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A B S T R A C T   

Vegetation optical depth (VOD) from satellite passive microwave sensors has enabled monitoring of aboveground 
biomass carbon dynamics by building a relationship with static carbon maps over space and then applying this 
relationship to VOD time series. However, uncertainty in this relationship arises from changes in water stress, as 
VOD is mainly determined by vegetation water content, which varies at diurnal to interannual scales, and de
pends on changes in both biomass and relative moisture content. Here, we studied the reliability of using VOD 
from various microwave frequencies and temporal aggregation methods for estimating decadal biomass carbon 
dynamics at the global scale. We used the VOD diurnal variations to represent the magnitude of vegetation water 
content buffering caused by climatic variations for a constant amount of dry biomass carbon. This magnitude of 
VOD diurnal variations was then used to evaluate the likelihood of VOD decadal variations in reflecting decadal 
dry biomass carbon changes. We found that SMOS-IC L-VOD and LPDR X-VOD can be reliably used to estimate 
decadal carbon dynamics for 76.7% and 69.9% of the global vegetated land surface, respectively, yet cautious 
use is warranted for some areas such as the eastern Amazon rainforest. Moreover, the annual VOD aggregated 
from the 95% percentile of the nighttime VOD retrievals was proved to be the most suitable parameter for 
estimating decadal biomass carbon dynamics among the temporal aggregation methods. Finally, we validated 
the use of annual VOD for estimating interannual carbon dynamics by comparing VOD changes between adjacent 
years against eddy covariance estimations of gross primary production from flux sites over several land cover 
classes across the globe. Despite the large difference in spatial scales between them, the positive correlation 
obtained supports the capability of satellite VOD in quantifying interannual carbon dynamics.   

1. Introduction 

Land carbon fluxes play a dominant role in controlling the interan
nual variability of atmospheric carbon dioxide (Friedlingstein et al., 
2020). Currently, estimations of interannual variability of global carbon 
stocks are mainly based on process-based dynamic vegetation models, 
yet large spatiotemporal divergence is observed between different 
models (Piao et al., 2020). Optical remote sensing is sensitive to the 

green foliar component thereby well suited for estimating biomass of 
herbaceous vegetation, but not for forest ecosystems where the leaf 
component only accounts for a small fraction of the biomass carbon 
pool. Aerial and spaceborne light detection and ranging (LiDAR), low- 
frequency synthetic aperture radar (SAR), and global ecosystem dy
namics investigation (GEDI) provide information on tree height and thus 
biomass carbon in forests, but yet at limited spatial and temporal 
coverage (Baccini et al., 2012; Dubayah et al., 2020; Duncanson et al., 
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2022; Lang et al., 2022; Liu et al., 2015; Ni-Meister et al., 2022; Yu and 
Saatchi, 2016). 

Recently, satellite passive microwave remote sensing has further 
advanced our abilities by providing the means for monitoring annual 
carbon dynamics at continental to global scales through vegetation 
optical depth (VOD) (Brandt et al., 2018; Fan et al., 2019; Liu et al., 
2015; Santi et al., 2012; Scholze et al., 2019; Vaglio Laurin et al., 2020; 
Wigneron et al., 2020). VOD is a parameter used for quantifying mi
crowave transmissivity of the vegetation layer and is mainly determined 
by vegetation water content (VWC) from both foliar and woody com
ponents (Cui et al., 2015; Shi et al., 2008; Tian et al., 2017, 2018). 
Annual aggregated VOD data have shown strong spatial relationships 
with static tree height and carbon estimations at local, continental, and 
global scales (Brandt et al., 2018; Chaparro et al., 2019; Liu et al., 2015; 
Rodríguez-Fernández et al., 2018; Vittucci et al., 2019). Therefore, for 
the estimation of interannual carbon dynamics, a common practice is to 
build an empirical relationship between annual VOD data and static 
carbon maps (Baccini et al., 2012; Saatchi et al., 2011) over space and 
then apply this relationship on annual VOD time series. An underlying 
assumption behind this practice is that the ratio between wet and dry 
biomass, or the plant water-holding capacity, remains constant across 
years. 

However, this assumption could be potentially unfulfilled due to 
vegetation physiological responses to climate variations. For example, 
recent studies showed that VOD retrievals from in situ microwave ra
diometers convey climate-induced changes in plant water potential 
(Holtzman et al., 2021) and it is critical to distinguish between water 
stress and biomass dynamics in their contributions to VOD changes 
(Konings et al., 2021a). Moreover, the radiative transfer process for a 
vegetated land surface is highly complex and uncertainties often arise 
from a simplification of the algorithms used for retrieving VOD from the 
same satellite observation (Wigneron et al., 2021). The impacts of these 
confounding factors are difficult to evaluate due to the large spatial 
footprint of space-borne microwave radiometers and also the lack of 
temporally continuous and field-measured biomass data at large scales, 
particularly for forest areas. Only Tian et al. (2016) evaluated a satellite- 
based VOD dataset with ground-measured green biomass from the Af
rican Sahel grassland/savanna over two decades, but this did not include 
substantial amounts of wood biomass. Recently, Qin et al. (2021) eval
uated a VOD dataset by comparing it with forest cover change in the 
Amazonian rainforest. More work is needed to evaluate the capability of 
VOD changes in reflecting the interannual variability of biomass carbon 
for various land cover types across the globe. 

Eddy covariance flux towers continuously measure the net ecosystem 
exchanges (NEE) of carbon dioxide between the land and the atmo
sphere and partition it into ecosystem respiration and gross primary 
production (GPP) at relatively high accuracy (Moncrieff et al., 1996; 
Pastorello and Hörtnagl, 2020; Tagesson et al., 2016). For regions with 
relatively homogeneous vegetation conditions and with little distur
bances, interannual changes in eddy covariance carbon fluxes at the site 
level could be representative of the climate-related biomass carbon 
variations in the surrounding region. Thereby, eddy covariance mea
surements could be potentially used for estimating the VOD reliability in 
representing the interannual carbon dynamics. 

