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Résumé :
Une méthode numérique multi-échelles est proposée afin de modéliser de manière précise les matériaux
granulaires soumis à des chargements importants. En effet, les mécanismes agissant à l’échelle micro-
scopique dans le matériau sont décrits à l’aide de la Méthode des Éléments discrets (DEM), traduisant
rigoureusement le comportement du matériau. De plus grandes échelles sont atteintes en couplant la
DEM avec la Méthode du Point Matériel (MPM), dévelopée pour des matériaux sujets à de grandes
déformations, et dont le comportement dépend de leur histoire. Le couplage MPMxDEM est comparé
à une simulation pure DEM contenant 30,000 sphères dans le but d’évaluer la fiabilité et l’efficatité du
couplage. Un aperçu du comportement du matériau est donné à différents endroits dans l’échantillon,
en tirant profit de la modélisation précise des structures microscopiques par la DEM.

Abstract :

A multi-scale numerical method is proposed to accurately model granular materials under severe load-
ing. Indeed, the material’s micro-scale mechanisms are described using the Discrete Element Method
(DEM), giving a precise behaviour description. To access larger scale, DEM is coupled with the Mate-
rial Point Method (MPM) which was developed for history-dependent materials subjected to high defor-
mation. The MPMxDEM coupling is compared to a pure DEM simulation containing 30,000 spheres in
order to assess the coupling reliability and efficiancy. Insights are given on how the material behaves at
different locations inside the sample, taking advantage of DEM’s extensive modelling of the material’s
microscopic structure.

Mots clefs : Multi-scale, DEM, MPM, granular materials, large deforma-
tions

1 Introduction
The intricacies of granular materials require a thorough description of their microscopic features. Con-
stitutive models fail to accurately predict such materials’ behaviour when loading paths are non-trivial
[1, 2], while a more comprehensive model like DEM effectively handles the material’s complexity for
any loading condition [3, 4, 5]. Indeed, the involvement of all the material’s grains and their contacts
in the DEM model makes it quite robust, but it is also what limits its capacities: the computational
cost increases drastically with the size of the simulated sample. Different parallelisation processes, such



25ème Congrès Français de Mécanique Nantes, 29 août au 2 septembre 2022

as OpenMP, allows DEM to be more efficient even though they still require to model all grains in the
sample. Besides, they are only efficient to some extent [6], DEM’s computational demands are thus still
very limiting.

To access larger scales, a possibility is to couple DEMwith another method, more permissive in terms of
sample sizes’ range (typically FEM-like methods, which assume the material’s continuity). FEMxDEM
coupling has been previously done in 2D [7] or in 3D [8], where FEMxDEMwas found to be as accurate
and faster than pure DEM simulations. However, this coupling suffers from FEM limitations when the
sample is subject to large deformations: its accuracy decreases as the mesh distords. The MPM [9] is a
FEM-like method that consider Gauss points (called material points in MPM) to be at arbitrary positions
and in different number in their elements. Material points can thus freely move within the material’s
domain, but the equation of motion is solved on a fixed mesh, making MPM a Lagrangian-Eulerian
hybrid method [10] capable of handling large deformations. However, this ambitious task of solving
the motion equation using randomly located points in the elements makes the classical MPM somewhat
biased. Efforts have been made since to enhance the formulation [11, 12, 13, 14], concentrating on
improving the discretisation process either at grid points or material points. Many variations of the
classical MPM formulation thus exist and MPM is widely used in various domains, such as geotechnical
engineering [15, 16] or computer graphics [17].

Using MPM instead of FEM in the coupling makes it possible to preserve a great accuracy even under
severe loading conditions. The MPMxDEM coupling was already studied [18] and found to have the
same accuracy as pure DEM, but also to be able of handling large deformations. This paper presents a
MPMxDEM quasi-static coupling and aims to characterize its performances in terms of accuracy and
computational cost. In order to do so, a triaxial test is performed both in pure DEM and MPMxDEM
on the same numerical replica of Camargue’s sand [19], using the same computational ressources.

