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Abstract
Staphylococcus aureus is one of the most prevalent pathogens causing bovine mastitis in the world, in part because of its ease 
of adaptation to various hosts and the environment. This study aimed to determine the prevalence of S. aureus in Colombian 
dairy farms and its relationship with the causal network of subclinical mastitis. From thirteen dairy farms enrolled, 1288 
quarter milk samples (QMS) and 330 teat samples were taken from cows with positive (70.1%) and negative California Mas-
titis Test (CMT). In addition, 126 samples from the milking parlor environment and 40 from workers (nasal) were collected. 
On each dairy farm, a survey was conducted, and the milking process was monitored on the day of sampling. S. aureus was 
identified in 176 samples, i.e., 138 QMS, 20 from teats, 8 from the milking parlor environment, and 10 from workers’ nasal 
swabs. Isolates identified as S. aureus underwent proteomics (clustering of mass spectrum) and molecular (tuf, coa, spa Ig, 
clfA, and eno genes) analysis. Regarding proteomics results, isolates were distributed into three clusters, each with members 
from all sources and all farms. Concerning molecular analysis, the virulence-related genes clfA and eno were identified in 
41.3% and 37.8% of S. aureus isolates, respectively. We provide evidence on the circulation of S. aureus strains with limited 
variability among animals, humans, and the environment. The parameters with the lowest compliance in the farms which 
may be implicated in the transmission of S. aureus are the lack of handwashing and abnormal milk handling.
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Introduction

Mastitis is the most common inflammation of the udder 
in dairy cows [1–4]. This disease has a high worldwide 
incidence with considerable economic losses and negative 
implications for hygiene and milk quality [5–7]. Subclini-
cal mastitis is more prevalent than the clinical form, usu-
ally precedes it, and lasts longer. Therefore, subclinically 
affected animals can be the source of infection for other 
cows in the herd [8]. The appearance of the disease is 
mainly the result of the interaction between three fac-
tors: infectious agents, host, and environmental factors 
[9]. In this way, the effectiveness in the transmission and 
permanence of microorganisms (MO) in the herd will 
depend on population density and factors related to man-
agement, such as good milking practices, hygiene, and 
the type of milking [10, 11]. Although these risk factors 
have been widely studied, the possibility of finding cows 
without intramammary infection (IMI) and cows with one 
or more quarters affected in the same herd suggests that 
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the incidence and prevalence of mastitis also depend on 
the phenotypic characteristics and genotypic characteris-
tics of MO, and their interaction with the host, with the 
habitat [12, 13], and with other MO populations, which, 
in turn, influence the dynamics of these pathogens [14].

According to the transmission mechanisms, origin, 
and reservoirs, the etiological agents of bovine mastitis 
are classified as contagious (Streptococcus agalactiae 
and S. aureus), opportunistic (non-aureus staphylococci 
(NAS)), and environmental (coliforms and S. uberis) 
[12]. S. aureus is the most prevalent contagious path-
ogen in clinical and subclinical mastitis in the world 
[15–18]; its transmission occurs mainly during the milk-
ing routine since the mammary gland of the adult lactat-
ing cow is the most important reservoir of the bacteria, 
especially in subclinical mastitis. However, S. aureus 
has other extramammary sources, including the skin and 
mucous membranes of cows, fomites, insects, people, 
non-bovine animals, soil, and air [19]. Therefore, poor 
farm management and lack of hygiene represent a high 
risk for the establishment of this pathogen in the cow 
and in the herd [20].

