagery around 
veraison, when vegetative vine development ceases in favor of repro-
ductive (yield) development, has supported estimates of vine size (e.g., 
Dobrowski et al. 2003, Drissi et al. 2009, Hall et al. 2011, Kazmierski et 
al. 2011). This is based on the assumption that at veraison, the maximum 
vine size for the season has been achieved, but the process of senes-
cence, which decreases vine photosynthetically active biomass, does 
not yet affect the canopy sensor response. However, from an in-season 
operational point of view, vine size information at veraison in many sys-
tems is too late in the season to perform operations that significantly 
alter crop load (vine balance) via canopy thinning. Avenues to effec-
tive vine management for targeted production goals (especially quality) 
are limited if they depend on information and decision-making at or 
after veraison.

For effective operational decision-making in-season, producers re-
quire information earlier in the season. Early- to mid-season canopy 
sensor data has been linked to crop production, although published 
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results have been variable and concentrated on wine pro-
duction systems in warm to hot climates (e.g., Pastonchi et 
al. 2020, Kasimati et al. 2021, Yu et al. 2021, Sams et al. 2022). 
These studies have also tended to focus only on univariate 
analyses, rather than formal multivariate model develop-
ment, between in-season canopy sensor data and produc-
tion attributes. Yield elaboration in grapes is known to be a 
multi-annual process, with primordia development for the 
yield in year n affected by vine conditions in year n-1 (Pratt 
1971, Laurent et al. 2021). Despite this well-known effect, 
current site-specific vineyard yield and quality models do 
not include year n-1 data.

The biennial fruiting effect in Vitis sp. is of particular im-
portance in systems where a production driver is limiting. 
Typically, this is either water in non-irrigated, hot climate 
production or temperature in cool climate production, al-
though poor management can lead to unbalanced vines in 
any production system. Concord (Vitis labruscana Bailey) 
juice grape production in the Lake Erie American Viticul-
tural Area (AVA) (https://www.ecfr.gov/current/title-27/
chapter-I/subchapter-A/part-9/subpart-C/section-9.83 
[accessed June 2022]), a cool climate region, operates un-
der such a temperature limitation, and the importance of 
managing crop load to achieve a sustainable and profitable 
annual production level is well understood (Bates et al. 
2021). If the fruit load set is too large for the vine size (i.e., 
the leaf area available to generate photosynthate), grow-
ers will often perform crop thinning (or be advised to crop 
thin) to ensure berry maturity at harvest and to protect 
the return crop the following year. Production parameters, 
notably the berry growth curve, and production practic-
es dictate that crop estimation and subsequent thinning 
practices are best performed at ~30 days after bloom in 
this AVA (mid- to late-July) (Bates 2003, 2017). Therefore, 
to make good crop thinning decisions, growers need infor-
mation on the amount of fruit set (yield potential), the vine 
size at this stage and, additionally, the spatial variability of 
both these attributes, which do not necessarily follow the 
same spatial patterning (Bates et al. 2018, Taylor et al. 2019). 
However, Lake Erie Concord grapegrowers do not have this  
information currently.

The absence of the right information in mid-July invari-
ably leads to uncertainty in crop thinning decision-mak-
ing. Action or inaction at this point has potential conse-
quences. Removing fruit in areas where the crop load is 
good immediately affects (decreases) profit, while not 
acting to remove fruit in overcropped areas has potential 
quality control implications at harvest (delivery of imma-
ture fruit) and affects the return crop and potential yield/
profit the following year. However, once the fruit is set, 
by dropping fruit the growers are reducing yield and po-
tential income, which they are often reluctant to do. Pro-
moting decision-making and good practices around crop 
load management relies on good information at the right 
time and, if it is to be done in a differential manner, good 
spatial information as well. At the moment, the Lake Erie 
Concord juice grape industry has no protocols or industry 

recommendations regarding the best type(s) of data and the 
best timing(s) of data collection to provide timely in-season  
crop load information.

Vegetative and reproductive development of any individ-
ual vine depends on the environment in which it is grown. It 
will be influenced by micro and macro-climatic effects and 
interactions with the soil and local terroir. The vine’s veg-
etative and reproductive development are also interdepen-
dent to an extent. However, both processes are influenced 
by different external factors at different times, so their 
relationship is not necessarily a direct linear relationship. 
For example, a large vine in a fertile part of a vineyard may 
have a low fruit load in a given year due to adverse weather 
conditions during development of floral primordia in the 
previous year. Vines will also naturally compensate and 
redistribute resources between vegetative and reproduc-
tive organs based on local, seasonal conditions. Thus, yield 
elaboration is complex. Canopy development also depends 
on multiple, variable environmental conditions, in particu-
lar, access to soil water and to thermal units. In this reality, 
and with increasingly larger access to spatial agri-data sets, 
the recent rapid rise in machine-learning (ML) algorithms, 
particularly non-linear methods, should provide insight 
into how to use new spatial agri-data to improve operational  
decision-making in vineyards.