Microwave radiometers onboard polar-orbiting satellites provide 
day-and-night measurements with 1–3 day global coverage. This high 
temporal frequency is critical for studying plant hydraulics (Konings and 
Gentine, 2017), but for the estimation of biomass carbon dynamics, the 
daily VOD retrievals need to be aggregated to an annual scale to reduce 
the influence of the water-related diurnal and seasonal phenology 
changes in plants. Various annual VOD indices (i.e. strategies for tem
poral aggregation) have been applied in previous studies, including 
taking the median or mean value of high-quality daily VOD retrievals for 
each year (Brandt et al., 2018; Fan et al., 2019; Frappart et al., 2020; 
Teubner et al., 2019) and taking the 95% percentile (Qin et al., 2021). 
Apart from the different ways of conducting temporal aggregation, the 

input daily VOD retrievals have also been used differently by either 
applying data from nighttime (Brandt et al., 2018; Liu et al., 2015; Qin 
et al., 2021) or the combination of both daytime and nighttime (Fan 
et al., 2019). Yet, there is currently no consensus about how temporal 
aggregation of VOD data should be carried out when being used for 
monitoring decadal carbon dynamics. 

In this study, we aim to evaluate the reliability of using VOD data for 
inferring biomass carbon dynamics at decadal and interannual scales by 
evaluating water stress impacts using VOD diurnal changes, and by 
using global eddy covariance carbon flux measurements over multiple 
years, respectively. We also examined the performance of various tem
poral aggregation methods for obtaining annual VOD values from the 
original quasi-daily observations for carbon dynamics estimation. 

2. Data 

Microwaves can penetrate through the vegetation canopy, and lower 
frequency or longer wavelength has deeper penetration depth. Here, we 
examined VOD products at three frequencies, including L-VOD (1.4 
GHz) from SMOS-IC (Soil Moisture and Ocean Salinity - INRA-CESBIO), 
X-VOD (10.7 GHz) from LPDR (Land Parameter Data Record), and X- 
VOD and Ku-VOD (18.7 GHz) from VODCA (VOD Climate Archive) 
(Table 1). The C-band VOD data were not considered in this study since 
(a) only X-band VOD data are available from the LPDR data set for 
mitigating the impacts of radio frequency interference (RFI) (Du et al., 
2017; Njoku et al., 2005), and (b) the VODCA C-band product has 
relatively higher data loss and lower accuracy than X- and Ku-band data 
(Moesinger et al., 2020). 

The SMOS-IC L-VOD was retrieved from temperature brightness (TB) 
observed from the SMOS satellite using the inversion of the L-MEB (L- 
band Microwave Emission of the Biosphere) model (Fernandez-Moran 
et al., 2017; Wigneron et al., 2021), and provides L-VOD data at two 
overpassing times a day at 6:00 AM (referred to as nighttime) and 6:00 
PM (referred to as daytime) local time, respectively. At L-band, RFI 
strongly affects the SMOS TB observations and the Root Mean Square 
Error (RMSE) value between the observed and the L-MEB modeled TB 
(TB-RMSE), which has often been used to filter out VOD data which are 
strongly affected by RFI effects. In this study, we retain pixels with TB- 
RMSE <8 K as suggested by Wigneron et al. (2021). The SMOS-IC VOD 
dataset is publicly available from https://ib.remote-sensing.inrae.fr/. 

The semi-daily global LPDR X-VOD (Version 3) dataset was derived 
from AMSR-E (the Advanced Microwave Scanning Radiometer - Earth 
Observing System) and AMSR-2 (the Advanced Microwave Scanning 
Radiometer - 2) sensors (Du et al., 2017) with two observations a day at 
1:30 AM (descending orbit, referred to as nighttime) and 1:30 PM 
(ascending orbit, referred to as daytime) local time, respectively. The 
LPDR VOD dataset is publicly available from https://nsidc.org/data/n 
sidc-0451. 

The VODCA dataset combines VOD retrievals derived from multiple 
sensors, including SSM/I (Special Sensor Microwave/Imager), TMI 
(Tropical Rainfall Measuring Mission’s Microwave Imager), AMSR-E, 
AMSR-2, and WindSat (Moesinger et al., 2020). X-VOD and Ku-VOD 
provided by VODCA were used in this study and downloaded from 
https://doi.org/10.5281/zenodo.2575599. 

We collected eddy covariance GPP data from three publicly available 
networks, including FLUXNET2015 (https://fluxnet.org/), ICOS (http 
s://www.icos-cp.eu/), and ONEFLUX (https://ameriflux.lbl.gov/), 
resulting in an eddy covariance dataset containing 251 sites with 1877 
site-years spanning from 1991 to 2018 across the globe (Fig. 1). 

Besides VOD data and flux measurements, we also used four ancillary 
datasets, including transpiration, Moderate-resolution Imaging Spec
troradiometer (MODIS) vegetation index, MODIS land cover, and 
Copernicus land cover. The Global Land Evaporation Amsterdam Model 
(GLEAM) product (Version 3) provides daily global transpiration with 
one-quarter degree spatial resolution (Martens et al., 2016; Miralles 
et al., 2011) and is publicly available at https://www.gleam.eu/. It 
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contains a set of algorithms designed to estimate different components 
of terrestrial evapotranspiration from satellite data, including transpi
ration, bare-soil evaporation, open-water-evaporation et al. 

The MODIS Enhanced Vegetation Index (EVI) data from the 
MOD13A1 / MYD13A1 V6.0 product (Didan, 2015) at a 16-day tem
poral interval and 500 m spatial resolution was used to verify whether a 
flux site is representative of the vegetation conditions over the VOD 
footprint encompassing the tower (see Section 3.3 for more details). To 
match with the VOD data, MODIS EVI was spatially aggregated to one- 
quarter degree by averaging. Data was also temporally aggregated to 
annual time series from 2011 to 2019 by taking the median values. 

