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Abstract: To build realistic models of social systems, designers of agent-based models tend to incorporate a
considerable amount of data, which influence the model outcomes. Data concerning the attributes of social
agents, which compose synthetic populations, are particularly important but usually di�icult to collect and
therefore use in simulations. In this paper, we have reviewed state of the art methodologies and theories for
building realistic synthetic populations for agent-based simulationmodels and practices in social simulations.
We also highlight the discrepancies between theory and practice and outline the challenges in bridging this
gap through a quantitative and narrative review of work published in JASSS between 2011 and 2021. Finally,
we present several recommendations that could help modellers adopt best practices for synthetic population
generation.
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Introduction

1.1 Agent-based simulations arewidely used in the social sciences to study complex socio-environmental systems.
Earlymodels tended tobeextremely simple andabstract, following theKISSapproach (Axelrod 1997). However,
there is a current trend which pertains to the development of richer data driven models following the KIDS
approach (Edmonds & Moss 2005). This development is driven by the increased use of models as predictive
tools in a decision support context. As in any agent-based model, agent behavior is considerably influenced
by agent attributes, as observed for example, in the ABM on COVID-19, which establishes a strong correlation
between the outcome of the disease and the structure of social contacts or age of agents (Hoertel et al. 2020).
However, since thesemodels must reflect realistic social dynamics, it is essential that agents’ attributes reflect
real attributes of entities that they represent. This aspect is o�enachievedby generating a synthetic population
of agents from the sociodemographic data available of the target population.

1.2 Schematically, a synthetic population is a simplified microscopic representation of the real target population:
This population is a simplified recordbecause it includesonly a limited set of attributes of this target population
– i.e., several attributes are not relevant considering themodeling objectives – and it ismicroscopic because all
the entities and even sub-entities in the case of multilevel populations (e.g., individual in households) are ex-
plicitly represented as individual records (Guo & Bhat 2007; Ziemke et al. 2016). Because of this simplification
and the need to vary scenarios, a synthetic population is never identical to the target population, but designed
to match various aggregate statistical measures of the target population, such as the proportion of men and
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women or the age pyramid. In this context, the key challenge of synthetic population generation is tominimize
any di�erence between generated and real populations in terms of the various indicators. This aspect however
involves several problems: (a) data incompleteness: Data are o�en di�icult to collect or do not fully represent
the target population, and (b) data incongruity and inconsistency: When data can be collected, they are usu-
ally in di�erent formats, with various encoding formats, at di�erent scales and locations (c) once a population
has been generated, it may be di�icult to identify the appropriate indicators to measure any correspondences
between the synthetic and target populations.

1.3 This article has twomain contributions to facilitate synthetic population generation in social simulations. First,
we have reviewed existing theories andmethods used to generate a synthetic population in a social simulation
model. Second, we have investigated the actual usage of thesemethods in the field. Specifically, we examined
several hypotheses by conducting a systematic review of models published in the last ten years in JASSS:

H-1 Despite increasing calls to base models on empirical data (Edmonds & Moss 2005; Chattoe-Brown 2014;
Flache et al. 2017), only a small fraction of simulation models actually base agent population generation
on intentional, well-designedmethodologies.

H-1a Initialization of agent attributes does not o�en use input data.

H-1b Agent attribute values are o�en generated using generic purpose distributions.

H-2 Descriptive models o�en rely on synthetic population generation methodologies.

1.4 The remaining article is structured as follows: Section 2 presents the methodological and theoretical back-
ground of synthetic population generation. Section 3 presents the review of related practices in the field of
agent-based social simulation. In Section 4 and 5, we have given several recommendations that can help im-
prove synthetic population generation practices.

Methods to Generate Synthetic Populations

2.1 This section introduces the field of synthetic population generation and lists themainmethods that have been
proposed thus far. For each proposed algorithm, we specify the required input data and expected generated
results. First, we introduce the scope of this work and clarify several concepts of synthetic population genera-
tion.

Context

2.2 We would like to clarify what this review is not: This study focuses on only the generation of entities and their
attributes, and does not consider the spatialization of those entities or generation of the social networks that
connect them. Readers interested in the latter can refer to Chapuis et al. (2018) for the localization of synthetic
agents and Amblard et al. (2015) for synthetic networks. Second, although synthetic population generation is
not theoretically limited to the generation of human populations, we have limited the scope of this study to
synthetic populations used in social simulation, which primarily encompasses populations of individuals and
households.

2.3 Several critical reviews on the subject have been presented (Huang & Williamson 2001; Ryan et al. 2009). this
review is an updated account of thework performed since then, focusing on the use of synthetic populations in
the field of agent-based social simulation. Many of existing procedures and methods for generating synthetic
populations (e.g., Felbermair et al. 2020 for synthetic population generation within MATSim, Hafezi & Habib
2014 for transportationmicrosimulation or Moeckel et al. 2003 for an influential TRANSIMS-related paper) per-
tain to a related but distinct field, i.e., transportation modeling, where ABM is one of the methodologies used
among discrete event simulation,microsimulation and other equation-basedmodeling approaches. While this
distinction does not a�ect the generality of the proposed procedures, it may influence the choice of tools and
outcome expectations.

2.4 One principle that has been used to classify synthetic population methods is the type of input data, as this
aspect is a crucial practical starting point: Whenmodelers select an appropriatemethod to generate a synthetic
population, they o�en make the decision based on available data. However, we consider it wise not to follow
the classical, mostly theoretical, view that divides the field according to data requirements, i.e., sample-based
vs. sample-free methods (e.g., Lenormand & De�uant 2013; Ye et al. 2017). Several algorithms can be relevant
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with or without a sample, such as Bayesian-based generation (Sun & Erath 2015), while classical algorithms,
such as the iterative proportional fitting (IPF) procedure (see Subsection 2.8), do not need to be used in the
generationprocess. Therefore, insteadof the inputdata type,weset thedistinguishingcriterionas the synthesis
technique to either create the properties of the entities or reproduce known real entities, termed as synthetic
reconstruction (SR) and combinatorial optimization (CO), respectively.

2.5 The first approach is basedon the ideaof synthetic reconstruction (Wilson&Pownall 1976) and consists of build-
ing populations through the randomgeneration of individual characteristics. This process is usually conducted
by drawing attribute values either from the available distributions (Gargiulo et al. 2010; Barthelemy & Toint
2012) or from an estimated joint distribution based on techniques such as the IPF algorithm (Stephan 1942) or
the Markov chain Monte Carlo techniques (Casati et al. 2015). When individual profiles are available, the gener-
ation can be a replication of the individual profiles to fit the macroscopic descriptors available. This approach
refers to combinatorial optimization (Williamsonet al. 1998). Although it is less popular, several promising tech-
niques have recently been established (Harland et al. 2012; Ma & Srinivasan 2015). Figure 1 summarizes the key
ideas behind eachprocedure: As shown in the le�part of the figure, theCOapproachultimately reproduces real
records of individuals to fit a desired global statistical state of the synthetic population. In contrast, as shown
in the right part of the figure, the SR approach is centered around extrapolation techniques to build the most
relevant underlying distribution to draw synthetic entities from.

