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Abstract 115 

Accurate simulation of crop water use (evapotranspiration, ET) can help crop growth models to 116 

assess the likely effects of climate change on future crop productivity, as well as being an aid for 117 

To determine how well maize (Zea mays L.) growth 118 

models can simulate ET, an initial inter-comparison study was conducted in 2019 under the 119 

umbrella of AgMIP (Agricultural Model Inter-Comparison and Improvement Project). Herein, 120 

we present results of a second inter-comparison study of 41 maize models that was conducted 121 

using more comprehensive datasets from two additional sites - Mead, Nebraska, USA and 122 
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Bushland, Texas, USA. There were 20 treatment-years with varying irrigation levels over 123 

multiple seasons at both sites. ET was measured using eddy covariance at Mead and using large 124 

weighing lysimeters at Bushland. A wide range in ET rates was simulated among the models, yet 125 

several generally were able to simulate ET rates adequately. The ensemble median values were 126 

generally close to the observations, but a few of the models sometimes performed better than the 127 

median. Many of the models that did well at simulating ET for the Mead site did poorly for drier, 128 

windy days at the Bushland site, suggesting they need to improve how they handle humidity and 129 

wind. Additional variability came from the approaches used to simulate soil water evaporation. 130 

Fortunately, several models were identified that did well at simulating soil water evaporation, 131 

canopy transpiration, biomass accumulation, and grain yield. These models were older and have 132 

been widely used, which suggests that a larger number of users have tested these models over a 133 

wider range of conditions leading to their improvement. These revelations of the better 134 

approaches are leading to model improvements and more accurate simulations of ET. 135 

 136 

Graphical abstract 137 

 138 
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Highlights 139 

 Maize growth models differ widely in their simulations of daily evapotranspiration 140 

 Most models fail to sufficiently reduce transpiration after crop maturation 141 

 Most models fail to adequately reproduce effects of low humidity and high windspeed 142 

 The median of models was often but not always the best performing 143 

 Model inter-comparisons suggest avenues to improve simulation of maize ET 144 

 145 

Keywords: Maize; simulation; evapotranspiration; water use; crop models; yield 146 

1 Introduction 147 

148 

forecast the likely effects of climate change on future agricultural productivity and irrigation 149 

water requirements. For both tasks they need to be accurate. Therefore, in a major effort to 150 

improve their accuracy and reliability, modeling groups within the Agricultural Model Inter-151 

comparison and Improvement Project (AgMIP; https://agmip.org/) have been inter-comparing 152 

multiple models against each other and against field datasets with varying CO2, temperature, 153 

nitrogen fertilizer, and water supply [wheat (Triticum aestivum L.; Asseng et al., 2013, 2015; 154 

Cammarano et al., 2016; Liu et al., 2016; Maiorano et al., 2017; Wang et al., 2017), maize (Zea  155 

mays L.; Bassu et al., 2014; Durand et al., 2018; Kimball et al., 2019), rice (Oryza sativa L.; Li 156 

1 Abbreviations: ASCE  American Society of Civil Engineers, DAP  days after planting, E  157 

soil water evaporation, Ep  potential soil water evaporation, Es  simulated soil water 158 

evaporation, ET  evapotranspiration, ETo  -159 

cm-tall grass, ETp  potential evapotranspiration, ETr  160 

on 50-cm-tall alfalfa, ETs  simulated evapotranspiration, LAI, leaf area index, nRMSE  161 

normalized root mean square error, MESA  mid-elevation sprinkler application, P-T  Priestley-162 

Taylor, SDI  subsurface drip irrigation, T  transpiration, Tp  potential canopy transpiration, 163 

Ts  simulated canopy transpiration 164 

 165 
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et al., 2015; Hasegawa et al., 2017), and potato (Solanum tuberosum L.; Fleisher et al., 2017)]. 166 

As discussed by Kimball et al. (2019), only a few comparisons among methods or models to 167 

simulate ET have been done previously. Sau et al. (2004) evaluated several ET options with the 168 

CROPGRO Faba bean (Vicia faba L.) model, by careful comparison to soil water balance, and 169 

found that the FAO-56 option (Allen et al., 1998) had a root mean square error (RMSE) that was 170 

20% smaller than the Priestley-Taylor option (Priestley and Taylor, 1972) and 48% smaller than 171 

the FAO-24 option (Doorenbos and Pruitt, 1985). In an inter-comparison of water use among 16 172 

wheat models at four sites around the world, Cammarano et al. (2016) found  the coefficient of 173 

variation was only 22.5% among models and sites. In contrast, in an inter-comparison among 23 174 

maize models, Bassu et al. (2014) found a very large range of simulated values of ET among the 175 

models, including -10 to +30% variations in the ET response to doubled CO2 concentration (720 176 

µmol/mol).  However, there were no observations of ET or water use in the dataset chosen for 177 

that study, so there was no standard for comparison. Therefore, Kimball et al. (2019) conducted 178 

their study using eight seasons of data from Ames, Iowa, USA for which eddy covariance 179 

measurements of ET were available. Like Bassu et al. (2014), they also found simulated ET 180 

values varied by a factor of two among the maize models. Surprisingly, among the models with 181 

closest agreement to observations, some were quite simple (e.g., no simulation of biomass) and 182 

some were quite complex (e.g., full energy balance), so it was difficult to determine which 183 

approaches were generally best and should be adopted by the poorer performing models. 184 

Nevertheless, there were several cases in which different ET methods were tested within the 185 

same family of crop models, and comparisons among these methods clearly revealed some 186 

approaches that were better than others. 187 

 188 



9 

 

However, there were some issues with the Ames dataset (Kimball et al., 2019). For example, in 189 

2012, an infamous year for drought in the Midwest, observed ET and crop yield were higher than 190 

in other years. Further analysis led to the strong suspicion that there was a water table present to 191 

provide additional water besides the sparse rainfall, yet deep soil water measurements were 192 

lacking to confirm the suspicion. Therefore, it was decided to repeat the study of Kimball et al. 193 

(2019) with more robust datasets. 194 

 195 

Two such datasets were identified, one from the University of Nebraska at Mead, Nebraska, 196 

USA (41.165 N, 96.470 W, 362 m), which is close to the 100th meridian typically used to divide 197 

the humid East from the arid West, thus placing it within the  There were six 198 

seasons of maize from irrigated and rainfed fields (12 treatment-years) with ET determined using 199 

eddy covariance. The second was collected by the USDA, Agricultural Research Service, 200 

Conservation and Production Research Laboratory (CPRL), Bushland, Texas, USA (35.183 N, 201 

102.100 W, 1170 m), which is a more arid region where maize is mostly grown with irrigation, 202 

and where winds are commonly higher. They measured ET using large weighing lysimeters. 203 

They grew maize for two seasons with MESA (mid-elevation sprinkler application) at 100% and 204 

75% replacement of soil water and in near-duplicate SDI (sub-surface drip irritation) fields at 205 

100% (8 treatment-years). A total of 41 models participated in this second round of maize ET 206 

simulation inter-comparisons (Tables 1, S1), and again the primary objective was to identify the 207 

approaches that were most accurate for simulating ET, i.e., had the lowest RMSE compared to 208 

the observations. ies to simulate LAI, 209 

biomass, grain yield, soil moisture, and soil temperature. ods 210 
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used by the models to simulate ET or other processes, i.e., FAO-56 (Allen et al. 1998) versus 211 

Priestley-Taylor (1972), etc. 212 

 213 

 214 

2 Materials and Methods 215 

2.1 Observed data 216 

2.1.1 University of Nebraska, Mead, Nebraska, USA 217 

One set of field data came from the University of Nebraska Agricultural Research and 218 

Development Center near Mead, Nebraska, USA (http://csp.unl.edu/public/). The soils were deep 219 

silty clay loams of Yutan (fine-silty, mixed, superactive, mesic Mollic Hapludalfs), Tomek (fine, 220 

smectitic, mesic Pachic Argialbolls), Filbert (fine, smectitic, mesic Vertic Argialbolls), and 221 

Filmore (fine, smectitic, mesic Vertic Argialbolls). The eddy covariance technique was used to 222 

determine ET of maize and soybean (Glycine max) in alternate years, as well as fluxes of 223 

sensible heat and CO2. Additional details can be found in Suyker and Verma (2008, 2009) and 224 

Suyker et al. (2004, 2005).  Briefly, fluxes of latent heat, sensible heat, and momentum were 225 

determined using data from the following sensors at each site: an omnidirectional 3D sonic 226 

anemometer (Model R3: Gill Instruments Ltd., Lymington, UK) and an open-path infrared 227 

CO2/H2O gas analyzing system (Model LI7500: Li-Cor Inc., Lincoln, NE).  228 

 229 

The instruments were deployed near the centers of the fields, and the fetch was about 400 m in 230 

all directions. The eddy covariance sensors were mounted 5.5 m above the ground. Fluxes were 231 

corrected for inadequate sensor frequency, and they were also adjusted for the variation in air 232 

density due to the transfer of water vapor and sensible heat. Air temperature and relative 233 
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humidity (Humitter50Y, Vaisala, Helsinki, FIN), soil heat flux at 0.06m (Radiation and Energy 234 

Balance Systems, Inc., Seattle, WA), and net radiation at 5.5m (CNR1, Kipp and Zonen Ltd., 235 

