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Summary

� We explore needle sugar isotopic compositions (δ18O and δ13C) in boreal Scots pine (Pinus

sylvestris) over two growing seasons.
� A leaf-level dynamic model driven by environmental conditions and based on current

understanding of isotope fractionation processes was built to predict δ18O and δ13C of two

hierarchical needle carbohydrate pools, accounting for the needle sugar pool size and the

presence of an invariant pinitol pool.
� Model results agreed well with observed needle water δ18O, δ18O and δ13C of needle

water-soluble carbohydrates (sugars + pinitol), and needle sugar δ13C (R2 = 0.95, 0.84,

0.60, 0.73, respectively). Relative humidity (RH) and intercellular to ambient CO2 concentra-

tion ratio (Ci/Ca) were the dominant drivers of δ18O and δ13C variability, respectively. How-

ever, the variability of needle sugar δ18O and δ13C was reduced on diel and intra-seasonal

timescales, compared to predictions based on instantaneous RH and Ci/Ca, due to the large

needle sugar pool, which caused the signal formation period to vary seasonally from 2 d to

more than 5 d. Furthermore, accounting for a temperature-sensitive biochemical 18O-

fractionation factor and mesophyll resistance in 13C-discrimination were critical.
� Interpreting leaf-level isotopic signals requires understanding on time integration caused by

mixing in the needle sugar pool.

Introduction

Stable carbon and oxygen isotope compositions in tree rings
(δ13C and δ18O, respectively) provide records of past environ-
mental and tree physiological signals (McCarroll & Loader,
2004; Battipaglia et al., 2013). Tree ring δ13C and δ18O records
are foreseen as powerful tools in advancing our understanding on
the response of forests to changing climate and increasing atmo-
spheric CO2 concentration (Gessler et al., 2014). The formation
of tree ring δ13C and δ18O signals in boreal coniferous species is
of special interest, because these sensitive ecosystems play a criti-
cal role in the carbon cycle of our planet (Snyder et al., 2004)
and are now undergoing climatic warming at a significantly faster
rate compared to the global average (IPCC, 2021). To this end,
we need to understand how isotopic signals are formed in the
leaves, where most of the interaction with local environmental
conditions occurs. Even though, this is a vastly studied field,
intra-seasonal studies in boreal forest are scarce.

Newly assimilated photosynthates are products of atmospheric
CO2 and leaf water, thus reflecting δ13C of atmospheric CO2

strongly modified by leaf biochemistry (Farquhar et al., 1982)
and δ18O of source water that is further 18O-enriched in leaves
during evaporation (Farquhar & Lloyd, 1993). 18O-enrichment
due to evaporation is linked to the variation of relative humidity
(RH) as defined by the model of Craig & Gordon (1965), devel-
oped for open water bodies and adapted later to leaves (Dong-
mann et al., 1974). The Craig–Gordon model is, however,
prone to overestimate 18O-enrichment (Cernusak et al., 2016),
which has led to the introduction of the Péclet effect (Farquhar
& Lloyd, 1993; Barbour et al., 2000) and the two-pool concept
(Leaney et al., 1985; Roden et al., 2015). The δ18O of leaf pho-
tosynthates is expected to reflect the δ18O of leaf water with an
offset of 27‰ (Barbour et al., 2000; Cernusak et al., 2003).
Although the offset 27‰ is commonly assumed constant, Stern-
berg & Ellsworth (2011) reported it to be inversely related to
temperature, with a particularly strong incline below 20°C.
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Recently, Hirl et al. (2021) acknowledged the need to account
for this temperature dependence, when modeling the seasonal
variation of cellulose δ18O in a grassland ecosystem, underlining
the power of modeling in testing our current theoretical under-
standing. In cooler boreal conditions, such temperature depen-
dence is potentially of even higher importance.

Regarding δ13C, the pathway to primary photosynthates in C3

plants can be divided into fractionation by diffusion from air to
chloroplast through stomata and mesophyll, and biochemical
fractionation, that is, carboxylation, mitochondrial respiration
and photorespiration (Farquhar et al., 1982; Cernusak et
al., 2013). Recent studies have emphasized the importance of
dynamic mesophyll conductance on δ13C of assimilates (Stangl et
al., 2019; Schiestl-Aalto et al., 2021). Mechanistic modeling
studies have further shown that tree ring δ13C signals are highly
sensitive to isotopic fractionation during both photosynthesis and
respiration (Ogée et al., 2009; Eglin et al., 2010) and that the
sugars used for leaf respiration may have a δ13C value that differs
from current assimilates (Wingate et al., 2007). These findings
together with the fact that the fractionation factors of these pro-
cesses are still poorly constrained in vivo (Barbour &
Song, 2014), complicate modeling δ13C signals in plants.

Interpreting and predicting isotopic signals in leaves may be
further complicated in field conditions with strong variability in
environmental conditions over sub-daily to seasonal timescales.
For example, leaf water δ18O sampled on sub-daily timescales
in varying ambient conditions has been shown to deviate signifi-
cantly from values predicted by a steady-state model (Farquhar
& Cernusak, 2005; Gessler et al., 2013). Similar nonsteady-
state effects are expected, when predicting the isotopic composi-
tion of leaf sugars as the sugar pool does not represent only the
current assimilates (Barnard et al., 2007; Gessler et al., 2013).
There are dynamic models describing intra-seasonal variation in
δ13C and δ18O in tree ring cellulose (e.g. Ogée et al., 2009;
Eglin et al., 2010), but similar descriptions for leaf sugar pools
are scarce. These earlier studies face the difficulty of differentiat-
ing between fractionation processes in the leaves and during the
pathway to tree rings, which stresses the need for leaf-level
mechanistic models.

Measurements of the isotopic composition of leaf sugars is
challenging in many respects. Primarily, studies often analyze
only mixtures of compounds (e.g. total leaf organic matter,
water-soluble organic matter, or purified water-soluble extracts),
which tends to reduce the temporal variability of the isotopic sig-
nal of interest, as compounds within the mixture can have differ-
ent live-spans in the leaf and differ in their isotope value due to
fractionations during secondary metabolism (Barnard et
al., 2007; Offermann et al., 2011; Gessler et al., 2013; Rinne et
al., 2015; Lehmann et al., 2020). Purified water extracts (here-
after water-soluble carbohydrates, WSC) are expected to consist
mainly of sugars (Richter et al., 2009; Rinne et al., 2015) and
have therefore potentially more variable isotopic signal than total
organic matter. However, if sugar alcohols (e.g. pinitol/myo-
inositol, hereafter referred to as pinitol; see Rinne et al., 2012)
are present in high concentrations, they have been shown to
reduce the variability of the δ13C signal of WSC (Richter et

al., 2009; Rinne et al., 2015). Permanent high fraction of pinitol
throughout the growing season is typical for conifer needles in
high-latitude and high-elevation conditions (Lipavská et
al., 2000; Streit et al., 2013; Rinne et al., 2015). To address this
issue, compound-specific isotope analysis (CSIA) of δ13C pro-
vides means to retrieve the isotopic signal of, for example,
sucrose, the main transport sugar, from the bulk sample (Rinne et
al., 2012). For δ18O, the analytical process is more laborious and
only a few studies have reported CSIA results for a limited num-
ber of samples (Lehmann et al., 2016, 2017). Intra-seasonal
CSIA of δ18O are therefore still out of reach for modeling pur-
poses. However, making use of the CSIA results of δ13C, com-
pound concentrations, and concurrently analyzed δ13C and δ18O
of WSC, mechanistic models can attempt to answer how variable
δ18O is between various compounds.