Figure 1: Graphical description of the two main methods to build a synthetic population, i.e., combinatorial
optimization (CO) on the le� and synthetic reconstruction (SR) on the right

2.6 The two techniques are paradigmatic, meaning that they define the principles of an approach to build a syn-
thetic population rather than a procedure that may be applied to generate it. Therefore, most of the reviewed
procedures in this section deviate from the basic principles of CO and SR. For instance, SR techniques can be
used to enhance the results of the CO algorithm to add new information to an existing synthetic population
(Thiriot & Sevenet 2020) or use CO techniques to mix SR-based synthetic populations at several scales (Huynh
et al. 2016; Watthanasutthi & Muangsin 2016). In addition to combining these approaches, many models build
on the concepts of one technique, for instance, by using weights attached to individual records of microdata to
build the targeted marginal objective in the CO perspective, known as re-weighting of the population sample
(Tanton et al. 2014; Yameogo et al. 2021), or by using statistical learning techniques, such as copula functions
(Jeong et al. 2016) or hierarchical mixtures (Sun et al. 2018) to build the underlying distribution of attributes in
the SR perspective. In both cases, the procedure follows the concept of CO and SR approaches, i.e., to replicate
known individual entities from a sample of real records and draw characteristics of the synthetic entities from
an estimated distribution of attributes, respectively.

2.7 In the following subsections, we have presented a panorama of studies of synthetic population generation for
use in agent-based modeling. Our perspective first explores the available data before the generation process:
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We first review typical data that can be used to generate a synthetic population. We then describe the main
algorithms and techniques to generate a synthetic population from these inputs, mainly focusing on the SR
and CO archetypal methodologies. Finally, we conclude the section by discussing how researchers assess the
quality of the generated synthetic population.

First step: Working with data

2.8 To realize synthetic population generation, researchers usually adopt two types of data. First, macrolevel data,
whichconsist ofdistributions (incomedistribution, age structure, etc.) or aggregatedvalues (averageage, quan-
tiles of revenue, etc.); and second, data that consist of a set of individual records at the microlevel that repre-
sents a portion of the whole population.

Macrodata descriptors

2.9 The first type of data may be available as a contingency or frequency matrix known as a distribution of at-
tributes. For example, a cell of the distribution matrix could be the number or proportion of male laborers
aged between 16 and 24. Thematrix is usually presented as table data in which the columns and rows describe
attributes such as the age and gender, specified using categorical values, e.g., under 5 years old ormale/female,
respectively. Thedata tablemayhave anunlimitednumber of dimensions and reflects the jointmultiwaydistri-
bution/contingenciesof attributes. However, thedataareo�enscattered, that is, onemayaccess several tables,
eachdisplaying fewattribute relationships. Becauseof thedata heterogeneity associatedwith populations, the
table o�en has missing values, usually in the form of unrecorded relationships between attributes (attributes
that are not present in every data table). In certain cases, thedata contentmaybe relative to a specific attribute,
especially in terms of the spatial distribution, for example, the proportion of males and females per ward. In
this case, the frequency cannot be generalized andmust be used according to the reference attribute distribu-
tion. A related issue arises when the attribute has a divergent encoding form across scattered data tables: for
example, onematrix that crosses age encoded by range of 5 years with gender, and anothermatrix in which the
age is encoded by custom ranges, as is usually the case when crossed with the occupation status; in this case,
the age usually start at the legal age towork and is grouped into carrier dependent age ranges (e.g., 16-24, 25-35
or above 65).

2.10 Another type of macro data is the statistical aggregated data, such as the average, median or quantile value of
an attribute. These data concern a single numerical attribute, such as the age, salary or size of the households.
Suchdataare classically ignored in synthetic populationgenerationbuthavebeenemployed in recentmethods
(Gallagher et al. 2018; Saadi et al. 2016).

2.11 Most national statistical institutes release such data with open access. The data are o�en updated each year
and reflect many social dimensions, such as work, consumption or opinion, in addition to basic demographic
attributes.

Microdata descriptors

2.12 The second type of data represents a limited sample of the whole population: The data can be composed of
individual records of 1%, 2%, 5%, and in rare cases, 10% ormore of the population. Becausemicrodata directly
depict real individual characteristics, they are o�en limited in scope due to practical and ethical considerations,
either by the number of individual records or number of characteristics per individual, and in most cases, on
both points. In certain cases, the records represent a class of entities rather than a particular individual and
are assignedweights that represent the degree of importance of this class of entities in the sample, i.e., entities
with the same vector of attribute values, considering the limited scope of represented attributes.

2.13 Samples or microdata are o�en presented as table-based data, in which each row represents an individual
entity, andeachcolumnrepresentsanattribute forwhich theentityhasaparticular value. Asmentionedbefore,
when rows do not refer to individual entities but a class of entity, a column is dedicated to the weights that the
type of entity represents in the overall sample.

2.14 Just likemacro-datadescriptors, themicrodataof apopulation canusually be accessed throughnational statis-
tical institutes on demand. A notable initiative led by the Integrated Public UseMicrodata Series (IPUMS)makes
it possible to freely access (requires identification) country-level sample data for approximately 100 countries
worldwide.
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Remarks on the data processing step in synthetic population generation

2.15 Most of available tools to generate synthetic populations have loose or heavily constrained ways to define the
required input data. For instance, the iterative proportional updating (IPU) procedure proposed in Ye et al.
(2017) must be fed with Public Use Microdata Series data (or PUMS, i.e., a sample of individual records with
household identifiers, specified by the US census bureau), whereas the SPEW library (Gallagher et al. 2018) re-
quires IPUMS microdata. In other words, even if modelers do have microdata, these must be formated in the
style of the US-based census micro-data. Generalizing the principle means that for each synthetic population
generation procedure, it is necessary to preprocess the data and adapt it to a specific data format. In this con-
text, the existing synthetic population algorithms opt for one of two perspectives: focus on loosely defined
types of data or manage a unique source of data. For the former approach, a considerable amount of e�ort is
necessary to adapt data to the processing pipeline. The latter approach forces people to rely on a certain data
format, leading to data manipulation to fit the required format and type, which is not always possible. Even if
no processing pipeline can handle every data format, engaging in the generation of a synthetic population will
always require data preprocessing to address several limitations.

2.16 In this section, we have summarized the major issues encountered by modelers interesting in building a syn-
thetic population based on available loosely structured data.

2.17 Data incompleteness: The first issue relates to the missing parts in the data. This aspect is critical because it
represents the principle of population synthesis: having a complete view of the entities’ attributes ensures the
generation of the best possible synthetic population by simply reading the source data. In this regard, having
access to a sample of the targeted population is o�en a simple and e�ective technique to build a synthetic pop-
ulation, which requires simply initializing agents as the exact reflections of individual records. Whenmodelers
want to adapt thesemicrodata toparticular constraints (e.g., specified spatial extensions, creationofmore indi-
viduals than those in the data, or use of statistical weights attached to records), to add unrecorded attributes or
when there is no sample available, missing datamust be identified. Inmost cases, the lack of data is expressed
by unrecorded relationships between attributes, and synthetic reconstruction attempts to combine multiple
sources to compensate for this lack of information.

2.18 Data incongruity: When several piecesof information target the sameattributebutwith various encoding forms,
there exists a mismatch between data records. For example, age can be encoded in various forms from contin-
uous integer to categorical values of various ranges, and each range can be used di�erently when crossed with
other attributes. For example, in the data provided by the French Institute of Statistics (INSEE), the age category
begins at 16 and ends at 74 when crossed with professional status, whereas it is usually expressed as an integer
when crossed with gender.

