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Abstract 12 

Valorising plant cell-wall, marine and algal polysaccharides is of utmost importance for the 13 

development of the circular bioeconomy. This is because polysaccharides are by far the most 14 

abundant organic molecules found in nature with complex chemical structures that requires a 15 

large set of enzymes for their degradation. Microorganisms produce polysaccharide-specific 16 

enzymes that act in synergy when performing hydrolysis. Although discovered since decades 17 

enzyme synergy is still poorly understood at the molecular level and thus is difficult to harness 18 

and optimize. In the last few years, more attention has been given to improve and characterize 19 

enzyme synergy for polysaccharide valorisation. In this review we summarize literature to 20 

provide an overview of the different type of synergy involving carbohydrate modifying enzymes 21 

and the recent advances in the field exemplified by plant cell-wall degradation. 22 

 23 
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Introduction  24 

To reduce our carbon footprint and develop a more sustainable economy, it is crucial and urgent 25 

to move toward a circular bioeconomy model meaning using biotechnological tools to process 26 

biological residues into products, which can be reused, recycled, or released safely to the 27 

environment [1]. This implies tackling the deconstruction of chemically and structurally complex 28 

molecules that are naturally resistant to degradation such as lignocellulosic biomass that compose 29 

plant cell-walls [2]. Lignocellulosic biomass is mainly composed of cellulose, the most abundant 30 

polysaccharide on earth, a β-1,4 linked D-glucose molecule, generating a crystalline structure; 31 

hemicellulose, mainly xylans in cereals, which backbone sugar is composed of -1,4-linked D-32 

xylose units that is decorated with a variety of sugars and acetyl groups; and lignin, an aromatic 33 

polymer [3].  34 

Lignocellulolytic microorganisms produce an arsenal of enzymes that efficiently hydrolyse in a 35 

concerted manner the different plant cell-wall polysaccharides to access the carbon source [4]. All 36 

these enzymes cooperate to degrade or modify the complex polysaccharides by generating a 37 

product that becomes the substrate of the next enzyme. When the overall activity of the concerted 38 

enzyme action is greater than the sum of individual enzyme activities, the co-operation between 39 

enzymes is described as synergistic [5]. Enzyme synergy has been demonstrated not only for plant 40 

cell-wall polysaccharide including cellulose, hemicelluloses, pectins, but also for complex marine 41 

polysaccharides such as alginate, or chitin [6,7]. It is employed in advanced biorefineries to 42 

optimize enzyme cocktails that efficiently hydrolyse plant polysaccharides, thus producing their 43 

component monomers [8,9]. Synergy is often described or sought for, but rarely explained at the 44 

molecular level although its understanding will improve the efficiency of industrial biomass 45 

valorization for sustainable fuels and chemical products. In this review, we provide an 46 

overview/update of enzyme synergies, with a focus on recent developments that provide a better 47 
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understanding of how enzymes catalyse, in space and time, plant cell-wall polysaccharide 48 

deconstruction.  49 

 50 

Plant cell wall enzymatic deconstruction 51 

Lignocellulolytic microorganisms have evolved different enzyme systems or strategies to produce 52 

a large set of enzymes enabling them to use plant cell-wall polysaccharides as a carbon source. 53 

Aerobic microorganisms, of which fungi are seen as the most active lignocellulosic biomass 54 

degraders, secrete in the extra-cellular environment a large set of enzymes [8]. Some anaerobic 55 

bacteria, in particular Clostridia, produce extracellular multi-enzyme complex anchored to the cell 56 

surface called the cellulosome [10]. The cellulosome is composed of a set of scaffolding grafting 57 

enzymes with different substrate specificities, making this complex highly efficient on 58 

lignocellulose. This efficiency was attributed to a high synergy among enzymes enhanced by their 59 

proximity to one another termed intermolecular synergy [11,12]. Bacteroidetes is one of the main 60 

bacterial phylum in soil, ruminant and human microbiota that encodes fine-tuned gene clusters 61 

dedicated to polysaccharide metabolism called Polysaccharide Utilization Loci (PULs) [13]. Each 62 