This study explores the formation of needle sugar isotopic sig-
nals in boreal Scots pine over two growing seasons in southern
Finland. We concurrently present observations and environmen-
tally driven dynamic modeling of the intra-seasonal variation of
δ18O and δ13C of needle WSC. Our isotopic data consists of
δ18O in water pools (e.g. twig and needle), δ18O and δ13C ana-
lyzed from WSC as bulk, and δ13C results from CSIA. Combin-
ing mechanistic modeling and data, we aim to address the
following research questions:
� Which fractionation and mixing processes are important for
capturing intra-seasonal variation of needle sugar δ18O and
δ13C?
� What is the role of the sugar pool size in predicting needle
sugar δ18O and δ13C?
� What implications do needle sugar pool size and the composi-
tion of bulk samples have on interpreting environmental/physio-
logical signals from needle δ18O and δ13C?

Model description

The built model describes the dynamics of δ18O and δ13C in
two hierarchical needle carbohydrate pools in response to half-
hourly environmental conditions (air temperature, photosyn-
thetic active radiation (PAR), vapor pressure, atmospheric CO2

concentration, and soil moisture) and isotopic input data (δ18O
of water vapor and source water, and δ13C of atmospheric CO2).
The two carbohydrate pools described in the model are needle:
(1) sugars; and (2) WSC, which in addition to sugars contain
pinitol. The model builds on a photosynthesis model solving leaf
net CO2 exchange, including carboxylation, photorespiration,
and mitochondrial respiration (see Supporting Information
Methods S1; Table S1). Doing so it accounts for stomatal control
and mesophyll resistance, but neglects leaf energy balance assum-
ing the leaf is at air temperature (a fair assumption, given the small
size of Scots pine needles that are well-coupled to the atmosphere;
Launiainen et al., 2016; Kim et al., 2018). Theory-based isotopic
fractionation of oxygen and carbon in needles and their accumula-
tion in the needle sugar and WSC pools are then solved as
described in the following section. Model equations are expressed
in terms of isotopic ratios (R), which can be converted to ‘delta’
notations:
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δ ¼ R

R std
�1

� �
Eqn 1

where Rstd is the isotope ratio of an international standard;
Vienna Standard Mean Ocean Water (VSMOW) for 18O/16O
and Vienna Peedee belemnite (VPDB) for 13C/12C.

Formation of needle sugar δ18O

In steady-state conditions, the isotopic ratio of oxygen at evapora-
tive sites is given by Flanagan et al. (1991)

Re,ss ¼ αþ αk
w i�wa

w i
R s þ wa

w i
Rv

� �
Eqn 2

where Rs and Rv are the isotopic ratios of oxygen in source water
and atmospheric water vapor, respectively; α+ (= 1 + ε+) is the
temperature-dependent equilibrium fractionation during vapor-
ization (Majoube, 1971); wa and wi (in mol mol−1) are the mole
fractions of water vapor in the atmosphere and inside the leaf,
respectively; and αk is the kinetic isotope fractionation during
water vapor diffusion through stomata and leaf boundary layer:

αk ¼ 1þ g bϵks þ g sϵkb
g b þ g s

Eqn 3

where gs and gb (in mol m−2 s−1) are stomatal and boundary
layer conductances for CO2 (assuming both scale for water vapor
by 1.6); and εks and εkb are the fractionation factors associated
with the diffusion through stomata and the boundary layer,
respectively (Table 1).

Average mesophyll water (Rlw,ss) is less
18O-enriched compared

to the sites of evaporation, which at steady state is commonly for-
mulated as a reduction factor (f1) above source water:

R lw,ss ¼ f 1 Re,ss�R sð Þ þ R s Eqn 4

There are two alternative concepts for defining f1: (1) the two-
pool model, where f1 is a constant (Leaney et al., 1985); and (2)
the Péclet model, which relates f1 to transpiration (Farquhar &
Lloyd, 1993). In the latter f 1 ¼ 1�e�}ð Þ=}, where
} ¼ EL= CDð Þ; L (in meters) is the effective mixing length, E (in
mol m−2 s−1) the transpiration rate, C (55.5 × 103 mol m−3)
the molar density of liquid water, and D (2.66 × 10−9 m2 s−1)
the diffusivity of H2

18O in liquid water.
At sub-daily timescales and at times of low transpiration, the

steady-state assumption may be violated because of the slow turn
over rate of leaf water (Farquhar & Cernusak, 2005; Gessler et
al., 2013). The formulation for the isotopic ratio of oxygen in
leaf water under nonsteady state (Rlw) is given by (Farquhar &
Cernusak, 2005)

dWR lw

dt
¼ Ew if 1

αþαk w i�wað Þ R lw,ss�R lwð Þ Eqn 5

whereW (in mol m−2) is the leaf water content.
New assimilates are generally assumed to be in oxygen iso-

topic equilibrium with bulk leaf water (Barbour et al., 2000):
Rassimilates ¼ αwcR lw, where αwc (= 1 + εwc) is the biochemical
fractionation associated with oxygen isotope exchange between
carbonyl oxygen and water (Sternberg et al., 1986; Sternberg &
Ellsworth, 2011). The signal of new assimilates is then carried
to the needle sugar pool following Eqn 6, assuming that the

Table 1 Parameters for isotopic modeling.

Parametera Description Value Source

ab (−) Fractionation during diffusion of CO2 through the boundary layer 2.9‰ Farquhar (1983)
as (−) Fractionation during diffusion of CO2 through stomata 4.4‰ O’Leary (1981)
am (−) Fractionation during transfer of CO2 through mesophyll 1.8‰ O’Leary (1984)
b (−) Fractionation during caboxylation 29‰ Roeske & O’Leary (1984)
f (−) Fractionation during photorespiration 8‰ Ghashghaie et al. (2003)
e (−) Fractionation during mitochondrial respiration –6‰ Ghashghaie et al. (2003)
δ13Cpin (−) Pinitol δ13C in needle −30.5‰ Measurements, see Fig. S2(d)
ϵþ (−) Equilibrium fractionation during vaporization – Majoube (1971)
ϵkb (−) Fractionation during diffusion of water vapor

through boundary layer
19‰ Merlivat (1978)

ϵks (−) Fractionation during diffusion of water vapor through stomata 28‰ Merlivat (1978)
f1 (−)b Ratio of enriched to total needle water 0.93 Calibrated
L (m)c Leaf mesophyll effective mixing length 0.03 Calibrated
W (mol m−2) Leaf mesophyll water volume 5.6 Measurements, see Fig. S6
ϵwc (−) Biochemical fractionation factor 27‰

ϵwc Tð Þ
Sternberg et al. (1986)

fig. 1 in Sternberg &
Ellsworth (2011)

δ18Opin (−) Pinitol δ18O in needle 25‰ Calibrated
Ssug (μmol of C m−2) Concentration of needle sugar 1.96 × 105 Measurements, see Fig. S5
Spin (μmol of C m−2) Concentration of needle bulk sugars 0.7 Ssug Measurements, see Fig. S5(b)

aParameter units are given in parenthesis, where ‘–’ stand for unitless and all area-based units refer to all-sided leaf area.
bTwo-pool approach.
cPéclet approach.
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needle sugar pool is well-mixed and forms the substrate for
mitochondrial respiration (Wingate et al., 2007; Ogée et al.,
2009).

d S sugR sug

� �
dt

¼ An þ rdð ÞRassimilates�rdR sug�qR sug Eqn 6

where Rsug is the isotopic ratio in the needle sugar pool, Ssug (in
μmol of C m−2) the concentration of needle sugar, An net CO2

exchange, rd mitochondrial respiration, and q the discharge of
sugars from the needle into the phloem (all in μmol m−2 s−1).
Finally, the isotopic ratio of needle WSC is computed as

Rwsc ¼
S sugR sug þ SpinRpin

S sug þ Spin
Eqn 7

where Rpin and Spin (in μmol of C m−2) are the isotopic ratio and
concentration of pinitol in the needle, respectively.