Machine-learning algorithms have been widely applied 
to the issue of yield prediction in agriculture (Chlingaryan 
et al. 2018). In viticulture, ML has predominantly been ap-
plied in image processing for either berry or bunch count-
ing (e.g., Liu et al. 2020, Kierdorf et al. 2022, Palacios et al. 
2022) to assist with mid-season yield estimates. However, 
ML approaches are not limited to image analysis, but can 
be used to identify preferred predictors (variables) within 
models, and thus reduce data requirements (Xu et al. 2021), 
especially in situations where auto-correlated spatio-tem-
poral information is available (Nyéki et al. 2021). However, 
such applications have not yet been reported in viticulture.

Therefore, the primary aim of this paper is to compare 
common linear and non-linear ML approaches to site-
specific modeling of grape yield and vine size in Con-
cord vineyards, where vine size is defined as the pruned 
mass of first-year wood on the vine. By using site-spe-
cific, spatial historical information on crop load (yield 
and vine size in the previous year), spatial soil maps, and 
spatio-temporal canopy information throughout the 
growing season, the intent is to provide clear informa-
tion to growers on the optimal type and timing of sen-
sor data, in an operational setting, which will be required 
to provide the best information to inform site-specific 
decision-making in these vineyard systems. It was not 
the intent to develop or test the robustness and transfer-
ability of these models, as each vineyard system is likely 
to require local calibration to make effective predictions  
(Ballesteros et al. 2020).
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Materials and Methods
Site description

All data were collected from a 2.6 ha (6.4 ac) Concord 
vineyard located at the Cornell Lake Erie Research and Ex-
tension Laboratory (CLEREL) (42°22´N; 79°29´W; WGS84). 
The block is located on a north-facing slope with east-west 
oriented rows, which differ from the north-south norm in 
this region. Vines are planted with the industry standard 
spacing of 2.44 m between vines and 2.74 m between rows 
(8 ft vine × 9 ft row spacing, in the local vernacular), trained 
to a single-wire bilateral cordon (~1.83 m or 6 ft), and cane-
pruned to 100 to 120 nodes/vine. The trellis is supported by 
wooden posts after every third vine. The block is managed 
using commercial best practices (Jordan et al. 1980, Weigle 
et al. 2020) and is reserved for applied commercially-ori-
ented trials by the Lake Erie Regional Grape Program. The 
vineyard is not irrigated and there was no in-season canopy 
management (hedging) or yield thinning performed during 
the study (2018 to 2021).

Data collection
Sampling scheme

To simplify sampling and record-keeping and to better 
mimic commercial conditions, the sampling design was a 
semi-regular grid based on rows and ‘panels’ (three-vine 
groupings between wooden posts) within rows. Excluding 
the end rows and the end panels, where production con-
ditions are different, every second row was sampled, with 
every second panel sampled within these rows. Row lengths 
differed slightly (irregularly shaped block), but there were 22 
rows sampled with 14 to 15 panels per row, resulting in 321 
samples within the vineyard block (Figure 1).

Yield data
Yield data in 2018, 2019, 2020, and 2021 were collected 

during normal grape harvest operations with an OXBO 
YieldTracker system on an OXBO 6030 mechanical grape 
harvester (Oxbo International Corp.). Data from the yield 
monitor were geolocated with an Ag Leader 7500 WAAS 
corrected GPS receiver and collected with an Ag Leader 
1200 InCommand field computer. In 2018, the harvester 
was also equipped with an Advance Viticulture Grape Yield 
Monitor (GYM) system (sensor and data logger) linked to a 
WASS-corrected Ag Leader 7500 GNSS receiver. The GYM 
is an effective yield monitoring system in this region (Taylor 
et al. 2016). A comparison of the Ag Leader and GYM yield 
sensor data and maps showed a strong correlation between 
the two sensing systems in 2018 (r = 0.70, data not shown). 
The OXBO YieldTracker yield maps in all four seasons (2018 
to 2021) showed coherent patterning and were consid-
ered to be a good representation of the spatial yield vari-
ance in the block. In all years, the sensor yield data were 
adjusted to reflect the mean tonnage delivered from the 
field to the processing plant. The three target years had 
different mean yield profiles: 2019 was an average year (6.8 
Mg/ha) and 2020 was lower yielding (5.4 Mg/ha), resulting  

(with favorable conditions) in the establishment of an above-
average yield in 2021 (11.2 Mg/ha).

Pruning mass (PM) data
The mass of first-year pruned canes was collected and 

weighed for the entire panel at each of the designated 321 
sample locations in the vineyard. A panel is the distance be-
tween two posts in the vineyard row, which typically con-
tains three vines and is ~7.3 m (or 24 ft) long. Measurements 
of the panel associated with each sample point, rather than 
the individual vines at each sample point, were performed 
to avoid short-scale stochastic variance effects and were 
in line with local recommendations for mapping PM (Taylor 
and Bates 2012, Taylor et al. 2017).