PUL contains genes that encode enzymes which orchestrate the detection, sequestration, 63 

enzymatic digestion, and transport of dedicated complex polysaccharides [14]. This organization 64 

allows efficient internalization of the oligosaccharide rapidly after a first degradation, and their 65 

subsequent hydrolysis in the periplasm by diverse enzymes working in synergy [15,16].  66 

The enzymes involved in hydrolysis are glycoside hydrolases (GH), carbohydrate esterases (CE) 67 

polysaccharide lyase (PL) and lytic polysaccharide monooxygenases (LPMOs). All these enzymes 68 

are classified in sequence-based families in the CAZy database (http://www.cazy.org) [17]. Many 69 

of them are multi-modular, displaying one or several catalytic modules linked to one or more 70 

carbohydrate binding modules (CBM) [18]. The main role of the latter is to address the enzyme 71 

onto its substrate and contributes to intramolecular co-operation although important in the enzyme 72 

https://doi.org/10.1042/EBC20220166
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activity they will not be discussed here [11,19–21]. Cellulases are glycoside hydrolases that 73 

degrade cellulose which include endo--1,4-glucanases, cellobiohydrolases (CBHs) (or exo--1,4-74 

glucanases) and -glucosidases [22]. These enzymes are classified in different CAZy families. It 75 

is now also well known that LPMOs, oxidative enzymes, classified as Auxiliary Activities (AA) 76 

in CAZy are key players in crystalline cellulose or chitin degradation. They oxidize the C1 or C4 77 

carbon of -1,4-linked polysaccharides [23]. Hemicellulose is a chemically complex group of 78 

polysaccharides composed of different monomeric units with different type of linkages that 79 

requires the action of endoglycanases for polysaccharide backbone degradation and 80 

exoglycosidases that hydrolyze decoration linked to the backbone [24]. Xylans, the main 81 

hemicellulose in cereals and grasses, are composed of β-D-1,4-xylose in the backbone and 82 

generally decorated with α-1,2- and/or α-1,3-linked L-arabinosyl residues, α-1,2-linked D-83 

glucuronosyl and 4-O-methyl-D-glucuronosyl groups and are frequently modified by acetyl groups 84 

that are linked to the main chain D-xylosyl moieties [25]. Therefore, xylan acting enzymes are a 85 

group of β-1,4-xylanases that attack xylan backbone at random positions, β-1,4-xylosidases to 86 

hydrolyze xylobiose, the product of xylanases, into xylose and α-1,2 and/or α-1,3-L-87 

arabinofuranosidases, carbohydrate esterases, and α-D-glucuronisades, that hydrolyze substituents. 88 

All enzymes are classified in different GH and CE enzyme families with different specificities 89 

(Fig. 1) [26].  90 

  91 
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Enzyme Synergy 92 

During decades, cellulose has been the center of attention in biomass conversion strategies because 93 

of its deconstruction into glucose as exemplified by 70 years of research on Trichoderma reesei 94 

enzymes that showed the first examples of enzyme synergy [27]. Hemicellulases were considered 95 

as accessory enzymes and were shown later to be important key players not only to valorize 96 

pentoses but also to maximize cellulose degradation [28] leading to cellulase-hemicellulase 97 

synergism. In order to develop efficient enzymatic cocktail for biorefinery, enzyme synergies have 98 

been characterized not only between enzymes from the same organism [29,30] but also between 99 

enzymes encoded by different microorganisms [31]. Enzyme synergy can be evaluated by 100 

calculating the degree of synergy (DS) which is the ratio of the activity (or product released) of an 101 

enzyme mixture to the sum of their individual activities (or product released). Synergy is observed 102 

when the DS is greater than one. Two types of synergy have been defined: homeosynergy, when 103 

the enzymes hydrolyze the same part of the polysaccharide, i.e., both enzymes of interest 104 

hydrolyze either the main chain or the side chain of the polysaccharide, and heterosynergy when 105 

enzymes hydrolyze different parts of the polysaccharide, i.e., the main chain and the ramifications 106 