S. aureus has a large number of virulence factors that 
allow this bacterium to remain in the udder, facilitat-
ing its persistence in dairy herds [21]. The expression 
of virulence genes appears to depend on the clonal line-
age of S. aureus. In China, biofilm-forming S. aureus 
clones isolated from milk from cows with subclinical 
mastitis carried genes encoding aggregation factors (clfA 
and clfB), collagen-binding proteins (cna), elastin (ebpS), 
laminin (eno), fibronectin (fnbA and fnbB), and fibrino-
gen (fib) [22–24]. The prevalence of the clfA, eno, fnbA, 
and fib genes in isolates of bovine origin is relatively 
high (60 to 100%) in most countries of the world [22, 
25–27]. Additionally, these genes have been related to 
a high somatic cell (SC) count in milk, indicating that 
their presence may be related to a greater inflammatory 
response [28]. In Colombia, it has been found that 81.3% 
of the isolates of S. aureus from IMI are in vitro biofilm 
formers and carry the ica and bap genes [29]. Moreover, 
subclinical mastitis is endemic in the country’s major 
milk-producing geographical areas, causing large eco-
nomic losses to producers. The difficulty in its eradica-
tion is due in part to the lack of laboratory diagnosis that 
guides a successful treatment, favoring the persistence 
of the etiological agents not only in chronically infected 
animals, but also in the entire herd. Molecular epidemi-
ology studies to identify the microorganisms as well as 
their possible routes of transmission are needed. There-
fore, this study aimed to determine the prevalence of S. 
aureus from dairy farms in the Bogotá Savanna and its 
relationship with the causation network of subclinical 
mastitis in the region.

Materials and Methods

Farm and Cows

A total of 13 dairy farms located in the Bogotá Savanna, 
Colombia, were included in the study. Farms that had 
received orientation on good husbandry and milking prac-
tices were selected. All farms had mechanical milking and 
were classified according to the cattle inventory into small 
(S: 10–35), medium (M: 36–100), and large (L: > 100) tiers. 
A total of 330 primiparous or multiparous lactating cows 
were studied, and cows with clinical manifestations of mas-
titis or any other systemic or reproductive infection and cows 
with antimicrobial treatment were excluded.

Data Collection

On each dairy farm, the owner or administrator provided 
the data of each farm and the animals. A survey was carried 
out and the milking process was monitored on the day of 
sampling. The questionnaire form indicated milking parlor 
conditions and equipment, as well as compliance with the 
milking routine, hygiene and biosecurity rules, handling of 
abnormal milk, staff training, and storage of medicines.

Sample Collection

In cows, smears were made from the skin of the apex of 
the teats and quarter milk samples (QMS) were collected 
according to the standard procedures recommended by the 
National Mastitis Council (NMC 2014). Briefly, the udders 
and teats were cleaned using paper towels, and then, the 
first two streams of foremilk from each quarter were dis-
carded. Each teat apex was scrubbed with cotton moistened 
with 70% alcohol until it was thoroughly clean. Finally, 10 
mL of milk was collected aseptically from each quarter in a 
sterile falcon tube. In humans, smears were made from the 
nasal mucosa of the workers. To obtain the environmental 
samples, smears were made from teat cups, the floor, the 
walls of the milking parlor, and the tank or canteens. The 
smears were sampled using swabs and transport medium 
(Innovation®-Italy). All samples were transported at 4°C 
to the microbiology laboratory.

California Mastitis Test (CMT)

The QMS was collected in the wells from a plastic pallet. 
An equal amount of commercial reagent (sodium dodecyl 
sulfate 2%) was added to the milk and the paddle was spun to 
mix the contents. The CMT results were classified according 
to the concentration scale proposed by Miller and Kearns: 
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negative (0) (represents < 200 ×  103 cell somatic (CS)/
mL), traces (T) (200–500 ×  103 CS/mL), mild positive (1) 
(400–1500 ×  103 CS/mL), positive (2) (800–5000 ×  103 CS/
mL), and strong positive (3) (> 5000 ×  103 CS/mL). Cows 
were considered positive for CMT when at least a quarter 
was positive (≥ T) [30].