Delft, NLD) were also measured. Missing data due to sensor malfunction, power outages, 236 

unfavorable weather, etc. (approximately 15 20% per year), were estimated using an approach 237 

that combined measurement, interpolation, and empirical data synthesis. When hourly values 238 

were missing (day or night), the latent heat values were estimated as a function of available 239 

energy. Linear regressions between latent heat and available energy were determined (separately 240 

for dry and wet conditions) for sliding 3-day intervals, and these estimates were used to fill in 241 

missing flux values. 242 

 243 

To check closure of the energy balance, the sum of latent and sensible heat fluxes ( E + H) 244 

measured by eddy covariance were plotted against the sum of Rn (net radiation) + four storage 245 

terms, determined by other methods (e.g., Suyker and Verma, 2008). Linear regressions were 246 

calculated between the hourly values of H + E and Rn + G at the study sites (excluding winter 247 

months and periods with rain and irrigation). Here G = Gs (soil heat storage) + Gc (canopy heat 248 

storage) + Gm (heat stored in the mulch) + Gp (energy used in photosynthesis). The regression 249 

slopes averaged 0.89 ± 0.08, implying a fairly good closure of the energy balance. 250 

 251 

We used values of daily ET flux, called observed-ET for 2003, 2005, 2007, 2009, 2011, and 252 

2013 from the US-Ne2 (41.165  N, 96.470  W, 362 m; http://ameriflux.lbl.gov/sites/siteinfo/US-253 

Ne2) irrigated maize-soybean rotation field  and from the US-Ne3 (41.180  N, 96.440  W, 363 254 

m; http://ameriflux.lbl.gov/sites/siteinfo/US-Ne3) rainfed maize-soybean rotation field. 255 

Conservation tillage practices were used, so plant residues were not ploughed into the soil, and 256 
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the soil surface was generally partially covered with prior soybean crop residue. Both sites are 257 

part of the Ameriflux (https://ameriflux.lbl.gov/sites) U.S. surface gas flux observation system, 258 

and the two sites are within 1.6 km of each other.  The cultivars were Pn33B51, Pn33G66, 259 

Pn33H26, Pn33T57, DK_61-72, and DK_62-98 used in 2003, 2005, 2007, 2009, 2011, and 2013, 260 

respectively The irrigated crops were planted on 14 May, 2 May, 1 May, 21 April, 17 May, and 261 

30 May, and the rainfed crops on 13 May, 26 April, 2 May, 22 April, 2 May, and 13 May in 262 

2003, 2005, 2007, 2009, 2011, and 2013, respectively. Destructive measurements of green leaf 263 

area index (LAI) and biomass were made approximately bi-monthly during the growing season.  264 

 265 

2.1.2 USDA, Agricultural Research Service, Conservation and Production Research Laboratory, 266 

Bushland, Texas, USA 267 

Maize was grown in 2013 and 2016 at the USDA-ARS Conservation and Production Research 268 

Laboratory (https://www.ars.usda.gov/plains-area/bushland-tx/cprl/), Bushland, Texas (35.18° N, 269 

102.10° W, 1170 m above MSL) on a gently sloping (<0.3%) Pullman soil (fine, mixed, 270 

superactive, thermic Torrertic Paleustoll). Additional details and data are provided by Evett et al. 271 

(2019, 2020, 2022). Four 4.4 ha fields, approximately square in shape and adjacent to each other, 272 

each contained a large (3 m × 3 m in surface area, 2.3 m deep) precision weighing lysimeter in 273 

the center. The lysimeters contained undisturbed cores of the Pullman soil obtained on site, and 274 

they had an accuracy of 0.04 mm water depth equivalent or better (Evett et al., 2012; Marek et 275 

al., 1988). The fields and their associated lysimeters were designated NE, SE, NW, and SW 276 

according to the inter-cardinal directions. The NE and SE lysimeters and fields were irrigated by 277 

subsurface drip irrigation (SDI), and the NW and SW lysimeters and fields were irrigated by 278 

mid-elevation sprinkler application (MESA) using a ten-span linear-move system described by 279 
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Evett et al. (2019). Adaptation of SDI for the NE and SE weighing lysimeters was described by 280 

Evett et al. (2018a). A 109-day drought-tolerant variety (Pioneer 1151AM AquaMax, 80% Bt) 281 

was planted on 16-17 May 2013 under MESA irrigation, on 22-23 May 2013 in the SDI fields 282 

and on 10-11 May 2016 in all fields. These are typical dates for maize planting in the region. 283 

Crops were managed and fertilized for high grain yield, as detailed by Evett et al. (2019). In each 284 

field, destructive subsampling for leaf area index and biomass occurred in replicate plots 285 

periodically during the season, and plant height and row width were measured at the same times. 286 

Maize harvests were on 15 October 2013 and on 13 and 17 October 2016.  287 

 288 

Soil water content was sensed at center depths of 0.10 to 2.30 m in 0.20 m increments in each of 289 

eight access tubes in the field around each lysimeter and in two access tubes in each lysimeter (to 290 

1.90 m depth) on a weekly basis, unless prevented by wet field conditions, using a field-291 

calibrated neutron probe and depth-control stand (Evett et al., 2008). Once the crop was 292 

established, irrigations were scheduled weekly to replenish the soil water in the top 1.5 m of the 293 

profile to field capacity (i.e., replenishing 100% of crop ET), except for one MESA field where 294 

irrigations were 75% of full crop ET after crop establishment. As explained by Evett et al. 295 

(2019), the MESA 75% deficit irrigation treatment was established to complete a previous 296 

longer-term deficit irrigation study. In some cases, two or even three irrigations were required in 297 

a week to replenish the water used by the crop. Irrigations by sprinkler and by SDI typically did 298 

not occur on the same day. Neutron probe readings were delayed until the soil surface was dry 299 

enough to walk on. The soil profile in early 2013 was quite dry, and SDI preplant irrigation and 300 

SDI irrigation immediately after planting were required to plant and germinate the crop. This 301 

resulted in a full soil profile in the SDI fields by the time neutron probe sensing began, while 302 
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crop germination with MESA irrigation was accomplished with less frequent irrigations that did 303 

not penetrate to the 1.5 m depth. Irrigations in the 100% SDI and MESA fields maintained the 304 

soil water depletion to less than the management-allowed depletion level throughout the season. 305 

In 2016, the soil profile was much wetter following a wet winter, and no preplant irrigation and 306 

less irrigation immediately after planting were needed. Again, irrigations in the 100% SDI and 307 

MESA fields kept soil water depletion to less than the management-allowed depletion level. 308 

 309 

Evapotranspiration (ET) was determined on 5 min, 15 min, and daily bases using data analyses 310 

and quality control procedures described by Marek et al. (2014) and Evett et al. (2019). Fifteen-311 

minute-average weather data were output from the research weather station of the USDA-ARS 312 

Soil and Water Management Research Unit at Bushland, Texas located immediately east of the 313 

lysimeter fields. The weather station instrumentation and data quality assurance and control 314 

procedures were applied as described by Evett et al. (2018b).  315 

 316 

2.2 Modeling methodology 317 

2.2.1 Model list. The simulations were conducted by 20 modeling groups from around the world 318 

with 41 models completing the inter-comparison (Table 1). Details about each model are 319 

presented in supplementary Table S1. However, as can be seen from the names (Tables 1, S1), in 320 

simulation methods tested within the same 321 

model family that were chosen by the user at run time. The biggest example is that of the 322 

DSSAT family (Hoogenboom et al., 2019a,b; Jones et al., 2003) of the Cropping System Model 323 

(CSM) within which both the CSM-CERES-Maize and CSM-IXIM-Maize (hereafter simply 324 

called CERES and IXIM) modules were run. Both calculate a value called potential 325 

evapotranspiration, ETp, which was done using four methods: (1) FAO-56 (Allen et al., 1998), 326 
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(2) Priestley-Taylor (1972), (3) the ASCE Standardized Reference Evapotranspiration Equation 327 

(Allen et al., 2005) for 12-cm grass (short crop), and (4) the ASCE Equation for 50-cm alfalfa 328 

(tall crop; Medicago sativa L.) with FAO-56 dual crop coefficients for maize (Table S1). Within 329 

these eight combinations, two E methods for calculating soil water evaporation were tested: 330 

331 

within the CERES-FAO-56 and CERES-Priestley-Taylor combinations, E was also computed 332 

using Hydrus (  et al., 1998, 2008; Shelia et al., 2018), in which soil water moves based 333 

on potential gradients. Thus, there were a total of 18 (2 models x 4 ETp methods x 2 soil E 334 

methods + 2 Hydrus) DSSAT flavors. Within the DSSAT flavors, model calibrations though 335 

Phase 4 were aimed at the best statistics [lowest RMSE, and highest D-statistic (Willmont, 336 

1982)] for growth, grain yield, ET, and soil water variables, averaged over four ET options (two 337 

ET by two E methods) in order to minimize bias. The ASCE and Hydrus ET options were not 338 

included in this process because the methods were not part of the DSSAT V4.7 release, so they 339 

were at a slight disadvantage because they were not independently calibrated. Nevertheless, the 340 

resulting cultivar coefficients were consistently used among all the DSSAT simulations. 341 

 342 

In addition, Expert-N had GECROS and SPASS flavors, STICS had KETP and ETP_SW 343 

flavors, and MAIZSIM had daily and hourly flavors. 344 

 345 

  346 
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Table 1. List of models and their acronyms. (For details about the evapotranspiration aspects of 347 

each, see Supplementary Table S1: List of Models Plus Their Simulation Characteristics and 348 