(Fig. 2). Examples of enzyme homeosynergy and/or heterosynergy have been described for 107 

different polysaccharides such as cellulose [32], hemicelluloses [15], pectins [33], alginate [6], or 108 

chitin [34]. In this review we will further detail enzyme synergies dedicated to lignocellulose 109 

degradation.  110 

 111 

Homeosynergy 112 

Cellulose is a homopolymer therefore all cellulases fit into the group of homeosynergy. The 113 

cellulase synergy is named after the enzyme mode of action i.e. endo-exo synergism (when 114 

synergy occurs between endoglucanase and cellobiohydrolase), exo-exo synergism (between 115 
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reducing and non-reducing end cellobiohydrolases) and, endo--glucosidase synergism (between 116 

endoglucanase or CBH and -glucosidase). 117 

Endo- Exo-cellulases synergy  118 

Since, Reese et al., first documented synergism in 1950 [35] a model of endo-exo synergy was 119 

proposed [36,37]. Exo-acting cellobiohydrolases (CBH) start the hydrolysis from cellulose chain 120 

ends in a processive manner whereas endo-acting cellulases hydrolyze cellulose at random 121 

positions and create new ends from which the exo-acting cellobiohydrolases (CBH) can release 122 

cellobiose from either the reducing (GH7 and GH48) or nonreducing (GH6) ends. This model was 123 

completed by Kostylev et al., (2014) which results suggested that the endocellulase from 124 

Thermobifida fusca TfCel9A was more active on a uniform (undamaged) cellulose surface and 125 

generated eroded surface while the exocellulase TfCel48A would preferentially hydrolyze the 126 

more accessible substrate and replenish the uniform surface required by the endocellulase [38]. 127 

This finding illustrates that the substrate site generation is still a question and that it is not yet clear 128 

how the free dispersed enzyme behaves on a solid substrate. Very recently, thanks to atomic force 129 

microscopy (AFM), the synergistic endo-exo synergy was observed at single-molecule resolution. 130 

Zajki-Zechmeister and colleagues showed that only when Trichoderma reesei TrCel7A 131 

exocellulase and TrCel7B endocellulase hydrolyze cellulose fibril, the dispersed enzymes move 132 

to the same direction of the cellulose fibril and cluster on cellulose breaches. This phenomenon 133 

produces a molecular proximity between enzymes and an efficient multilayer-processive mode of 134 

degradation occurs [39]. The cooperativity induces the exocellulase to move 100-fold faster than 135 

when acting alone, leading to efficient cellulose hydrolysis. In this case In fine free enzymes on 136 

the substrate mimic the spatial confinement observed in cellulosome assemblies. 137 

This observation is somehow similar to what high speed AFM showed earlier in exo-exo synergy 138 

with TrCel7A and TrCel6A exocellulases [40]. Although enzymes hydrolyzed the substrate from 139 

reducing- and non-reducing end respectively, when one molecule was stopped, enzymes were 140 

https://doi.org/10.1042/EBC20220166
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clustered in “traffic jams” meaning that the enzymes were productively bound to the cellulose 141 

surface and peeled of the crystalline cellulose [40]. The hypothesis was that the shorter active site 142 

of TrCel6A could open and generate nicks on the cellulose substrate like an endocellulase and that 143 

these nicks could be the starting and end point of the more processive TrCel7A like in endo-exo 144 

synergy. Recent characterization of cellulase demonstrated the important role of the substrate 145 

binding strength for interfacial enzymes irrespective to the enzyme structure or GH family [41]. 146 

In the case of synergy, the trade-off between binding and activity has also to be considered. 147 

 148 

endo- β-glycosidase synergy: Synergy between Cellulases and β-glucosidase or Xylanase and β- 149 

xylosidase  150 

The full cellulose and/or hemicellulose saccharification of lignocellulosic biomass into 151 

fermentable sugars requires the action of β-glycosidases, which hydrolyse oligosaccharides into 152 

monosaccharides. In the case of cellulose, β-glucosidase hydrolyses cellobiose, the product of 153 