Culture and Microbiological Identification

A total of 1618 samples from 330 cows (QMS: 1288; skin of 
teats: 330), 40 workers nasal swabs, and 126 smears of envi-
ronmental samples from the milking parlor were streaked on 
blood agar and MacConkey agar plates (Difco Laboratories) 
and incubated at 37°C for 24 to 48 h. For the QMS, 100 mL 
of milk was streaked on each agar plate. The NMC crite-
ria for the interpretation of bacteriological cultures for the 
diagnosis of bovine IMI were applied, considering a positive 
result when a sample presented ≥ 10 UFC/100 mL. For this 
detection threshold, sensitivity and specificity of 72.0% and 
100% have been reported to detect S. aureus IMI [31, 32]. 
Out of 1784 cultures, bacterial growth was found in 905 of 
them. Colonies were Gram stained and spiked into trypti-
case soy agar (TSA) (Difco Laboratories) and incubated at 
37°C for 18 to 24 h. Isolated colonies were resuspended in 
sterile saline solution (0.45%) (bioMerieux, Marcy l’Etoile, 
France) at a concentration of 1.5 ×  108 bacteria/mL cor-
responding to 0.5 McFarland, determined by DensiCHECK 
plus (BioMerieux, France) and identified using the auto-
mated Vitek® 2 compact system (bioMerieux, France).

Proteomics Identification Using MALDI‑TOF MS

Bacteria were also identified by MALDI-TOF MS, according 
to the Bruker Daltonics protocol. Briefly, one colony from 
the TSA agar was spotted onto a 96-spot steel plate (Bruker 
Daltonik, Germany), and allowed to dry at room tempera-
ture before the addition of l μL of formic acid and HCCA 
matrix (provided by the supplier). Each colony was tested 
in duplicate. Only the spot returning the highest probability 
score of identification was considered. Protein mass spectra 
were analyzed using Flex Control® software and MALDI 
Biotyper version 3.1 7311 reference spectra (main spectra) 
(Bruker Daltonics, Bremen, Germany). MALDI-TOF MS 
results were analyzed according to the manufacturer’s tech-
nical specifications as follows: correct identification of genus 
and species (≥ 2.0), correct identification of genus (1.7–2.0), 
and no reliable identification (< 1.7). The mass spectra from 
S. aureus isolates with a score value of > 2 (140/176) were 
considered for the preparation of a dendrogram using the 
respective functionality of the MALDI-TOF MS Biotyper 
3.1. The spectra were analyzed as a core-oriented dendro-
gram using an arbitrary distance level of 1000 as the cut-off.

Genotypic Identification of S. aureus

Among all clades identified in the proteomics analysis, 
S. aureus isolates from different origins were randomly 
selected for molecular analysis. DNA extraction and puri-
fication  were carried out using the commercial Pure-
Link™ Genomic DNA Mini Kit (Thermo Fisher Scientific, 
Waltham, MA), following the manufacturer’s instructions. 
Subsequently, the tuf (Tu elongation factor), coa (coagu-
lase), spa Ig (binding protein A of the Fc portion of IgG), 
clfA (agglutination factor), and eno (laminin-binding pro-
tein) genes were amplified by PCR. GoTaq® Green Master 
Mix (Promega, Madison, USA) was used, reactions were 
carried out in a final volume of 25 μL, with the following 
mixture: 12.5 μL of GoTaq® Green Master (2X), 0.5 μL of 
each primer (0.1 μM), and 2 μL of bacterial DNA (10–30 
ng). The primer sequences and PCR conditions are described 
in Table S1. The PCR products were visualized on a 1.5% 
agarose gel stained with HydraGreen® (ACTGene, NJ, 
USA). Gel images were acquired using a gel-documenta-
tion system (Thermo Fisher Scientific, USA). Two refer-
ence strains (ATCC®) of S. aureus positive (43300) and 
negative (25923) to the mecA-1 gene were used as controls. 
Additionally, the products of the tuf, coa, and spaIg genes 
were sequenced in an ABI3730XL sequencer (Applied Bio-
systems). All sequences were aligned, and the dataset was 
used to construct a Neighbor-Joining phylogenetic tree using 
Maximum Composite Likelihood settings by using Molec-
ular Evolutionary Genetics Analysis Version 7 (MEGA7). 
Evaluation of branch support was performed by Bootstrap 
statistical analysis with 1000 replicates.