Comparisons of Soil Moisture Simulations) 349 

 350 

Acronym Model Name Reference 

AHC Agro-Hydrological & chemical & Crop sys. simulator Williams et al., 1989 

AMSW APSIM-SOILWAT Keating et al., 2003 

AQCP AquaCrop Allen et al., 1998 

AQY Aqyield Constantin et al., 2015 

ARMO ARMOSA Perego et al., 2013 

BIOM Biome-BGCMuSo 6.0.2 Hidy et al., 2016 

CS CropSyst4 Stöckle et al., 2003 

DACT DayCent-CABBI Moore et al., 2020 

DCAR DSSAT CSM-CERES-Maize ASCE-Alfalfa Ritchie DeJonge & Thorp, 2017 

DCAS DSSAT CSM-CERES-Maize ASCE-Alfalfa Suleiman DeJonge & Thorp, 2017 

DCFH DSSAT CSM-CERES-Maize FAO-56 Hydrus Shelia et al., 2018 

DCFR DSSAT CSM-CERES Maize FAO-56 Ritchie Sau et al., 2004 

DCFS DSSAT CSM-CERES-Maize FAO-56 Suleiman Sau et al., 2004 

DCGR DSSAT CSM-CERES-Maize ASCE-Grass Ritchie DeJonge & Thorp, 2017 

DCGS DSSAT CSM-CERES-Maize ASCE-Grass Suleiman DeJonge & Thorp, 2017 

DCPH DSSAT CSM-CERES-Maize Priestley-Taylor Hydrus Shelia et al., 2018 

DCPR DSSAT CSM-CERES-Maize Priestley-Taylor Ritchie Sau et al., 2004 

DCPS DSSAT CSM-CERES-Maize Priestley-Taylor Suleiman Sau et al., 2004 

DIAR DSSAT CSM-IXIM-Maize ASCE-Alfalfa Ritchie DeJonge & Thorp, 2017 

DIAS DSSAT CSM-IXIM-Maize ASCE-Alfalfa Suleiman DeJonge & Thorp, 2017 

DIFR DSSAT CSM-IXIM-Maize FAO-56 Ritchie Sau et al., 2004 

DIFS DSSAT CSM-IXIM-Maize FAO-56 Suleiman Sau et al., 2004 

DIGR DSSAT CSM-IXIM-Maize ASCE-Grass Ritchie DeJonge & Thorp, 2017 
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Acronym Model Name Reference 

DIGS DSSAT CSM-IXIM-Maize ASCE-Grass Suleiman DeJonge & Thorp, 2017 

DIPR DSSAT CSM-IXIM-Maize Priestley-Taylor Ritchie Sau et al., 2004 

DIPS DSSAT CSM-IXIM-Maize Priestley-Taylor Suleiman Sau et al., 2004 

ECOS ecosys Grant & Flanagan, 2007 

JUL JULES Best et al., 2011 

L5SH L5-SLIM-H Wolf, 2012 

MZD MAIZSIM Daily Yang et al., 2009  

MZH MAIZSIM Hourly Yang et al., 2009  

SLUS SALUS  Basso & Ritchie, 2015 

SLFT SIMPLACE LINTUL5 FAO56 SLIM3 CanopyT Wolf, 2012 

SMET SIMETAW# Mancosu et al 2016 

SSMi SSM-iCROP Soltani & Sinclair, 2012 

STCK STICS_KETP Brisson et al., 2003 

STSW STICS_ETP_ SW Brisson et al., 2003 

SWB SWB Annandale et al., 2000 

TMOD Test Model  

XNGM Expert-N - GECROS Priesack et al., 2006 

XNSM Expert-N - SPASS Priesack et al., 2006 

  351 
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2.2.2 Simulation protocol. The study was conducted in four phases: 352 

1. 353 

management (planting dates, irrigations, fertilizer applications, etc.) information. They 354 

also received anthesis and maturity dates, but no other information about plant growth, 355 

grain yield, or water use. 356 

2. Potential or non-stressed growth -series leaf area 357 

index (LAI) and biomass observations, as well as final grain yields for all the non-water-358 

stress treatments (only irrigated for Mead; only 100% irrigation for Bushland) 359 

3. Non-stress ET phase ET, soil water, and soil temperature 360 

for the non-water-stress treatments (only irrigated for Mead; only 100% irrigation for 361 

Bushland) 362 

4. LAI, biomass, grain 363 

yield, ET, soil moisture, soil temperature etc. data for all treatment-years. 364 

 365 

The modelers were told to start their simulations on day-of-year 91, so there would be time for 366 

equilibration of soil moisture and soil water 367 

content profiles, but the number of days before planting at which soil moisture was determined 368 

varied widely from season to season. 369 

 370 

2.2.3 Methods for evaluating model performance 371 

Correlation coefficients (r), D statistics (Willmott, 1982), root mean squared errors between 372 

observed and simulated values (RMSE), normalized root mean squared errors (nRMSE), average 373 

differences, as well as mean squared deviations (MSD), standard bias (SB), non-unity of slopes 374 



19 

 

(NU), and lack of correlations (LC) following Gauch et al. (2003), are all presented as 375 

Supplementary Statistical Data for Phase 4. Also included are slopes and intercepts of 376 

regressions of observed on simulated data, along with corresponding graphs for each model and 377 

analyzed parameter. 378 

Herein, we chose to present the nRMSE results calculated using: 379 

nRMSE = {[n-1 (Pi-Oi)
2]0.5} -1  380 

where n = number of observations, Pi and Oi are the simulated and observed ith value pair, and  381 

is the observed mean. Normalizing with  enables a comparison of the variability of parameters 382 

with widely different units and scales, such as ET rate and biomass accumulation, although 383 

admittedly, nRMSE fails for  = zero or small values close to zero. 384 

2.2.4 k-means clustering 385 

A k-means clustering algorithm was used to group models with similar nRMSE statistics and 386 

identify the top-performing models in a non-arbitrary way. Analyses focused on nRMSE for four 387 

pairs of model output variables, including simulated ET (ETs) versus grain yield and biomass 388 

from -10 to +20 days after planting (DAP) (soil E dominant) and from 41 to 100 DAP (canopy T 389 

dominant). Initial tests varied the number of clusters (n) from 1 to 19. The final analysis was 390 

conducted with n=4 clusters based on reducing the sum of squared distance from the cluster 391 

center to less than 20% of that for n=1 cluster. Using n=4 clusters also resulted visually 392 

appealing cluster plots with the set of top-performing models clearly identified within groups 393 

having low nRMSE for both variables of each pair. The k-means analysis was conducted using 394 

-  395 

 396 

 397 
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3 Simulation results and discussion 398 

3.1 Daily results for irrigated and rainfed Mead in 2003 (the driest year) and Bushland 100% 399 

and 75% sprinkler irrigations in 2013 (the year with highest observed ET rates) 400 

These four cases were selected from among the twenty treatment-years available for more 401 

detailed (daily) examination because they represent the two sites and the two cases at each site 402 

with the likely greatest water stress difference between treatments, i.e., irrigated versus rainfed in 403 

the driest year at Mead and 100% versus 75% MESA irrigation in the year with the highest daily 404 

ET rates in Bushland. 405 

3.1.1 Daily simulated evapotranspiration (ETs) 406 

3.1.1.1 Irrigated Mead in 2003. As found previously (Kimball et al., 2019), there was a wide 407 

range in ETs among the models (Fig. 1). However, the median of all the models tended to be 408 

close to the observed values most days. Admittedly, for this intercomparison, as well as for all 409 

the others that follow in the rest of this paper, the median is biased toward DSSAT because of 410 

s fell within the short (1-3 mm/d) 411 

green boxes much of the time, which indicates many of the models produced respectable 412 

simulations. There was only a slight (< 1 mm/d) improvement in model performance going from 413 

Phase 1 to Phase 4.  It appears that the greatest variability and uncertainty among the models 414 

occurred from about 10 days before planting to 10 DAP (soil E dominated) and from about 130 415 

to 160 DAP (after the crop matured).  A likely cause of the latter issue is that many models 416 

retained a fair amount of green LAI at and after simulated maturity; thus, model equations for ET 417 

that depend strongly on LAI did not result in sufficient termination of ET.  Successive model 418 

adjustments or calibrations going from Phase 1 to Phase 4 as more information was provided 419 

only slightly improved this. Model code improvement is needed to decrease green LAI due to 420 
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senescence, eventually shutting down T at crop maturity. Code improvement likely is also 421 

needed to improve the simulation of bare soil ET. 422 

3.1.1.2 Rainfed Mead in 2003. For rainfed conditions at Mead, the models showed large 423 

variability (uncertainty) in daily ETs from about -10 to +10 DAP (soil E dominated; Fig. 2) 424 

similar to the irrigated field (Fig. 1). The greatest deviations (or errors) occurred from about 70 425 

to 95 DAP when there was little rainfall (Fig. 2a). The observed ET continued at close to 4 426 

mm/d, whereas the models simulated much lower rates. Like the irrigated field (Fig. 1), after 427 

DAP 120 as the crop matured, the measured ET decreased rapidly, whereas the models continued 428 

to simulate much higher ET. The ET variability during the -10 to +10 DAP period was related to 429 

highly different methods for simulatingE, some of which proved to be less accurate. The issues 430 

during the maturation period after 120 DAP are related to the insufficient termination of T after 431 

maturity.  More importantly, the period from about 70 to 95 DAP and beyond corresponds to the 432 

period of water limitation, when most models (and the median) simulated lower than observed 433 

ET. We suspect this is caused by inadequate soil water dynamics in the models, such as 434 

insufficient rooting depth, inadequate water up-flux or the presence of a perched water table, as 435 

well as excessive simulated ET during the early growth phase that depleted the simulated soil 436 

water too much, thus reducing ET later. 437 

 438 

 439 

440 
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 441 

  442 



23 

 

Figure 1. (a.) Weather variables (maximum and minimum air temperature, dew point, solar 443 

radiation, wind speed, rainfall) observed at irrigated field NE2 at Mead in 2003 versus days after 444 

planting (DAP). (b.) Box plots of daily simulated evapotranspiration (ETs) where the lower and 445 

upper limits of the box indicate the 25th and 75th percentile of ET values simulated by 41 maize 446 

growth models, respectively, the lower and upper whiskers indicate the 10th and 90th percentiles, 447 

and the points are outliers. Observed values and the median values from the 41 models are also 448 

shown. The simulated outputs start with Phase 2, for which the modellers were given leaf area 449 

index, growth, and grain yield data for all 100% irrigated treatment-years. Phase 1 simulations, a 450 