CBHs, exocellulases, into glucose units. CBH and β-glucosidase act in synergy to maximize the 154 

hydrolysis rate. Indeed, CBHs can be inhibited by their product, cellobiose, which causes a lower 155 

conversion rate of cellulose polymers into cellobiose. β-Glucosidases produce -D-glucose from 156 

cellobiose and this monosaccharide is a lower inhibitor on CHBs compared to cellobiose [42–44]. 157 

Therefore, to improve cellulose saccharification and increase synergy with cellulases, several 158 

studies focused on the engineering of β-glucosidases to make the enzymes more active and/or more 159 

tolerant to glucose [45–47]. Lee et al., (2012) engineered a β-glucosidase (TrBgl2, GH1) using 160 

rational design and identified L167W mutation showing better enzyme activity and displayed an 161 

improved synergism with cellulases compared to wild-type [48]. This mutation is located at the 162 

entrance of the active site and increases the affinity (KM) of the enzyme to cellobiose. It is 163 

suggested that this mutation offers a better coordination of the substrate in the active site which 164 

leads to improve affinity and enzymatic efficiency. Similarly, the Trichoderma harzianum ThBgl 165 
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β-glucosidase from GH1 was engineered and the resulted double mutant L167W/P172L narrowed 166 

the entrance of the active-site and prevented product inhibition [45]. Mixed with cellulases, this 167 

mutant enhanced significantly biomass conversion to glucose. By mixing different enzymes, 168 

synergy experiments are not always performed under optimal conditions for each enzyme therefore 169 

improving stability or activity in defined conditions can improve enzyme synergy. Cao et al., 170 

discovered high glucose tolerant β-glucosidases (Bgl6 and Bgl15) and engineered these enzymes 171 

for improved stability. The resulting engineered Bgl6 β-glucosidase mutant displays better stability 172 

and activity while maintaining a high glucose tolerance and significantly improves sugar cane 173 

bagasse hydrolysis when added to commercial cellulases [49]. Mutations at position 167 in Bgl15, 174 

close to the active site, showed that increasing hydrophobicity of this region by introducing a 175 

valine or alanine improved the catalytic performance of the enzymes and their glucose tolerance 176 

[47]. Altogether, results indicated that improving activity, glucose tolerance and stability of β-177 

glucosidases boosted synergy with cellulases and maximized the total saccharification of cellulose 178 

polymers.  179 

β-Xylosidases are a group of enzymes that removes xylose units from xylo-oligosaccharides, and 180 

these enzymes are mainly found in GH3, 39,43 and 52 families and act in synergy with 181 

endoxylanases [50,51]. Indeed, xylanases produce xylo-oligosaccharides (XOS), mainly xylobiose 182 

and xylotriose, and studies have shown that adding β-xylosidase clearly improved the activity of 183 

endoxylanases [52–54]. β-Xylosidase, usually high xylose tolerant enzymes, hydrolyses XOS into 184 

xylose units and decreases the inhibition effect of XOS on xylanase activity [51]. This synergy 185 

leads to acceleration of the deconstruction of hemicellulose polymers [55].  186 

Synergy between oxidative LPMOs and cellulases or xylanases  187 

LPMOs are cooper-containing enzymes classified in CAZy database into auxiliary activities 188 

families (AA9, 10, 11, 13, 14, 15, 16 and 17) [56]. They oxidatively cleave the β-1,4-glycosidic 189 

linkage of polysaccharides. Several studies show that LPMOs and cellulases synergistically  190 

https://doi.org/10.1042/EBC20220166
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depolymerize crystalline cellulose and it was reported that this oxidative-hydrolytic synergism 191 

improves the saccharification yield of recalcitrant biomass [32,57,58]. For instance, the 192 

exoglucanase TrCel6A and the LPMO TaAA9A (Thermoascus aurantiacus) maximized the 193 

degradation of Avicel, and bacterial cellulose, with a synergy index equal to 2 and 2.5, respectively 194 