Repetitive Element PCR Fingerprinting (rep‑PCR)

The rep-PCR technique was carried out in a final reaction 
volume of 50 μL. Each reaction mixture contained 10 μL of 
5× Green GoTaq ®Flexi buffer, 3 μL of MgCl2 (25mM), 1 
μL of dNTPs (10mM each), a single primer (GTG)—GTG 
GTG GTG GGT GGTG (14mM), and 0.25 μL GoTaq®DNA 
polymers (5 U/mL) (Promega, Madison, USA). Subse-
quently, the chromosomal DNA was added at a concentra-
tion of 100 to 200 ng. The reaction mixtures were subjected 
to 30 cycles consisting of heat denaturation at 94°C for 1 
min, primer annealing at 54°C for 1 min, and DNA exten-
sion at 72°C for 2 min. Finally, the samples were main-
tained at 72°C for 5 min for the final extension of DNA. 
PCR products were visualized on a 1.8% agarose gel stained 
with HydraGreen® (ACTGene, NJ, USA) at 20 volts for 4 h.

Statistical Analysis

The data obtained were tabulated and analyzed with 
descriptive statistics Relative Risk (R.R), and multinominal 
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regression test was used to construct relationships, between 
categorical variables, and the prevalence of subclinical mas-
titis estimated with the CMT, and the genus of bacteria and 
their location identified. For the survey, the percentage of 
compliance and milking conditions was determined by giv-
ing each question a value of 1 for compliance and 0 for non-
compliance. The association or dependence of these vari-
ables with the CMT score was determined with Pearson’s 
chi-square test of independence. All statistical analyses were 
performed considering a significance of P < 0.05 using the 
R language.

Results

Animal and Farm Data

Of the 13 farms enrolled, four were from the small tier, five 
from the medium tier, and four from the large tier. Seven 
farms had a fixed milking parlor, and six had mobile ones 
(Table S2). The predominant breed was Holstein, and the 
CMT was positive (≥ Traces) in 70.1% of cases (CI95% = 
64.8–75.1%) (Table S3). The verification of percentage of 
compliance with good farming practices and their depend-
ence (χ2) with the CMT score depicted critical points in han-
dling abnormal milk: 8.0% (χ2: 13.7), staff training, staffing, 
and cleanliness: 28.2% (χ2: 18.3), hygiene animal (udder, 

tails, and flanks): 44.2% (χ2: 27.5), condition, maintenance, 
and cleanliness of the milking equipment: 64.1% (χ2: 20.8), 
facilities and hygiene of the milking parlor: 77.0% (χ2: 87.0), 
and good practices during the milking routine: 77.0% (χ2: 
27.7) (see Fig. 4 in the “Discussion” section).

Culture and Microbiological Identification

Of the 1784 cultures taken (QMS: 1288; teats: 330; environ-
mental: 126; milkers: 40), microbial growth was observed 
in 905 of them (i.e., QMS: 457; teats: 287; environmental: 
121; milkers: 40), in which 715 bacteria were identified. 
Of interest, 176 strains of S. aureus were found in the four 
sources evaluated (i.e., QMS: 138; teats: 20; environmental: 
8; milkers: 10) (Fig. 1).

Among the 1288 QMS samples, microbial growth was 
observed in 457, in which 352 bacteria were identified. The 
most frequently isolated bacterium was S. aureus, found in 
138/457 (30.2%) cultures, followed by NAS (S. chromoge-
nes, S. haemolyticus, S. warneri, S. epidermidis, S. hominis, 
S. horserum, S. hyicus, S. lugdunensis, and S. squirrels) in 
74/457 (16.2%) cultures. Streptococcus spp. were identified 
in 66/457 (14.4%), i.e., S. uberis, S. agalactiae, S. dysga-
lactiae, S. equi, and S. lutetiensis . Regarding the number 
of positive CMTs out of the 1288 QMS samples taken, 
574/1288 were found to be CMT positive. Interestingly, only 
in 383/574 (66.7%) microbial growth was seen (Table 1).