451 

information, are missing from this graph because a plant population mistake was made for Mead 452 

irrigated fields. (c.) Same as (b.) except for Phase 3 whereby the modellers were given the 453 

observed ET, soil water content, soil temperature for all 100% irrigated treatment-years. (d.) 454 

Same as (c.) except for Phase 4 whereby the modellers were given all data, including ET, 455 

growth, and grain yield, for all 20 treatment-years, including rainfed and 75% irrigations. (e.) 456 

Observed daily ET values as well as the median ETs values for Phases 2, 3, and 4  457 
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 458 

 459 

Figure 2. Similar to Figure 1 except for rainfed Mead field NE3 in 2003, and data for Phase 1 are 460 

also included. 461 

 462 

463 
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3.1.1.3 100% and 75% irrigated Bushland in 2013. For the Bushland location, most of the 464 

models (and the median) under-estimated ET during the 45 to 80 DAP period when windspeeds 465 

were high (> 5 m/s) and dew points were low (Figs. 3, 4). Model calibration (Phases 1 to 4) only 466 

partially improved this situation. This is possibly related to the fact that many of the models do 467 

not adequately account for varying wind speed and humidity, as can be deduced from the fact 468 

that the models estimated ET fairly well during periods of smaller ET but under-estimated ET 469 

greatly during periods of larger ET, when wind speeds were high and relative humidity was low. 470 

The fact that solar irradiance was also smaller during some of the periods of smaller ET (due to 471 

storm fronts) indicates that the radiation and energy balance algorithms may also need 472 

improvement. As before with Mead (Figs. 1, 2), the models failed to reduce T sufficiently after 473 

crop maturation (Figs. 3, 4; 105 to 145 DAP). Surprisingly, the models tended to simulate the 474 

75% irrigation treatment (Fig. 4) better than they did the 100% treatment (Fig. 3). Again, we 475 

speculate that this is because many of the models had not been calibrated previously to account 476 

for the very high winds and low humidity in Bushland, so their ETs simulations were lower than 477 

the high observed ET rates for the 100% irrigations treatment (Fig. 3), whereas under the 75% 478 

treatment (Fig. 4), drought stress reduced observed ET rates into the ranges for which the models 479 

had been calibrated. The fact that observed ET for the 75% MESA irrigations treatment was 480 

similar to that for the 100% SDI treatment (Evett et al., 2019) indicates that E may play an 481 

important role in the discrepancies between simulated and observed ET for the 100% MESA 482 

treatment. The major difference between SDI and MESA irrigation in the Bushland experiments 483 

was the larger evaporative losses from the soil surface in MESA irrigated fields (Evett et al., 484 

2019). 485 

 486 
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 487 

Figure 3. Similar to Fig. 1 except for 100% MESA (mid-elevation sprinkler application) 488 

irrigation at Bushland in 2013. 489 

 490 
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 491 

Figure 4. Similar to Fig. 1 except for 75% irrigation at Bushland in 2013, and data for Phase 1 492 

are also included. 493 

  494 
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3.1.2 Ranking of models with respect to their nRMSE for simulating daily ETs 495 

3.1.2.1 Irrigated Mead in 2003 496 

The median of all the models had the lowest nRMSE for ETs for Phases 2, 3, and 4 for both early 497 

season (-10 to +20 DAP; soil E dominant) and mid-season (41 to 100 DAP; canopy T dominate) 498 

(Fig. 5). For early season STCK was the best model 499 

at mid-season several DSSAT flavors again did well, especially for Phase 2. STCK uses Penman 500 

(1948) to calculate atmospheric demand and the 2-phase model of Brisson and Perrier (1991) and 501 

Brisson et al. (1998, 2003) to calculate soil water evaporation, Ea (Table S1). Note that all the 502 

DSSAT flavors listed for - , which indicates that the soil E method of 503 

Ritchie (1972) was better than the more recent method of Suleiman and Ritchie (2003, 2004). 504 

However, for Phase 2 during the 41 to 100 DAP period DIFS and DCFS did well, but during this 505 

period canopy T was dominant, so soil E was relatively unimportant then. 506 

 507 

The effects of changes made by the modelers going from phase to phase can also be seen in Fig. 508 

5. For example, BIOM was ranked 19th for Phase 2, -10 to +20 DAP but improved to 5th and 6th 509 

for Phase 3 and Phase 4, respectively. Like the well-performing DSSAT flavors, BIOM 510 
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Figure 5. (a) Normalized root mean squared error (nRMSE) between observed and simulated 512 

daily ET values from -10 to +20 days after planting (DAP)(mostly soil E) for the irrigated field 513 

NE2 at Mead in 2003 for all the models. Phases 2, 3, and 4 are identified by red, cyan, and blue 514 

bars with Phase 2 at the top and Phase 4 at the bottom of each group. Phase 1 data are missing 515 

from this graph because a plant population mistake was made for Mead irrigated fields. The 516 

models have been sorted in ascending order of nRMSE for Phase 2 from top to bottom of the 517 

graph with the rank numbers on the left axis indicating their ranking for Phase 2. The Median 518 

(Med) and the six best models (lowest nRMSE) for Phase 2 2519 

similarly, the Median and six best models for Phases 3 and 520 

different adjustments going from phase to phase, their 521 

rank order changed, so the names along with their nRMSE rank are in different positions down 522 

the graph. (b) Same as for (a) except the data are for 41 to 100 DAP (mostly crop canopy T) with 523 

the ranking done on the 41 to 100 DAP Phase 2 data 524 

  525 
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 also uses Ritchie (1972) to simulate soil E. AHC rose from 28th to 5th from Phase 2 to Phase 4 526 

for the -10 to +20 period. AHC uses the two-stage FAO-56 method to simulate E for mostly bare 527 

soil (Table S1). A huge improvement was made by SLUS going from 40th for Phase 2 to 5th for 528 

Phase 3 for the 41 to 100 DAP period. SLUS calculates atmospheric demand from Priestly and 529 

Taylor (1972) and then uses an empirical equation to simulate potential ETp (Table S1), which 530 

would be mostly T for the irrigated full canopy. XNSM, SMET, and CS all markedly improved 531 

from Phase 2 to Phase 4 to be among the best for the full canopy (Fig. 5b). All three use FAO-56 532 

(Allen et al., 1998) with some modifications (Table S1).  533 

 534 

3.1.2.2 Rainfed Mead in 2003 535 

The STCK model was best for simulating ETs for the -10 to +20 DAP period in the rainfed field 536 

at Mead in 2003 for Phases 1 and 2, while the median was 2nd, and then they traded rankings for 537 

Phases 3 and 4 (Fig. 6a). ECOS, JUL, DCFR, DIFR, and STSW also did very well. ECOS is a 538 

full energy balance model while JUL uses the Penman-Monteith approach (Monteith, 1965) with 539 

a 10-layer canopy (Table S1). BIOM rose from 31st for Phase 1 to 3rd for Phases 3 and 4. JUL 540 

and XNGM were best for the 41 to 100 DAP period (Fig. 6b). MZD was 3rd for Phase 1, but did 541 

much worse in the other phases. DIFR, DCFR, and DIPR did well. ECOS rose from 13th for 542 

Phase 1 to 2nd for Phases 3 and 4. All of these listed models were better than the median for this 543 

case. 544 

 545 

3.1.2.3 100% MESA irrigation at Bushland in 2013 546 

The median of all the models ranked 1st at simulating ETs from -10 to +20 DAP for all phases in 547 

Bushland with 100% MESA irrigation in 2013 (Fig. 7a). Except for Phase 2, ECOS, an energy 548 
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 549 

Figure 6. (a.) Normalized root mean squared error (nRMSE) between observed and simulated 550 

daily ET values from -10 to +20 days after planting (DAP)(mostly soil E) for the rainfed field 551 

NE3 at Mead in 2003 for all the models. Phases 1, 2, 3, and 4 are identified by green, red, cyan, 552 

and blue bars with Phase 1 at the top and Phase 4 at the bottom of each group. The models have 553 

been sorted in ascending order of nRMSE for Phase 1 from top to bottom of the graph with the 554 

rank numbers on the left axis indicating their ranking for Phase 1. The Median (Med) and the six 555 

best models (lowest nRMSE) for Phase 1 1556 

Median and six best models for Phases 2, 3 and 4 are also listed under  , 557 

but because the modelers made different adjustments going from phase to phase, their rank order 558 

changed, so the names along with their nRMSE rank are in different positions down the graph. 559 

(b.) Same as for (a.) except the data are for 41 to 100 DAP (mostly crop canopy T). 560 
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 561 

 562 

Figure 7. Like Fig. 6 except for 100% MESA (mid-elevation sprinkler application) irrigation to 563 

restore soil water to field capacity at Bushland. 564 
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 565 

 566 

Figure 8. Like Fig. 6 except for the MESA (mid-elevation sprinkler application) 75% irrigation 567 

at Bushland. 568 

569 
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 balance model was best. DCFR, DCPR, STSW, DIFR, and XNGM all did well. At mid-season 570 

(41 to 100 DAP, Fig. 7b), CS, DIGR, and STCK did well for all phases. BIOM and DIGS 571 

improved greatly for phases 3-4. However, the median was only about 12th. 572 

 573 

3.1.2.4 75% MESA irrigation at Bushland in 2013 574 

The median of all the models was 1st for all but one phase for both early season (-10 to +20 575 