Soil sensing data
In May 2019 and 2020 and June 2021, the vineyard was 

surveyed with a DualEM 1s sensor (DUALEM Inc.) mounted 
on a PVC pipe-based sled and towed behind an all-terrain 
vehicle (ATV). The sensor travelled along the center of every 
second interrow (~1.35 m from the line of the vine trunks 
and their supporting wires). ECa was recorded at two depths 
of ~0.5 m and ~1.6 m (shallow and deep, respectively). Sensor 
data were recorded with a GeoSCOUT X field data logger 
with an internal GPS receiver (Holland Scientific). The high-
resolution soil maps in all years were very similar (r > 0.95, 
data not shown), which was expected because the vineyard 
is in a cool-climate region and in spring (May/June), the soil 
is typically near field capacity following high precipitation 
from snowfall, with little evapotranspiration over the win-
ter months. Therefore, if the data are correctly collected, 
the maps should reflect stable textural differences across 
the block.

Figure 1  Location of the midpoint of the sampled panels within the 
2.6 ha study block at the Cornell Lake Erie Research and Extension 
Laboratory, Portland, NY.
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Phenology data
The experimental station tracks the dates of the main 

phenological stages for the region, including budbreak, 
bloom, veraison, and maturity/ripening profiles leading up 
to harvest. Dates of budbreak, bloom, and veraison were re-
corded at the 50% achievement date (Table 1). These dates 
were used to synchronize the calendar dates of the canopy 
surveys to the phenological stages.

Canopy sensing data
Canopy surveys were performed using the CropCircle 

ACS-430 (Holland Scientific Inc.) to sense the side curtain 
of the canopy, mounted on an ATV as described (Taylor et al. 
2017). The ACS-430 is a three-band active multispectral sen-
sor that collects reflectance information in the red (670 nm), 
red-edge (730 nm), and near-infrared (780 nm) regions of 
the electromagnetic spectrum. Two sensing systems were 
used and oriented to either side of the ATV to image both 
left and right (different rows) as the sensing platform passed 
down the interrow. Every second row was traversed by the 
ATV. Therefore, the sensors captured data from one side of 
every canopy row, i.e., both the sampled and non-sampled 
rows in the vineyard. For early-season surveys, before the 
side curtain of the canopy had started to develop, sensors 
were oriented at the high-wire cordon (~1.8 m height) then 
progressively lowered as shoots lengthened until a mini-
mum height of 0.8 m. There were eight, 13, and 18 campaigns 
carried out in 2019, 2020, and 2021, respectively, generat-
ing a relatively dense time-series of data, especially in the 
latter years.

Data analysis
Pruning mass data existed as manual measurements at 

each sample point; however, the yield, soil ECa, and canopy-
sensing data were collected from a moving vehicle at 1 Hz 
and generated irregular data points. To collate the PM and 
sensor data, the sensor data were interpolated onto the 321 
sample sites using block kriging (7 m2) with a local variogram 

structure using Vesper shareware (Minasny et al. 2005). The 
choice of block size reflected the panel area from which the 
PM measurements were derived.

For each data type, histograms of the data were gener-
ated and nonsensical values, e.g., yield <0 Mg/ha or nor-
malized differences vegetative index (NDVI) >1 and NDVI <0, 
were removed in a first step, before a manual light-touch 
data-cleaning was performed to remove outlying points. In 
all cases, less than 3% of data were removed in this step. 
For the ECa data, both the shallow and deep responses were 
interpolated. For the CropCircle response, the three bands, 
red (R), red-edge (RE), and near-infrared (NIR), were inter-
polated individually (i.e., three interpolations performed at 
each date), before the interpolated bands were used to con-
struct seven different vegetative indices (VIs) using combi-
nations of the three bands (Table 2). This made reconstruc-
tion of the various VIs relatively simple. An alternative, more 
laborious process would be to calculate each VI from the 
cleaned band data and then interpolate each individual VI 
(i.e., seven interpolations at each date). The band interpola-
tion approach was preferred here. The manually-measured 
PM and interpolated yield data were used to create Crop 
Load values for each site for 2018 to 2020.

After interpolation and processing, a spreadsheet was 
generated with yield and PM for four years (2018 to 2021), 
crop load (2018 to 2020), soil ECa deep and shallow (2019 
to 2021), and the seven VIs at multiple dates from 2019 to 
2021 (Table 3), which were all co-located on the center of 
the panel (three-vine section) in the vineyard that was the 
basic sampling unit. This formed the data set used in the 
modeling exercise.

Modeling
Stepwise multivariate linear regression (S-MLR) was se-

lected as the linear modeling approach to be tested, while 
random forest regression (RFR) was used for the non-lin-
ear approach. A stepwise approach to linear regression 
was used to avoid over-fitting with the large number of 

Table 1  Day of the year (and date) for three key phenological stages in 2019 to 2021 at the Lake Erie  
Research and Extension Laboratory. Bloom +30 is same date in July from the June date.