2 MPMxDEM formulation
This section presents how both MPM and DEM are formulated and coupled together.

2.1 MPM formulation
MPMwas inspired by the Particle In Cell method (PIC) [10], supposed to take advantage of a Lagrangian-
Eulerian formulation to model accurately highly distorted compressible fluids. The original formulation
of the MPM [9] aimed at adapting PIC to historic-dependant materials, such as granular materials, by
computing the material’s behaviour on free, moving points, while keeping the resolution of the motion
equation on fixed grid points. Continuous physical quantities are assumed to be defined either from
nodes values and shape functions, or material points values and particle characteristic functions. The
latter was the subject of an MPM generalization [11], designed to give a better description for the stress
tensor.

The equation to be solved can be obtained from the system’s conservation of momentum. Considering
that any admissible velocity field V ∗ is applied to the system, the virtual work principle is obtained:

∫
Ω
V ∗ρ

dV

dt
dΩ =

∫
Ω
V ∗div(σ)dΩ +

∫
Ω
V ∗ρgdΩ (1)

Where ρ is the density of the material, Ω its domain of definition, σ the stress tensor, V is the velocity
and g is the acceleration due to gravity. Using the divergence theorem and an integration by part, the
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different contributions to the motion can be identified:

∫
Ω
V ∗ρ

dV

dt
dΩ =

∫
Ω
V ∗ρgdΩ +

∫
∂Ω
V ∗σ ndS −

∫
Ω
∇V ∗ : σdΩ (2)

The right-hand side of the equation corresponds to the sum of the volume forces, surface forces and
internal forces, respectively. These integrals are computed on each mesh element using either values on
nodes, or values at material points. The velocity, its gradient and the surface forces are described over
the whole domain through their value at all nodes {v} using shape functions {Sv}:

V (x) =
∑
v

V vSv(x); ∇V (x) =
∑
v

V v∇Sv(x); σ n
∣∣
x

=
∑
v

f trac
v

Sv(x) (3)

Where any quantity subscripted with ·v is taken at a node v and f trac is the external traction imposed
on nodes. The stress tensor and density are described over the whole domain through their values at all
material points {p} using particle characteristic functions {χp} being non-zero on domains {Ωp}:

σ(x) =
∑
p

σ
p
χp(x); ρ(x) =

∑
p

mpχp(x)

Vp
(4)

Where any quantity subscripted with ·p is taken at material point p,mp is the mass attributed the material
point and Vp is the material point’s "volume", defined in the next paragraph. In the classical MPM
χp(x) = δ(xp), where δ is a pseudo Dirac function, equal to 1 for x = xp. This description is not ideal
since it is not consistent with the continuous assumption for the stress field’s form, but it is still reliable
for simple cases with regularly spaced material points.

The term that represents internal efforts in equation 2 requires associating a "volume" to each material
points, which is also what allows the determination of a "mass" for a point (i.e. mp). The classical MPM
or contiguous GIMP determine these "volumes" by sharing out equally the volume of each mesh’s cell
between the material points inside. This assumption is acceptable when material points are regularly
spaced in their cells, but it becomes wrong as soon as the material points rearrange into an irregular
structure. The material points "volumes", along with the particle characteristic functions and the shape
functions, constitute what corresponds to the weighting functions for a numerical integration of the
internal efforts term. The volume of each material point will be denoted Vp, not to be confused with the
velocity at the material points Vp.

With the adopted discretisation process, the internal and external forces can be computed on each node
(f int

v
and fext

v
respectively):

f int
v

= −
∑
p

Vpσp ·
∫

Ωp∩Ω
∇Sv(x)χp(x)dx (5)

fext
v

=
∑
v

f trac
v

+
∑
p

mpg

∫
Ωp∩Ω

Sv(x)χp(x)dx (6)

The total force on nodes will be denoted f
v
. A mass can also be attributed to nodes using the shape
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functions and the material points’ "mass":

mv =
∑
p

mpSv(xp) (7)

Introducing Cundall’s damping through a parameter D, the equation of motion can then be solved by
computing the acceleration on nodes:

av =
1

mv

(
f
v
−D‖f

v
‖ V v

‖V v‖

)
(8)

The new material points’ velocities and positions can finally be determined:

V p(t+ ∆t) = V p(t) + ∆t
∑
v

av(t+ ∆t)Sv(xp(t)) (9)

xp(t+ ∆t) = xp(t) + V p(t+ ∆t)∆t (10)

The present scheme used to update V p and xp is called NFLIP (Natural FLuid Implicit Particle method),
accelerations are transported from nodes to material points to increment their velocities, which are then
used to update their positions [13, 14].