The MODIS land cover type data (MCD12Q1) obtained in 2018 
provides a suite of datasets that map global land cover at 500 m spatial 
resolution (Friedl et al., 2019). The commonly used International 
Geosphere-Biosphere Program (IGBP) classification scheme was used in 
this study. 

The Copernicus global land cover product obtained in 2018 has been 
generated at 100 m spatial resolution using PROBA-V observations as 
inputs (Buchhorn et al., 2020). The higher spatial resolution of Coper
nicus land cover as compared to MODIS land cover is beneficial for 
quantifying the homogeneity of eddy covariance sites at the VOD foot
print, while MODIS land cover was used for calculating statistics in the 
analysis. 

3. Methodology 

The data analyses were performed in three parts (Fig. 2), which are 
described in the following sections. 

3.1. Relating ΔVODday to transpiration 

Water transportation through the soil-plant-atmosphere continuum 
is driven by the gradient of water potential from root-soil interface to 
leaf-atmosphere interface (Lincoln Taiz, 2014). When leaf stomata open 
during the daytime, plant water loss through transpiration is usually 
faster than root-soil water absorption, leading to a water deficit in the 
plants (Konings et al., 2021b). During nighttime after sunset, the leaf 
stomata generally close and transpiration stops, and the plant water 
deficit is replenished by soil water uptake (Dawson et al., 2007). Thus, 
VWC buffers the imbalance between transpiration water loss and soil 
water supply (Daly et al., 2004). 

With a semi-daily frequency (Table 1), satellite VOD retrievals could 
be used to measure VWC diurnal changes (ΔVODday, nighttime VOD 
minus daytime VOD), thus representing plant water deficit associated 
with transpiration during daytime. We verified this assumption by 
examining the relationship between ΔVODday and transpiration in our 
analysis. 

The satellite revisit frequency for each overpass (nighttime or day
time) varies from one day in the polar regions to three days at the 
Equator (Fig. S1). Thus, to ensure continuous spatial coverage, the VOD 
raw data were combined into 8-day composites (also considering data 
gaps due to low data quality) by averaging daytime and nighttime ob
servations separately (Fig. S2). The ΔVODday was calculated as the VOD 
difference between the nighttime and daytime 8-day composites. To 
enable temporal consistency, the daily GLEAM transpiration data was 
also aggregated to an 8-day interval of the same days with valid VOD 
retrievals by averaging. We then compared the 8-day composited 

Table 1 
VOD products used in this study. All of the datasets were gridded at one-quarter degree. The SMOS-IC and LPDR products provide VOD retrievals for two overpassing 
times per day, while the VODCA product merges the two overpassing times into one observation per day.  

Products Satellite sensor Microwave 
frequency 

Maximum temporal 
resolution 

Overpassing time Timespan Reference 

SMOS- 
IC 

SMOS L-band Semi-daily 6:00 AM (ascending) 
6:00 PM (descending) 

2011–2019 Wigneron et al. (2021) 

LPDR AMSR-E, AMSR-2 X-band Semi-daily 1:30 AM (descending) 
1:30 PM (ascending) 

2003–2019 Du et al. (2017) 

VODCA TMI, AMSR-E, AMSR-2, Windsat X-band Daily / 1998–2018 Moesinger et al. (2020) 
VODCA SSM/I, TMI, AMSR-E, AMSR-2, Windsat Ku-band Daily / 1988–2016 Moesinger et al. (2020)  

Fig. 1. Locations of the eddy covariance flux sites superimposed on the MODIS land cover classes. The procedures for determining sites surrounded by homogenous 
or heterogeneous land cover classes are explained in Section 3.3. ENF: Evergreen Needleleaf Forests, EBF: Evergreen Broadleaf Forests, DNF: Deciduous Needleleaf 
Forests, DBF: Deciduous Broadleaf Forests, MF: Mixed Forests, CSHR: Closed Shrublands, OSHR: Open Shrublands, WSAV: Woody Savannas, SAV: Savannas, GRA: 
Grasslands, CROP: Croplands. 
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ΔVODday and transpiration at pixel level during 2011–2019 by calcu
lating Pearson’s correlation (Fig. 2). If ΔVODday was positively corre
lated with transpiration, we hypothesized that for a given pixel, 
ΔVODday could represent the magnitude of water content variations 
driven by climatic conditions for a constant amount of dry biomass 
carbon. 

3.2. Evaluating VOD for estimating decadal biomass carbon dynamics 

VOD is determined by VWC (Liu et al., 2011), and affected by both 
water stress conditions (Konings et al., 2019; Zhang et al., 2019) and 
biomass (Momen et al., 2017). Diurnal VOD changes are used to eval
uate the water stress impacts (Rao et al., 2019) while biomass dynamics 
are likely being inferred from long-term VOD observations after mini
mizing the diurnal water stress impacts (Brandt et al., 2018; Fan et al., 
2019; Qin et al., 2021). Thus, we evaluated VOD changes at different 
time scales (e.g. sub-daily and decadal) for minimizing the water stress 
impacts on VOD-based biomass estimation by introducing a threshold of 
VWC-driven average VOD diurnal changes (ΔVODday) that is compared 
with ΔVODdecade. 

ΔVODdecade was calculated as the maximum variation of the aggre
gated annual VOD (i.e. the maximum annual VOD minus the minimum 
annual VOD) during the entire studied period (Supplementary Figs. S3- 
S4). There were six methods typically used to derive annual VOD from 
the raw data that have been identified in the literature, including taking 
the median, mean, and 95% percentile values from nighttime VOD and 
the combination of daytime and nighttime VOD, respectively. We tested 
all six different approaches, and for any given pixel, the aggregated 
annual VOD was built by at least 30 daily observations as suggested by 
Wigneron et al. (2021). 