Formation of needle sugar δ13C

The model for 13C-discrimination of net CO2 exchange (13Δ,
Eqn 8) was adopted from Wingate et al. (2007) (see also Meth-
ods S2). They modify the classical equation by Farquhar et al.
(1982) to account for the fact that the δ13C composition of the
substrate used for mitochondrial respiration may differ from that
of current assimilates. Here we assume that substrate is the needle
sugar pool. Unlike the formulation in Farquhar et al. (1982) that
requires photosynthesis to model the δ13C of the respiratory sub-
strates, this formulation is also valid in absence of photosynthesis
(Wingate et al., 2007); during nighttime (k = 0), it simply
reduces to the 13C-discrimination of dark respiration.

13Δ ¼ kC a

kC a�rd
ab

C a�C s

C a
þ as

C s�C i

C a
þ am

C i�C c

C a

�

þb
C c

C a
�f

Γ�
C a

Þ� rd
kC a�rd

Ra

R sug
1þ eð Þ�1

� �
Eqn 8

where Ca, Cs, Ci and Cc (in μmol mol−1) are CO2 mole fractions
in the atmosphere, at the leaf surface, in the intercellular spaces
and in the chloroplasts; Ra and Rsug are isotopic ratios of CO2 in
ambient air and in the sugar pool; ab, as, am, b, f and e are frac-
tionation factors associated with diffusion through the boundary
layer, diffusion through stomata, transfer through mesophyll, car-
boxylation, photorespiration, and mitochondrial respiration,
respectively (Table 1); Γ* (in μmol mol−1) is the CO2 compensa-
tion point in the absence of mitochondrial respiration (Bernacchi
et al., 2001) and; k (= (An + rd)/(Cc – Γ*)) is the carboxylation
efficiency. Eqn 8 ignores ternary effects as they are also ignored
in modeling shoot gas exchange (Methods S1). Such approach is
common for mechanistic modeling studies simulating both gas
exchange and 13C-discrimination (Ogée et al., 2009; Schiestl-
Aalto et al., 2021). According to Farquhar & Cernusak (2012)
ignoring or accounting for ternary effects consistently in both gas
exchange and discrimination calculations lead to almost

equivalent results, whereas their inconsistent use in either gas
exchange or discrimination calculations produce misleading
results. Eqn 8 further assumes there is effectively only one carbon
pool, where carbon compounds left behind by respiratory pro-
cesses mix with the pool of respiratory substrate and carbon in
the Calvin–Benson–Bassham (CBB) cycle. Busch et al. (2020)
recently suggested an alternative model where respiration is iso-
topically disconnected and metabolites are not fed back into the
CBB cycle, but this possibility was not included in our analysis.

The isotopic ratio of net CO2 exchange is Ra/(1 + 13Δ), thus
the isotopic signal of carbon in the needle sugar pool is solved
from:

d S sugR sug

� �
dt

¼ An
Ra

1þ 13Δð Þ�qR sug Eqn 9

The δ13C of the needle WSC pool is computed as for oxygen
(Eqn 7). The right-hand side of Eqn 9 is equivalent to
An þ rdð ÞRassimilates�rd 1�eð ÞR sug�qR sug.

Materials and Methods

Study site and measurements

Site description The study site is the Station for Measuring
Forest Ecosystem-Atmosphere Relations (SMEAR II) in
Hyytiälä, southern Finland (61°510N, 24°170E; Hari & Kul-
mala, 2005). The site is a managed boreal forest on a shallow
mineral soil, with an overstorey dominated by 60-yr-old Scots
pines (Pinus sylvestris L.). The long-term (1981–2010) mean
annual temperature and precipitation is 3.5°C and 711 mm,
respectively (Pirinen et al., 2012). Snow typically covers the
ground from December to April.

Shoot gas exchange Shoot gas exchange measurements were
performed with an automated chamber system (Aalto et
al., 2014) consisting of a chamber, sample tubing and a gas ana-
lyzer. The box shaped shoot chamber (2.1 dm3) made of acrylic
plastic and inner surfaces coated with fluorinated ethylene propy-
lene (FEP) film was installed in the uppermost canopy. The
chamber enclosed a 1-yr-old (in 2018) shoot in horizontal posi-
tion. The inserted shoot was debudded before the chamber instal-
lation to prevent new growth. The chamber was open most of the
time exposing the shoots to ambient conditions and closed inter-
mittently for 1 min 50–90 times d–1. Sample air was drawn from
the chamber along polytetrafluoroethylene tubes (internal diame-
ter 4 mm, length 73 m) to a gas analyzer (LI-840; Li-Cor, Lin-
coln, NE, USA) and compensated by ambient air leaking freely
into the chamber. Fluxes of CO2 and water were determined by
fitting a nonlinear equation to concentration records during the
first 5–35 s of chamber closure (Kolari et al., 2012). Water fluxes
were rejected when RH was > 85% due to considerable adsorp-
tion of water on the chamber walls. Fluxes were calculated for all-
sided needle area (Kolari et al., 2007) and re-sampled to half-
hourly time series. Based on all-sided needle area measurements
the specific leaf area was 0.010 m2 g−1. Resulting data coverage
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for fluxes of CO2 and water were 98% and 63%, respectively, for
mid-April to mid-October in 2018–2019.

Sampling and isotopic analysis of water Samples of 1-yr-old
needle (1N) water, twig water, soil water and atmospheric water
vapor were collected every 3–5 wk during May–October in 2018
and 2019, except for 1N water sampled more frequently in 2019
(14 times + diurnal course on 23 May). Furthermore, 1N and
twig samples were collected from five mature Scots pine trees
between midday and 15:00 h (UTC + 2) from a sun-exposed posi-
tion in canopy top. For each tree, 1N samples and the linked twigs
with barks peeled off were collected into separate 12 ml exetainer
vials (Labco, Lampeter, UK). Soil samples were cored using a foot-
step soil probe from three spots close to the sampled trees. Sub-
samples were taken from 2, 10 and 18 cm depths, and placed into
individual exetainers. Water vapor was collected at 18 m height by
pumping air for 2–3 h through a hose into a glass U-tube, which
was immersed in a mixture of dry ice and ethanol. Additionally,
monthly precipitation samples were collected from May 2018–
December 2019 using an evaporation-free rainwater collector
(Gröning et al., 2012). All collected samples were placed in a cool
box with ice blocks immediately in the field and stored at −20°C.

Water vapor and precipitation (May–November 2018) sam-
ples were melted and transferred into 2 ml vials and analyzed for
δ18O at the Stable Isotope Laboratory of Luke (SILL, Helsinki,
Finland) by HT-EA-IRMS, that is, high temperature (HT) ele-
mental analyzer (Sercon Ltd, Crewe, UK) connected to isotope
ratio mass spectrometry (20–22 IRMS; Sercon). The results were
calibrated against two in-house reference waters. Water from
plant and soil samples was cryogenically extracted by vacuum dis-
tillation (West et al., 2006). The δ18O of plant and soil extracted
water of samples from 2018 were determined at the Stable Iso-
tope Research Laboratory of WSL (Birmensdorf, Switzerland)
(Lehmann et al., 2020), while corresponding samples from 2019
and precipitation from December 2018 to December 2019 were
analyzed at the Stable Isotope Laboratory of University of Basel,
Switzerland. For all samples, measurement precision derived
from repeated measurements and a quality control water sample
was 0.3‰ or better.

Sampling and isotopic analysis of water-soluble needle carbohy-
drates Current-year needles (0N) and/or 1N were collected
c. 20 times during May to October in 2018 and 2019 (+ diurnal
course on 25 July 2019), from five trees during same time and
canopy position as for water sampling. Samples were placed in a
cool box with ice blocks immediately after collection and micro-
waved at 600 W for 1 min within 2 h to stop enzymatic and
metabolic activities (Wanek et al., 2001). Samples were subse-
quently dried at 60°C for 24 h and homogenized into a fine
powder by a ceramic-ball mill using FastPrep-24TM. Extraction
and purification of WSC were performed according to Wanek
et al. (2001) and Rinne et al. (2012). Shortly, the supernatant
from the water extraction at 85°C was separated and purified
using three types of sample treatment cartridges, which removed
amino acids, organic acids and phenolic compounds. The puri-
fied samples were freeze-dried, dissolved in Milli-Q water, filtered

through a 0.45 μm syringe filter (Acrodisc; Pall Corp., Port
Washington, NY, USA) and stored at −20°C.