Year Budbreak Floraison (bloom) Veraison
2019 128 (08/05) 171 (20/06) 238 (26/08)
2020 136 (15/05) 166 (14/06) 234 (21/08)
2021 110 (20/04) 158 (07/06) 232 (20/08)

Table 2  Vegetative indices (VIs) calculated from the three available bands of the CropCircle 430 canopy sensor.

Name Abbreviation Formula Reference

Normalized differences vegetation index NDVI (NIR-R)/(NIR+R) Rouse et al. 1974

Simplified difference vegetation index DifVI NIR – R Adapted from Richardson and Wiegand 1977

Simple ratio (or plant cell density/relative veg. index) SR (PCD/RVI) NIR/R Jordan 1969

Normalized differences red-edge NDRE (NIR-RE)/(NIR+RE) Barnes et al. 2000

Modified simple ratio MSR R/sqrt((NIR/R)+1) Chen 1996

Red-edge chlorophyll index RECI (NIR/RE)-1 Gitelson et al. 2003

MERIS terrestrial chlorophyll index MTCI (NIR-RE)/(RE-R) Dash and Curran 2004

https://www.ajevonline.org/
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highly-correlated spatio-temporal VI data layers available 
in the models. For both approaches, four basic model con-
structions were tested. These were:

Model 1: Predictions using only historical vine production 
data (yield, PM, and crop load from the previous year, i.e., 
year n-1) and preseason soil information (deep and shal-
low ECa). This tests the hypothesis that vegetative and re-
productive development in year n is predominantly driven 
by the previous season’s (year n-1) yield and PM.

Model 2: Predictions using spatiotemporal in-season can-
opy observations from early- to late-season surveys. This 
tests the hypothesis that the evolution of the vine canopy 
in year n is the main driver of yield and PM in year n, i.e., it 
is in-season development, and not year n-1 development, 
that drives production.

Model 3: Combines the predictors from Models 1 and 2 to 
predict yield and PM. This tests the hypothesis that yield 
and PM in year n is influenced by production in year n-1 
and vine development throughout the season in year n.

Model 4: Presents a simplified version of Model 3, where 
canopy information is limited to a single survey just prior 
to the date of crop estimation in these vineyard systems 
(Bloom date + 30 days). This considers that multi-tempo-
ral surveys are not always feasible and the best time to 
generate information from a single survey is likely to be 
when canopy development is approaching maturity (full 
vine size), and just before growers need information to in-
form crop estimation.

RFR modeling
Random forest algorithms can be used for either classi-

fication or regression (Breiman 2001). In this study, to pre-
dict continuous vineyard variables (yield and PM), the RFR 
approach was used. Briefly, the random forest algorithm 
is a combination of decision trees (Rokach and Maimon 
2005). Each tree is generated from values taken randomly 
from the inputs available, making each tree slightly differ-
ent. The result of the ML algorithm comes from the average 
result of many trees (the number of trees is a parameter of 
the algorithm).

The RFR was run for each Model type (M1 to M4), respect-
ing the availability of predictor variables for each Model 
type. For model training, regardless of Model type, 10 itera-
tions were performed, with the data set randomly separated 
for each iteration into a training and a test data set, with 
70% of points assigned to the training set and the remain-
ing 30% to the test data set (equivalent to 224 and 97 sites, 
respectively). The output of the RFR for each Model type was 
used to calculate the score of explained variance (EV) be-
tween the observed (y) and predicted (ŷ) test data (Equation 
1) and mean absolute error (MAE) (Equation 2) as indicators 
of model performance.

Table 3  Dates of canopy sensing surveys during the three 
years of the study translated into phenological time (before or 
after budbreak, floraison, and veraison) to indicate the asyn-

chronicity of vine phenology between years. DABB, days after 
budbreak; DBF, days before floraison (bloom); DAF, days after 
floraison; DBV, days before veraison; DAV, days after veraison.

Date of 
canopy 
surveys

Timing relative to phenology

2019 2020 2021
06 May 16 DABB
10 May 20 DABB
14 May 24 DABB
16 May 8 DABB
21 May 17 DBF
26 May 18 DBF
27 May 11 DBF
31 May 20 DBF
01 June 13 DBF
03 June 4 DBF
07 June Floraison
09 June 5 DBF
10 June 10 DBF
15 June 1 DAF
16 June 9 DAF
17 June 3 DBF
24 June 4 DAF 17 DAF
26 June 12 DAF
29 June 22 DAF
01 July 17 DAF
09 July 25 DAF 32 DAF
15 July 31 DAF
19 July 29 DAF
20 July 31 DBV
24 July 28 DBV
27 July 24 DBV
01 Aug 25 DBV
03 Aug 18 DBV 17 DBV
11 Aug 9 DBV
16 Aug 4 DBV
21 Aug Veraison
30 Aug 4 DAV
03 Sept 13 DAV
07 Sept 18 DAV
14 Sept 24 DAV
16 Sept 27 DAV

Explained Variance = 			   (Eq. 1)

MAE =	 (Eq. 2)

The order and the power of each predictor variable se-
lected in the RFR was also extracted and the first five most 
powerful predictors recorded. RFR was implemented in 
Python using the package Scikit-learn (mainly Random-
ForestRegressor and metrics) (Pedregosa et al. 2011) with 
the following fixed parametrization: number of estimators 
(trees) = 150, maximum number of features the RF considers 
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to split a node = 40, minimum sample leaves in a node = 1 
leaf. These values were selected using a sensitivity analysis 
based on curve fitting to identify suitable values for these 
data and models.