The material’s behaviour expresses only through the update of σ using a deformation increment ex-
pressed at the material points and computed from the nodal velocities, ε̇

p
. Equation 9 makes it clear

that the acceleration is updated before the material’s point velocities and positions, the behaviour of
the material is thus computed from the deformations at the beginning of the time iteration. This stress
update scheme is called Update Stress First (USF). The material’s response to ε̇

p
is usually computed

using constitutive laws, our study uses instead a DEM periodic simulation of a representative volume
element (RVE) on which is applied a quasi-static velocity gradient.

2.2 DEM coupling
Each RVE is a sample of 1, 000 poly-disperse spheres, respecting the size distribution of the Camargue’s
sand given in [19] where a set of contact parameters that includes rolling resistance had been calibrated.
Indeed, while using spheres as particles is quite convenient for contact detection and thus computational
efficiency, spheres excessively roll between each other and give the material a non-physical lost of re-
sistance. Considering rolling resistance in the contact model effectively corrects this drawback of the
sphere model, as shown in [19]. In the present study, the same contact model is used with the same
parameters on the same open source software, YADE [20]. The median diameter of the particle size
distribution is denoted d50 and is 2 · 10−4 m.

A sample is generated by creating a cloud of spheres inside a periodic cell on which a spherical velocity
gradient is imposed until the sample is compacted to a pressure p consistent with the one considered at
the initial stage of the MPM model. During this process, the inter-particle friction angle can be lowered
to artificially decrease the force chains’ resistance and thus give control on the sample’s initial void
ratio. A strain increment ∆ε

p
= ε̇

p
∆t is applied to all RVEs during each MPM iteration. A quasi-static

deformation time Tp is then computed for all RVE considering a low ratio between inertial forces and
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confining forces, i.e. inertial number In = 2.5 · 10−4 [21]:

Tp = max

max(∆ε
p
)

In

√
ρd2

50

p
,∆tDEM

 (11)

Where∆tDEM is the DEM time step, computed from contact properties to insure stability of the explicit
DEM scheme. A quasi-static strain rate can then be applied to the periodic cell, respecting the final
deformation required by the MPM:

ε̇DEM
p

=
∆ε

Tp
(12)

After deforming the periodic cell at the rate ε̇DEM
p

for a duration of Tp, the new stress tensor is then
computed using Love-Weber formula [22] on each RVE and σ is finally sent back to the MPM.

This MPMxDEM coupling is implemented using the open source softwares CB-Geo MPM [23] and
YADE DEM [20], it supports OpenMP parallelisation on the MPM side by distributing all iterations
over particles, nodes, and cells to a user defined number of CPU cores.

3 Simulations and results
A simple element test triaxial test is performed in order to ascertain the MPMxDEM capacity to accu-
rately model granular materials. The only MPM cell is a cube with a length l = 1m, in which 8 material
points (more precisely RVEs) are regularly spaced. In the x and y directions, forces are imposed on all
nodes oriented toward the sample in order to maintain the confining pressure p = 100 kPa. In the
z direction, the bottom nodes velocities are forced to be nil, while on the top nodes a velocity is im-
posed downwards. This velocity respect quasi-staticity as it is computed from the previously introduced
inertial number In:

V z
v = −In

√
p

ρ
(13)

Note that since a constant velocity is imposed on all nodes in the z direction, vertical acceleration is nil
everywhere in the domain and thus material points only move horizontally. Also, even though the initial
velocity on the top nodes is not zero, the initial velocity of the material points is. That is in fact a trick
to limitate the material points’ displacement in order to keep the computation of the internal efforts as
correct as possible. The physical meaning of the simulation doesn’t suffer from such a trick since the
MPM considers the material to be present in the whole MPM cell as long as material points are inside.
Their positions are then only relevant to compute their "integration weights" but not to determine the
material’s behaviour, which requires only a consistent value for ε̇

p
.