Fig. 1  Overall culture and 
microbial identification results
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On teat apex skin, 330 cultures were taken, and microbial 
growth was observed in 287 of them. NAS was found in 119 
out of 287 (41.5%), of which S. haemolyticus (21.8%), S. 
warneri (16.8%), S. chromogenes, S. hominis (14.3%), and 
S. epidermidis (5.0%) were the most frequent species. S. 
aureus was identified in 20/287 samples (7.0%) (Table S4). 
From the environment of the farms’ milking parlor, 126 sam-
ples were taken. Gram-negative bacilli (GNB) were found in 
39/121 cultures (32.2%) and NAS 28/121 (23.1%). S. aureus 
was identified in 8/121 (6.6%) (Table S5). Finally, in cultures 
from milkers, 10/40 (25.0%) were identified as S. aureus, 
10/40 as S. epidermidis, 7/40 (17.5%) as NAS (S. auricu-
laris, S. lentus, S. haemolyticus, and S. warneri), and 7/40 
(17.5%) as GNB, mainly Enterobacteriaceae.

Overall, of the 715 bacteria identified, S. aureus, S. chro-
mogenes, S. warneri, and S. haemolyticus were the most fre-
quently isolated species. However, S. aureus (24.6%) was the 
most frequent, both in the totality of the farms and in each 
group analyzed (small tier: 15%; medium tier: 17%; large 
tier: 34%), being significant (P < 0.05) the predominance 
of S. aureus in large tier farms (Table S6).

Identification and Analysis by MALDI‑TOF MS

Of the 715 bacteria identified, 176 strains comprised S. 
aureus, of which 140 were included in the phylogenetic anal-
ysis (MALDI-TOF score > 2), all taxonomically identified 
with NCBI numbers 1280 and 46170. S. aureus isolates were 
distributed in three clades regardless of their origin: milk 
and skin of the teats of cows, environment, and humans. 
The strains from the large farms were distributed across the 
three clades, as were those from two medium-sized farms 
(M2 and M5). In clade 1, 54 isolates from six farms were 
distributed in two subgroups and 15 clusters. The clusters 

with more than four isolates were from different farms and 
sources, except for the cluster of position 10–15 where milk 
and teat isolates from the same farm were found (Fig. 2).

Clade 2 was the smallest, with 30 isolates from nine 
farms, from all sources arranged in four clusters. Clade 3 
grouped 56 isolates from 10 farms distributed in 13 clus-
ters. In subgroup 3.2, the largest number of isolates from the 
environment (4) was found. In addition, six isolates from the 
microbiota of the teats, 22 from milk, and one human isolate 
(position 129) were located, which were obtained from all 
the large farms, (4) medium, and (2) small, of which one 
(S2) was only located in this clade. The remaining human 
isolates were found singly (position 16) or in a two-member 
cluster (position 14, 17, 43, 83, or 95), in which they were 
always accompanied by milk isolates from the same or dif-
ferent farms. The environmental isolates were found in clus-
ters with isolates of animal origin and from different farms, 
except isolates 3 and 109, which did not form clusters.

Genotypic Identification of S. aureus

PCR amplification and sequencing of the variable region of 
the virulence genes spa Ig and coa allowed the identifica-
tion of two and four clades, respectively, and the sequencing 
of the tuf gene, widely used for the phenotypic identifica-
tion of the S. aureus species, also revealed two clades. This 
assay confirms the predominance of a few clades, with sev-
eral clusters, some specific to each farm, as observed in the 
proteomics analysis, but most with isolates from different 
farms that share a similarity among them. Likewise, consist-
ent with the first dendrogram obtained from the proteom-
ics analysis, each clade contains S. aureus from all sources, 
especially QMS and teat isolates, from the different farms in 
the region (Fig. 3). The study of genes encoding virulence 

Table 1  California Mastitis Test 
and microbial culture result on 
quarter milk samples

In bold, the total values for each condition are shown
T, traces; GPC, gram-positive cocci; GPB, gram-positive bacilli; GNB, gram-negative bacilli

CMT Negative CMT positive Total CMT 
positive

QMS growth

Grade CMT 0 T 1 2 3

Culture n % n n n n n % n

S. aureus 10 (13.5) 19 39 51 19 128 (22.3) 138
NAS 20 (27.0) 11 21 15 7 54 (9.4) 74
Streptococcus spp. 8 (10.8) 12 12 18 16 58 (10.1) 66
Other GPC 4 (5.4) 2 9 1 1 13 (2.3) 17
GPB 9 (12.2) 13 5 5 8 31 (5.4) 40
GNB 2 (2.7) 4 8 0 3 15 (2.6) 17
Unidentified 21 (28.4) 15 47 15 7 84 (14.6) 105
Total 74 (100) 176 192 133 73 383 (100) 457
No growth seen 640 100 51 28 12 191 831
Overall 714 574 1288

http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=info&id=1280
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=info&id=46170
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factors, clfA and eno, showed that a high percentage (41.3%) 
of S. aureus circulating in the region have the cflA gene, 
especially the isolates from teats and milk. Furthermore, 
the eno gene was found in 37.8% of isolates, mainly in S. 
aureus from the environment and from the milk of cows with 
subclinical mastitis (Table 2).