Bulk isotope analysis of WSC was performed at SILL. Before
analysis, aliquots of solubilized extracted WSC were pipetted into
individual tin and/or silver capsules (IVA Analysentechnik, Meer-
busch, Germany), lyophilized and wrapped. The δ13C values
were determined using EA-IRMS (samples of 2018) or concur-
rently with δ18O analysis by HT-EA-IRMS using the dual iso-
tope method (samples of 2019; Woodley et al., 2012). The
EA-IRMS results for δ13C were calibrated against IAEA-C7
(−32.15‰), IAEA-CH3 (−24.72‰) and an in-house sucrose
(−12.22‰; Sigma-Aldrich) reference materials. The dual isotope
measurements (δ18O and δ13C) were calibrated against IAEA-
601 (23.14‰ and −28.81‰), in-house sucrose (36.62‰ and
−12.22‰) and lactose (21.05‰ and −24.66‰) standards
(Sigma-Aldrich). Additionally, a subset of the samples were ana-
lyzed for δ13C using both the EA and the HT-EA method to cali-
brate the HT-EA results for δ13C (Woodley et al., 2012).
Analytical precision of the measurements was 0.2‰ or better for
δ13C and δ18O, determined from repeated measurements of a
quality control standard.

Compound-specific isotope analysis of δ13C was performed for
the WSC samples of 2018 only, as analysis of samples of 2019 were
delayed due to instrumental problems. CSIA was done at WSL
using a Delta V Advantage IRMS (Thermo Fisher Scientific, Wal-
tham, MA, USA) coupled to a high-performance liquid chromatog-
raphy (HPLC) system with a Finnigan LC Isolink interface
(Thermo Fisher Scientific) (Rinne et al., 2012). The δ13C values
were determined for the four detected sugars or sugar-like com-
pounds: sucrose, glucose, fructose and pinitol. External compound-
matched standard solutions with comparable concentration (20–
180 ng C μl−1) and δ13C values, as determined by EA-IRMS, were
analyzed between every 10 samples to correct the CSIA results
(Rinne et al., 2012). The measurement precision (standard devia-
tion, SD) of sucrose, glucose, fructose and pinitol standards were
0.44‰, 0.57‰, 0.88‰, and 0.38‰, respectively.

The concentration of each four individual compounds from
HPLC-IRMS were calculated using its peak area, and the linear
regression between the carbon content and peak area of the
compound-matched standard (Rinne et al., 2012). The concen-
tration of bulk WSC was calculated from the ratio of the sample
weight in the tin/silver capsule to the sample weight used for the
hot water extraction.

Based on CSIA, needle sugars comprised mainly of sucrose,
while the total contribution of glucose and fructose was on aver-
age 25%. The concentration-weighted average δ13C of the sugars
was highly correlated with δ13C of sucrose (r > 0.95; Fig. S1),
and hence δ13C of sucrose is used to indicate the δ13C of the total
needle sugars hereafter.

The δ18O and δ13C of bulk WSC, and δ13C of sucrose and
pinitol were each combined over the two needle generations
(0N and 1N) to form time series covering the whole growing
season (Fig. S2). The δ18O of bulk WSC and δ13C of sucrose
were similar for 0N and 1N and the combined dataset was
obtained as their average (Fig. S2a,c). Bulk WSC in 2018 and
pinitol showed a difference in level of δ13C between 0N and
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1N, which was first corrected for before averaging over the two
data series (Fig. S2b,d).

Model runs, parameterization and evaluation

The model was ran for the two growing seasons, 2018–2019,
using half-hourly meteorological data measured above the canopy.
Additionally, soil moisture from c. 5 cm depth in mineral soil
was used as proxy for water availability limiting photosynthesis
during dry conditions (Eqn S10 in Methods S1; Launiainen et
al., 2022). Isotopic input data was not measured at the site at the
resolution needed for the modeling. The δ18O of water vapor
(six-hourly) was obtained from the isotope-enabled, nudged
atmospheric general circulation model IsoGSM (Yoshimura et
al., 2011, 2008), which corresponded reasonably well to the lim-
ited number of observations (Fig. S3). The δ18O of source water
was modeled at daily resolution based on monthly precipitation
δ18O, the amount of precipitation, soil moisture and eddy
covariance-based evapotranspiration, resulting in a good fit with
the observed twig water δ18O (see Methods S3; Fig. S4). Lastly,
δ13C of atmospheric CO2 was available at weekly resolution from
Pallas-Sammaltunturi GAW-station (White et al., 2015).

Initially, the model results related to leaf gas exchange (An, E
and Ci/Ca) were evaluated against shoot chamber measurements.
Thereafter, the results of the isotopic model were compared
against measured δ18O of leaf water, δ18O and δ13C of needle
WSC, and δ13C of needle sugars. The model fit was evaluated
using mean absolute error (MAE) and R2.

The parameters applied in the isotopic modeling are listed in
Table 1. The measured WSC concentrations indicated little vari-
ability during the growing seasons (Fig. S5a). The concentrations
fluctuated c. 95 mg g−1, which corresponds to 3.33 × 105 μmol
of C m−2, when using the measured specific leaf area
(0.010 m2 g−1) and the molecular mass of carbon in sucrose
28.5 g (mol C)−1 (similar to 27.7 and 30 g (mol C)−1 for pinitol
and glucose/fructose, respectively). The ratio of pinitol to total
sugar concentration was also rather invariant during the measure-
ment period, especially after the beginning of July (Fig. S5b). The
ratio was c. 0.7, meaning that sugars accounted for 59% of WSC
and pinitol for 41%. Thus, Ssug was defined as a constant (Table 1)
and hence the discharge from the sugar pool in Eqns 6 and 9 was
set equal to net CO2 exchange (q = An). Lastly, pinitol δ13C was
set to −30.5‰ based on CSIA results (Fig. S2d), whereas pinitol
δ18O was calibrated in the absence of CSIA results for oxygen.

For both oxygen and carbon isotopic models, we applied a
selection of model variants to understand the role of different
processes in capturing intra-seasonal variation of needle sugar
δ13C and δ18O. For oxygen, the model variants for needle water
δ18O included the Craig–Gordon model (Eqn 2), the two-pool
model (Eqn 4 with constant f1) and the Péclet model (Eqn 4
with transpiration-dependent f1). Each of these models were run
both in steady and nonsteady state. Furthermore, to predict nee-
dle WSC δ18O, we tested the model with a constant and a
temperature-dependent εwc (Table 1); and by defining the size of
the sugar pool corresponding to the measurements (Table 1) or
as a 20-fold smaller value. The latter resulted in δ18O of leaf

water with an offset of εwc (or δ13C of net CO2 exchange) to be
approximately equal to the isotopic values of the needle sugar
pool (i.e. all sugars in needle represent current assimilates).

For carbon, we tested how much neglecting mesophyll resis-
tance affects the model results by assuming Cc = Ci. The impor-
tance of photorespiration and mitochondrial respiration were
tested by setting f and rd to zero, respectively. With f = rd = 0,
Eqn 8 reduces to its most simple formulation. In addition to
b = 29‰, this most simple formulation was ran with b = 27‰
and Cc = Ci, where the lower b implicitly accounts for all isotopic
effects that happen during photosynthetic discrimination including
the contribution of mesophyll resistance (Farquhar et al., 1982;
Ubierna & Farquhar, 2014). With rd = 0, Eqn 8 reduces to the
commonly applied formulation that only accounts for diffusion,
carboxylation and photorespitation (e.g. Seibt et al., 2008),
whereas setting e = 0 would still consider the release of respired
CO2 into intercellular spaces (Wingate et al., 2007). Finally, as for
oxygen, the effect of the size of the sugar pool was investigated.