2.19 Data inconsistency: Available data can be present in various shapes, formats and contents. Except in the sce-
nario in which modelers can base the generation process on a single source, data are usually scattered into
pieces of information that first require harmonization to be used in conjunction for the population synthesis
process. Generic tools to generate synthetic population, e.g., those proposed by Gallagher et al. (2018) and
Chapuis et al. (2018), emphasis this harmonization step. In contrast, most influential theoretically proposed
approaches in this domain minimize or simply ignore this aspect (Müller & Axhausen 2011; Ye et al. 2016; Sun
et al. 2018). In particular, the approaches are based on a given and controlled set of data, and thus, the proce-
duremay not be e�ective when slightly di�erent data are input. This aspect is a key concern for the usability of
the proposedmethods in generating synthetic populations.

Second step: Generation of a synthetic population

2.20 In this sub-section, we describe the main procedures for generating synthetic populations in agent-based so-
cial simulations. The section involves two subsections: The first sub-section focuses on techniques similar to
SR principles, in which the generation process is based on the estimation of the best possible underlying dis-
tribution of attributes; the second subsection is centered on techniques related to CO principles, in which the
generation process is based on the available individual records of real entities to reproduce in the synthetic
population.

Synthetic Reconstruction (SR)

2.21 SR defines a set of methods that reconstruct individual entities. From the perspective of SR generation, syn-
thetic individuals are attribute vectors and the generation process consists of fulfilling each individual vector
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with appropriate values. We detail this generation procedure known as sampling in the following sub-section.
In thenext sub-section,wediscussdistributionestimationalgorithms that canbeused to facilitate the sampling
procedure.

2.22 Sampling procedure: Sampling methods include all methods based on the drawing of records associated with
givendistributions of probabilities. When applied to synthetic population generation, sampling is performed to
determine the characteristics of individuals using discrete distribution of probabilities. In only very few cases,
continuousdistributioncanbeused. Samplingcanbeperformedbyselectinganentire vectorof characteristics,
e.g., an individual, or by gathering separately drawn characteristics.

2.23 The most basic sampling technique is the Monte Carlo method (Harland et al. 2012) that uses raw input data
knowledge regarding the distribution of attributes. This default technique can be labeled direct sampling (DS)
to emphasis that it relies on the raw available data. Individual characteristics can either be drawn sequentially
or several at a time if the input data include records on relationships between attributes. However, with the
increase in the number of population attributes, multiway joint distribution becomes infeasible. Therefore, a
realistic dependency structure between attributes must be determined upstream. Subsequently, the synthetic
population can be generated iteratively using Bayesian rules on conditional distributions (Gargiulo et al. 2010).
Hierarchical sampling (HS) (Barthelemy & Toint 2012) is the most basic model to account for this type of sam-
plingmethod. This solution is extremely flexible, but the usermustmanually define the hierarchy of attributes:
which attribute(s) should be drawn first, followed by the other attributes to be drawn given the previously de-
termined attribute value(s), to the last attribute.

2.24 The use of a Bayesian Network (BN) in synthetic population generation extends and generalizes the principle of
HS by using a graphical model (Sun & Erath 2015). BN-based samplers work iteratively, drawing characteristics
starting from the root node(s) and continuing down the network path of the graphical model. Such samplers
have a notable advantage compared to HS as they can manipulate classical learning techniques to automat-
ically determine the graphical model and/or missing parameters (see Paragraph 2.30). This approach is very
flexible in terms of input data: it is relatively easy to learn parameters of the BN frommacro and/or microdata
(Thiriot & Kant 2008). The graphical model can be retrieved from the distribution of attributes when they are
available but must be estimated when initialized using microdata (Sun & Erath 2015).

2.25 Recently, several contributions (Farooq et al. 2013; Casati et al. 2015; Saadi et al. 2016) have launched a new
trend in SR, based on the use of Markov Chain Monte Carlo (MCMC) methods. The Gibbs sampling algorithm
(Farooq et al. 2013) has been used to directly sample individuals using a simulated distribution throughMarkov
chains. Combinedwith a fitting algorithm, this procedure can generate complex and reliable synthetic popula-
tions (Casati et al. 2015).

2.26 In addition, SR methodologies based on graphical model such as HS, BN and MCMC, are suitable in cases in
whichmodelersneedamultilayeredsyntheticpopulation. Incontrast to thebasicMonteCarlo samplingmethod-
ologies, the graphical model can mix items – i.e., the nodes with attached parameters or states with transition
state probabilities – to assess the attribute probability distribution of several types of entities. For example,
Sun & Erath (2015) generated individuals into households using a unique graphical model to represent the dis-
tribution of attributes for both types of entities, while Casati et al. (2015) generated the same type of synthetic
population using a Markov Chain model to represent both individual and household entities.

2.27 Distribution estimation algorithm: These algorithms sample characteristics from known distribution(s) of at-
tributes. A key drawback is that all unknown relationships between attributes are statistically independent in
the generated synthetic population. Because a higher distribution quality corresponds to a superior sampled
population, the estimation of the underlying multi-way joint distribution of attributes can enhance the sam-
pling output. In the literature, this procedure is also referred to as the fitting step in SR methodologies. We
would like to emphasize that this step is not mandatory, andmany SR algorithms, such as DS or HS, do not use
distribution estimation algorithms. Recently, algorithms such as the Gibbs sampling MCMC, which is a distri-
bution estimation and sampling technique in one framework, have been adopted. Here, we have reviewed the
most commonly used techniques to estimate the underlying multiway distribution.

2.28 The iterative proportional fitting (IPF) (Beckman et al. 1996) process is widely used in the domain of synthetic
population generation (Müller & Axhausen 2010). The algorithm fits each cell of a n-dimensional matrix (dis-
tribution of attributes) according to knownmarginal controls (Stephan 1942). The algorithm uses sample data
as a seed to fill the matrix that describes the distribution of attributes, and iteratively updates the matrix cells
to fit the known contingency dimensions. For more details regarding the mathematical description and new
insights, please refer to the work of Lovelace et al. (2015).

2.29 IPF has been criticized in many aspects, including the “zero cell problem” (Choupani & Mamdoohi 2016), the
“curse of dimensionality” (Casati et al. 2015) and potential non-convergence of the algorithm. The most no-
table issue, however, is the inability of considering multiple statistical levels of constraints – i.e., multi-layered
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populations (Guo & Bhat 2007). Hierarchical IPF (Müller & Axhausen 2011) and IPU (Ye et al. 2009) have been
developed to overcome this issue. These methods compute the factors and weights associated with individ-
ual and household records either iteratively or by using household and individual categorization, respectively.
The basic idea of proportional updating is the same as that of the original IPF procedure. The main di�erence
pertains to the definition of the matrix dimension and marginals. These techniques have been developed in
the narrow context of individuals in households and have only been usedwith a two-layered population. More-
over, these approaches necessitate preprocessing of the input data to fit the algorithm requirements and are
extremely stringent regarding the type of data needed: sample and aggregated data must be available at both
the individual and household levels.

2.30 Recently, MCMC (Farooq et al. 2013) and BN (Sun & Erath 2015) models have been used to represent the pop-
ulation distribution of attributes. Both framework provide the user with a graphical model and techniques to
estimate themissing data. For example, the Metropolis-Hasting algorithm can estimate themultiway joint dis-
tribution through the MCMC procedure (Kim & Lee 2015), while several fitness-based learning algorithms can
be used to estimate the BN graphical model and its parameters (Sun et al. 2018). These twomethodologies can
help establish sampling algorithms based on a Markov chain or Bayesian network and joint/conditional distri-
bution estimation techniques that can be used for single-layered populations andmultilayered populations.