As a reference, a pure DEM simulation was performed on a sample of 30, 000 spheres, to allow the
analysis of the coupling’s accuracy as well as its efficiency for this simple 8 material points simulation.
The pure DEM triaxial test uses the same conditions as each RVE of the previousMPM calculation: both
are periodic simulations and their particle size distribution, contact model and sample’s initial density
are identical. The initial density was measured inside a sub-volume within the sample to avoid any
boundary effects. The deformation rate imposed in pure DEM is the same as the one imposed by the
MPMon all RVEs, i.e., the one computed with In = 2.5·10−4. Both simulations were run independently
on the same machine having an Intel(R) Xeon(R) Platinum 8270 CPU@ 2.70GHz with 1.5 TiB of RAM
available, using OpenMP parallelisation on 8 CPU cores.
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Number of particles Initial void ratio Computational time cost
Pure DEM 30, 000 ≈ 0.563 ≈ 6 hours 43 minutes
MPMxDEM 1, 000 ≈ 0.558 ≈ 55 minutes

Table 1: Simulation’s initial conditions and computational time cost for both simulations

Table 1 summarises the initial conditions and computation times for both the pure DEMandMPMxDEM
simulations. Figure 1 (a) shows themean deviatoric stress q andmean volumetric strain εV over all RVEs
for the MPMxDEM simulation, or computed using the stress tensor and cell deformation for the pure
DEM simulation. For this triaxial test, MPMxDEM is approximately 7.3 times faster than pure DEM.
As for the accuracy, figure 1 shows that the deviatoric stress is almost the same for both simulations,
specially during the low deformations part. However, beyond the maximum stress state the MPMxDEM
εV progressively deviates downwards from the pure DEM εV , but it seems to reach more clearly the
critical state. When looking at these mean values, results are consistent since the MPMxDEM is in close
agreement with pure DEM regarding the stress response while the computational cost is significantly
lower.
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Figure 1: Mean deviator stress q and volumetric strain εV against mean axial strain εax

However, figure 2 (a) shows that during the MPMxDEM simulation (see figure 2 (d) for the RVEs colors
and initial position). After the maximum stress state is reached, the control of the lateral stress is lost:
half of the RVEs have their lateral stresses decreasing, the other half have them increasing. An interesting
point to notice is that none of the RVEs behaves as one of its closest neighbour, and yet there is only
two different types of behaviours. This curious arrangement is probably simply the expression of some
shape functions’ geometrical property. Figure 2 (c) show that the ratio between the axial and lateral
stresses is homogeneous for all RVEs during the whole test.

Figure 3 shows the normal and shear stress for two neighbour RVEs (n◦1 and n◦3). RVE n◦3 supports
no stress while RVE n◦1 is strongly solicatated.

Contrary to the stress tensor, the average coordination number Zc is homogeneous in the MPM cell,
as shown on figure 2 (b): all RVEs have about the same Zc, exactly for low deformations and more
approximately for high deformations.

The incapacity of MPMxDEM to keep the lateral stress constant, as shown in figure 2 (a), is most
probably due to the horizontal displacements of the RVEs that increases the "numerical integration’s
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Figure 2: Results for each RVE

weights" error. Indeed, as the particles move, their attributed volume become more and more biased
and the computation of the internal efforts becomes false.

4 Conclusion
This study presented a formulation of the MPMxDEM coupling that, even though it suffers from the
MPM’s imperfect description of the stress tensor, is able to accurately predict the behaviour a granular
material subject to high deformations (over 0.3). The obtained deviatoric stress corresponds exactly
to the pure DEM response. Other MPM formulations could certainly be considered to improve this
coupling, in particular to simulate problems where the material points move significantly.

Data was tracked for all RVEs, giving insights on how the critical stress is sustained by the sample:
it appears that less than half the DEM particles are enough to maintain the stress within the sample.
The axial and lateral stress ratio as well as the coordination number was shown to be homogeneous
between all RVEs. The computational efficiency of the MPMxDEM is quite remarkable considering
its accuracy. Indeed, the MPMxDEM simulation presented in this study is approximately 7.3 times
faster than a pure DEM reference simulation. A more complex simulation would probably show an even
better performance of MPMxDEM with respect to DEM, taking advantage of the scale range MPM
makes accessible.
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∥ ∑
f n∥

∥ ∑
f n∥

∥ ∑
f t∥

∥ ∑
f t∥

Figure 3: Two RVEs final stress states. The left column is a RVE whose lateral stress decreases (RVE
n◦1), the right column is a RVEwhose lateral stress increases (RVE n◦3). ‖

∑
f
n
‖ (respectively ‖

∑
f
t
‖)

is defined for each particle as the sum on all its interaction forces of the normal (respectively tangential)
component divided by the projection of the smallest interacting particle.
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