S-MLR modeling
Full linear models using all relevant predictors for each 

Model type (M1 to M4) were constructed in R (R Core Team 
2022). The step function in the olsrr package (Hebbali 2020) 
was used to generate the most parsimonious model using a 
forward step approach and a threshold value of p = 0.01 to 
accept a new predictor into the model. Model evaluation was 
achieved by using a cross-validation with the same train-
ing and test data sets established for the RFR approach ap-
plied independently to the yield and to the PM-dependent 
variables. For each training-test pair (10 iterations), the S-
MLR model was constructed on the training set and then 
applied to the test set. For each Model and dependent vari-
able, the number and order of predictors selected in each 
of the iterations were recorded. The dominant predictor 
selected at each stepwise iteration, along with the number 
of times it was selected among the 10 iterations, was then 
extracted. The EV (Equation 2) from the observed and mod-
eled test data for the 10 iterations was calculated. This pro-
vided an equivalent estimate of the variance explained by  
each Model type.

Mapping
Maps of selected dependent and independent variables 

used in the modeling were generated by performing local 
block kriging with a local variogram for the high-resolution 

sensor data (yield, soil ECa, VIs), and using block kriging with 
a global variogram for the manual observations (PM), again 
using a 7 m2 block. All interpolation was performed in the 
Vesper freeware (Minasny et al. 2005). Post-interpolation, 
but prior to mapping, data values were standardized [0,1] 
across all layers using Equation 3 so that they could be pre-
sented on a common legend.

						    
(Eq. 3)

Where ystd is the standardized value for a given attribute 
and ymin and ymax are respectively the minimum and maxi-
mum values of y within the data (vineyard block).

Results
The direct observations (Table 1) and subsequent trans-

formations (Table 3) show the differences in phenology at 
given dates (days of the year). Budbreak was the most vari-
able phenological stage, with 26 days difference between 
2020 and 2021. However, as the season progressed, the dates 
of floraison and veraison tended to get closer between years. 
There were common dates for surveys between years, such 
as 9 July in 2020 and 2021, that showed phenological dif-
ferences with a seven-day difference from floraison (Table 
3). This illustrated a potential need to time data collection 
relative to phenology, particularly for temporal canopy sur-
veys, and not by date (day of the year), when determining 
preferred times for data acquisition in vineyard systems.

Table 4  Explained variance from cross-validation of four dif-
ferent models using different available inputs applied to two 
different regression approaches (stepwise-multivariate linear 

regression [S-MLR] and random forest regression [RFR]) 
across three years (2019 to 2021). The models were recali-
brated for each year before cross-validation using relevant 

available variables. The best-performing model in each year is 
indicated in bold; RFR results are in italics.

Predicted 
variable

Model 
type

Year

2019 2020 2021

Yield

M1 - S-MLR 0.000 0.428 0.280
M1 - RFR 0.006 0.508 0.539

M2 - S-MLR 0.387 0.565 0.457
M2 - RFR 0.558 0.685 0.577

M3 - S-MLR 0.484 0.670 0.538
M3 - RFR 0.592 0.712 0.619

M4 - S-MLR 0.149 0.465 0.275
M4 - RFR 0.254 0.554 0.543

Pruning mass

M1 - S-MLR 0.732 0.644 0.621
M1 - RFR 0.642 0.611 0.587

M2 - S-MLR 0.127 0.164 0.089
M2 - RFR 0.126 0.237 0.176

M3 - S-MLR 0.730 0.659 0.627
M3 - RFR 0.644 0.651 0.581

M4 - S-MLR 0.732 0.651 0.621
M4 - RFR 0.639 0.625 0.585

Table 5  Mean average error (MAE) (Mg/ha for yield and kg/
vine) from cross-validation of four different models that used 
different inputs (M1 to M4) applied to two different regression 
approaches (stepwise-multivariate linear regression [S-MLR] 

and random forest regression [RFR]) across three years (2019 
to 2021). The models were recalibrated for each year using the 
relevant available variables. The best-performing model in each 
year is indicated in bold; RFR results are in italics. The higher 

yield MAE in 2021 is associated with a much higher mean yield 
in this year.

