nature ecology & evolution

Article

https://doi.org/10.1038/s41559-022-01918-5

The supply of multiple ecosystem services requires biodiversity across spatial scales

In the format provided by the authors and unedited

Supplementary Table 1. Relative ecosystem service (ES) priority for each stakeholder group (local residents, nature conservation associations, agriculture and tourism sectors) for the four major ecosystem services supplied by grasslands within the study regions: aesthetic value (indicated by acoustic diversity and total flower cover), fodder production (shoot biomass and forage quality), biodiversity conservation (bird species richness) and carbon sequestration (i.e. soil carbon stocks). ES priority was calculated as the proportion of the total priority points allocated to the service within a social survey, averaged across the individual responses within each stakeholder group.

-		Weightings for each stakeholder group				
Ecosystem service	Indicators	Local residents	Nature conservation associations	Agriculture	Tourism	
Aesthetic value	Acoustic diversity + Total flower cover	0.26	0.18	0.15	0.32	
Fodder production	Shoot biomass + Forage quality	0.22	0.15	0.49	0.16	
Biodiversity conservation	Bird species richness	0.35	0.45	0.26	0.34	
Carbon sequestration	Soil carbon stocks	0.17	0.22	0.11	0.18	

- 7 Supplementary Table 2. Current average proportion of the different land-cover types, and past average proportion of grasslands within
- 8 a 1000-m landscape of each grassland plot in the three Biodiversity Exploratories region.

		-	Schwäbische Alb	Hainich-Dün	Schorfheide- Chorin
	% croplands		14.98	34.29	24.70
% grasslands		36.66	30.03	45.85	
Current landscape-level	% forests		41.41	30.68	21.24
land use	% roads		0.55	0.62	0.73
	% urban areas		6.39	4.35	4.60
	% water bodie	S	0.01	0.03	2.88
		year 1820/50	30.34	8.60	27.36
Past landscape- level land use	% grasslands	year 1910/30	26.56	5.97	25.50
		year 1960	30.82	7.64	22.45

Supplementary Table 3. The values of χ^2 and \mathbf{R}^2 for the different structural equation models. 9 Models were fitted to four multifunctionality measures: cultural, aboveground regulating and 10 provisioning, and belowground regulating ecosystem service multifunctionality. Model fits were 11 assessed using one-sided Chi-squared tests. χ^2 and P-values indicate whether the model covariance 12 significantly differs from the observed one (non-significant P-values indicate good model fits). 13 The R² indicates the amount of variance in the cultural, aboveground regulating and provisioning, 14 and belowground regulating ecosystem service multifunctionality explained by the model. n = 15015 16 biologically independent samples.

Multifunctionality measure	χ^2	P-value	\mathbb{R}^2
Cultural ecosystem services	22.44	0.17	0.17
Aboveground regulating ecosystem services	22.44	0.17	0.06
Aboveground provisioning ecosystem services	22.44	0.17	0.42
Belowground regulating ecosystem services	22.44	0.17	0.17

17 Supplementary references

- Villanueva-Rivera, L. J., Pijanowski, B. C., Doucette, J. & Pekin, B. A primer of acoustic
 analysis for landscape ecologists. *Landsc. Ecol.* 26, 1233–1246 (2011).
- Shaw, T., Müller, S. & Scherer-Lorenzen, M. Slope does not affect autonomous recorder
 detection shape: considerations for acoustic monitoring in forested landscapes. *Bioacoustics* 0, 1–22 (2021).
- 23 3. Jäger E.J. & Werner K (2007). Gefässpflanzen Atlasband, 11th edn.n. Spektrum, Heidelberg.
- 24 4. Schauer T. & Caspari C. (2005). Der grosse BLV-Pflanzenführer, 9th edn. Blv, Munich.
- 5. Binkenstein, J., Renoult, J. P. & Schaefer, H. M. Increasing land-use intensity decreases floral
 colour diversity of plant communities in temperate grasslands. *Oecologia* 173, 461–471
 (2013).
- Steckel, J. *et al.* Landscape composition and configuration differently affect trap-nesting
 bees, wasps and their antagonists. *Biol. Conserv.* 172, 56–64 (2014).
- Frank, K., Hülsmann, M., Assmann, T., Schmitt, T. & Blüthgen, N. Land use affects dung
 beetle communities and their ecosystem service in forests and grasslands. *Agric. Ecosyst. Environ.* 243, 114–122 (2017).
- Klaus, V. H. *et al.* Nutrient concentrations and fibre contents of plant community biomass
 reflect species richness patterns along a broad range of land-use intensities among
 agricultural grasslands. *Perspect. Plant Ecol. Evol. Syst.* 13, 287–295 (2011).
- 36 9. Rohweder, D., Barnes, R. F. & Jorgensen, N. Proposed hay grading standards based on
 37 laboratory analyses for evaluating quality. *J. Anim. Sci.* 47, 747–759 (1978).
- 38 10. Oelmann, Y. *et al.* Above- and belowground biodiversity jointly tighten the P cycle in
 39 agricultural grasslands. *Nat. Commun.* 12, 4431 (2021).

4

- 40 11. Sorkau, E. *et al.* The role of soil chemical properties, land use and plant diversity for
 41 microbial phosphorus in forest and grassland soils. *J. Plant Nutr. Soil Sci.* 181, 185–197
 42 (2018).
- 43 12. Olsen, S. R. Estimation of available phosphorus in soils by extraction with sodium
 44 bicarbonate. (US Department of Agriculture, 1954).
- Kleinebecker, T., Klaus, V. H. & Hölzel, N. Reducing sample quantity and maintaining high
 prediction quality of grassland biomass properties with near infrared reflectance
 spectroscopy. *J. Infrared Spectrosc.* 19, 495–505 (2011).
- 48 14. Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil
 49 microbial biomass C. *Soil Biol. Biochem.* 19, 703–707 (1987).
- 15. Hoffmann, H., Schloter, M. & Wilke, B.-M. Microscale-scale measurement of potential
 nitrification rates of soil aggregates. *Biol. Fertil. Soils* 44, 411–413 (2007).
- 52 16. Stempfhuber, B. *et al.* Drivers for ammonia-oxidation along a land-use gradient in grassland
 53 soils. *Soil Biol. Biochem.* 69, 179–186 (2014).
- 54 17. Leimer, S. *et al.* Does plant diversity affect the water balance of established grassland
 55 systems? *Ecohydrology* 11, e1945 (2018).
- 18. Leimer, S. et al. Plant diversity effects on the water balance of an experimental grassland.
- 57 *Ecohydrology* **7**, 1378–1391 (2014).