Plants regulate the leaf and xylem water potentials at a relatively safe 
range by controlling the stomatal conductance (Meinzer et al., 2009) to 
prevent hydraulic failure under varying climatic conditions, especially 

in dry conditions when an excessively negative water potential within 
the plants can cause xylem embolism and put the plants at high risk of 
hydraulic failure (Momen et al., 2017). Thus, there should be a threshold 
to represent the magnitude of the intrinsic variability of VWC. ΔVODday 
varies over the course of the year driven by both external climatic 
conditions and plant traits, such as the number of green leaves, the age 
of the leaves, and the plant’s hydraulic regulation strategies (Konings 
et al., 2017; Konings and Gentine, 2017). For example, isohydric species 
tend to have relatively constant plant water content under water stress, 
thus the ΔVODday remains relatively constant during the course of the 
year. By contrast, anisohydric species keep their stomata open longer, 
allowing for higher photosynthetic rates, but also causing increased 
rates of transpiration. This causes large annual fluctuation in plant water 
content with higher values during the growing season (Fig. 3), also 
causing substantial fluctuations in the ΔVODday for these species (Kon
ings and Gentine, 2017). Moreover, when VOD is being used for esti
mating decadal scale carbon dynamics and minimizing the impacts of 
sub-daily VWC variations, the original semi-daily VOD observations 
were often aggregated to annual VOD statistics by using the mean, 
median, or 95% percentile. Thus, to make ΔVODday comparable to these 
commonly used annual VOD statistics, we used the average VOD diurnal 
changes (ΔVODday) to represent the magnitude of the intrinsic vari
ability of VWC for each pixel, and considered it as the most suitable 
parameter to represent the magnitude of VWC buffering caused by cli
matic and seasonal variations for a constant amount of dry biomass 
carbon. 

We calculated ΔVODday value by averaging the ΔVODday time-series 
pixel-wise (Fig. 3). As the most pronounced changes happened between 
the years of the maximum and minimum annual VOD, we restricted the 
calculation of ΔVODday to this sub-period (e.g. 2016 to 2019 in Fig. 3, 
which corresponds to the period of the minimum and maximum annual 
VOD) instead of the entire studied period to better represent the mean 

Fig. 2. Workflow and overall structure of the study.  
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vegetation conditions corresponding to the ΔVODdecade metric. It is 
noted that negative ΔVODday values, denoting higher daytime VOD than 
nighttime VOD, are observed in large parts of the world (37% for SMOS- 
IC L-VOD and 35% for LPDR X-VOD) and here we took the absolute 
value of ΔVODday for calculating ΔVODday (Supplementary Fig. S5; and 
the Discussions Section). 

We then performed a pixel-wise assessment using ΔVODday as a 
threshold to determine whether ΔVODdecade is dominated by dry biomass 
changes. Specifically, if ΔVODdecade is smaller than ΔVODday, the VOD 
decadal variations are within the plant water buffering range and thus 
could potentially be attributed to changes in climate conditions with 
little or no alteration in dry biomass (labeled as inconclusive). If 
ΔVODdecade is larger than ΔVODday, VOD decadal variations could not be 
totally explained by plant water changes and thus are most likely due to 
changes in dry biomass (labeled as high-reliability) (Fig. 2). 

3.3. Evaluating VOD for estimating interannual biomass carbon dynamics 
using eddy covariance 

For the assessment of interannual biomass carbon dynamics, one 
possible way is the use of eddy covariance measurements of GPP at sites 
representative of larger areas (e.g. 25 km by 25 km satellite footprint) 
with homogeneous land cover and similar vegetation conditions. Here, 
Copernicus global land cover data (100 m spatial resolution) and MODIS 
EVI annual time series (500 m resolution) were used to select flux sites 
meeting these requirements. 

Based on the land cover data, a selected flux site should meet the 
criteria that (1) the land cover class of the flux tower should be the 
dominant class and account for more than half of the area covered by the 
VOD pixel, (2) the area of open water bodies should be <2% of the VOD 
pixel as open water can significantly affect the VOD retrievals, and (3) 
the VOD pixel covering a flux site should be at least 25 km away from the 
coastline. 63 out of the 251 sites met these requirements. 

For a flux site covering a homogeneous spatial representation of 
vegetation cover, the vegetation dynamics at the flux site (footprint 

radius at about 100–200 m) should be representative of the vegetation 
conditions and temporal variability over the full VOD pixel (25 km 
resolution) covering the flux site. To evaluate the representativeness of 
the flux sites in comparison to the full VOD pixel, the MODIS time series 
was used as a bridge. Specifically, we compared the EVI interannual 
variability of the MODIS pixel covering the flux site (500 m resolution, 
EVIfluxsite) to the average of that of the MODIS pixels encompassing the 
VOD pixel (EVIVOD). This was done by calculating Pearson’s correlation 
between the annual time series of EVIfluxsite and EVIVOD (p < 0.05 and R 
> 0). 

A final selection criterion was that the overlapping period of GPP and 
VOD time series should be >3 years to ensure at least 3 years of paired 
ΔVODyear and GPP for the inter-comparison. In total, 42 flux sites (Fig. 1) 
were retained for further analysis between ΔVODyear and GPP. Infor
mation on the selected flux sites is shown in Table S1. 

GPP is the primary terrestrial carbon sink (Friedlingstein et al., 
2020), and about 50% of the GPP is generally considered to be the net 
carbon sequestrated by the ecosystem (Waring et al., 2016). Therefore, if 
the annual VOD time series could reflect year-to-year changes in 
biomass carbon, the VOD difference between successive years 
(ΔVODyear, following year VOD minus the previous year VOD) would 
correspond well with GPP. Pearson’s correlation coefficient was used to 
quantify the relationships between GPP andΔVODyear for each aggre
gated annual VOD dataset (Fig. 2). To eliminate the site-related differ
ences (e.g. land cover types) and make various sites comparable, 
ΔVODyear and annual GPP time series were standardized at each site by 
subtracting the mean values and dividing by standard deviations to 
obtain the Z-scores. 