Evaluating formation period and
environmental/physiological signals

For model results and observations, we examined the relation-
ships between isotopic signals and environmental/physiological
variables, that is, needle sugar δ18O against RH and δ13C against
Ci/Ca. Pearson’s correlation coefficient (r) was used to quantify
the strength of the linear relationship.

To account for the integration over time in the needle sugar
pool, we calculated a weighted mean of past RH and Ci/Ca based
on the same assumptions as implemented in the model (i.e. well-
mixed sugar pool of constant size). The implicit solution of
Eqn 6 (or Eqn 9 when neglecting e) defines the sugar pool signal
at time t as:

Rt
sug ¼ αt R t

assimilates þ 1�αtð ÞRt�1
sug Eqn 10

where α ¼ An þ rdð Þ= S sug=Δt þ An þ rd
� �

and Δt (in s) is the
time interval between t − 1 and t. Applying Eqn 10 recursively
the sugar pool signal can be written as a weighed mean of past
time instances Rassimilates.

Rt
sug ¼ ∑

τ

n¼0

wnR
t�n
assimilates

� �
= ∑

τ

n¼0

wn Eqn 11

where τ is the number of time steps to consider (here cut off at
∑τ

n¼0wn≈0:95) and wn is the weight of the signal at time t – n
expressed as:

wn ¼ αt�n �
Yn�1

i¼0

1�αt�i
� �

Eqn 12

Eqn 11 was used to calculate a weighted RH and Ci/Ca by replac-
ing R by RH and Ci/Ca, respectively. Furthermore, the length of
the signal formation period (τΔt) over the two growing seasons
was examined. For step-by-step derivation of Eqns 10–12 see
Methods S4.
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Results

Environmental conditions and shoot gas exchange

The 2018 growing season was hotter and drier than 2019, as
indicated by higher temperature and vapor pressure deficit

(VPD), and lower top soil moisture (Fig. 1a,b). May–September
precipitation was higher in 2018 (345 mm) than in 2019 (293
mm), but it was more evenly distributed in 2019 (not shown).
During both years, temperature and VPD reached maximum val-
ues in July and PAR followed a bell-shape reaching highest values
in June (Fig. 1a,b). Shoot transpiration and net CO2 uptake had

(a)

(b)

(c) (d)

(e) (f)

(g) (h)

Fig. 1 Environmental conditions and Scots pine shoot gas exchange during mid-April to mid-October 2018 and 2019. Daily mean (a) air temperature and
vapor pressure deficit (VPD), and (b) photosynthetically active radiation (PAR) and soil moisture at 5 cm depth. Modeled and measured (c) transpiration, E,
(e) net CO2 uptake, An, and (g) intercellular to ambient CO2 concentration ratio, Ci/Ca. E and An are presented as daily means of times with observations
and Ci/Ca as daily medians for time when sun is above horizon. Model results neglecting the water limitation from soil moisture are shown in gray in (c, e,
g). The fit between modeled and measured values is examined in (d, f, h), where the dashed line is 1 : 1 and the solid line the linear least squares regression.
R2 and MAE denote the coefficient of determination and mean absolute error, respectively.
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distinct seasonal cycles with highest daily fluxes reached in late
June to mid-July (Fig. 1c,e). Low soil moisture in August–
September 2018 (Fig. 1b) limited photosynthesis, as shown by
model runs with and without considering the water limitation
(black vs gray lines in Fig. 1c,e). The value of Ci/Ca was also
affected by the water limitation (Fig. 1g). Overall, the model
reproduced shoot gas exchange well (Fig. 1d,f,h). At half-hourly
timescale, R2 for transpiration and net CO2 uptake were 0.86
and 0.90, respectively.

The δ18O of needle water, sugars and water-soluble
carbohydrates

Measured needle water δ18O varied between −10‰ and 15‰
during the study period (Fig. 2a), whereas needle WSC δ18O
was much less variable, 23–34‰ (Fig. 2b). Modeled needle
water δ18O for the entire studied period (including periods
between measurements) showed larger variability than measure-
ments (Fig. 2a) because only a few sampling days occurred dur-
ing low relative humidity (early July 2018 and late growing
season of 2019). However comparing only data from sampling
days, the model results (including Péclet effect with nonsteady
state and a temperature-dependent εwc) well reproduced the sea-
sonal variability in needle water and WSC δ18O (Fig. 2a,b),
explaining 95% (Fig. 3f) and 84% (Fig. 3a,d) of their variability,
respectively. In order to capture the measured needle WSC δ18O,
the δ18O of pinitol was adjusted to 25‰, suggesting 18O-
depletion of pinitol in comparison to sugars. Hence, the variabil-
ity of needle WSC δ18O was reduced compared to the variability
modeled for needle sugar δ18O (Fig. 2b).

The different needle water model variants did not affect the
amount of variation captured by the model (R2 = 0.95,

Fig. 3a–f). The level of needle water δ18O was best captured
with either the two-pool or the Péclet model under nonsteady
state assumption (MAE = 1.23–1.31‰, Fig. 3d,f), whereas
the Craig–Gordon model produced the highest overestimation
(Fig. 3a,b). The nonsteady state assumption was also supported
by the sampled diel needle water δ18O variation during May
23, 2019 (Fig. S7).

Accounting for the sugar pool size had a significant impact on
the fit between modeled and measured δ18O of needle WSC. For
example, with constant εwc, R

2 improved from c. 0.5 (Fig. 3g–l)
to 0.72–0.76 (Fig. 3m–r), when the sugar pool size was set
according to measurements instead of a negligible size. The
model fit improved further when the temperature-dependent εwc
was implemented, resulting in R2 ranging from 0.82 to 0.84
(Fig. 3y–ad).

The δ13C of needle sugars and water-soluble carbohydrates

The temporal variability of observed δ13C of needle bulk WSC
was much smaller, with values ranging from −29‰ to −27‰
than that of needle sugar, with values ranging from −29‰ to
−24.5‰ (Fig. 2c). This was expected due to the presence of
pinitol with a near constant δ13C. The model explained 73% and
60% of the variability in δ13C of needle sugar and bulk WSC,
respectively (Fig. 4n).

Evaluating the model variants for δ13C of needle sugar and
WSC, we observe, as for δ18O, that accounting for the sugar pool
size is important. The value of R2 for needle sugar improved from
0.45–0.46 to 0.71–0.73, when the sugar pool size was accounted
for (Fig. 4a–d, i–k vs e–h, l–n, respectively). Applying the model
without explicitly accounting for mesophyll resistance captured
72–73% of the variability in observed needle sugar δ13C

(a)

(b)

(c)
Fig. 2 Modeled and measured (a) needle
water δ18O, (b) δ18O of needle sugar and in
bulk water-soluble carbohydrates (WSC),
and (c) δ13C of needle sugar and in bulk
WSC of Scots pine. Modeled values are given
as mean of 12:00–15:00 h, which
corresponds to sampling interval. Error bars
indicate the SDs of the five sampled trees.
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(Fig. 4e–h). However, in this case, the predicted values were gen-
erally too low (Fig. 4d–f) and only the simple model showed a
slope close to unity (Fig. 4e). Explicitly accounting for meso-
phyll resistance (Cc ≠ Ci) increased the predicted δ13C, which
decreased MAE but did not improve R2 (Fig. 4e–h vs l–n).
Similarly, including photorespiration (f = 8‰) had no effect
on the variability captured by the model (Fig. 4f,l vs g,m).
Then again, including the effect of mitochondrial respiration
(rd ≠ 0) slightly improved R2, especially for δ13C of WSC
(Fig. 4g,m vs h,n), which covered two growing seasons, unlike
δ13C of needle sugar (Fig. 2c). Overall, the best result (highest
R2 and lowest MAE) was obtained in Fig. 4(n) (b = 29‰,
f = 8‰, rd ≠ 0 and Cc ≠ Ci), which corresponds to the time-
series shown in Fig. 2(c).