[32]. 195 

A large part of the described LPMOs acts on crystalline cellulose and cause local disruption of the 196 

ordered cellulose structure [57,59]. LPMOs are adsorbed into crystalline cellulose and induce 197 

fibrillation by impacting the cellulose fiber architecture. Then LPMOs catalyze the oxidation of 198 

glucose units which leads to creation of new reducing and non-reducing oxidized termini [60–62]. 199 

In such manner, LPMOs generate new binding and acting sites for processive cellulases. A single-200 

molecule study by AFM demonstrated the positive effect of LPMOs activities on TrCel7A 201 

exocellulase [63]. The treatment with LPMOs increased the fibrillation of crystalline cellulose 202 

which boosted CBH activity and the release of soluble products. In addition, LPMOs also 203 

increased the dynamics of cellulose-cellulase interactions. The adsorption – desorption events of 204 

cellulases is improved and their mobility on cellulose surface is enhanced in the presence of 205 

LPMOs. This finding demonstrates the positive effects of LPMOs on cellulases adsorption and 206 

activity [63].  207 

In order to improve LPMOs – cellulases synergy, the AA10 LPMO form Hahella chejuensis 208 

(HcLPMO10) was engineered and one mutation improved catalytic activity due to an improved 209 

binding capacity of the protein toward cellulosic polymers [64]. Combined with cellulases, this 210 

mutant boosted the hydrolysis level of microcrystalline cellulose. More recently, Srivastava et al., 211 

focused on the ability of multimodular LPMO (AA9) to bind recalcitrant biomass and the synergy 212 

between LPMO and cellulases. Authors demonstrate the positive effects of LPMO-cellulose 213 

binding on LPMO-cellulase synergy [65]. Altogether, these results suggest the crucial role of 214 

https://doi.org/10.1042/EBC20220166
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LPMOs on the deconstruction of cellulose and improving their adsorption leads to increase their 215 

activities and their synergy with cellulases during cellulose hydrolysis.  216 

In 2014, Agger et al, reported a new LPMO (NcLPMO9C) form Neurospora crassa acting on 217 

xyloglucan and glucomannan, two hemicellulosic compounds [66,67]. This finding opened the 218 

door to the study of LPMOs acting on hemicellulose and their potential synergism with 219 

hemicellulases during the degradation of hemicellulosic compounds [68]. Recently, a LPMO 220 

acting on xylan (PcAA14B from Pycnoporus coccineus) was tested with a xylanase GH11-M4 221 

(GH11) from Aspergillus niger [68] and significantly increased the saccharification level releasing 222 

high levels of xylobiose and xylotriose from beechwood cellulosic fibers. Understanding the 223 

synergic interaction at the molecular level between LPMOs and their interplay with other 224 

hemicellulases is still rare. In the same publication, PcAA14B was assayed with the 225 

xylobiohydrolase TtXyn30A from Thermothelomyces thermophilaa acting on xylan polymers. 226 

Despite low activity on different pretreated biomasses, PcAA14B and TtXyn30A synergy index 227 

reached up to 5.70 on H2O/acetone pretreated beechwood substrates suggesting that PcAA14B 228 

degrades the recalcitrant hemicellulose chain adsorbed on crystalline cellulose and constantly 229 

creates substrates sites available for TtXyn30A. The degree of synergism is inversely proportional 230 

to the recalcitrant hemicellulose content, probably due to less accessibility of PcAA14B to 231 

adsorbed xylan polymers.  232 

Overall LPMOs act in synergy with cellulases and hemicellulases and this can be further boosted 233 

by laccases that release phenolic molecules able to donate electrons to LPMOs [70]. However, the 234 

structural determinants, physical and kinetics parameters involved in hemicellulosic LPMOs 235 