The annual GPP values were obtained by summing up the daily data, 
and the daily data was obtained from the averaged values of daytime 
GPP (GPP_DT_VUT_REF) and nighttime GPP (GPP_NT_VUT_REF) from 
the variable USTAR threshold (VUT) method (Pastorello and Hörtnagl, 
2020), both of which were all aggregated from half-hour GPP estimates 
with good quality (QC < 1). 

Fig. 3. An example of 8-day time series of (a) SMOS-IC L-VOD and (b) LPDR X-VOD diurnal variation over a woodland pixel (6◦ S, 43.3◦ W). Note that there is a data 
gap in LPDR X-VOD during 2011–2012 due to the transition from AMSR-E to AMSR2. 
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4. Results 

4.1. Relationship between ΔVODday and transpiration 

The diurnal variations in SMOS-IC L-VOD are moderately consistent 
with the transpiration data with 39% of the global vegetated land sur
face showing a significantly positive relationship (p < 0.05) during 
2011–2019 (Fig. 4a). The majority of these pixels are located in regions 
with a pronounced seasonality, including the African dry and subhumid 
regions, the Brazilian Cerrado, North America, the northern and eastern 
parts of Europe, the deciduous boreal forest in northern Russia, and open 
savanna regions in Australia (Fig. 4a). Significantly positive correlation 
between diurnal variation in LPDR X-VOD and transpiration is obtained 
for 92% of the global vegetated land surface (Fig. 4b). The regions with 
significantly negative or insignificant relationships were mainly 
distributed in tropical forests. The moderate and significant correlations 
between ΔVODday and transpiration for L-VOD and X-VOD, respectively 
suggest that ΔVODday can represent plant water deficit associated with 
transpiration during the daytime, and therefore ΔVODday can be used to 
measure VWC diurnal changes. 

4.2. Reliability of using VOD for decadal biomass carbon dynamics 

High-reliability (ΔLVODdecade > ΔLVODday) pixels for L-VOD are 
dominating across the global vegetated surface for all six tested tem
poral aggregation approaches of producing annual VOD from daily 

observations (Fig. 5). However, differences are evident among the ap
proaches, with the largest area of high-reliability pixels (76.7% of the 
global vegetated surface) from using the 95% percentile of the nighttime 
(6:00 AM) L-VOD (Fig. 5a), and the smallest area (53.6% of the global 
vegetated surface) from using the mean value of combined daytime and 
nighttime L-VOD (Fig. 5f). The pixels defined as inconclusive for L-VOD 
to estimate interannual biomass dynamics are observed mainly in 
southeastern Russia, China, tropical rainforests in the east Amazon, 
eastern Europe, and western Australia (Fig. 5a). 

For LPDR X-VOD, the method of annual aggregation by taking the 
95% percentile of the nighttime X-VOD is consistently superior to the 
other methods across the vegetated land surface (Fig. 6). However, the 
numbers of high-reliability pixels based on X-VOD are much lower than 
those for SMOS-IC L-VOD (Fig. 5) with the areal proportions of high- 
reliability pixels ranging from 48.1% (median value of combined day
time and nighttime VOD) to 69.9% (95% percentile method) (Fig. 6). 
For X-VOD, most of the humid forest areas are inconclusive in estimating 
interannual biomass carbon dynamics, such as in the tropical rainforest 
areas, while drylands dominated by shrublands and herbaceous vege
tation showed high reliability in representing interannual carbon 
dynamics. 

We summarized the percentage of high-reliability pixels for L-VOD 
and LPDR X-VOD across different MODIS landcover classes (Fig. 7). Both 
L-VOD and LPDR X-VOD show relatively high percentages (> 80% at 
most) in grasslands (GRA), and open shrublands (OSHR) regions. 
However, large variability is seen between different annual VOD 

Fig. 4. Relationship between ΔVODday and transpiration for (a) SMOS-IC L-VOD and (b) LPDR X-VOD. Regions labeled by black dots indicate statistically significant 
(p < 0.05) correlation coefficients. 
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Fig. 5. Comparison between ΔLVODday and ΔLVODdecade using different approaches for annual aggregation. The annual VOD values were retrieved from (a) 95% percentile of nighttime VOD, (b) 95% percentile of 
combined daytime and nighttime VOD, (c) median of nighttime VOD, (d) median of combined daytime and nighttime VOD, (e) mean of nighttime VOD, and (f) mean of combined daytime and nighttime VOD. 
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Fig. 6. Comparison between ΔXVODday and ΔXVODdecade using different approaches for annual aggregation. The annual VOD values were retrieved from (a) 95% percentile of nighttime VOD, (b) 95% percentile of 
combined daytime and nighttime VOD, (c) median of nighttime VOD, (d) median of combined daytime and nighttime VOD, (e) mean of nighttime VOD, and (f) mean of combined daytime and nighttime VOD. 
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generation methods. L-VOD clearly outperforms LPDR X-VOD for tree- 
dominating ecosystems, such as evergreen broadleaf forests (mean 
53% vs. 12%), deciduous broadleaf forests (mean 60% vs. 34%), woody 
savannas (mean 63% vs. 39%), and savannas (mean 69% vs. 48%). 
Contrastingly, LPDR X-VOD shows higher percentages of high-reliability 
pixels than L-VOD for closed shrublands (mean 98% vs. 52%) and open 
shrublands (mean 87% vs. 68%). 