Needle sugar pool size and formation period of isotopic
signals

As expected, modeling results with a negligible needle sugar pool
size showed much larger variability than results obtained applying
the observed sugar pool size (Fig. 5a,b). However, during times
when day-to-day meteorological conditions were fairly stable, for
example, the second half of May and early June 2018 (Fig. 1a,b),
the role of the sugar pool size was less evident. Then again, the
isotopic signal formed during occasional days of low VPD and
PAR were not imprinting the sugar pool, because photosynthesis
was typically low during these days and hence the role of current
assimilates on shaping the isotopic composition of the sugar pool
remained small (Fig. 5). The dynamics of the results obtained

(a) (b) (c) (d)

(aa) (ab) (ac) (ad)

(e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

(s) (t) (u) (v) (w) (x)

(y) (z)

Fig. 3 The fit between modeled and measured Scots pine (a–f) needle water δ18O, and (g–ad) δ18O of needle water-soluble carbohydrates (WSC) with dif-
ferent needle water modeling approaches (see column titles) and model processes affecting δ18O of needle WSC. In (g–r) the biochemical fractionation fac-
tor, εwc, is constant (27‰) and in (s–ad) εwc is temperature dependent following Sternberg & Ellsworth (2011). In (m–r) and (y–ad) the needle sugar pool
size is set according to measurements, while in (g–l) and (s–x) its size is negligible. The dashed line is 1 : 1 and the solid line the linear least squares regres-
sion. R2 and MAE denote the coefficient of determination and mean absolute error, respectively. Modeled values are given as mean of 12:00–15:00 h,
which corresponds to sampling interval. Error bars indicate the SDs of the five sampled trees.
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applying the observed sugar pool size were overall lagged and
smoother compared to results with a negligible sugar pool size,
especially in early and late growing season when the formation
period of the sugar pool isotopic signal was longer (Fig. 5c). Dur-
ing mid-growing season the sugar pool was formed of photosyn-
thates assimilated over the past 48–52 h, while in early and late
growing season the length of the formation period increased to
over 5 d (Fig. 5c).

The differences between the two modeling scenarios shown
in Fig. 5(a,b) are not only caused by the combined effect of the
sugar pool and day-to-day variation in meteorological condi-
tions, but also the role the sugar pool has on the diurnal course
of isotopic signals. Fig. 6 shows the modeled diurnal course of
needle water δ18O + εwc and of δ13C of net CO2 exchange,
which during daytime correspond to the sugar pool δ18O and
δ13C, respectively, if the sugar pool size were negligible. In
comparison to these, the modeled diurnal course of the sugar
pool isotopic signals (applying the observed sugar pool size) are
lagged and have a much lower amplitude. For δ13C this causes
the 1–2‰ offset between the two scenarios in Fig. 5(b) as in
the early afternoon δ13C of net CO2 exchange is higher com-
pared to that of the sugar pool (Fig. 6b). For δ18O, the δ18O
of needle water + εwc crosses the value of the sugar pool δ18O
around midday (Fig. 6a) and hence Fig. 5(a) does not show a
similar offset between the two modeling results as for δ13C.
The δ18O and the δ13C of needle WSC measured from diurnal
samples during 25 July 2019 support the low diurnal ampli-
tude obtained by the model (Fig. 6a,b).

Environmental and physiological signals

The δ18O and relative humidity Both measured and predicted
δ18O of needle water correlated strongly with the sampling day
RH (Fig. 7a). The correlation between δ18O of needle WSC and
RH was, however, weaker, and deviated from the expected rela-
tionship with RH observed for needle water δ18O offset by 27‰
(Fig. 7b). The modeled δ18O of needle sugar deviated less from
this relationship but showed a lot of scatter (Fig. 7d). Both for
modeled and measured δ18O, the correlations improved consid-
erably, when we used the weighting scheme outlined earlier for
RH to account for the sugar pool being an integration over time
(Fig. 7b,d vs c,e). Also, accounting for the integration, the rela-
tionship between needle sugar δ18O and RH follows the expected
line (Fig. 7e).

The δ13C and Ci/Ca Relationships between δ13C and Ci/Ca

showed a similar response as δ18O to RH; the variability of nee-
dle bulk WSC δ13C was reduced compared to that of needle
sugar (Fig. 8a,b vs c,d), and the correlation strength increased
once time integration was considered (Fig. 8a,c vs b,d).

The relationships in Fig. 8 are compared against the expected
δ13C vs Ci/Ca relationship (dashed gray line) defined following
the simple model: 13Δ = as + (b – as)Ci/Ca, with b = 27‰ and
δ13C of atmospheric CO2 set to its mean value −8.5‰. The
slope of this relationship is well represented by the observed and
modeled needle sugar δ13C in Fig. 8(d), whereas Fig. 8(a–c)
deviate from it because of neglecting the effect of time integration

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

(l) (m) (n)

Fig. 4 The fit between modeled and
measured Scots pine δ13C of needle sugar
and in bulk water-soluble carbohydrates
(WSC) with different model variants. The
first column shows the commonly applied
simple formulation, where the lower b
implicitly accounts for all photosynthetic
discrimination processes. The second column
accounts only for fractionation by diffusion
and carboxylation, the third adds
photorespiration, and the last the effect of
mitochondrial respiration. In (a–h) the
models are based on Cc = Ci and in (i–n) the
effect of mesophyll resistance is explicitly
accounted for. Lastly, in (e–h) and (l–n) the
needle sugar pool size is set according to
measurements, while in (a–d) and (i–k) its
size is negligible. The dashed line is 1 : 1 and
the solid line the linear least squares
regression. R2 and MAE denote the
coefficient of determination and mean
absolute error, respectively. The upper corner
values correspond to sugar and those in
lower corner to bulk WSC. Modeled values
are given as mean of 12:00–15:00 h, which
corresponds to sampling interval. Error bars
indicate the SDs of the five sampled trees.
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and/or because of the presence of pinitol. The miss-match in level
of c. 1.5‰ in Fig. 8(d) is in line with Fig. 4(e).

Discussion

Evidence for temperature-dependent biochemical
fractionation factor

Modeling of needle water δ18O indicated that its variation was
strongly dictated by RH, as both RH (Fig. 7a) and the applied
models (Fig. 3a–f) explained c. 95% of the variation of needle
water δ18O (Roden & Ehleringer, 1999). Hereby at our study

site, the variation in δ18O of water vapor and source water had
only minor role, which supports the reconstruction of RH from
tree ring δ18O records (Anderson et al., 1998; Wright & Leav-
itt, 2006). For water vapor δ18O we used IsoGSM data (Yoshi-
mura et al., 2008), a good proxy at our study site (Fig. S3), thus
not assuming vapor-source water isotopic equilibrium (Rv = Rs/
α+, Ogée et al., 2009). Leaf water δ18O is known to be rather
insensitive to water vapor δ18O, because the 18O kinetic fraction-
ation dominates over vapor-source water isotopic disequilibrium
(Cernusak et al., 2016). Then again, the minor role of source
water δ18O was caused by its limited variability compared to
the variability of evaporative 18O-enrichment (Belmecheri

(a)

(b)

(c)

Fig. 5 Modeled needle sugar (a) δ18O and
(b) δ13C of Scots pine at 13:30 h with
negligible sugar pool size and the observed
sugar pool size. Panel (c) presents the
formation period of the needle sugar pool
isotopic signals and the weight of the current
day assimilates in forming the isotopic signal
of the needle sugar pool. The formation
period and the current day weight were
calculated assuming the sugar pool is well-
mixed and its size set equal to observed (see
text).