DAP) and mid-season (41 to 100 DAP) for the 75% irrigation treatment at Bushland in 2013 576 

(Fig. 8). MZH was ranked 2nd for Phase 1, early season (Fig. 8a) but then did much worse for 577 

other phases. Similarly, ARMO did well for Phases 1 and 2, but then did much worse. DCFR, 578 

CS, and DIPS did well in all phases. XNGM, AMSW, and DCPS were among the best for Phase 579 

4. AMSW uses a transpiration efficiency to compute ETs from biomass accumulation, XNGM 580 

uses a modified Penman-Monteith (Monteith (1965), and DCPS uses Priestly and Taylor (1972) 581 

to simulate potential atmospheric demand and ultimately ETs. 582 

 583 

At mid-season, AQCP and AMSW did well for all phases (Fig. 8b). MZH and MZD did well for 584 

Phase 1, but then much worse for later phases. DIFS, DCFS, SMET, and BIOM did well for 585 

Phases 3 and 4. 586 

 587 

3.1.2.5 Intercomparison among the models for all four cases of daily ET for Phase 4 588 

Looking at Figs. 5-8, no single model appears among the best (lowest nRMSE) six for all four 589 

cases. The median was among the best for the all four cases from -10 to +20 DAP (mostly E), 590 

but only for two cases from 41 to 100 DAP (mostly T). Focusing on the -10 to +20 periods 591 

(mostly E), DCFR was among the best for 3 cases; STCK, DIFR, BIOM, ECOS, STSW, SNGM, 592 
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and AMSW for 2 cases; and DIGR, JUL, TMOD, CS, DIPS, DCPS for 1 case. For the 41 to 100 593 

DAP periods, the median was among the best only twice. BIOM was best for 3 cases; DIFR, CS, 594 

and SMET were best for 2 cases; and STCK DIGR, ECOS, JUL, STSW, XNGM, DIPR, XNSM, 595 

SLUS, DIGS, SLFT, AQCP, AMSW, DIFS, and DCFS were all among the best for 1 case. 596 

BIOM stands out as being the only model to be among the best twice for early season (mostly E) 597 

and thrice for midseason (mostly T). 598 

 599 

3.2 Inter-comparisons within the DSSAT family 600 

3.2.1 Daily ETs 601 

A comparison of E methods within the DSSAT models, revealed that the older Ritchie-2-stage 602 

model (Ritchie, 1972) was consistently better (lower nRMSE and lower simulated ETs) than the 603 

Sulieman and Ritchie method (2003, 2004) during the -10 to +20 DAP period, regardless of the 604 

other ET methods (Figs. 9a, 10a). The Ritchie-2-stage method was also better (slightly lower 605 

nRMSE) for ETs in the 41 to 100 DAP full canopy phase (Figs. 9b, 10b) for two reasons (less E 606 

during that phase, but mostly because lower early E allowed soil water in deeper layers to be 607 

conserved for the 41 to 100 DAP period, thus contributing more to T during the latter phase). 608 

 609 

In spite of having a theoretically more realistic mechanism for moving soil water with potential 610 

gradients, the Hydrus method (  et al., 1998, 2008; Shelia et al., 2018) did not perform 611 

as well as the more empirical Ritchie (1972) and Sulieman and Ritchie (2003, 2004) methods 612 

(Fig. 9a, 9b). However, Hydrus was just recently incorporated into the DSSAT shell, whereas the 613 

Ritchie (1972) and the Sulieman and Ritchie (2003, 2004) routines have been used for many 614 

years and likely have been fine-tuned to the system. Also, Hydrus is very sensitive to the values 615 



37 

 

of the soil physical and hydraulic properties, so if those parameter values were off, the simulated 616 

ET would also be off.  617 

 618 

A comparison of potential ET (ETp) methods within the DSSAT models illustrated that the 619 

FAO-56 method (in present DSSAT; Allen et al., 1998) with Kcan of 0.62 (gives Kep = 0.50) 620 

performed better (lower nRMSE) for ETs than the other ETp methods: Priestley-Taylor (P-T; 621 

1972), alfalfa reference-[ETr, ASCE equation (Allen et al., 2005)], or grass reference-[ETo, 622 

ASCE equation (Allen et al., 2005)] during both the -10 to +20 DAP period and the 41-100 DAP 623 

period (Figs. 10a, 10b). Kcan is the extinction coefficient for absorption of photosynthetically-624 

active radiation by LAI, while Kep is the extinction coefficient for absorption of total solar 625 

energy by LAI. The default Kcan for CERES is 0.85 (in the ecotype file). Kcan was reduced to 626 

0.62  627 
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 628 

 629 
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Figure 9. Normalized root mean square errors (nRMSE) of the the DSSAT family 630 

models (a) for the -10 to +20 DAP periods (mostly soil E) of daily ETs over all phases for the 631 

irrigated and rainfed data for Mead 2003 and the 100% and 75% MESA irrigated data for 632 

Bushland 2013. Models included are DSSAT CSM-CERES and DSSAT CSM-IXIM, whose 633 

horizontal names span the corresponding left ten and right eight vertical bars, respectively. 634 

Potential ETp calculation methods are using alfalfa (tall, ETr) and grass (short, ETo) reference 635 

crop coefficients with the ASCE standardized reference equation (Allen et al., 2005), FAO-56 636 

(Allen et al., 1998), and Priestley-Taylor (1972). These horizonal names span the corresponding 637 

bars above them.  Soil evaporation calculation methods follow Ritchie (1972; labelled 638 

), Suleiman and Ritchie (2003, 2004 ), and Hydrus ( im nek 639 

et al., 1998, 2008; Shelia et al., 2018 ). (b) Like (a) except for the 41 to 100 640 

DAP periods. (c.) The values plotted are averages (+ standard errors) of the nRMSEs for Phase 4 641 

for all 20 treatment-years of the cumulative ETs from -10 to +20 DAP periods. (d.) Like (c.) 642 

except for the cumulative ETs from 41 to 100 DAP. (e.) nRMSEs for Phase 4 grain yields for all 643 

20 treatments. 644 

  645 
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 646 

 647 

 648 

Figure 10. Direct comparisons using the same data as for Fig. 9 (excluding Hydrus) between the 649 

DSSAT-CERES and DSSAT-IXIM models, among the four potential ET methods, and between 650 

the two soil water evaporation methods for the corresponding a, b, c, d, and e graphs. The 651 

 652 

 653 

654 
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during phase 3, which reduces the effective energy extinction from 0.685 to 0.50 [latter value 655 

supported lysimeter studies of Villalobos and Fereres (1990), as well as the theory of foliar 656 

absorption of total solar energy (Goudriaan, 1977)]. The Kep=0.50 was used for P-T as well. On 657 

the other hand, the alfalfa reference-FAO-56, or grass reference-FAO-56 are dual-coefficient 658 

methods that compute their own coefficients during incomplete and full canopy phases of ET. In 659 

contrast to a previous study on cotton (Gossypium hirsutum L.) ET (Thorp et al., 2020), the 660 

methods based on ASCE alfalfa and grass reference ET did not perform as well as DSSAT FAO-661 

56 and P-T; however, the calibration methodology limited their comparability in the present 662 

study. It appears that the newly reduced Kep of 0.50 contributed to improved DSSAT 663 

performance, and it is an improvement over the default DSSAT value. As mentioned previously, 664 

Sau et al. (2004) reported that the FAO-56 with a Kep=0.50 gave the best simulations of ET, soil 665 

water extraction, and biomass accumulation with the CROPGRO-Faba bean model for a water-666 

limited environment. FAO-56 was better than P-T, and the extinction coefficient (Kep=0.50) was 667 

better than a higher Kep for either ET method.  Similarly, Lopez-Cedron et al. (2008) found the 668 

CERES model gave better simulations of maize biomass, grain yield, and harvest index under 669 

water-limited environments, using FAO-56 rather than P-T, and again, Kep of 0.50 was better 670 

than a higher energy extinction coefficient (default in CERES was 0,685). 671 

 672 

There was no significant difference in nRMSE between the CERES or IXIM models for the -10 673 

to +20 DAP period (Fig. 10a, soil E dominant), whereas for the 41 to 100 DAP period (Fig. 10b, 674 

canopy T dominated), IXIM was slightly better, likely because of its more realistic simulation of 675 

LAI progression. IXIM senesces green leaf area more rapidly (and more mechanistically) near 676 
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maturity than does CERES, which results in less T during the grain-filling phase, and which 677 

more closely matches the observed reduction inT. 678 

 679 

Comparing methods for calculating potential evapotranspiration (ETp) on the nRMSE of ETs for 680 

the 41 to 100 days after planting (DAP) period (Fig. 10b), the FAO-56 method had significantly 681 

lower nRMSE. For the -10 to +20 DAP period (Fig. 10a), it was better than both the alfalfa (tall; 682 

Medicago sativa L.) and grass (short) crop coefficients with the ASCE standardized reference 683 

equation, but Priestley-Taylor (P-T) tended to be almost as good. Comparing soil E methods, 684 

Ritchie (1972) was much better than Suleiman and Ritchie (2003, 2004) for the -10 to +20 DAP 685 

period (Fig. 10a) soil E dominant), and Ritchie (1972) was slightly better even for the 41 to 100 686 

DAP period (Fig. 10b, canopy T dominant). 687 

 688 

3.3 Inter-comparisons within the STICS, Expert-N, and MAIZSIM families 689 

Comparing the nRMSE of daily ETs pair of the STICS, 690 

Expert-N, and MAIZSIM families, there were no significant differences (Figs. 11a, 11b). STCK 691 

uses a single surface model (Penman, 1948) to compute potential ETp, whereas STSW handles 692 

separate canopy and soil surfaces (Shuttleworth and Wallace, 1985), Thus, for these four cases, 693 