4.3. Reliability of using VOD for interannual biomass carbon dynamics 

The correlation coefficients between standardized ΔVODyear and GPP 
time series vary among VOD products and annual VOD aggregation 
methods (Figs. 8-9), but positive relationships between ΔVODyear and 
GPP are obtained for all of the VOD datasets examined when using all 
sites and all years together (Figs. 8 and 9a). For SMOS-IC L-VOD, the 
standardized ΔVODyear aggregated from the nighttime VOD shows 
higher correlation coefficients than the aggregation methods from the 
combination of daytime and nighttime VOD (Fig. 8 a-f). For X-VOD 

Fig. 7. Statistics of the percentage of high-reliability pixels over different MODIS IGBP land cover classes for SMOS-IC L-VOD and LPDR X-VOD. “D” indicates the 
daytime VOD, and “N” represents the nighttime VOD. ENF: Evergreen Needleleaf Forests, EBF: Evergreen Broadleaf Forests, DNF: Deciduous Needleleaf Forests, DBF: 
Deciduous Broadleaf Forests, MF: Mixed Forests, CSHR: Closed Shrublands, OSHR: Open Shrublands, WSAV: Woody Savannas, SAV: Savannas, GRA: Grasslands, 
CROP: Croplands. 

Fig. 8. Relationships between standardized ΔVODyear and GPP annual time series from selected sites for (a-f) SMOS-IC L-VOD, (g-l) LPDR X-VOD, (m-o) VODCA X- 
VOD, and (p-r) VODCA Ku-VOD. “D” indicates the daytime VOD, and “N” represents the nighttime VOD. The black lines are linear regression lines for all the 
landcover. The colors of the scattering points and dashed regression lines indicate different landcover classes. R is the Pearson correlation coefficient. Asterisks 
denote significant linear correlations at 0.01 “**” and 0.05 “*” levels, respectively. Note that the number of observations available depends on the temporal overlap 
between flux observations and satellite data. 
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derived from both LPDR and VODCA products, the standardized 
ΔVODyear shows significant positive relationships with GPP for most of 
the aggregated methods (Fig. 8. g-o), and the ΔVODyear from LPDR X- 
VOD shows stronger correlations with GPP than from VODCA X-VOD. 

ΔVODyear retrieved from LPDR X-VOD shows positive relationships 
with GPP at p < 0.05 level when the annual LPDR X-VOD is aggregated 
from the mean and 95% percentile of the nighttime or the combination 
of daytime and nighttime VOD (Fig. 8g-l). VODCA X-band ΔVODyear is 
positively correlated with GPP at p < 0.01 level when annual VODCA X- 
VOD is aggregated from the median and mean of the combination of 
daytime and nighttime VOD (Fig. 8m-o). VODCA Ku-band ΔVODyear 
positively correlated with GPP at p < 0.05 level when it is aggregated 
from the mean and 95% percentile of the combination of daytime and 
nighttime VOD (Fig. 8m-o). Insignificant positive relationships were 
observed for SMOS-IC L-VOD for all the annual VOD aggregation 
methods examined (Fig. 8a-f). 

NEE is the direct measurement made by eddy covariance in
struments, with positive values denoting net CO2 release into the at
mosphere (carbon source) and negative values denoting a flux into the 
land (carbon sink). Annual sums of NEE fluxes can indicate net changes 
in carbon stocks, including aboveground and belowground vegetation 
layers and the soil organic carbon pools. Interannual carbon variations 
in the belowground component are usually more stable than those in the 
aboveground vegetation layer (Carey et al., 2016; Reich et al., 2018; 
Tang et al., 2005). Thus, NEE may also be used for the assessment of 
interannual biomass carbon dynamics using VOD in the same way as 
GPP (Fig. S6). 

The correlation coefficients between standardized ΔVODyear and GPP 
are generally higher than those for standardized ΔVODyear and NEE 
(Figs. 8-9, Fig. S6), particularly regarding all selected sites and all years 
together (Fig. 9). When looking into individual land cover types, the 
correlation coefficients between standardized ΔVODyear and GPP are 
improved in comparison to those obtained with NEE for herbaceous 
vegetation, shrublands, and open forests (Fig. 9b-d), but they decreased 

or even turned into negative relationships for closed forests and crop
lands (Fig. 9e-f). 

The correlations between standardized ΔVODyear and GPP/NEE over 
different Copernicus landcover classes vary across classes (Fig. 9). There 
is a general tendency that standardized ΔVODyear of X-VOD and Ku-VOD 
are more correlated with GPP/NEE than L-VOD for herbaceous vegeta
tion and shrubs-dominated sites, indicating that VOD from high- 
frequency observations is more sensitive to GPP/NEE for short vegeta
tion, consistent with their lower penetration depth. A similar level of 
significant correlation is also seen for L-VOD and X-VOD for open 
forests. 

5. Discussion 

In this study, we designed an approach to assess the reliability of 
using VOD data for estimating decadal biomass carbon dynamics across 
the globe, which was done by using the VWC-driven mean diurnal VOD 
changes as a threshold. With this method, we detected regions where dry 
biomass change can play a role in the decadal VOD changes, but it is 
noted that the respective contributions of water stress and dry biomass 
cannot be completely disentangled. Our results suggest a high reliability 
of using SMOS-IC L-VOD and LPDR X-VOD for monitoring biomass 
carbon dynamics over a majority of the global vegetated land surface 
(77% and 70%, respectively) given the use of an appropriate aggrega
tion method to generate annual VOD (Figs. 5 and 6). In the regions with 
sparse vegetation (e.g. shrublands in Australia, southern Africa, and 
Africa Sahal), LPDR X-VOD showed a higher percentage of high- 
reliability pixels than L-VOD, which confirms the results from Li et al. 
(2021). 

The relationships between interannual VOD variations and changes 
in water stress and biomass have been examined by comparing temporal 
VOD anomalies with anomalies in a newly developed biomass product 
obtained from optical and L-band radar data (Xu et al., 2021a) and ERA5 
soil moisture data (Konings et al., 2021a). They found a spatial 

Fig. 9. Statistics of the Pearson correlation coefficient between standardized ΔVODyear and GPP/NEE over different Copernicus land cover classes of (a) all the 
landcover classes, (b) herbaceous vegetation, (c) shrublands, (d) open forest, (e) closed forest and (f) croplands. “D” indicates the daytime VOD, and “N” represents 
the nighttime VOD. The semi-transparent symbols indicate significant relationships (p < 0.05) while the transparent ones indicate insignificant relationships. 