2.31 Emerging deep learning trends: The last addition to the set of SR techniques are deep learning generativemeth-
ods. The use of a deep neural network (DNN) is straightforward. A DNN refers to as a set of techniques to learn
an extremely sophisticated network embedded version of the underlying distribution from a vector based rep-
resentation of records in a data set. Here, the autoencoder approach is particularly e�ective for data synthesis.
The concept of suchDNNs is to train twonetworks. The first networkdecreases thedimensionality of thedata to
a bottleneck representation, while the second network expands this shortened representation to a fully explicit
record. Usingunsupervised learning techniques, these twoadversarial networks can learnhow togeneratenew
records and have been used in the context of transport-related research, especially in the form of a variational
autoencoder (VAE) (Garridoet al. 2020). However, the learning curveof suchalgorithms is a limitation. Although
these algorithms are e�ective when provided with an extremely large set of data, their performance is inferior
when there are few data records, there are missing data (i.e., data incompleteness) and they appear in various
shapes and format (i.e., data incongruity and inconsistency), as is usually the case in population synthesis (see
Subsection 2.8).

Combinatorial optimization (CO)

2.32 CO methods draw individuals from a sample, with or without replacement, to satisfy a fitness criterion. This
convergence criterion is usually built using input data regarding the distribution of attributes at themacrolevel.
In the following sub-section, we have briefly examined the fitness computation procedures and optimization
algorithms used to monitor CO-based generation.

2.33 Fitness computation procedures: The objective of fitness computation is to assess the distance between the dis-
tribution of attributes in a generated population and information available regarding the real distribution of
attributes. The fitness can be computed using two types of aggregations: Numerical aggregation, based on an
aggregated account of distance, such as the standard root mean square error (SRMSE) (Otani et al. 2010); and
categorical aggregation, based on a Hamming-like distance, for example the total absolute error (TAE), which
is the sum of misclassified records in a synthetic population (Williamson et al. 1998). In most cases, the fitness
indicator is similar to that used to evaluate the quality of the generated population (Subsection 2.38). Hence,
the CO principle is to maximize the general quality of the generated synthetic population through an iterative
optimization process. A custom fitness function could be used based on several indicators, such as the statis-
tical moment on di�erent attributes (e.g., quartile of income or mean age), combined with several well-known
indicators such as SRMSE and TAE. In most cases, a single aggregated fitness criterion fulfills the requirement
even if multi-criteria fitness function could be used. However, these functions are di�icult to monitor andmay
considerably increase computation time. Finally, although fitness computation can be realized using only raw
input data, CO methods generally rely on a distribution estimation algorithm such as IPF (Voas & Williamson
2000) to enhance the knowledge regarding the targeted distribution of attributes.

2.34 Optimized sampling algorithm: In principle, all fitness-based optimization algorithms can be used to generate
a synthetic population from a CO perspective. Simulated annealing (Harland et al. 2012), hill climbing (Kurban
et al. 2011), genetic algorithms (Said et al. 2002) and greedy heuristic (Srinivasan et al. 2008) approaches have
been used in this context. The procedure involves the establishment of an initial random population from a
sample and iterative modification of the initial solution to obtain a higher fitness (Williamson et al. 1998). The
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mechanism that changes the population depends on the algorithm andmodeler’s choice. Themost commonly
used strategy is to swap a randomly selected individual with a potential replacement individual; however, the
scope is not limited to this transition function. For example, in their hybrid solution to synthetic population
generation, Barthelemy & Toint (2012) modified the individual’s characteristics to enhance the overall fitness.
Globally, the crucial concept is to compute a close solution (o�en termed a neighbor) and move along a path
of randomly selected solutions to find the most satisfying solution. No theoretical requirement is imposed on
the movement of one solution to another, and several individuals can be swapped along with stringent selec-
tion criteria (for example, two individuals who have vectors of attributes with a given Hamming distance in
their respective vectors of attributes can be swapped). In the optimization process, genetic algorithms have
not been widely used but appear to be promising and flexible candidates (Williamson et al. 1998). These algo-
rithms maintain multiple solutions and combine them iteratively to achieve a superior solution. Unlike sim-
ulated annealing, tabu search or hill climbing algorithms, genetic algorithms are less susceptible to be stuck
in local optimal solutions (Otani et al. 2010). However, these algorithms involve a large number of parameters
and require considerablemodeling e�ort. Notably, the overall optimization procedure from the COperspective
depends considerably on the modelers’ choices regarding the fitness criteria and generation and exploration
of neighbors’ solutions. These questions do not have default or basic answers and must be addressed by the
modelers.

Last step: Validation of the synthetic population

2.35 Validation is usually performed considering the distancemetric between generated and inputmarginals for the
attributes of synthetic entities, e.g., distance between the distribution of age in synthetic population and in-
put data regarding the distribution of age. In most cases, the quality of the synthetic population is assessed
using the same dataset that has been used for the generation process. Hence, the validation of the synthetic
population is performed out bymeasuring the distortion introduced by the generation process using the afore-
mentioned distance metric. To this end, several indicators have been proposed.

2.36 Indicators: The total absolute error (TAE) is the simplest quality indicator. This error is the record of misclassi-
fied entities in the synthetic population (Williamson et al. 1998), with the misclassification evaluated using the
absolute di�erences in the table or matrix cell. The TAE index examines the number of entities with particular
attribute characteristics, such as being male or unemployed, and compares it to the number of people with
these characteristics in the targeted population. When the relationships between the attributes are available,
the indicator can examine the cross-classification, such as married males aged between 10 and 24 years. As an
absolute indicator, TAE may be di�icult to interpret. To alleviate this di�iculty, the proportion of good predic-
tion (PGP), which is the proportion of misclassified entities, can be used. In this case, the TAE is divided by the
maximum absolute error that depends on the TAE computation and known relationship between attributes in
the input data, i.e., the number of “classes” available in the input data and the number of classes compared to
assess TAE.

2.37 In addition to the error for the overall population, the absolute average percentage di�erence (AAPD) or relative
absolute error (RAE) can be considered to assess the average disruption introduced by the generation process.
In contrast to PGP and TAE, these indicators focus on the expected error for any class of attribute (or combina-
tion of attributes) characteristics. Moreover, it would be interesting to examine the standard deviation to better
understand how misclassification is distributed along the distribution of attributes. The (standard) root mean
square error (RMSE or SRMSE) is the most commonly used indicator. This indicator is similar to the two pre-
ceding indicators as its core mechanics is to aggregate the error over each class of records in the input data.
However, this value can be computed in several ways, rendering it complex to setup and understand in the con-
text of synthetic population; see Zhu & Ferreira (2014), Müller & Axhausen (2011) and Otani et al. (2010) for three
diverging definitions.

2.38 Morepromising but complex indicators include the relative sumof squaredZ-score (RSSZ) (Huang&Williamson
2001) and RSSZ* (with amodified Z-score) (Williamson 2012). These indicators can aggregate both errors for the
entire population and each class of records into a single indicator.

2.39 Table 1 presents an overview of the reported fitting measures used to assess the synthetic population qual-
ity. We have attempted to provide synthetic information regarding these measures: the type of di�erence that
the measures encode (relative or absolute), the scale at which these measures operate (global or local) and a
synthetic mathematical notation. It is di�icult to specify a unique notation to describe how each measure is
computed, mostly because di�erent authors use their own notation and there is a lack of homogeneity in the
definition of certain measures. For simplicity, we denote a vector of attribute values as x, whereX is the set of
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all possible vectors, Tx (T ′x) is the actual number (proportion) of known real entities with vector x andEx (E′x)
is the estimated count (distribution).