(a)

(b)

Fig. 6 Modeled diurnal course of (a) δ18O
and (b) δ13C signals in Scots pine needles
during 24–26 July 2019 and measured
needle isotopic signals of water-soluble
carbohydrates (WSC) sampled during 25 July
2019. In addition to modeled needle sugar
and bulk WSC signals, (a) shows the isotopic
signal of needle water + εwc (biochemical
fractionation factor) and (b) the isotopic
signal of net CO2 exchange. Gray-shaded
areas indicate night-time. Extreme high and
low values during the transition between day
and night are caused by noise in model
results when kCa – rd tends to zero (see
Eqn 8).
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et al., 2018). However, this does not necessarily hold, for exam-
ple, at sites where plant water sources vary between isotopically
distinct precipitation and melting permafrost (Saurer et
al., 2016).

In line with earlier studies, we found that the Craig–Gordon
model overestimated needle water δ18O (Cernusak et al., 2016).
We could not distinguish whether the two-pool or the Péclet
model provided a more suitable correction as, when calibrated,
both models resulted in more or less equally good results (Fig. 3c–
f). This has been typical also in earlier studies, but in some cases
calibration has led to unrealistic parameter values (Song et al.,
2013; Roden et al., 2015). The parameters obtained by calibration
here, f1 = 0.93 and L = 30 mm, are reasonable in comparison to
measured leaf anatomical characteristics (Roden et al., 2015;
Timofeeva et al., 2020). However, there exist uncertainties related
to the calibrated parameter values due to, for example, the assump-
tion of leaf temperature being equal to air temperature (Ogée
et al., 2009; Cernusak et al., 2016) and the source of diffusional
fractionation factors (Merlivat, 1978; Cappa et al., 2003).

Based on the diurnal course of needle water δ18O (Fig. S7),
we recognized the need for the nonsteady-state model (Barnard
et al., 2007; Gessler et al., 2013). However, its impact on δ18O
of needle sugar was less critical (Fig. 3ac vs ad), because during
times of highest assimilation δ18O of needle water was close to
the steady-state solution. This suggests steady-state leaf water
models could be sufficient in predicting plant cellulose δ18O
(Ogée et al., 2009; Hirl et al., 2021), simplifying model struc-
ture and parametrization needs.

One of our key findings was that implementing the
temperature-dependent biological fractionation factor (εwc), fol-
lowing results from laboratory experiments by Sternberg &
Ellsworth (2011), improved predictions of needle WSC δ18O
notably (Fig. 3m–r vs y–ad). So far only one study (Hirl et al.,
2021) has shown such evidence in field conditions and our study is
the first to show this for trees. For our study site, with May–
September temperatures varying between −2.9 and 30.7°C, εwc
ranged from 34.6 to 25.4‰. Although this has important implica-
tions to predicting plant δ18O signals, here the implemented tem-
perature dependence did not clearly interfere with the dominant
effect of RH in driving needle sugar δ18O variability (Fig. 7e).
The influence of the temperature-dependent εwc is however
expected to be critical in climate and leaf temperature
reconstruction studies spanning across various temperature zones.
For example, as shown by Sternberg & Ellsworth (2011), the

(a)

(b) (c)

(d) (e)

Fig. 7 Relationship between relative humidity (RH) and (a) needle water
δ18O, (b–c) δ18O of needle water-soluble carbohydrates (WSC), and (d–e)
needle sugar δ18O of Scots pine. In (a, b, d) RH corresponds to the sam-
pling day (mean of midday � 3 h) and in (c, e) RH is obtained by the
weighting scheme outlined in the text. Colored dots and correlations (r)
given in upper corner correspond to measurements, and plus-signs and r

given in lower corner to modeled values. The gray dashed line (b–e) indi-
cates the relationship in (a) +27‰. Error bars indicate the SDs of the five
sampled trees.

(a) (b)

(c) (d)

Fig. 8 Relationship between modeled intercellular to ambient CO2

concentration ratio (Ci/Ca) and (a–b) δ13C of needle bulk WSC, and (c–d)
needle sugar δ13C of Scots pine. In (a, c) Ci/Ca corresponds to the
sampling day (mean of midday + 3 h) and in (b, d) Ci/Ca is obtained by
the weighting scheme outlined in the text. Colored dots and correlations
(r) given in upper corner correspond to measurements, and plus-signs and
r given in lower corner to modeled values. The gray dashed line corre-
sponds to the simple model: 13Δ = as + (b – as)Ci/Ca, with b = 27‰, as =
4.4‰ and δ13C of atmospheric CO2 set to its mean value −8.5‰. Error
bars indicate the SDs of the five sampled trees.
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temperature-dependent εwc may explain the unexpected strong
correlation between mean annual temperature and cellulose 18O-
enrichment found across 39 tree species at 25 sites by Helliker &
Richter (2008).

A challenge of this study was that δ18O was not measured for
needle sugars, but only for bulk WSC. We assumed that WSC
consisted of sugars reflecting needle water δ18O and pinitol with
a constant δ18O. To capture the observed WSC δ18O, pinitol
δ18O was adjusted to 25‰, which is reasonable compared to the
22‰ reported for pinitol in Siberian larch (Lehmann et al.,
2017). However, Lehmann et al. (2017) also found differences
between δ18O of sucrose (most 18O-enriched), fructose and glu-
cose, thus there remains some uncertainty in whether it is only the
relatively high amounts of 18O-depleted pinitol that causes the
reduced variation in δ18O of needle WSC. While the modeling sug-
gested 18O-depleted pinitol as one plausible explanation, further
compound specific δ18O analyses are needed to verify our finding.

Mesophyll resistance has important role in determining the
level of needle sugar δ13C

The Ci/Ca was the dominant driver of δ13C variation in the mod-
eled needle carbohydrate pools as expected (Farquhar et
al., 1982). Increasing model complexity provided only limited
improvement to the explained variation. Interestingly, we found
that the simple model with the bulk fractionation factor
b = 27‰ (Fig. 4e; Farquhar et al., 1982; Ubierna & Far-
quhar, 2014) captured the variability almost as well as the com-
prehensive model (Fig. 4n) and only showed a fairly constant
offset of 1.5‰. This indicates that changes in Ci/Ca can be
derived from changes in needle sugar δ13C using the simple
model (13Δ = 4.4 + (27 – 4.4)Ci/Ca). However, explicitly
accounting for mesophyll resistance (i.e. Cc ≠ Ci), was required
to capture the absolute level of observed δ13C (Warren et al.,
2003; Ubierna & Marshall, 2011; Gentsch et al., 2014). The
chosen description for mesophyll conductance (Eqn S9 in Meth-
ods S1) also played a key role as it defines Cc ≈ 0.8Ci (Fig. S8a).
By contrast, applying a constant mesophyll conductance (e.g.
Wingate et al., 2007; Ogée et al., 2009) or a constant ratio
between stomatal and mesophyll conductance (e.g. Vernay et al.,
2020) result in Cc approaching Ci at high Ci (Fig. S8b,c), which
would have led to poorer model agreement, as there was a miss-
match in δ13C values along the whole range of Ci/Ca (Fig. 8d).
This underlines the need for better understanding on the variabil-
ity of mesophyll conductance at intra-seasonal scale.