The study of genetic variability by means of the rep-
PCR technique of S. aureus showed variability in the 
banding patterns of isolates in each farm and among them. 
However, genotypes with the same banding pattern were 
also observed in the milk of cows with subclinical mastitis 
and the environment in farms S2 and M2, similar to what 
was observed by the proteomics and molecular analysis, 
which showed a high similarity between isolates from 
these farms (Fig. S1). This confirms the circulation of the 
close-genetic variants between animals, humans, and the 
environment within the farms and among the farms of the 
Bogotá Savanna.

Discussion

The detection of predominant genotypes and phenotypes 
in the milk of infected cows from different herds suggests 
that certain strains are more effective in causing mastitis 
and in spreading among animals in the same herd [33]. In 
this study, the prevalence of subclinical mastitis reached 
70.1% (CI95 = 64.8–75.1%), being higher than the previ-
ous prevalence reported (55.2%) in the same region [16], 
and other geographical areas, in Colombia, i.e., 11.3% have 
been reported in the department of Cordoba [34], 37.2% in 
Antioquia [35], and 39.8% in the Boyacá high plateau [36].

In subclinical mastitis, diagnosis is challenging since it 
depends on a confirmatory test [37]. However, the SC count 
is an indirect measure of the infectious process, which is 
easily and inexpensively performed both in the laboratory 
and under field [38].

The increase in the prevalence of subclinical mastitis in 
the region could be explained by the lack of management 
of the identified main risk factors. In the milking routine, 
the major deficiency found was the poor cleaning of udders, 
flanks, and tails of the animals, and in addition, the lack of 
washing of the milkers’ hands and forearms before starting 
the milking routine, which is significantly associated with 
CMT positivity. In small-scale dairy production systems in 
developing countries, the high prevalence of bovine mastitis 
due to contagious and environmental pathogens is associated 
with poor hygiene in the milking process [8], and the lack of 
cleanliness of the cows, respectively [10]. Consistent with 
previous reports in the region [36, 39, 40], S. aureus was 
the most prevalent etiologic agent in cows with subclinical 
mastitis. Its ability to survive in the environment and infect 
various hosts allows it to be transmitted by multiple routes 
[19]. Thus, poor farm management and lack of hygiene rep-
resent a high risk for the establishment of this pathogen in 
the cow and on the farm [20].

Herein, we observed the circulation of clustered strains 
of S. aureus among animals, humans, and the environment. 
The lack of hand washing represented the most important 

Fig. 2  Dendrogram of S. aureus (Sa) isolates from quarter milk sam-
ples (list in black) and teats from cows (list in red), from milkers (list 
in blue), and from the environment (list in green). Cut-off point at 
a distance level of 1. Each sample indicates the tier of the farm (L: 
large, M: medium, S: small) followed by the identification code of the 
farm and cow
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Fig. 3  Phylogenetic relationships of randomly selected S. aureus isolates 
from all dairy farms enrolled, through the analysis of spa Ig (A), coa (B), 
and tuf (C) genes. Isolates from QMS (black) and skin of the teats (red) 
from cows, from milkers (blue), and from the environment (green). Each 
sample indicates the tier of the farm (L: large, M: medium, S: small) fol-
lowed by the identification code of the farm and cow
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risk factor (R.R: 25.2) associated with the prevalence of 
subclinical mastitis. Other risk factors were poor handling 
of abnormal milk (R.R: 5.6), lack of milker training (R.R: 
2.7), and failures in the milking routine (R.R: 2.2) (Fig. 4). 
Conversely, disinfection and sealing of the teats during milk-
ing, as well as dry cow therapy, were the parameters with 
the highest compliance. This suggests that some strains of 
S. aureus that circulate in the region could have environ-
mental reservoirs that guarantee their long-term persistence. 
Interestingly, an African study in smallholder dairy farms 
reported strains of S. aureus adapted to the environment 
and associated with mastitis without the predominance of 
a particular variant [15]. Studies have also shown that in 
dairy production systems in developing countries, where 
mastitis-infected animals are often not slaughtered, the usual 
source of IMI is udders infected with the pathogen [15, 17]. 
If the lack of animal hygiene and good milking practices by 