Y. Dou et al.                                                                                                                                                                                                                                     



Remote Sensing of Environment 285 (2023) 113390

11

consistency between averaged VOD with the biomass product similar to 
previous studies (Brandt et al., 2018; Fan et al., 2019; Qin et al., 2021). 
Yet, the correlation of temporal anomalies between VOD and the 
biomass product or the soil moisture product showed a complex pattern 
at regional scale, which indicates a dominant effect of biomass for some 
regions and soil moisture for others (Konings et al., 2021a). Our study 
revealed the spatial distributions of VOD reliabilities at pixel level 
globally. Our results support their conclusion by obtaining inconclusive 
pixels for areas with dense vegetation cover such as the tropical rain
forests (Figs. 5-7), but also discrepancies are seen, such as in Australian 
savannas, where we obtained a high reliability in using both SMOS-IC L- 
VOD and LPDR X-VOD for estimating carbon temporal dynamics 
(Figs. 5-6). For regions labeled as inconclusive, cautious interpretation 
should be made when using annual VOD to study biomass dynamics in 
these regions, where the VOD biomass signal may be obscured by 
greater background noise contributed by plant water variations. How
ever, it is important to note that results obtained from VOD in previous 
studies may still be valid in regions labeled as inconclusive, but the 
biomass signal may be weaker, making it more difficult to distinguish 
the effects of changes in biomass and changes in vegetation water 
content. 

Our study shows large variations in the results using different tem
poral aggregation methods to obtain annual VOD. The annual VOD 
aggregated from the 95% percentile value of the daily observations is 
more sensitive to interannual carbon dynamics than using other ap
proaches (Figs. 5-7), confirming the hypothesis made by Qin et al. 
(2021) that the 95% percentile of the daily VOD could minimize the 
annual changes in the dielectric properties of vegetation. Similarly, 
nighttime VOD is less sensitive to water stress than daytime VOD, and 
thus better for biomass carbon estimation (Frappart et al., 2020). Our 
results verify this well-accepted assumption given that a larger propor
tion of pixels is labeled as high-reliability using only nighttime obser
vations as compared to using combined nighttime and daytime 
observations (Figs. 5-6). However, in regions strongly affected by ever- 
changing RFI, such as China, the Arabian Peninsula, and the Canada- 
USA border (Wigneron et al., 2021), caution should be taken when 
using ΔLVODdecade aggregated from nighttime L-VOD to interpret decade 
biomass carbon dynamics, even though the pixels were labeled as ‘high- 
reliability’. For example at the Canada-USA border, the annual L-VOD 
aggregated from nighttime L-VOD showed the lowest values in 2011 due 
to an RFI event occurring (Al-Yaari et al., 2020), further leading to a 
larger ΔLVODdecade than the surroundings (Supplementary Fig. S3), 
while these pixels were still labeled as having ‘high-reliability’, despite 
this issue (Fig. 5). 

Being sensitive to plant water content, VOD has been recognized as a 
promising tool for studying ecosystem-scale plant hydraulics (Konings 
et al., 2019). As a pioneer study, Konings and Gentine (2017) mapped 
the global degree of isohydricity (i.e. the plant stomata behaviors under 
water stress) using LPDR X-VOD. They assumed that plants were fully 
rehydrated at midnight (1:30 AM) and highly stressed at midday (1:30 
PM) and obtained the isohydricity parameter by calculating the linear 
regression slope between the daytime and nighttime VOD observations. 
In this study, we used the daytime and nighttime VOD under the same 
assumption, but we calculated their difference to represent the diurnal 
water deficit. The significant correlation obtained between VOD diurnal 
difference and transpiration confirmed the feasibility of this assumption, 
whereas three aspects are worthy of further discussion as follows. 

1) LPDR X-VOD shows higher correlation coefficients with transpira
tion than SMOS-IC L-VOD (Fig. 4). This may be due to the higher 
sensitivity of X-VOD to leaf components as compared to L-VOD. The 
GLEAM transpiration product (Martens et al., 2016) used for com
parison in this study has incorporated VOD data (Liu et al., 2011; van 
der Schalie et al., 2015) as one of the inputs for modeling transpi
ration, partly determining its seasonal trends and thus impacting the 
correlation with VOD. Yet, the VOD diurnal difference used here 

would largely reduce the impacts of seasonal trends driven by leaf 
biomass variations.  

2) Higher daytime VOD than nighttime VOD (Fig. S5). Surprisingly 
large areas are showing higher daytime VOD than nighttime VOD for 
both SMOS-IC L-VOD and LPDR X-VOD, but the spatial distribution 
of these areas is different, with L-VOD showing this characteristic in 
northern and eastern Europe, Africa, southeast Asia, western 
Australia, and western South America and X-VOD in the arctic re
gions at latitudes higher than 50 N◦. Currently, this is poorly un
derstood and the reasons behind can be complex. First, data 
uncertainties and artifacts may be one possible reason. For the 
descending mode (daytime 6:00 PM) of SMOS, the antennas are 
oriented towards the south, where there is lower RFI, leading to 
higher SMOS-IC L-VOD values (Oliva et al., 2016). But this effect 
should be relatively low in South and North America, for which areas 
we still see higher daytime L-VOD than nighttime L-VOD, suggesting 
that data uncertainties and artifacts may not be the only reason. 
Second, with two satellite overpassing times, the VODs may not be 
fully able to capture the short-term plant water variations. Moreover, 
dew formation and diurnal variations in rainfall may also play a role 
(Xu et al., 2021b). However, as we used 8-day composites to calcu
late the VOD diurnal difference, many of the impacts mentioned 
above should be minimized and the significant correlation with 
transpiration indeed suggests that the VOD diurnal difference rep
resents the diurnal plant water cycle.  