Name Type Scale Formulation

TAE Absolute Global
∑X

x |Tx − Ex|

PGP Absolute Global
∑X

x Tx≡Ex

|X|

AAPD Relative Global
∑X

x |Tx − Ex|/Tx

SRMSE Relative Global
√∑X

x (Tx−Ex)2∑X
x Tx

RSSZ Relative Local zx =
E′

x−T
′
x√

T ′
x(1−T ′

x)/Tx

andRSSZ =
∑X

x
Z2

x

Cx
withCx the 5%χ2 for x ∈ X

Table 1: Main indices used to assess the synthetic population quality, with the name of the measure, type of
measures and scale of reference to build thesemeasures. We provide an abstract formulation of each indicator
to ensure that every indicator can be examined in the context of the other indicators. For details regarding the
computation, please refer to the previously cited studies.

2.40 For an overviewof indicators to assess the synthetic population goodness-of-fit, readers can refer to the related
works focusing on that point, e.g., Voas & Williamson (2000) and Timmins & Edwards (2016).

Synthetic Population Generation in Social Simulations

3.1 Asmentioned in the previous section, manymethods have been established to build synthetic populations. As
described in the following sections, we investigated how these methods are actually used by social simulation
modelers. To answer this question,we analyzedpublishedmodels and identified themethods used to generate
the set of simulated agents.

3.2 In general, performing such analyses is time consuming because it requires the examination of the models re-
garding the initialization of agents and the code to identify the actual algorithm(s) used to generate agents’
attributes. Following a semisystematic literature reviewmethodology, we focused onmodels published solely
in JASSS. This method is semisystematic because it limits the search to resources published in a single jour-
nal, while relying on the systematic framework to filter and select relevant articles and extract and analyze the
content of the models.

3.3 We reviewedpapers published over ten years in JASSS as an indicator of the practices of social simulationmod-
elers related to synthetic agent population generation. This review was limited to a single journal for two rea-
sons: First, this journal is a key resource in the field of social simulation, and second, a canonical systematic
search of thousands of publication titles yielded certain results onmethodological aspects, but almost none on
the actual initialization of social entities in simulation models. For instance, as of July 2021, a Google Scholar
searchwith "synthetic population generation" returnedmostly theoretical papers presenting a dedicated algo-
rithm or approach to generate a synthetic population.1

Methodology

3.4 With the exception of the search phase, we chose to adhere to the requirements of systematic review and the
PRISMA statements (Moher et al. 2009). These requirements included the selection of relevant articles based
on a careful reading of the titles, abstract, and/or part of the article (selection phase in Screening Subsection);
definition of a content extraction framework to build a coherent set of data from the relevant articles (content
extraction phase in Extraction Subsection) and systematic analysis of the recorded content using a quantitative
and narrative analysis review (analysis, synthesis and review phases in Section 3.11). Finally, we summarized
the gaps and lessons learned from the practices to identify issues and challenges in using synthetic population
generation in the field of agent-based social simulation.
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Screening

3.5 Themaincriterion for selecting relevantpapers for theanalysisphasewassimple: papers inJASSS that included
a simulation model description were considered eligible. We excluded, a priori, all review papers and contri-
butions that were not based on a simulation model, for example, a theoretical proposal such as that of Jager
(2017). In several proposals, although a simulationmodelwas included, themain focuswas not themodel itself
but either the analysis of the simulation (e.g., Thiele et al. 2014), extensions of existing models (e.g., Taghikhah
et al. 2021) or an application of a generic framework (e.g., Bourgais et al. 2020). Conversely, many papers pre-
sented theoretical models, which were not prima facie concerned with synthetic population generation due to
the abstract nature of the simulated entities. Nevertheless, we chose to include these papers in the analysis
to identify how modelers in this context choose to obtain the value of agents’ attributes and how this aspect
relates to more refined synthetic population generation practices.

3.6 Moreover, we analyzed articles published between the 3rd issue of 2011 (June 2011) and the 2nd issue of 2021
(March 2021, the last available issue when this search was conducted). This range involved 478 articles spread
over 40 issues, among which 342 featured a simulationmodel. Figure 2 presents the quantitative results of the
eligibility step.

Figure 2: Number of articles per issue, with the proportion of items featuring (or not) the description of a simu-
lation model in blue (gray).

3.7 Despite the wide variety in the number of papers per issue, most issues were composed of amajority of papers
describing a simulationmodel (between 3 and 17), with the exception of two special issues. Among the selected
articles, 10 focus on the synthetic population, i.e., the main objective of the article is to present a method for
generating a set of representative agents based on demographic data (Yameogo et al. 2021; Wickramasinghe
2019; Smith et al. 2017;Huynhet al. 2016; Ye et al. 2016; Lovelaceet al. 2015; Lenormand&De�uant 2013;Harland
et al. 2012; Ye et al. 2017; Dumont et al. 2018).

Content extraction

3.8 In the systematic review exercise, content extraction referred to the extraction of data that served as the basis
for a systematic content analysis. Explicit rules were used to format the content in a way that decreases the
reader’s subjectivity.

3.9 The Hypothesis presented in the introduction guided the codebook used for content extraction. Specifically,
we identified key aspects to answer questions regarding the procedure, input data, application scenario and
adopted models. Content extraction was performed by first examining the eligibility in terms of the inclusion
criteria, description of the model features and generation process.

• Following the PRISMA framework (Moher et al. 2009), the first step was to establish the eligibility criteria
based on the title, abstract, and sequential reading of the article to assess inclusion or exclusion in the
subsequent analysis step. If the article description contained a simulatedmodel, the article was selected
and we continued to extract the content; otherwise the article was excluded for further analysis.
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• Once an article was considered for further analysis, we highlighted twomain features of themodel: first,
the entities to be generated (i.e., agents) and their attributes, and second, information regarding the case
study, including location, time, and whether GIS data were used. If the article involved a systematic pro-
tocol to describe the simulation model such as ODD or STESS, it was recorded, and most of the content
extractionwas based on parsing the protocol corresponding section, e.g., in the case of ODD, the entities,
initialization, and input data sections (Grimm et al. 2010). Otherwise, we identified the corresponding
sections in the article, and possibly examined the source code when possible.

• Finally, we examined the process of the agents’ generation. First, we identified whether an explicit pro-
cess was presented in the article. We noted all the algorithms used to choose the value of the attributes,
the algorithm parameters and the data types and sources that the algorithm is based on. The algorithm
and data type were recorded using a closed list: constant, random function, calibration, synthetic recon-
struction, combinatorial optimization, raw data, and NA for algorithm, and Sample, contingency, distribu-
tion, expert knowledge, statistical moment, and NA for data type.2 Readers can refer to Appendix A for
more details on these categories.

3.10 All the information was recorded on a record sheet in a tabular format. Each criterion extracted from the re-
viewed articles and their related resources answered a given question, and the set of questions that constituted
the codebook guide are presented in Appendix A.

Quantitative and narrative review of practices of synthetic population generationmod-
elers in JASSS

3.11 The corpus was analyzed in both a quantitative and narrativemanner: In the quantitative analysis, basic statis-
tics from the codebook (AppendixB),werederived,while the latter analysiswasbasedona systematic narrative
report of the researchers involved in building the codebook.