Predicted 
variable

Model 
type

Year

2019 2020 2021
M1 - S-MLR 0.442 1.159 2.818
M1 - RFR 0.430 1.056 2.210

M2 - S-MLR 0.350 1.024 2.347
Yield M2 - RFR 0.278 0.836 2.015

M3 - S-MLR 0.316 0.892 2.213
M3 - RFR 0.267 0.800 1.899

M4 - S-MLR 0.397 1.114 2.831
M4 - RFR 0.350 0.968 2.197

M1 - S-MLR 0.082 0.131 0.142
M1 - RFR 0.093 0.143 0.148

M2 - S-MLR 0.146 0.217 0.221
Pruning mass M2 - RFR 0.146 0.206 0.211

M3 - S-MLR 0.082 0.128 0.142
M3 - RFR 0.092 0.136 0.151

M4 - S-MLR 0.082 0.131 0.142
M4 - RFR 0.093 0.140 0.149

https://www.ajevonline.org/


American Journal of Enology and Viticulture	— ajevonline.org	          Volume 74     Article 07400137 of 11

Taylor et al.	 Site-specific Vine Yield and Size Prediction

The EV (Equation 1) and MAE (Equation 2) were calculat-
ed for all model iterations (two dependent variables (Yield 
and PM) × four Model types (M1 to M4) × two regression ap-
proaches (S-MLR and RFR) (Tables 4 and 5). For yield model-
ing (Table 4), the RFR approaches consistently outperformed 
the equivalent S-MLR approach, with Model 3 (M3) gener-
ating the best results from the cross-validation approach. 
An analysis of the key predictors selected in the M3 RFR 
approach (Table 6) clearly showed a preference for canopy 
sensing information in the week before floraison, with this 
information selected in the top two strongest model predic-
tors in all three years. DifVI appeared to be the most com-
monly selected VI across the years at this stage, although it 
was not the only VI with a strong prediction power in any 
given year, e.g., RECI at four DBF (days before bloom) was 
selected in 2021. The yield in year n-1 was only of impor-
tance in 2021 and neither PM nor ECa were among the top 
five most powerful predictors in any year. The M1 model, us-
ing only historic information, had very poor prediction in 
2019 for both linear and non-linear approaches. This is not 
to discount the value of these layers, especially the soil ECa 
maps that often help interpret spatial production patterns, 
but rather to note that they were not particularly useful for 
this purpose. Given the lack of predictive power of the soil 
ECa layers and the (expected) inter-annual similarities in the 
layers, obtaining annual soil ECa scans is unlikely to to be of 
any real production benefit to growers.

For the PM modeling, linear modeling (S-MLR) performed 
better than the non-linear (RFR) approach, with M1, M3, and 
M4, all of which contained the PM in year n-1, performing in 
a similar manner (EV > 0.730). This is because the previous 
year’s PM was the dominant predictor of PM in the current 
season (Table 6). Model 2, using only in-season canopy data, 
generated poor prediction fits for both linear and non-linear 
approaches (EV < 0.237 for all years). Model 3 had slightly 
better fits (higher EV, lower MAE) than M1 and M4, based 
on the inclusion of some canopy sensor data in the model-
ing; however, there was no clear trend in model predictors 
identified across the three years to indicate a preferred VI 
to collect, or a preferred date of VI collection (Table 6). To 
complement the information in Table 6, which shows only 

predictors from the best-performing models, the top pre-
dictors for all model iterations (Models 1 to 4 with S-MLR 
and RFR for PM and yield) are provided (Supplemental Table 
1). These predictors should be considered together with the 
information in Tables 4 and 5 to determine the quality of 
prediction from each model type.

Discussion
The principal objective was to compare the accuracy of 

linear and non-linear algorithms to model site-specific 
grapevine yield and PM using various, mainly sensor-based, 
ancillary data layers. The non-linear RFR model worked bet-
ter to predict yield, while S-MLR was best at modeling PM. 
Yield determination in grapes is a complex process, start-
ing with primordia development during the previous sea-
son and modified by environmental and plant conditions, 
such as cluster number, cluster size (berries/cluster), and 
berry weight all the way through to the final harvest. It is 
a non-linear process and therefore is better modeled us-
ing a non-linear algorithm. In contrast, vine PM directly 
reflects the vegetative vigor of the vine during the season, 
which in turn is directly influenced by water and nutrient 
availability/uptake and, indirectly, by crop load. Water and 
nutrient availability to the vine is itself a result of seasonal 
conditions in non-irrigated cool climate vineyards. Since 
this trial involved no differential or variable rate manage-
ment to the soil or vines to externally influence PM and the 
crop load was “moderate”, general management created no 
extreme effects. Therefore, PM in this vineyard should be 
a simple response to seasonal growing conditions, i.e., it is 
a more straightforward, linear process. Consequently, the 
simpler linear model was still able to effectively model this 
vegetative development.

There were four model constructs (M1 to M4), using dif-
ferent potential combinations of input variables and evalu-
ated using linear and non-linear approaches. These input 
variables were key data layers related to production in the 
previous year (yield, PM, crop load) and the current season 
(soil and canopy). The choice of these constructs was based 
on potential access to these data by growers, with M3 being 

Table 6  The key predictors and timing of data acquisition (expressed in phenological time) in each year for the best-performing models 
identified from Tables 4 and 5. For the random forest regression (RFR), the first five predictors are shown, followed by their predic-

tive power from the cross-validation in parentheses. For the stepwise multi-linear regression (S-MLR), the order reflects the stepwise 
progression, with the dominant predictor at each step given along with the number of times (out of 10) it was selected during cross-

validation. Acronyms for vegetative indices (VIs) are the same as in Table 2.