3) To fill the data gaps in the original satellite observations, we used an 
8-day composite of daytime and nighttime observations of VOD. This 
may lead to decreased dynamics of ΔVODday in comparison to the 
actual dynamics in VWC, particularly in regions covered by short 
vegetation (e.g. savannas, shrublands, grasslands), in which VWC 
shows noticeable changes over short periods (Chan et al., 2013). 
However, considering that we used the averaged ΔVODday over 
multiple years for the comparison with the VOD decadal variations, 
the impacts of using 8-day temporal composites of VOD should be 
minimal, and the moderate and strong correlations between 8-day 
composites of ΔVODday and transpiration for SMOS-IC L-VOD and 
LPDR X-VOD, respectively suggest it to be a strong proxy for diurnal 
changes in VWC. 

The high consistency between VOD and biomass carbon over space 
has been widely documented, although different microwave fre
quencies, algorithms, and VOD products showed varying performances 
(Li et al., 2021). Yet, the temporal relationship between VOD and 
biomass carbon has been rarely examined due to the lack of global long- 
term biomass data. In this study, we used GPP and NEE data from 
appropriate flux sites across the globe to evaluate the reliability of three 
VOD products for the estimation of interannual biomass carbon dy
namics. The positive correlations between standardized ΔVODyear and 
GPP (NEE) suggest that VOD does contain information on interannual 
carbon dynamics over the footprints of the eddy covariance flux towers, 
but there are large uncertainties in the analysis as indicated by the 
modest correlation coefficients obtained. 

For the comparison with VOD, the ideal field measurements would 
be the net carbon changes in the aboveground vegetation layer instead 
of GPP or NEE. NEE is the net carbon exchange of the whole ecosystem, 
including the above and below-ground carbon pool. The fraction of 
global belowground biomass varies with plant species (Mokany et al., 
2006) and the biomass allocation to roots could vary with local envi
ronmental conditions and plant species (Ribeiro et al., 2011). For 
example, studies documented that 22% of biomass was allocated to roots 
for forests (Ma et al., 2021), 67% for grassland (Ma et al., 2021), and 
47% for shrubs (Müller et al., 2000). GPP is the gross carbon uptake by 
the vegetation layer, it eliminates the contribution from soil respiration 
to the observed NEE, and approximately 50% of the GPP is generally 
considered as the net carbon sequestrated by the ecosystem (Waring 
et al., 2016), making the relationships between standardized ΔVODyear 
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and GPP stronger than NEE, while in croplands and closed forests, 
disturbance such as crop management and deforestation within the 
tested VOD pixels varies with pixels introduces uncertainties in the 
relationship between ΔVODyear and GPP/NEE, and making the re
lationships insignificant (Fig. 9). 

Considering the above-mentioned uncertainties also in the context of 
the large spatial mismatch in the point-to-pixel comparison, it is unlikely 
that very high correlations would be achievable from this analysis. 
However, the higher correlation coefficients with GPP than with NEE 
indicate that we do increase the relationship between eddy covariance 
measurement and ΔVODyear by removing temporal variations in the soil 
respiration component, suggesting the validity of the method used in the 
study. Overall, the positive correlation between eddy covariance mea
surements and ΔVODyear does support the use of VOD for estimating 
carbon dynamics at the interannual scale. It should be noted that the 
correlations between ΔVODyear and GPP/NEE are generally less signifi
cant for L-VOD than for X-VOD (Figs. 8-9, Fig. S6), which is partly 
because fewer paired ΔVODyear and GPP/NEE data are available due to 
the shorter period of the SMOS-IC observations. 

6. Conclusions 

In this paper, we introduced a new method to evaluate the reliability 
of VOD to estimate the interannual carbon dynamics. SMOS-IC L-VOD 
and LPDR X-VOD were used to estimate plant water buffering and 
annual plant water status based on the assumption that the VOD diurnal 
variation can be a good proxy for the degree of plant water deficit during 
daytime. We found that X-VOD is clearly better than L-VOD in capturing 
the plant water deficit caused by transpiration, due to the higher 
sensitivity of the X-band frequency to leaf water content. Through the 
comparison between VOD interannual and diurnal variations, the pixels 
of high reliability or inconclusive in estimating the interannual biomass 
dynamics were mapped for both L-VOD and LPDR X-VOD data. L-VOD 
was found to be more sensitive to biomass dynamics signals than X-VOD 
for all land cover types across the globe, except for shrublands regions. 
From our analyses, we can conclude that the annual VOD aggregated 
from the 95% percentile of the nighttime VOD captures interannual 
biomass change with higher reliability regardless of the frequency of the 
satellite product, and we recommend this way of aggregating VOD from 
daily to annual observations for monitoring biomass dynamics at 
regional to global scale. GPP/NEE data measured at flux sites of ho
mogeneous land cover was used as a measured evaluation of interannual 
VOD-based carbon estimations. The positive relationship between VOD 
difference between successive years and GPP/NEE indicates that VOD 
can capture interannual carbon dynamics signals over ecosystem scales 
and the capability of VOD to estimate carbon differs among microwave 
frequencies and products. Our results show the ecological significance of 
satellite microwave VOD retrievals for monitoring biomass carbon dy
namics, and also indicate the potential utility of using multi-frequency 
VOD retrievals to estimate decadal and interannual carbon dynamics 
over different ecosystems. Moreover, the next-generation microwave 
sensors like Copernicus Imaging Microwave Radiometer (CIMR) have 
the capability for simultaneous multi-frequency TB retrievals, which 
will allow for multi-frequency VOD retrievals with consistent space/ 
time sampling and may have higher reliability for estimating carbon 
dynamics. 
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