Algorithm and data used to initialize the synthetic population of agents in simulationmodels

3.12 First, we drew a simple distribution of procedures and data used in these procedures within the corpus of re-
viewed models. In many cases, several techniques were used for one model, and thus, the distribution of pro-
cedures did not add up to 100%: For instance, Gore et al. (2018) used 3 techniques: Constant values, random
function and CO algorithm based on various input data to initialize the agent attributes.

3.13 In terms of the synthetic generation techniques, we could not identify 9 models, and 19 of the techniques re-
ferred to unclear procedures (i.e., NA code). Table 2 presents the global distribution of algorithms used for the
synthetic population initialization: 2 of 3 models relied on a generic random function, such as uniform or nor-
mal distribution, and 1 inn 3 models relied on a constant value. SR techniques were used in more than 12% of
themodels published in JASSS inn thepast ten years. Overall, HypothesisH1was confirmedby thedata, despite
a fair proportion of models referring to an explicit synthetic population generation procedure.

random
function constant SR raw data calibration CO NA

213 (137) 112 (42) 43 (25) 31 (16) 13 (4) 2 (1) 17 (15)

62.28% 32.75% 12.57% 9% 3.8% 0.58% 4.97%

Table2: Numberandproportionofmodelsbasedonspecific generation. Eachmodel canuse several algorithms
to initialize the synthetic populationof theagent. Thenumberofmodels that relied solely on the corresponding
procedure are specified in parentheses.

3.14 Most of models (240 - 70.18%) relied on a single procedure to generate agent attributes. Overall, 40% (137)
of the models depended exclusively on random function generation to initialize the synthetic population of
agent: H1bwas confirmed by this high proportion, further considering that 22%of themodels coupled another
procedure with random functions. Most of these combined approaches focused on the variation associated
with the coupling of constant (combinedwith another procedure in 62.5% of the use cases), raw data (48.39%),
SR (41.86%) and random function (35.68%)
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3.15 Valuable information regarding the agent attribute initialization can be obtained by examining the input data
used by modelers. We could not identify any empirical data to ground the process of synthetic population
generation in a majority of the reviewed models, i.e., 191 models (55.85%) did not use any source of data to
inform agent attribute generation.

3.16 Table 3 presents the number of models that initialize the agent attributes according to the data type. The sam-
ple, survey anddistribution constitutedmost of the real data regarding thepopulationused todrive the genera-
tion process. However, the relatively high use rate of “expert knowledge” combinedwith unknown sources (NA
code) rendered it challenging to understand how the generation process builds upon data. In addition to the
majority of models that initialize agent using no data, the loosely structured / empty data sources accounted
for almost 3 of 4 models (73.68%). Hypothesis H1a was thus confirmed by the practice that the initialization of
the agent attributes was rarely based on the data regarding the target population.

Sample Survey Distribution Expert
knowledge Contingency Statistical

moment NA No data

41 30 27 26 16 13 35 191

11.99% 8.77% 7.89% 7.60% 4.68% 3.80% 10.23% 55.85%

Table 3: Number (percentage) of models to relying on a specific input data type. Each model can manipulate
several types of data to generate synthetic agents.

Crossing the procedure of synthetic population generation with input data types and use cases

3.17 When we crossed models for which the input data type was available with their approach to synthetic popula-
tion generation, the distribution of mobilized algorithms changed: As shown in Figure 3, synthetic reconstruc-
tion (yellowbarswith cumulative count to 58)was the secondmost commonly used procedure to create agents
a�er the random function (80). As expected, when a sample of the original populationwas available, themodel
relied on the raw data (i.e., one record in the sample equaled one agent in the simulationmodel) and extremely
fewmodels (5) built the synthetic population using SR/COmethods (4 applied IPF and 1 applied CO). Modelers
o�en implemented SR techniques when they could manipulate the contingencies, distributions and statistical
moments, i.e., aggregated data regarding the target population. This observation is consistent with early syn-
thetic population methodological contributions in JASSS recommending sample-free procedures to generate
the initial set of agents (Barthelemy & Toint 2012; Lenormand & De�uant 2013).

Figure 3: Procedure used to generate synthetic population according to input data

3.18 Another interesting outcome was the overall complexity of the generation procedure whenmodelers relied on
richdata sources, suchas samples and surveys. In these cases, themethod to create the agents’ set of attributes
was o�en a combination of two or three approaches among rawdata, random function, constant values and SR
techniques. When no data were used, modelers relied heavily on random functions (147, 42.98% of the corpus)
and constant values (75, 21.92% of the corpus)
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3.19 In addition to source data, we also correlated synthetic population generation processes with the use of GIS
data and reports of a real-world case study application. In both cases, SR techniques were overrepresented,
with 21.7% and 25% of models using these techniques to build the initial population of agents. If raw data and
CO were included in the pool of established synthetic population techniques, half of the models associated
with a real case study relied on these procedures. In terms of the use of data and GIS/real-world case studies,
models more o�en built their synthetic population on refined techniques. Hence, the studied corpus tended
to confirm Hypothesis H2: When modelers used data (including GIS data) and real-world applications, more
models generated the synthetic population of agents with established procedures.

General trends over time and subdomains of the simulationmodels

3.20 To examine the evolution of the use of synthetic populations, we correlated the descriptive statistics with years
of publication and keywords. Figures 4 show the trend regarding both aspect of agent initialization: Figure
4a aggregates the proportion (number) of models that relied on real world data (all models except those with
the NA and Expert knowledge code) per issue, while Figure 4b depicts the cumulative proportion (number) of
models that used data to implement a known procedure in synthetic population generation (i.e., using either
raw data, synthetic reconstruction or combinatorial optimization).

Figure 4: Proportion (absolute value above plotted bars) of simulation model initialization based on real data
(le�) and synthetic population generation procedure (right). Best linear regression model according to data in
red (le�) and yellow (right).

3.21 Despite the deviations, we observed a trend promoting the inclusion of data regarding targeted real population
and explicit procedures related to synthetic population generation. Indeed, both the best fit linear regression
models exhibitedagradual trend towardamoredescriptivepopulationof agents inmodels published in JASSS.
However, comparison of the proportion of data used and actual use of well-establishedmethodologies to con-
struct the synthetic population of agents indicated a significant di�erence: On average 29.17% of the published
models used conventional data regarding the target population, and only 22% relied on dedicated algorithm
to generate synthetic population.

3.22 To link practices with sub-domains, we performed an occurrence-based analysis of terms in article keywords.
Keywords can well approximate the subdomain as they are specified by the model developers. We identified
each keyword as a token and collected occurrences for eachmodel; all keywords similar to “agent-basedmodel
and simulation” were removed.

3.23 The results of the most mentioned keywords are plotted in Figure 5. Blank bars show the number of articles
with corresponding keywords, while yellow bars display the subset of models using synthetic reconstruction.
Opinion dynamics and social networks represented the most influential keyword in the journal, followed by
more topic related items such as social influence, cooperation, segregation or trust. Except for social network-
related models, most synthetic populations built using synthetic reconstruction did not pertain to the most
prominent sub-domains of simulation studies in the journal.

JASSS, 25(2) 6, 2022 http://jasss.soc.surrey.ac.uk/25/2/6.html Doi: 10.18564/jasss.4762



Figure 5: Number of articles for each keyword that occurred the most (i.e., at least in 5 articles) in the last 10
years of publication in JASSS. The yellow bars plot the number of articles with each keyword using synthetic
reconstruction

3.24 As shown in Figure 6 each synthetic population generation procedurewas associatedwith the article keywords.
The most influential themes in the corpus tended to use a random function or constant. Nonetheless, social
network studies emphasized initialization, with an average of 2.56 distinct procedures used to generate the
synthetic population of agent per model. These approaches o�en relied on a random function and constant.
However, these approaches were driven by a clear tendency to comply with the available data (Section 4 on
synthetic population and synthetic network).