STCK and STSW performed equally well at simulating soil E (Fig. 11a) and canopy T (Fig. 11b) 694 

in spite of the different methods for simulating ETp. Both XNSM and XNGM models use 695 

Penman-Monteith based approaches for simulating ETp. However, XNSM follows FAO 56 696 

guideline based on ETo multiplied with a single crop factor to get ETp while in XNGM the 697 

required surface- and aerodynamic resistances are calculated directly from simulated LAI and 698 

simulated canopy height. In addition, XNGM follows the more detailed Farquhar model in 699 
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simulating photosynthesis and leaf T but simplifies vertical root distribution. The latter could 700 

possibly explain slightly better soil moisture simulations of XNSM compared to XNGM (data 701 

not shown). In XNSM, temperature, moisture, and nutrient availability in different soil layers are 702 

taken into account when simulating rooting depth and root length distribution. In contrast, 703 

XNGM assumes a uniform distribution of root length density within the rooted zone, with the 704 

increase in rooting depth simply simulated from the increase in root biomass, regardless of the 705 

soil conditions. Thus, considering that there are marked differences between the two models, it is 706 

surprising that they differ so little in their ability to simulate ETs. The lack of significant 707 

differences between MZD and MZH is reasonable because they are the same in their 708 

representation of plant and soil processes. Both models run on an hourly time step internally but 709 

MZD takes daily weather data as input and interpolates them into hourly time steps, while MZH 710 

takes hourly weather data directly as input. 711 

 712 

3.4 Potential ETp and other sources of variability/error in daily ETs 713 

There was a wide variability among the models in their simulated values for daily ETs as shown 714 

in Figs. 1-4, which is similar to the previous results reported by Kimball et al. (2019). In that 715 

report, Fig. 10 shows that much of the variability can be attributed to variability among the 716 

717 

variables that the modelers might be using to compute ETp, including reference ET based on 718 

short (12 cm) grass (ETo), reference ET based on tall (50 cm) alfalfa (ETr), soil coefficient (Ks), 719 

basal crop coefficient (Kcb), soil evaporation coefficient for drying soil (Ke), overall crop 720 

coefficient (Kc), potential soil evaporation (Ep), potential transpiration (Tp), ETp, and of course,  721 
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 722 

Figure 11.  Direct comparisons using nRMSE between the STCK and STSW flavors of the 723 

STICS model family, between XNGM and XNSM flavors of Expert-N family, and between the 724 

MZH and MZD flavors of the MAIZSIM model for (a) the -10 to +20 DAP time period (mostly 725 

soil E). The data used were all phases for the irrigated and rainfed data for Mead 2003 and the 726 

100% and 75% MESA irrigated data for Bushland 2013. (b). Like (a) but for the 41 to 100 DAP 727 

period (mostly canopy T). (c.) Phase 4 of cumulative ETs from -10 to +20 DAP for all 20 728 

treatments.  (d) Like (c) but for cumulative ETs from 41 to 100 DAP. (e) Phase 4 grain yield for 729 

all 20 treatment-years.  730 
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ETs. Three of the models did not report ETp, presumably the energy balance ones that do not use 731 

the concept. 732 

Focusing on the Phase 2 results from irrigated Mead in 2003, 34 models reported Ep and 35 733 

models reported Tp, and both Ep and Tp were quite variable (data not shown), As expected, the 734 

magnitude and variability of the soil Ep were greatest for bare soil at the beginning of the season. 735 

However, there was more than a 2 mm/day spread even at mid-season. Surprisingly, a few of the 736 

models showed some Tp starting on the day of planting before the plants had even emerged. 737 

Then, as the Tp increased in magnitude as plants grew to full size by mid-season, so did the 738 

range in variability among them, similar to ETs. 739 

 740 

Thirteen of the models reported ETo and only 4 reported ETr. Presumably ETo and ETr depend 741 

only on weather, yet ETo varied by a factor of about 2 at midseason among the 13 models (data 742 

not shown). Apparently, several different definitions and equations for ETo are in play among 743 

these models. 744 

 745 

Only 6, 4, 4, and 7 models used Ks, Kcb, Ke, and Kc, respectively. It seems likely that more 746 

models do use them, but they are computed and not routine output, so the modelers would have 747 

had to change code to get them. In any event, there appear to be several ways that models are 748 

getting from ETo (or ETr) to ETp that are contributing to the variability of ETs. 749 

 750 

Thus, in conclusion, the variability in ETp and ETs appears to be coming from steps all along the 751 

way starting from the calculations of ETp to the final resultant ETs. 752 

 753 
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3.5 Cumulative month to whole season ETs results for all 20 treatment-years 754 

The previous sections focused on the daily ET for four selected treatment-years. However, one 755 

can imagine that an underestimate of simulated daily ET one day could save some simulated soil 756 

moisture and lead to an overestimate the next day. The following sections examine the 757 

cumulative ET over longer time periods to reveal the extent that the errors are also cumulative. 758 

 759 

3.5.1 ETs from -10 to +20 DAP (mostly soil E) and 41 to 100 DAP (mostly canopy T) 760 

Moving from daily ETs for the four cases (2003 for irrigated and rainfed Mead; 2013 MESA at 761 

75% and 100% irrigation at Bushland) to cumulative ETs over longer time durations for all 20 762 

treatment-years also showed wide variability among the models (Fig. 12). Again, there were 763 

variations by factors of 2 to more than 4 among them in cumulative ETs from -10 to +20 DAP 764 

(mostly soil E) (Fig. 12a). There was little or no improvement in going from Phase 1 to Phase 4. 765 

For Treatments 1-10 for Mead, the medians of the models were close to the observations, but for 766 

Treatments 11 and 12, the models generally overestimated ETs. For Bushland, most of the 767 

models underestimated Treatment 13 when spray irrigation wetted the surface and Treatment 18 768 

when rainfall wetted the surface of SDI fields. Most models overestimated Treatments 17 and 19 769 

when the SDI field surface was dry despite plentiful irrigation, but the medians were close to 770 

observed for the other 4 treatments. These results indicate problems simulating E from wetted 771 

surfaces and with simulated redistribution of water from buried drip lines to the surface (too 772 

much water movement to the surface). 773 

 774 

Looking at cumulative ETs from 41 to 100 DAP (mostly canopy T), there is a range of about a 775 

factor of 2 among the models (Fig. 12b), which is bad but less than that from the bare soil (Fig. 776 



47 

 

12a). For Mead, most of the models overestimated ETs for Treatments 1-6 and 8-11. They 777 

underestimated Treatment 7 but were close for Treatment 12. For Bushland, most of the models 778 

underestimated ETs under sprinkler irrigation for Treatments 14-16, which represent wetter soil 779 

-10 to +20 DAP by nRMSE (Fig. 780 

13a), the medians were close to observations for Phases 2-4. SLFT was the best model for Phases 781 

2 and 3 and was next best in Phase 4. SLFT uses FAO-56 (Allen et al., 1998) to calculate 782 

atmospheric demand and then dual crop coefficients simulate ETs (Table S1). For Phase 2, 783 

models in the DSSAT family were ranked 3-7, and several did well in Phases 3 and 4. AMSW 784 

was best in Phase 4. CS and XNGM were among the best in Phases 3 and 4. 785 

 786 

Similarly ranking their ability to simulate ETs from 41 to 100 DAP (Fig. 13b), several of the 787 

models in the DSSAT family did well for Phases 2, 3, and 4. ECOS was among the best for 788 

Phases 2 and 3. SSMi (which uses Priestly and Taylor (1972) for potential atmospheric demand 789 

and transpiration efficiency with biomass accumulation to simulate ETs) was ranked 6 for Phases 790 

3 and 4, and SMET was ranked 3rd for Phase 4. surface conditions, but the medians were close 791 

for Treatment 13. Under SDI irrigation, most models underestimated Treatment 18, but the 792 

medians were close for Treatments 17, 19, and 20. 793 

 794 

  795 
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 796 

Figure 12. Box plots for all 20 treatment-years (as defined at the top) of cumulative simulated 797 

evapotranspiration (ETs) over (a) the -10 to +20 days after planting (DAP) time period (mostly 798 

E) and (b) the 41 to 100 DAP time period (mostly T) for all four phases. The dark lines across 799 

the boxes indicate the medians of all the models. Also shown are the corresponding observations. 800 

Phase 1 is not shown for treatments 1-6 because of a planting density mistake. 801 

802 
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Looking back at Section 3.1.2.5, BIOM was among the best at simulating daily ETs, yet it was 803 

not among the best at simulating ETs over the longer intervals. On the other hand, DIFR was 804 

almost as good as BIOM for simulating daily ETs, and it was best for simulating cumulative ETs 805 

over the 41 to 100 DAP periods (Fig. 13, Phase 4). Besides DIFR, DCFS and SMET were the 806 

only other two models that were among the best for cumulative ETs over the 41 to 100 DAP 807 

periods and also were among the best for at least one case of daily ETs. For the -10 to +20 DAP 808 

periods, DCFR, XNGM and CS are the only models that were best for simulating cumulative 809 

ETs and also for daily ETs at least for one case. Thus, doing well for simulating daily ETs did 810 

not guarantee success at simulating cumulative ETs.  811 

 812 

3.5.2 Inter-comparisons of cumulative ETs within the DSSAT and other model families 813 

There were 814 

for cumulative simulated ETs from -10 to +20 DAP (mostly soil E) over the 20 treatment-years 815 