Need to account for needle sugar pool size to predict its
isotopic composition

For both δ18O and δ13C, results indicated clearly that the needle
sugar pool size has a crucial role in reducing its day-to-day (Fig. 5
a,b) and sub-daily (Fig. 6) variation of isotopic composition
compared to that of new assimilates. In line with the 13C-pulse-
labeling study on Pinus pinaster by Desalme et al. (2017), we
suggest that the signal of the sugar pool was composed of sugars
assimilated over the past 48 h to more than 5 d depending

mostly on the time of the growing season (Fig. 5c). While time
lags and attenuated diurnal patterns between, for example, leaf
water and leaf organic matter δ18O are commonly recognized
(Barnard et al., 2007; Gessler et al., 2013), their causes have not
been quantitatively attributed to the sugar pool size, as done here
using dynamic modeling. Examining our results at different time-
scales provides vital information for the interpretation of leaf-level
isotopic data. For example: (1) the difference between instant leaf
water δ18O and leaf sugar δ18O seldom equals εwc (Figs 5a, 6a;
Gessler et al., 2013; Lehmann et al., 2017); (2) online measured
δ13C of net CO2 exchange (e.g. Wingate et al., 2007; Schiestl-Aalto
et al., 2021) is expected to be higher than δ13C of needle sugar sam-
pled in early afternoon (Fig. 6b); and (3) sudden day-to-day varia-
tions in meteorological conditions are not strongly reflected in
isotopic signals of the needle sugar pool (Fig. 5a,b). Explicitly
attributing such phenomena to the simple accumulation and mixing
of new assimilates in the needle sugar pool is highly relevant to avoid
miss-interpreting fractionation processes in leaves.

The applied assumption that needle sugars form one well-
mixed pool of constant size may be debatable. It has been sug-
gested that sucrose appears both in a fast transport pool and a
slow transport pool (Brauner et al., 2014; Bögelein et al., 2019),
which would reduce the variation in needle sugar δ13C further
compared to our predictions. The concept of various transport
pools might become critical when predicting isotopic composi-
tions further downstream from leaves (e.g. phloem or tree ring
cellulose), but here at leaf-level its role could not be identified.
Also, the concentration of needle sugars is expected to vary diur-
nally (Liesche et al., 2021) and seasonally with increased levels at
the start and end of growing season (Schiestl-Aalto et al., 2019).
With high needle sugar concentrations, typical for trees growing
under cold winters (Fig. S5; Kagawa et al., 2006; Rinne et al.,
2015), we can however expect the diurnal variation in concentra-
tion to be small compared to the absolute concentration value.
For the seasonal variation, our data showed no clear pattern (Fig.
S5), plausibly indicating that during the active growing season,
which is the crucial period for tree ring formation, the assump-
tion of constant sugar pool size is sufficient.

Time integration and sample composition critical for
retrieving environmental/physiological signals from needle
δ18O and δ13C

The correlations between δ18O and RH, and δ13C and Ci/Ca fur-
ther underlined the need to account for the needle sugar pool
being an integration over time (Figs 7b–e, 8). The correlations
were clearly weaker, when examined against sampling day RH
and Ci/Ca compared to RH and Ci/Ca weighted according to past
assimilation and mixing in the sugar pool. The correlation
strength between δ13C and Ci/Ca did not clearly differ for needle
WSC and needle sugars (Fig. 8), which supports our assumption
on constant pinitol share and pinitol δ13C. The main difference
between needle WSC and needle sugars was the slope of the rela-
tionships, which for WSC deviated from the expected relation-
ships due to the presence of depleted pinitol (Figs 7c, 8b). This
emphasizes the need to know the sample composition, in order
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to draw conclusions about the magnitude of underlying environ-
mental/physiological changes causing the variation of the isotopic
signals (Stokes et al., 2010; Tarin et al., 2020). If the constant
share and isotopic signal of pinitol are known, one can estimate
changes in RH or Ci/Ca from bulk WSC δ18O or δ13C, respec-
tively, as the isotopic signal of needle sugar is a linear function of
that of bulk WSC (Eqn 7).

Examining the environmental/physiological signals both for
model results and observations provided means to explain the
phenomena behind the present relationships or the lack of them
(see also Hirl et al., 2021). Such evaluation is valuable and has
potential to bridge the gap between empirical studies, focused on
the climatic signals of tree ring isotopic records, and mechanistic
modeling studies, in order to further advance the interpretation
of isotopic signals in trees.
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Analysis of the NSC storage dynamics in tree organs reveals the allocation to

belowground symbionts in the framework of whole tree carbon balance.

Frontiers in Forests and Global Change 2: 17.
Schiestl-Aalto P, Stangl ZR, Tarvainen L, Wallin G, Marshall J, Mäkelä A.
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Tor-Ngern P, Marshall JD. 2020. Estimating canopy gross primary

production by combining phloem stable isotopes with canopy and mesophyll

conductances. Plant, Cell & Environment 43: 2124–2142.
Wanek W, Heintel S, Richter A. 2001. Preparation of starch and other carbon

fractions from higher plant leaves for stable carbon isotope analysis. Rapid
Communications in Mass Spectrometry 15: 1136–1140.

Warren CR, Ethier GJ, Livingston NJ, Grant NJ, Turpin DH, Harrison DL,

Black TA. 2003. Transfer conductance in second growth Douglas-fir

(Pseudotsuga menziesii (Mirb.)Franco) canopies. Plant, Cell & Environment 26:
1215–1227.

West AG, Patrickson SJ, Ehleringer JR. 2006.Water extraction times for plant

and soil materials used in stable isotope analysis. Rapid Communications in Mass
Spectrometry 20: 1317–1321.

White, J, Vaughn, B, Michel, S. 2015. University of Colorado, Institute of Arctic
and Alpine Research (INSTAAR), stable isotopic composition of atmospheric carbon
dioxide (13C and 18O) from the NOAA ESRL carbon cycle cooperative global air
sampling network, 1990–2014, v.20210204 [www document] URL ftp://aftp.

cmdl.noaa.gov/data/trace_gases/co2c13/flask/ [accessed 1 September 2021].

Wingate L, Seibt U, Moncrieff JB, Jarvis PG, Lloyd J. 2007. Variations in 13C

discrimination during CO2 exchange by Picea sitchensis branches in the field.

Plant, Cell & Environment 30: 600–616.
Woodley EJ, Loader NJ, McCarroll D, Young GHF, Robertson I, Heaton THE,

Gagen MH, Warham JO. 2012.High-temperature pyrolysis/gas

chromatography/isotope ratio mass spectrometry: simultaneous measurement

of the stable isotopes of oxygen and carbon in cellulose. Rapid Communications
in Mass Spectrometry 26: 109–114.

Wright WE, Leavitt SW. 2006. Boundary layer humidity reconstruction for a

semiarid location from tree ring cellulose δ18O. Journal of Geophysical Research:
Atmospheres 111: D18105.

Yoshimura K, Frankenberg C, Lee J, Kanamitsu M, Worden J, Röckmann T.
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Supporting Information

Additional Supporting Information may be found online in the
Supporting Information section at the end of the article.

Fig. S1 Measured needle sucrose δ13C against measured needle
sugar (sucrose + glucose + fructose) δ13C in current-year nee-
dles and 1-yr-old needles.

Fig. S2 Measured isotopic composition of needle water-soluble
carbohydrates in current-year needles and 1-yr-old needles, and a
combined data series over the two needle generations.

Fig. S3 Measured δ18O of atmospheric water vapor against cor-
responding values predicted by IsoGSM.

Fig. S4 Modeled and measured source (twig) water δ18O and
observed soil water δ18O.

Fig. S5 Measured concentrations of needle water-soluble carbo-
hydrates and measured ratio of needle pinitol to needle sugar
(sucrose + glucose + fructose) concentrations in current-year
needles and 1-yr-old needles.
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Fig. S6Measured water content of 1-yr-old needles.

Fig. S7 Modeled and measured diurnal course of needle water
δ18O.

Fig. S8 Modeled relationship between CO2 mole fraction in
chloroplast and intercellular spaces using different descriptions
for mesophyll conductance.

Methods S1Modeling shoot gas exchange.

Methods S2 Derivation of model for 13C-discrimination of net
CO2 exchange (Eqn 8).

Methods S3Modeling source water δ18O.

Methods S4 Derivation of Eqns 10–12.

Table S1 Parameter values applied for shoot gas exchange mod-
eling.
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