Figure 6: Distribution of algorithms used to initialize the synthetic population of agents according to the main
model sub-domains and thematics (based on keywords choosen by the authors)

Narrative review

3.25 As described here, we performed a more qualitative assessment of the reviewed articles. This narrative ex-
planation of the field practices regarding synthetic population generation focused on three dimensions of the
analyzed models: Agent attributes and initialization, di�erences in these aspects for di�erent types of models
and actual methods to realize these aspects.
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3.26 Description of the agent attributes and their initialization. The process used to generate the set of agents is o�en
poorly described. This is alleviated by the use of the ODD protocol as it forcesmodelers to explicitly discuss the
model initialization at the start of simulation and data used to implement the process. However, even though
the adoption of standardized narratives to describe the early simulation step facilitates the identification of
the key aspect of synthetic population generation, these narratives do not provide adequate guidance in this
aspect. In this framework, the descriptions of di�erent models are di�icult to be compared. Identifying the
method with which the modelers initialize the population of agents requires the examination of the source
code when available. Similarly, a standard procedure regarding the description of the simulation experiment
is lacking, even when the ODD protocol is used. For instance, in numerous examples (Chen et al. 2021; Houssou
et al. 2019; Xiong et al. 2018; Muelder & Filatova 2018), it is di�icult to identify the number of agents simulated
and the number of time steps for which the simulation is performed, either because information is missing or
because several values are specified for various experimental setups. Moreover, for clarity of themodel presen-
tation, the attribute descriptions do not match variable names in the model.

3.27 In all cases, basic information regarding the simulated agent properties cannot be extracted from articles as no
standardmethods are available to describe themodel and simulation. Themodel, its implementation and the
simulation experiments are three aspects ofmost reviewedmodels. Therefore, the description of these entities
must be extensive to ensure that a reader can fill the gaps between these aspects. The synthetic population of
agents lies between the model and simulation: The model defines the attributes that must be assigned to the
agent, while simulation pertains to the initialization of values. In both cases, considerable work must be done
to ensure that a reader can clearly observe how these aspects are managed, implemented and transformed to
simulation results. Furthermore, for certainmodels, generation of the agent attributes is part of the simulation
process or outcome of the model: Agents may be created during the simulation rather than in the initial stage
(Houssou et al. 2019). In other cases, agent attributes must be generated by the model (Silverman et al. 2013).

3.28 Synthetic populations are not considered in all models.While descriptive ABMswith social entities fit our extrac-
tion framework, there is an important set ofmodels ranging from extremely abstract agent-basedmodels (e.g.,
bounded confidence and derivative models of option dynamic) to more classical agent-based systems (e.g.,
swarm or business process) in which the population generation is not of significance or ignored. The initial
value of the agent attributes is o�en randomly drawn in an interval (using a uniform or Gaussian distribution)
or simply not considered as important/relevant in the narrative of the model presentation. Even in the social
simulation domain, having a coherent and well-generated synthetic population of agents is not mandatory in
manycases. Asmentionedpreviously, extremely abstractmodels subscribing to theKISSadage, andevenmod-
els closer to the agent-based system paradigm do not seek to build a realistic set of agents in their experiment
(one extreme example is presented in Tang & Zeng (2018), in which an agent is not mentioned throughout the
whole article).

3.29 However, the set of models that lies between abstract and descriptivemodels, among which themore popular
models, such as opinion dynamics and game theoretical models, would benefit from using realistic synthetic
populations of agents (Flache et al. 2017). For instance, considerable e�ort is expended in modeling realistic
social networkswhilemaintaining a low representativeness of the agent attributes. In general, abstractmodels
tend to focusmore onglobal or aggregateddeterminants of the considered implementedmechanisms (e.g., so-
cial influence, cooperation, segregation or trust) rather than determinants that lie within agents. In this regard,
the status of agent attributes remains unclear, especially when compared to those of the inner state variables.
Presumably, attributes to be generated in a synthetic population of agents pertain to a category of agent vari-
ables that drive thebehavior anddecisionsof agents insteadof beingdeterminedduring the simulation. Hence,
there exists a blurred distinction between agent attributes considered state variables (e.g., opinion in opinion
dynamics models or utility in game theoretical models) and agent attributes as determinant variables. How-
ever,most of thesedeterminant agent variables are inherently generatedas a global property link to the relative
position of agents, i.e., agents who the entities are connected either in a grid or a network.

3.30 Synthetic network generation. Most initial setups of agent attributes lie in their position in a network (or a sim-
plified grid, which is simply used as a lattice considering a Moore or Von Neumann neighborhood), with most
e�ort being focused on synthetic network generation. The position of the agentmay be considered partly as an
attribute (e.g., agent’s living address) and partly as an environmental feature (e.g., the distance between agents
is defined by an underlying grid). Inmost cases, the second option is chosen, and parameters and/or data used
to generate the synthetic network express aggregated characteristics rather than local properties or agent at-
tributes. There is a set of models that should be attached to the network model rather than ABM, with most
“agent” (node) attributes being related to their ties.
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Discussion

4.1 A key issue related to the generation of a set of agents is defining the scope and problem of the synthetic pop-
ulation. In most cases, the problem is not well defined; e.g., not all models require a heavily data-oriented syn-
thetic population generation process, whereas models disregarding this aspect can consider the use of simple
yet dedicated sub-models for synthetic population generation. Global disinterest in the established approach
can be attributed to this low expectancy regarding the realism of agents. However, we recommend the exam-
ination of the limited use in terms of the accessibility: (i) methods may not be well understood because the
domain of synthetic populationmay involve ambiguities (Section 2.2) and dispersion of the proposedmethod-
ologies; (ii) available tools are di�icult to find and adapt to a particular case study; and (iii) tools may not be
incorporated in the platform used to implement models and conduct simulation experiments, which renders
the inclusion of the tools in the simulation pipeline challenging.

4.2 In addition to the neglect of the synthetic population generation procedure, there are issues related to the de-
scription of agent creation and agent attribute definitions. While the use of ODD can enhance the reusability
and replicability of models, the initialization step remains a bottleneck to the model description.

• Conflict within ODD between initialization (what is the process to build all the elements needed for the
model simulation) and data (how are the processes of the model, rather than agent attributes, based on
data? What is the influence of the initial value for a changing attributes?)

• Models o�en rely on a constellation of loosely categorized inputs generalized into a parameter or data
dichotomy, while there exist constants, parameters for the simulation, environment (global) and agents
(local), attributes and inner statesof agents, and rawandpreprocesseddata, amongother typesof inputs.