(Fig. 9c). Most obvious is that the Ritchie (1972) soil E method did much better than the 816 

corresponding Suleiman (Suleiman and Ritchie, 2003, 2004) method for every case. The Hydrus 817 

method did comparatively well for this cumulative-ETs/20-treatment-year comparison, which is 818 

in contrast to the daily-ETs/4-treatment-year comparison in Fig. 9a. 819 

 820 
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 821 
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Figure 13. (a.) Normalized root mean squared error (nRMSE) between observed and simulated 822 

cumulative ET values from -10 to +20 days after planting (DAP)(mostly soil E) for all 20 823 

treatment-years for all the models. Phases 2, 3, and 4 are identified by red, cyan, and blue bars 824 

with Phase 2 at the top and Phase 4 at the bottom of each group. The models have been sorted in 825 

ascending order of nRMSE for Phase 2 from top to bottom of the graph with the rank numbers 826 

on the left axis indicating their ranking for Phase 2. The Median (Med) and the six best models 827 

(lowest nRMSE) for Phase 2 2828 

best models for Phases 3 and 4 are also listed under , 829 

made different adjustments going from phase to phase, their rank order changed, so the names 830 

along with their nRMSE rank are in different positions down the graph. Phase 1 is not shown 831 

because of the planting density error for the six irrigated Maize treatment-years. (b.) Same as for 832 

(a.) except the data are for 41 to 100 DAP (mostly crop canopy T). 833 

  834 
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As would be expected, looking at the 41 to 100 DAP periods, the soil E method had little effect 835 

(Fig. 9d). However, Hydrus, did poorly which is in contrast to the -10 to +20 periods (Fig. 9c). 836 

 837 

There was no significant difference in performance between the CERES Maize and IXIM Maize 838 

models for the -10 to +20 DAP periods (Fig. 10c), whereas IXIM was slightly better than 839 

CERES for the 41 to 100 DAP periods (Fig. 10d). The better performance of IXIM for full 840 

canopy conditions was likely because of its more realistic simulation of LAI progression, as 841 

mentioned previously. Priestley-Taylor was the best ETp method for the -10 to +20 DAP periods 842 

(Fig. 10c) but worst for the 41 to 100 DAP periods (Fig. 10d). FAO-56 was second best for -10 843 

to +20 DAP periods (Fig. 10c) but best for the 41 to 100 DAP periods (Fig. 10d). As was 844 

obvious from Fig. 9c, the direct comparison between Ritchie (1972) and Suleiman and Ritchie 845 

(2003) in Fig. 10c, confirms the superiority of the older Ritchie (1972) method for simulating 846 

soil E, likely because the Suleiman and Ritchie overestimates the upward movement of soil 847 

water from deeper depths. However, under full canopy conditions (Fig. 10d), there was no 848 

difference between the two soil E methods. 849 

 850 

Looking at other models with more than one flavor, STSW performed better than STCK for 851 

cumulative ETs from -10 to +20 DAP (Fig. 11c), but the reverse was true from 41 to 100 DAP 852 

(Fig. 11d). It is somewhat surprising that the two-surface method for computing ETp in STSW 853 

did better for the -10 to +20 DAP period when there was only the single soil surface, but was 854 

worse for the 41 to 100 DAP full canopy period. However, looking more closely, both models 855 

did well for both time periods for the Mead data, whereas for Bushland in 2013, both models had 856 

trouble getting emergence with SDI in 2013, and this issue distorted the results. There was no 857 
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significant difference between XNGM and XNSM for either of the time periods (Figs. 11c, 11d). 858 

As noted in section 3.3, the two models use slightly different variants of the Penman-Monteith 859 

approach and differing root distribution approaches resulting in essentially no differences in 860 

daily ETs for the four cases (Figs 11a, 11b) nor in cumulative ETs for all 20 treatments (Figs. 861 

11c, 11d). MZD did slightly better than MZH for the -10 to +20 DAP periods (Fig. 11c), but 862 

there was little difference for 41 to 100 DAP (Fig. 11d). Any differences between MZD and 863 

MZH are likely associated with the differences between interpolated and measured hourly 864 

weather data that were driving MZD and MZH, respectively. 865 

 866 

3.6 Ability of the models in Phase 4 to simulate agronomic parameters for all 20 treatment-years 867 

 maximum leaf area index, biomass at about 40 DAP and about 100 DAP, and final 868 

grain yield. 869 

3.6.1 Considering all the models 870 

There was a wide range in simulations of maximum LAI between the lowest and the highest 871 

models (Fig. 14a). However, for some treatments, most of the models agreed closely as indicated 872 

by short boxes. Indeed, for Treatments 1 and 3, most of the models agreed almost exactly with 873 

one another and with observations. For many treatments, the medians agreed closely with 874 

observations. However, for Treatments 4 and 14, the models mostly underestimated LAI, 875 

whereas for Treatments 11, 15, and 17, they mostly overestimated LAI. For Bushland, treatments 876 

15, 17, and 19 were in the 2013 year that began quite dry and required plentiful irrigation to 877 

achieve germination and to support crop growth. Overestimation of LAI may be linked to model 878 

algorithms overreacting to the plentiful irrigation in an otherwise stressful year. 879 

 880 
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Most of the models overestimated above-ground biomass at about 40 DAP for almost all the 881 

treatments (Fig. 14b). This was particularly true for the dry 2013 year at Bushland, again 882 

indicating that the plentiful irrigation caused the models to overestimate biomass accumulation 883 

despite an otherwise stressful environment. However, by 100 DAP (Fig. 14c), most of the 884 

models did much better, and agreement with observations was much closer. For final grain yield, 885 

most of the models did surprisingly well (Fig. 14d). For the irrigated Mead data (Treatments 1-886 

6), most of the models agreed with one another and with the observations. They also did well for 887 

four of the Mead rainfed years, but underestimated Treatments 7 and 12. They did less well with 888 

the Bushland data, especially underestimating the SDI irrigation grain yields. The 889 

underestimation of SDI grain yields is likely tied to overly large partitioning of applied water to 890 

soil E, leaving less available water for T and grain yield formation. Many models, including 891 

DSSAT, lack true SDI capability and applied the water to the soil surface in this study. Because 892 

SDI was more efficient in water use than the MESA irrigation method in the actual fields used 893 

for this study (Evett et al., 2020) and, therefore, likely will be more widely used in the future, the 894 

inability to handle SDI is an emerging lacuna in many of the models that should be addressed in 895 

future. 896 

  897 

3.6.2 Inter-comparisons of grain yield within the DSSAT and other model families 898 

DCFS was the best of the several model flavors within the DSSAT family to simulate grain 899 

yield, as indicated by nRMSE for Phase 4 (Fig. 9e). However, general patterns are not obvious in 900 

Fig. 9e. Nevertheless, some patterns emerge from a direct comparison in Fig. 10e. IXIM was 901 

slightly better than CERES. FAO-56 emerged as the best ETp method followed by Priestly-902 

Taylor and then ASCE standardized reference ET equation with grass (short, 12 cm) crop  903 

904 
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 905 

 906 

Figure 14. Box plots for Phase 4 of (a) maximum leaf area index, (b) biomass at about 40 days 907 

after planting (DAP), (c) biomass at about 100 DAP, and (d) final grain yield for all 20 908 

treatment-years. Also shown are the corresponding observations (triangles). 909 
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 910 

coefficients and then alfalfa coefficients (tall, 50 cm) (Fig. 10e), which might be somewhat 911 

biased because they were not independently calibrated. There was no significant difference in the 912 

ability to simulate grain yield between the two methods for simulating soil E. 913 

 914 

There was little difference in grain yield simulation ability between the two flavors of the STICS 915 

model or of the MAIZSIM model (Fig. 11e). However, XNSM tended to be better than XNGM, 916 

although XNGM uses a more physiological  approach to simulate growth based on the 917 

principle of functional balance, in contrast to XNSM, in which a more or less predetermined 918 

scheme is used for partitioning of photosynthates. 919 

 920 

3.7 K-means clusters 921 

In Figs. 15a and 15c the nRMSE of simulated grain yields for 40 of the models (plus their 922 

medians) and of simulated biomass accumulation for 39 of the models (plus their medians), 923 

respectively, are compared against the nRMSE of the simulated cumulative ETs for the -10 to 924 

+20 DAP time period (which was mostly Es for these mostly bare soil conditions). These graphs 925 

show that for many of the models the relative errors for simulating ETs tended to be larger than 926 

those for biomass and grain yield, which is consistent with the survey of Seidel et al. (2018) who 927 

found that few modelers calibrate the ET aspects of their models. Further, k-means clustering 928 

analyses with the number of clusters (k) specified to be four, the models were grouped into the 929 

four clusters illustrated in Figs. 15a and 15c. As can be seen, the k-means program identified a 930 

cluster of models that did quite well with the nRMSE for grain yields and biomass less than  931 

932 



57 

 

 933 

Figure 15. (a.) K-means clusters of the nRMSE for grain yields of 41 models (plus their median) 934 

for all 20 treatments versus the corresponding ETs for -10 to +20 DAP (mostly Ea). (b.) Same as 935 

(a) but for the 41 to 100 DAP periods (mostly Ta). (c.) K-means clusters of the nRMSE for 936 

biomass accumulation of 40 models (plus their median) from 41 to 100 DAP versus the 937 

corresponding ETs for from -10 to +20 DAP (mostly Ea). (d.) Same as (c) but for the 41 to 100 938 

DAP periods (mostly Ts). (Note: one of the 41 models did not simulate grain yield and two did 939 

not simulate biomass.) 940 

  941 
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about 0.25 and that for ETs less than 0.35. One of the other clusters did poorly at simulating 942 

grain yield and biomass, and the other two clusters did progressively worse at simulating ETs. 943 

944 

from -10 to +20 DAP can carry on through the seasons to help simulate biomass and grain yields 945 

well too. 946 

 947 

Similarly, Figs. 15b and 15d illustrate the nRMSEs for grain yield and biomass against the 948 

nRMSE for the cumulative ETs from 41 to 100 DAP, when there were mostly full crop canopies. 949 