workers is added to this situation, pathogens from the sur-
rounding environment become another important source of 
mastitis that is dynamically transmitted between humans, 
animals, and the environment of the farms [2, 17].

On the other hand, the environmental strains found in 
this study showed a high prevalence of the eno virulence 
gene, similar to the prevalence found in milk isolates from 
cows with subclinical mastitis. This gene codes for laminin-
binding protein, one of the main components of the base-
ment membrane of the mammary epithelium. Their acquisi-
tion by environmental strains will facilitate adherence and 
the ability to invade and spread to other hosts. The cflA gene 
was amplified in most human and teat S. aureus strains, 
which together with the clfB gene are highly prevalent in 
bovine S. aureus strains worldwide [22, 25–27], indicating 
that they segregate clonally among bacteria isolated from 
bovines. These genes code for aggregation and adhesion 

Table 2  Percentage of virulence 
genes found in randomly 
selected S. aureus isolates 
from different sources: quarter 
milk samples (QMS), teats, 
environment, and milkers

In bold, the total values for each condition are shown

Source spa Ig coa cflA eno
n (%) n (%) n (%) n (%)

QMS (138) 105/108 (97.2%) 117/117 (100.0%) 46/112 (41.1%) 45/112 (40.2%)
Teats (20) 12/15 (80.0%) 18/18 (100.0%) 9/16 (56.3%) 4/16 (25.0%)
Milkers (10) 8/8 (100.0%) 10/10 (100.0%) 3/8 (37.5%) 2/8 (25.0%)
Environment (8) 5/6 (83.3%) 7/7 (100.0%) 1/7 (14.3%) 3/7(42.9%)
Total 130/137 (95.0%) 152/152 (100.0%) 59/143 (41.3%) 54/143 (37.8%)

Fig. 4  Graphic representation of the circulation of S. aureus in dairy 
farms of the Bogotá Savanna. The blue arrows indicate the depend-
ence between the variables and the presence of mastitis (P < 0.05) 
(Pearson’s chi-square test of independence). The red arrows denote 
the Relative Risk (R.R.) generated by the variable and the presence of 

mild or severe mastitis (P < 0.05) (multinomial regression test). The 
black arrows represent the circulation of different strains of S. aureus 
permanently or intermittently between the environment, humans, and 
animals
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proteins, necessary for the adherence of the bacteria to the 
mammary epithelium, which possibly explains why it was 
found mainly in S. aureus strains isolated from the skin of 
the teats.

The main limitation of this study is the number of 
farms enrolled which may not reflect the situation in the 
entire region. Whether dairy cows with bovine mastitis 
can become possible reservoirs of bacteria associated 
with humans, and whether humans are responsible for 
the transmission and persistence of S. aureus strains in 
animals and the environment are hypotheses that require 
further investigation from a One Health perspective to 
improve animal welfare and food quality and thus pro-
mote human health.

In conclusion, regardless of the source of origin, S. aureus 
was identified as the most frequently encountered micro-
organism in a dairy environment of the Bogotá Savanna. 
The prevalence of subclinical mastitis reached 70.1%. Fur-
thermore, based on proteomics and genetic analysis, low 
diversity among circulating clones was observed. Of interest, 
37.8% and 41.3% of the strains from teats and the environ-
ment harbored genes (eno & cflA) associated with adherence 
and the ability to invade and spread to other hosts, respec-
tively. The lack of hand washing represented the most impor-
tant risk factor associated with the prevalence of subclinical 
mastitis in the region.
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