Figure 7: Proportion of articles per issue with the description of the simulation model supported by the ODD
protocol

4.3 Thus, the ODD is generally not enough to be able to understand how agent populations are initialized in the
models. Following recommendations by Müller et al. (2014), a minimum standard must be established, which
consists of a structured natural language description such as ODD and source code.
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Figure 8: Proportion of articles per issue with source code status, among free access, on demand, broken link
or not available

4.4 The source code is o�en easy to interpret and understand depending on the language / platform / toolkit used.
Notably, it is considerably easier to understand a noncompiled and readable code (text file) developed with an
agent-oriented language (Netlogo, GAMA, etc.) or an object-oriented language

4.5 Within the scope of this review, the limited search for a specific journal involves certain biases. In particular,
several well-known references cited in the first part of the paper come from a related field of research, i.e.,
transport modeling. Such models might be under-represented in JASSS while at the same time, considerably
influencing how researchers generate synthetic populations for use in ABM. It would be interesting to focus
on simulation models published in journals such as Transportation Research, for instance, to gain knowledge
regarding practices from a related field. As kindly stated by a reviewer of this paper, "the strategy of basing a
review around material in JASSS made reasonable sense in view of the importance of the journal and its large
canon of relevant literature". We believe JASSS o�ers a relatively free of domain view on practices related to
ABM, although future work should be focused on synthetic population generation for other types of simulation
models, such as microsimulations. In summary, outcomes from practices in JASSS cannot be generalized to
ABM, especially when simulation models use mixed modeling techniques, which is o�en the case in transport
modeling research but also andmore recently in epidemiological research.

4.6 We did not perform a systematic review due to the initial results that we obtained from a systematic search: In
the ABM domain, synthetic population represents a sub-field. In other words, for the search based on generic
tools such as Google Scholar, semantic Scholar or Scopus, and dedicated search engines, such as iris.ai, most
of the resultswere concernedwithmethodological aspects, i.e., proposal of a procedure to generate a synthetic
population instead of that of a model featuring a synthetic population generation. The outcome of a system-
atic search, although interesting when studying synthetic population procedures, did not reflect our subject of
interest: Actual synthetic population generation processes in agent-based simulation models. To review the
practices, wewere required to review the simulationmodelsmore broadly. To ensuremanageability, we there-
fore selected a specific journal.

Conclusion

5.1 Despite the trend toward integration of realistic synthetic populations of agents, our review underlines several
practical biases in the domain. We observe thatmodels are tending to integrate increasinglymore data but dis-
regarding the proposedmethodologies to guide the creation of agents. Our investigation validates Hypothesis
H-1: The use of the synthetic population generation approach is still uncommon in social simulation. Specif-
ically, modelers more o�en use generic purpose initialization procedures such as the assignment of constant
values or sampling from a given continuous distribution (H-1b). While data regarding the target population re-
main of limited use (H-1a), an increasing number of models are driving the generation of agents attributed to
them. Finally,we identifydisparities inpracticesaccording to themodeling target: Whenmodels areattached to
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real-world applications, theymore frequently applywell-established synthetic population generationmethod-
ologies (H-2).

5.2 Several hypotheses can bemade to explain this state. The first aspect is the lack of data concerning several at-
tributes, in particular, the abstract attributes related to social attitudes and mental states render it impossible
to consider all agent attributes using the current synthetic population generation procedure. Another aspect is
the lack of knowledge and control of the population generation approaches by modelers: In this case, model-
ers rely heavily on simple random methods such as uniform sampling of attribute values. Even if we consider
that dedicatedmethodologies are available and known bymostmodelers, there remains a lack of accessibility
because a specific tool (usually, an API) or programming language (such as R, Python or Java) must be used,
which di�ers from the one used to implement the model and conduct experiments.

5.3 Considering these aspects, we have outlined several ways to foster the use of dedicatedmethods to build a re-
alistic set of agents anddescribe how the synthetic population is built in simulationmodels. First, the proposed
methodologies presented in the first section must truly focus on data harmonization and integration of agent
population synthesis. Furthermore, the models must use easy-to-couple so�ware with simulation tools in the
form of plugins for generic platforms or comprehensive APIs. From the modeler viewpoint, enhancement of
the model description, in particular, the data and initialization step of simulation experiments, can enable the
identification of appropriate features and tools to address various requirements in terms of synthetic popula-
tion. Not all models require the same type of agent population, although little is known regarding the diversity
of goals and the extent to which the agent must be realistic. While considerable e�ort has been expended to
generate realistic social networks, future work must focus on establishing reliable and reproducible synthetic
populations in social simulations.
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Appendix A: Codebook Guidelines

Guidelines for the content extraction process were established with reference to a preliminary study (Chapuis
& Taillandier 2019) and exploratory content extraction over the 4 last issues.

Content extraction guidelines

Q1 - Does the article present a synthetic population generation model? [yes/no]

Q2 - Is a simulation model described in the article? [yes/no]

Q3 - Is there an ODD that describes the simulation model? [yes/no]

Q4 - Is the code accessible? [free access/on demand/not available]

Q5 - Use case

Q5.1 - What is the location represented in the simulation model? [Free text]

Q5.2 - What time is the simulated case study associated with? [Free text]

Q5.3 - Domodelers use GIS data in the simulation model? [yes/no]

Q6 - Entities and attributes

Q6.1 -What are the principal entities (i.e.,more thanone andactive agents) generated at the initialization
of the simulation? [Free text]

Q6.2 - Howmany entities are generated? [Number per type of entities]

Q6.3 - List of attributes (with types) for each generated entity [List]
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Q7 - What are the algorithms/techniques used to generate the attribute values? see subsection below

Q8 - Input Data

Q8.1 - Are empirical data used? [yes/no]

Q8.2 - What kind of data is used? see subsection below

Q8.3 - Source of data [Free text]

Categories of synthetic population generation procedure (Q7)

• Constant: Fixed attribute value

• Raw data: Attribute value directly extracted from the data sources

• Random function: Attribute value specified by a generic continuous function

• Calibration: Attribute value based on the optimization of the simulated results

• Synthetic reconstruction: Attribute value based on a random engine calibrated on population data (Sec-
tion 2)

• Combinatorial optimization: Attribute value drawn with replacement from a known real individual (Sec-
tion 2)

• NA: Unclear or unknown procedure to assign attribute values

Categories of input data type to implement synthetic population generation (Q8.2)

• Sample: Equivalent to microdata (Subsection 2.8)

• Contingency: Aggregated data regarding the population in the form of counts of corresponding people,
e.g., the number of men and women (Subsection 2.8)

• Distribution: Aggregated data regarding the population in the form of proportion, e.g,. percentage of
people aged under 16 (Subsection 2.8)

• Statistical moment: Aggregated data about population in the form of a synthetic statistical indicator, e.g.
mean age of the population (Subsection 2.8)

• Expert knowledge: second-hand information without a clearly identified source of data

• Survey: Social endeavor in the form of a questionnaire, direct observation or any participatory survey
focused on a particular subject, e.g., time use survey, in which people are asked to describe in a closed
form how their schedule is actually organized, see, for instance, Eurostats: https://ec.europa.eu/eurosta
t/web/microdata/time-use-survey.

Appendix B: Codebook

The raw data results are stored in a Google sheets with public access here: https://docs.google.com/spread
sheets/d/1Aj_WU7jlcyYQKbe8_sJFYL0GlDxsGZljzXBfCw9zMxY/edit?usp=sharing.3 The first sheet describes
the screening and eligibility of articles as well as extraction content based on codebook guidelines. All other
sheets are dedicated to the analysis, facilitating the verification and reproduction of published results. A pdf
(csv) version of the codebook itself can be accessed here: https://drive.google.com/file/d/1L2BgJ0ThhIirI0TJV
DQhlRgJuGLrNwNw/view?usp=sharing (here: https://drive.google.com/file/d/1ryug3b3nW_3TwdRIay6PomV
_WPKAh8UV/view?usp=sharing).
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Notes

12 of the 30 first results also pertain to a di�erent use of synthetic population in biology.
2NA denotes unattributed and represents either a lack of information or the absence of algorithms/data

used.
3access to the file and explicit url can be requested if the link if broken.
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