Comparing Fig. 15b with 15a and comparing Fig. 15d with 15c, it is apparent that the models 950 

were better at simulating the cumulative ETs for the full canopies than they were for bare soil at 951 

the beginning of the growing seasons. Again, k-means cluster analyses identified clusters of 952 

models that did quite well at simulating grain yields, biomass, and full canopy ETs quite well 953 

with the nRMSE of grain yield, biomass, and ETs all less than about 0.2. It is not surprising that 954 

there is such a cluster of models that can simulate ETs well during midseason which aids them to 955 

also simulate biomass and grain yields well. 956 

 957 

Table 2 lists the models included in the best-performing clusters in Fig. 15. There is overlap 958 

among the four categories, but CS, AMSW, ECOS, XNSM, and AHC all excelled enough to 959 

appear in all four. Similarly performing well enough to appear in all four categories are three 960 

flavors from the DSSAT family: DIFR, DCFR, and DIGR. Not surprisingly, the ensemble 961 

median did very well, being first or second in all the categories, consistent with previous inter-962 

comparisons, e.g., Asseng et al. (2015). Among these eight models, CS, XNSM, AHC, DIFR, 963 

DCFR, and DIGR all use FAO-56 (Allen et al., 1998) to compute ETp (Table S1). ETo was used 964 
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as ETp for DIFR and DCFR, whereas DIGR used crop coefficients to adjust ETo to ETp and 965 

then various simulated or calculated crop or energy extinction coefficients were used to obtain 966 

ETs. AMSW simulates T using the transpiration efficiency approach and E using Ritchie967 

(Ritchie, 1972) two-stage method (Probert et al., 1998; Keating et al., 2003). ECOS simulates 968 

ETs from net radiation that is partitioned into latent, sensible, and soil heat fluxes with energy 969 

balances on the canopy and soil surfaces approach (Grant et al., 2007; Grant and Flanagan, 970 

-cm grass) ETo (Allen et al., 2005), 971 

which is a successor to FAO-56, with maize crop coefficients computed from simulated LAI to 972 

adjust ETo to ETp. Thus, six of these models have similar core approaches for simulating ETs 973 

but differ in other ways such as partitioning to leaf area or soil moisture movement, etc. AMSW 974 

and ECOS are both unique in their own ways within this elite group.  The three DSSAT models 975 

all use the Ritchie-two-stage method for soil water evaporation rather than the Sulieman method, 976 

highlighting the need for E methods with improved upward movement of soil water and more 977 

accurate E loss in the incomplete canopy phase. 978 

 979 

However, something all eight models have in common is that they all have been widely used for 980 

a long time under a wide range of conditions. This includes the lesser-known XNSM because it 981 

is a hybrid model with elements from both the CERES model (Jones and Kiniry, 1986) and the 982 

SUCROS model family (van Laar, 1992; Wang and Engel, 2000). AHC is also included because 983 

it was developed based on a coupling of the significantly modified SWAP model (van Dam et 984 

al., 1997) and the EPIC crop growth model (Williams et al., 1989). Thus, there has been time for 985 

several generations of modelers to improve these models so that they perform well over a wide 986 

range of climatic and soil conditions. 987 

  988 
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 989 

Table 2. Lists of models in Fig. 15 identified as being in the K-means clusters of best models 990 

(lowest nRMSE) for Phase 4 for simulated grain yields and biomass versus lowest nRMSE for 991 

simulated ETs for -10 to +20 DAP (mostly bare soil, Es) and 41 to 100 DAP (mostly closed 992 

canopy, Ts). The models are ranked according to their sums of nRMSE for grain yield or 993 

biomass plus that for ETs. 994 

 995 

Ranking Yield vs. Es Yield vs. Ts Biomass vs Es Biomass vs Ts 

1 AMSW Med CS Med 

2 Med CS Med CS 

3 CS AMSW DCFS DCFR 

4 XNGM SLFT DIFR SWB 

5 DCFR DCPR DIFS DCFS 

6 DIFR DCFR DCFR DIFR 

7 DCPR DIPR SSMi DIFS 

8 SLFT DIFR AMSW DIGR 

9 DIPR SLUS ECOS MZH 

10 DIGR DIGR DACT AHC 

11 XNSM DCGR XNSM DIGS 

12 ECOS BIOM DIGR DCGS 

13 DCPH XNGM AHC DIAR 

14 BIOM DIAR DIGS SSMi 

15 DCGR XNSM XNGM DCGR 

16 AQCP AQCP  MZD 

17 AHC AHC  AMSW 

18 DIAR ECOS  ECOS 

19 SLUS DCAR  DIAS 

20 DCAR DCRH  AQCP 

21    XNSM 

22    TMOD 

23    DCAS 

24    DCAR 

 996 

  997 
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4. Conclusions with discussion 998 

4.1 Like the previous maize model ET inter-comparison (Kimball et al., 2019), again there was 999 

wide variability among the models in their ability to simulate ET, both on daily and on 1000 

longer interval bases. The variability generally persisted even as the modelers received more 1001 

information going from one phase to another, although a few modelers did make 1002 

performance improvements. 1003 

4.2 Being among the best models at simulating daily ETs did not guarantee that a model would 1004 

be among the best at simulating cumulative ETs. 1005 

4.3 Nevertheless, eight models, as well as the ensemble median, were identified that did well at 1006 

simulating (a) cumulative ETs from -10 to +20 DAP (mostly soil E), (b) cumulative ETs 1007 

from 40 to 100 DAP (mostly canopy T), (c) biomass accumulation, and (d) final grain yield. 1008 

The models were CS, AMSW, ECOS, XNSM, AHC, DIFR, DCFR, and DIGR. Six of them 1009 

follow the general approach of using FAO-56/Penman-Monteith (Allen et al., 1998, 2005) 1010 

to simulate ETs, while AMSW uses a transpiration efficiency approach (Probert et al., 1998; 1011 

Keating et al., 2003), and ECOS uses an energy balance approach (Grant et al., 2007; Grant 1012 

and Flanagan, 2007). All of these models or their ancestors have been in existence and have 1013 

been widely used for a long time. Thus, there has been time for improvement over a wide 1014 

range of climatic and soil conditions. Unlike the previous inter-comparison (Kimball et al., 1015 

2019), none of the simpler models were among the best at simulating all four variables for 1016 

this study involving a wider range of environmental conditions from two locations. 1017 

4.4 Although the ensemble median was not among the best estimates of soil moisture 1018 

(Supplementary), it was at the top or close to the top for all other categories. That the 1019 
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ensemble median generally outperforms any individual model is consistent with previous 1020 

intercomparisons, e.g., Asseng et al. (2015). 1021 

4.5 Within the DSSAT family, the older Ritchie (1972) approach for simulating soil E was 1022 

markedly better than the newer Suleiman and Ritchie (2003, 2004) approach, which 1023 

appeared to overestimate upward movement of soil moisture. 1024 

4.6 Further, within the DSSAT family, the FAO-56 (Allen et al., 1998) method for calculating 1025 

potential ETp was best for simulating ETs from 40 to 100 DAP (mostly canopy T) and 1026 

worse for -10 to +20 DAP (mostly soil E).  The Priestly and Taylor (1972) method was best 1027 

for soil E and worse for canopy T. The ASCE Standardized Equation approach with short or 1028 

tall crop coefficients (Allen et al., 2005) was intermediate for canopy T and worst for soil E, 1029 

although this result might be somewhat biased because they were not independently 1030 

calibrated. 1031 

4.7 DSSAT CSM-IXIM tended to be slightly better than DSSAT CSM-CERES for simulating 1032 

canopy T, probably because IXIM simulated leaf area progression better. 1033 

4.8 Both STCK (which considers one surface to compute ETp) and STSW (which considers 1034 

both soil and canopy surfaces to compute ETp) were among the best models to simulate ETs 1035 

at the beginning of the seasons, with slightly better results for STSW. During the mid-1036 

season periods, STCK globally performed better than STSW, but both performed poorly 1037 

with SDI in 2013, which distorted results. 1038 

4.9 XNSM and XNGM appeared to do equally well at simulating both soil E and canopy T, 1039 

with XNGM following the more detailed Farquhar modeling approach in calculating 1040 

photosynthesis and leafT, but greatly simplifying vertical root distribution. However, 1041 



63 

 

XNSM did better than XNGM at simulating grain yield, possibly due to its simpler but more 1042 

robust approach in simulating assimilate distribution among plant organs. 1043 

4.9 MZD and MZH both have hourly time steps, yet MZD which uses daily weather data did 1044 

slightly better than MZH which uses hourly weather data at simulating soil E, but there was 1045 

no significant difference between them at simulating canopy T. This is somewhat surprising, 1046 

but nevertheless shows that simulated diurnal patterns of hourly weather can be as accurate 1047 

as using the actual hourly observations for input to crop growth models with hourly time 1048 

steps.  1049 

  1050 
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6 Supplementary information 1067 

6.1 Word file with Table S1, which lists the ET simulation characteristics of the models plus 1068 

several figures showing an intercomparison among the models in their ability to simulate soil 1069 

moisture. 1070 

6.2 Excel file with statistics and graphs showing the Phase 4 performance of the models in their 1071 

ability to simulate the daily ET observations for the irrigated and rainfed fields in Mead in 1072 

2003 and for the 100% and 75% MESA irrigated fields in Bushland in 2013. Also included 1073 
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are the statistics and graphs showing the models  ability to simulate cumulative ET from -10 1074 

to +20 DAP and from 41 to 100 DAP and agronomic parameters (maximum LAI, biomass at 1075 

about 100 DAP, and grain yields) for all 20 treatments. 1076 
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