Variable Model Year Principal (ordered) predictors

Yield

2019 DifVI_03DBF (0.115), SR_20DBF (0.0719), NDVI_20DBF (0.0549), MSR_03DBF (0.0531), 
SR_03DBF (0.0449)

M3 - RFR 2020 DifVI_13DBF (0.1667), DifVI_05DBF (0.1015), SR_05DBF (0.0547), NDVI_05DBF (0.0403), 
NDVI_18DBF (0.0341)

2021 RECI_04DBF (0.0911), Yield_2020 (0.0738), DifVI_04DBF (0.0469), NDRE_04DBF (0.038), 
RECI_11DBF (0.0245)

Pruning 
mass (PM)

2019 PM_2018 (10)

M3 - S-MLR 2020 PM_2019 (10), RECI_05DBF (10), MSR_13DAV (6)

2021 PM_2020 (10), Various VIs at various dates…
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the universal model that used all potential data sources. 
Given the complete nature of the inputs used, it is unsur-
prising that M3 produced the best results for the yield mod-
eling. However, relative to M3, M1 and M4 performed poorly 
in site-specific yield prediction. These models considered 
no (M1) or only one (M4) mid-season predictor. Model 2, 
which used only multi-temporal canopy data, outperformed 
M1 and M4 and had EVs and MAEs that approached those 
achieved by M3 in all three years. This similarity in yield 
prediction between M2 and M3 was expected, because the 
dominant predictors selected by the non-linear RFR model 
were VIs (Table 6). Of these predictors, VIs collected in the 
three weeks leading up to floraison (early-season canopy 
sensing) were identified as key predictors of yield. Several 
different types of VIs were selected across the three years; 
however, the DifVI index was the most common higher-or-
der predictor in the data set. This is in accordance with an 
industry-wide survey that assessed various VIs against PM 
in Concord vineyards in this region (Taylor and Bates 2021). 
However, the choice of DifVI mostly generated only a mar-
ginal gain in prediction quality due to the strong collineari-
ty between the different VIs. When canopy data was limited 
to only a late-season (veraison) survey (M4), yield predic-
tions were poor. These results clearly indicated that in this 
cool-climate, juice grape system, it is early-season canopy 

vigor, instead of mid/late-season vigor, that reflects yield 
development and final yield. Growers should target canopy 
sensing pre-floraison in these Concord production systems. 
The spatial pattern of canopy vigor around the time of crop 
estimation (30 days after floraison) was less representa-
tive of yield patterns in the vineyard block in all three years  
(lower quality of prediction with M4; Tables 4 and 5).

The 2019 yield prediction models that relied on 2018’s year 
n-1 data (M1 and M4) performed poorly compared to other 
models in 2019, or to the equivalent models in the other 
years (2020 to 2021). The initial reason for this was unclear, 
so these data and models were verified. The maps (Figure 
2) showed that there was a potential management effect in 
the southern part of the block, with greater (blue) vigor at 
veraison that translated into greater yield as well. This was 
an unintentional spatial management effect that will have 
confounded the model assumptions. Additionally, there was 
a significant amount of vine renewal work performed spa-
tially in 2018 that may also have impacted the site-specific 
predictive ability of the 2018 year n-1 data sets. By the end of 
the 2019 growing season, the vines had stabilized and these 
management effects had been removed or lessened, with 
the M1 RFR model explaining ~50% of the yield variation 
in 2020 and 2021. These results highlighted the effect that 
variable management in a vineyard will have on production 

Figure 2  Maps of some key dependent and independent model variables to illustrate spatio-temporal patterning in the block. All data are presented on 
a common standardized (0 - 1) legend based on the maximum and minimum values in each layer.
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modeling. It is also worth noting that explaining 50% of 
the variance in site-specific yield with a MAE of <3 Mg/ha 
would still be of value to growers in a management context 
if further work can demonstrate that the models are ro-
bust. However, the objective here was to identify trends and 
useful predictors for such models, rather than to develop a  
robust prediction model itself.