synergy remain unexplored.  236 

Heterosynergy 237 

Synergy between Cellulases and Hemicellulases  238 

https://doi.org/10.1042/EBC20220166
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The use of hemicellulases with cellulases has been shown to improve the hydrolysis of 239 

lignocellulosic biomass, because they remove hemicellulose polymers that interact with cellulose 240 

making cellulose microfibers more accessible to cellulase attack while hydrolyzing xylo-241 

oligosaccharides shown to inhibit cellulases [28]. Synergy between TrCel7A and xylanases or 242 

mannanases, suppressed the inhibitory effect of soluble and adsorbed hemicellulosic compounds 243 

on cellulases activity [71]. Cellulases-hemicellulases synergism was observed during the 244 

hydrolysis of several lignocellulosic biomass such as hardwood and softwood, corn stover and 245 

wheat straw [72–74]. Nevertheless, resulting global hydrolysis can be controversial as it was 246 

observed with cellobiohydrolyses, xylanases and α-L-arabinofuranosidases. Although xylanase 247 

and α-L-arabinofuranosidase together enhanced the hydrolysis of hemicellulose their unsubstituted 248 

oligosaccharide products inhibit the activity of cellobiohydrolyses [63]. It is suggested that 249 

arabinose substituents on xylooligosaccharides in absence of arabinofuranosidase could prevent 250 

their accommodation hemicellulosic compounds in the cellobiohydrolase active site thus 251 

displaying no inhibition.  252 

 253 

Synergy between xylanases and accessory enzymes  254 

The complete degradation of xylan requires several enzyme activities (Fig. 1), the main ones being 255 

xylanases and xylosidases, as described above. However, accessory enzymes are important players 256 

to liberate substitutions and make the polymer more accessible to depolymerizing enzymes. α-L-257 

Arabinofuranosidase (Abf) is a debranching class of enzymes that removes arabinose substitutions 258 

from arabinoxylan backbone and enhances the hydrolysis of this polymer by synergetic action with 259 

xylanases, they are classified in GH 3, 5, 43, 51, 54, 62 and 159 [64–66]. Xylanases, in GH10 and 260 

GH11 families, often display a low tolerance to substitutions [79]. Thus, removal of arabinose 261 

substitutions leads to an optimal activity on arabinoxylan and synergy between xylanases and α-262 

L-arabinofuranosidases [80]. Synergy index of 1.30, 1.39 and 1.24 were reported when XynA1 263 
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(GH10 endoxylanase) was tested with AbfA (GH51 arabinofuranosidase ) on oat spelt xylan, 264 

Birchwood xylan and Beechwood xylan, respectively [52].  265 

α-D-Glucuronidases remove glucuronic acids substitutions from glucuronoarabinoxylan and make 266 

the polymer more accessible to depolymerizing enzymes [81]. Indeed, the large part of 267 

characterized α-glucuronidases belongs to GH67 and removes glucuronic acids from short 268 

xylooligosaccharides [82]. More recently a new family of α-glucuronidases was discovered 269 

(GH115) and biochemical characterization indicates that these enzymes act on long chain of 270 

arabinoglucoronoxylan [83–85]. This family was tested in mixture with the endoxylanase Xyn10C 271 

from Clostridium thermocellum during the hydrolysis of softwood arabinoglucoronoxylan and it 272 

was shown that GH115 has a positive effect on xylanase activity, the amount of oligosaccharides 273 

released by the xylanase increases dramatically thanks to GH115 [81].  274 

Xylan acetylations play a crucial role in the interaction between cellulose and hemicellulose 275 

compounds and it modulates the adsorption of xylan on cellulose surface [86]. Acetylation of xylan 276 

inhibits the activity of endoxylanases. It alters the hydrophobicity of xylans and impacts the 277 

binding efficiency of hydrolytic enzymes [87–89]. Carbohydrate esterases are a class of enzymes 278 

that remove acetyl groups from xylan and make this polymer more accessible to depolymerizing 279 

xylanases [90]. These enzymes enhance the activity of xylanases and promote the hydrolysis of 280 

xylan polymers [91]. All these observations highlight the relationship between enzyme specificity 281 

and synergy. Feruloyl esterases, part of CE1 family, are important key players by removing ferulic 282 

acid and many examples of synergy were evidenced with xylanases and cellulases [92,93]. 283 