For the PM modeling, the results were very different. 
The year n-1 PM data were very dominant as a predictor 
of the current season’s site-specific PM. Vine size and PM 
in these systems is variable and its dynamics are related 
to crop load, with under-cropped vines gaining PM, while 
over-cropped vines will lose PM (Bates et al. 2021). Balanced 
vines will remain in a stable PM state. In general, the vines 
in this study block were balanced, with Ravaz index values 
(Ravaz 1911) in the low- to mid-20s for 2018 to 2019 and <15 
in 2020, which should result in little change in site-specific 
PM from year to year (Taylor and Bates 2013). The strength 
of the previous year’s PM in the PM models reflects this. As 
this vineyard block has been well managed (well-balanced 
vines), it is not possible with these data to infer if this re-
lationship will hold true in ‘unbalanced’ vineyards, where 
the crop load is low (<10) or high (>30). The relative failure 
of M2, which used only multi-temporal, in-season canopy 
information, and the lack of a clear trend in VI predictors 
in any year (Table 6), was unexpected (EV <0.2 in all three 
years; Table 4), given that late-season canopy vigor maps 
have been related to PM in these systems previously (Tay-
lor et al. 2017). This previous work did recognize that PM 
is highly variable (vine-to-vine) (Taylor and Bates 2012) and 
that errors (differences) in co-located sensor and manual 
observations are to be expected. The protocol of Taylor et 
al. (2017) for relating PM to sensor-based NDVI data did al-
low for up to 15% of the data to be removed before modeling 
to improve model fits. In this study, no data were removed 
or ‘cleaned’ prior to modeling, but the sample size was 10-
fold larger than that of Taylor et al. (2017), and it was ex-
pected that this ‘noise’ in the data would be accounted for 
in the modeling. However, this did not occur. Further work 
is needed to better understand the modeling limits here, 
but the clear indication is that relying only on VIs to model 
PM will be problematic. If vineyard blocks are well-man-
aged (i.e., maintained at an appropriate crop load), then the 
clear advice to growers would be to generate a high-quality 
PM map (from a combination of sensor surveys and manual 
observation) and to use this map going forward to predict 
PM. Subsequent years would likely only need minimal man-
ual sampling to update and correct the map.

The results from the yield modeling clearly showed 
that the most effective information for understanding 
yield came from proximal canopy sensing performed one 
to three weeks immediately before floraison (bloom). It 
is recommended that canopy surveys for yield predic-
tion and for identifying stratified sampling designs for 
crop yield estimation at 30 DAB should be done at this  
phenological stage. Prebloom canopy sensing for use in 
postbloom crop estimation has the added advantage of 

providing time for the data to be processed and inter-
preted before crop estimation is performed. The model-
ing showed that late-season canopy sensing or historical 
(year n-1) production data were less relevant than pre-
floraison canopy information to predict spatial in-season 
yield. In contrast, the best way to predict PM was to start 
measuring it. Canopy sensing at any phenological stage 
was not a good direct predictor of PM. Using late-season/
veraison canopy vigor and targeted PM measurements 
for local calibration (Taylor et al. 2017) is one way to start 
to obtain spatial PM data (and to start to build a tempo-
ral history). However, growers have yet to adopt such an 
approach widely and more automated, grower-friend-
ly measures of vine size (PM or leaf area index) remain a  
priority for the industry.

From an operational perspective, the quality of the mod-
els generated here can be considered to be suitable for 
commercial management purposes. The MAE of the best 
yield model varied between years, with differences in mean 
annual yields, but predictions were 2 to 8% relative error 
across the three years (absolute errors of 0.3 to 1.9 Mg/
ha or 0.1 to 0.8 tons/ac). The best PM modeling was also 
consistent, but not as good, with 15 to 20% relative error 
(0.08 to 0.14 kg/vine or 0.2 to 0.3 lbs/vine). Having iden-
tified preferred data types and timings of acquisition for 
site-specific modeling of yield and PM, further work is 
needed to understand how robust, local models can be de-
veloped that are adaptable/transferable between different 
production systems.

Conclusion
Sensor- and manually-collected data clearly showed that 

the spatial pattern of the current year’s yield potential is 
represented by the spatial pattern of canopy vigor in the 
weeks leading up to bloom, i.e., early-season vigor relates 
to yield potential (and final yield, without crop interven-
tions). Prebloom canopy vigor surveys should be used for 
directed mid-season crop estimates (30 days postbloom) 
and to model yield. The spatial patterning of vine PM in 
balanced vineyards is known to be stable and was shown 
to be best represented by historic spatial PM informa-
tion, rather than by spatio-temporal canopy vigor or by 
spatial soil information. Therefore, the best way to model 
and manage PM is to start measuring it. This still involves 
manual observations so more automated ways of PM map-
ping are required, although veraison canopy vigor map-
ping remains one way of approximating vine size. Grow-
ers should prioritize canopy vigor mapping prebloom and 
around veraison to provide the most useful information 
for crop load management. Complex site-specific process-
es, such as local yield development, were best described 
by a non-linear model, while local, in-season vegetative 
growth (PM), a less complex interaction, was best fitted  
using linear modeling approaches.
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Supplemental Data
The following supplemental materials are available for  
this article at ajevonline.org:

Supplemental Table 1  The key predictors and timing of data 
acquisition (expressed as phenological time) in each year from 
all models generated in the study. For the random forest regres-
sion (RFR), the first five predictors are shown, with the prediction 
power from the cross-validation given in parentheses. For the 
stepwise multi-linear regression (S-MLR), the order reflects the 
stepwise progression, with the dominant predictor at each step 
given along with the number of times (out of 10) it was selected 
in the cross-validation process. Acronyms for vegetative indices 
(VIs) are the same as in Table 2 in the main manuscript. Acro-
nyms for phenological stages are the same as in Table 3 in the 
main manuscript.
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