Synergy between debranching enzymes is less explored and studied compared to synergy 284 

involving main chain acting enzymes. You et al., investigated the synergy between 285 

arabinofuranosidases and glucuronidases and confirmed the positive effect of 286 

arabinofuranosidases on the activity of one glucuronidase. This effect is probably due to the 287 

architecture of the active site of the glucuronidase which is, in some cases, not able to 288 

https://doi.org/10.1042/EBC20220166
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accommodate substituted arabinoglucuronoxylan [94]. Recently, the same positive effect was 289 

observed between glucuronidase and carbohydate esterase. The carbohydrate esterase boosts the 290 

activity of glucuronidase by more than 50% on beechwood glucuronoxylan [95]. 291 

 292 

Overall, facing the complexity of plant cell-wall and, to a wider extent, to polysaccharides from 293 

various origins nature has evolved efficient enzymes and systems for their degradation. 294 

Nethertheless, the complete deconstruction of polysaccharides is still not mastered and 295 

understanding how enzymes operate in synergy to degrade such molecules is highly important. 296 

Within the last few years, many PULs have been characterized thus unraveling complete 297 

enzymatic cascades where synergy and enzyme co-operation is important [96] constituting an 298 

interesting source to find new enzyme synergies [16]. More recently AFM experiments showed 299 

that enzymes tackle the cellulose by forming enzyme clusters, where enzyme proximity enhances 300 

synergy and seems to be a key stone for the degradation. In this respect developing designer 301 

cellulosomes [97] controlling spatial organization [98] or characterizing multimodular enzymes 302 

that display high levels of synergy [99,100] could lead to a better understanding of enzyme 303 

synergy. 304 

 305 

  306 
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Concluding remarks 307 

• Plant Polysaccharide hydrolysis requires enzyme synergy for efficient valorization. Although 308 

synergy has been widely described, the molecular determinants that influence enzyme synergy 309 

are not yet mastered.  310 

• Applying visualization technics to follow enzyme synergy on insoluble substrates and or in 311 

conditions that mimic the substrate complexity and concentration could be highly relevant. 312 

Furthermore, exploring systems to engineer enzyme spatial organization appears to be an 313 

interesting approach. 314 

• Enzyme synergy does not always exist between two enzymes and is difficult to predict. However, 315 

enzyme engineering can allow increasing synergy when molecular determinants are known. This 316 

is why the combination of structural and functional characterization of enzymes with approaches 317 

that consider the polysaccharide complexity, will enable progress in this field. 318 

 319 

 320 

Abbreviations  321 

GH, Glycoside Hydrolase; CE, Carbohydrate Esterase; PL, Polysaccharide Lyase; LPMO, Lytic 322 

Polysaccharide Monooxygenases; CAZy database, Carbohydrate-Active Enzymes database; 323 

CBM, Carbohydrate-Binding Module; CBH, cellobiohydrolase; AA, Auxiliary Activities; DS, 324 
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Figure Caption 655 

 656 

Figure 1: Schematic representation of enzyme activities degrading cellulose and xylan. On the 657 

left, enzymes acting on cellulose polymers and β-glucosidase acting on cellobiose. On the right, 658 

schematic representation of xylan polymers with several ramifications, enzymes acting on xylan 659 

and β-xylosidase hydrolyzing a xylobiose.  660 

 661 

 662 

Figure 2: Synergic interactions of cellulosic and xylanolytic enzymes. Green boxes indicate 663 

cellulosic enzymes and pink boxes indicate xylanolytic enzymes. Only GH, AA and CE families 664 

discussed in the review are mentioned. GH : Glycoside Hydrolases, AA : Auxiliary Activities, 665 

CE: Carbohydrate esterases     666 

 667 
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