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A B S T R A C T   

Soil moisture (SM) and vegetation optical depth (VOD) are essential variables in the terrestrial ecosystem. The 
multi-frequency radiometers AMSR-E and AMSR2 provide >20 years of data records, enabling the development 
of long-term SM and VOD products. Most of the current retrieval algorithms either only focus on SM or VOD, and 
generally ignore the polarization or simplify the frequency dependence of vegetation effects for reducing the 
unknowns and facilitating the retrieval process, limiting the synergic applicability of VOD and SM products in the 
soil-plant-atmosphere continuum. In this study, a new global SM and frequency- and polarization-dependent 
VOD product from 2002 to 2021 was developed using the multi-channel collaborative algorithm (MCCA), 
based on the inter-calibrated AMSR-E/2 multi-frequency passive microwave measurements. The MCCA algo
rithm comprehensively considers the physical relationship between multiple microwave channels and could 
retrieve frequency- and polarization-dependent VOD while considering the accuracy of the SM retrievals. In the 
overall comparison with other SM products (AMSR-ANN, CCI-passive v07.1, LPRM-C/X, JAXA) over 25 dense SM 
networks, MCCA achieved the best scores in terms of root mean square error (RMSE = 0.074 m3/m3), unbiased 
root mean square error (ubRMSE = 0.073 m3/m3) and bias (0.007 m3/m3), and presented slightly lower value of 
Pearson’s correlation coefficient (R = 0.709) than LPRM-X (R = 0.735). For the indirect evaluation of VOD with 
aboveground biomass (AGB) and MODIS NDVI, the MCCA product showed the performance comparable to other 
products (LPRM-C/X, VODCA-C/X/Ku). MCCA-derived VODs, especially for the H-polarized VODs, exhibited 
smooth non-linear density distribution with AGB and high temporal correlations with MODIS NDVI over most 
regions of the globe. In particular, MCCA-derived VODs can physically present reasonable variations across the 
microwave spectrum (values of VOD increase with microwave frequency), which is superior to the LPRM and 
VODCA products. It is expected that the MCCA algorithm can be extended to the observations of the ongoing 
AMSR2 or other similar satellite missions with multi-frequency capability, such as FY-3B/C/D/F/G or the up
coming AMSR3 and CMIR missions.   
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1. Introduction 

Surface soil moisture (SM) plays a vital role in regulating water and 
energy exchanges between land surfaces and the atmosphere and is thus 
critically important for hydrological modeling (Houser et al., 1998; 
Wanders et al., 2014), agricultural management (Mohanty et al., 2017), 
and numerical weather forecasting (Drusch, 2007). Over the past few 
decades, passive microwave remote sensing has shown great advantages 
in monitoring SM at global or regional scales due to its high sensitivity to 
surface dielectric properties and frequent and continuous (all weather) 
monitoring of the Earth’s surface. On the other hand, vegetation optical 
depth (VOD, τ) is a crucial parameter describing vegetation attenuation 
properties in the microwave radiative transfer equations (RTE) (Mo 
et al., 1982; Ulaby and Wilson, 1985). Although VOD was originally 
treated as a transition variable for correcting vegetation effects in SM 
retrieval algorithms, it has been proven to be a promising ecological 
indicator for studying plant hydraulics (Konings et al., 2019), carbon 
stocks (Fan et al., 2019; Fan et al., 2023; Liu et al., 2015), and vegetation 
phenology (Jones et al., 2011). Long-term and accurate global moni
toring of SM and VOD are essential to enhance our knowledge on the 
linkage between water, and carbon cycles in terrestrial ecosystems. 

Spaceborne passive microwave technology has experienced rapid 
development since the Skylab mission in the 1970s (Jackson et al., 
2004). Current spaceborne microwave radiometers can be divided into 
two categories: (i) multi-frequency radiometers with selected channels 
from C-band (6.9 GHz) to W-band (89 GHz), and (ii) single-frequency 
radiometers at L-band (1.4 GHz). Although the L-band has been 
proven to be the optimal tool for monitoring SM, data of this band are 
only available for >10 years with the Soil Moisture and Ocean Salinity 
(SMOS) mission launched in November 2009 (Kerr et al., 2010) and the 
Soil Moisture Active and Passive (SMAP) launched in January 2015 
(Entekhabi et al., 2010). On the other hand, multi-frequency radiome
ters at higher frequency bands provide a much longer heritage of mea
surements, although their sensitivity to SM is weaker than that of L- 
band. Among those multi-frequency radiometers, two typical space
borne sensors are the Advanced Microwave Scanning Radiometer for 
Earth Observing System (AMSR-E) and its successor AMSR2. The AMSR- 
E was in orbit from 2002 to 2011 and carried on the National Aero
nautics and Space Administration (NASA) satellite Aqua. It is a twelve- 
channel, six-frequency (from 6.9 to 89 GHz), total power passive- 
microwave radiometer system (Kawanishi et al., 2003). The AMSR2 
launched aboard the Japan Aerospace Exploration Agency (JAXA) 
Global Change Observation Mission 1st-Water (GCOM-W1) satellite on 
May 18, 2012, is configured with instrument attributes (frequency band, 
incidence angle, etc.) similar to AMSR-E (Imaoka et al., 2012). In 
addition, AMSR3 is currently under development for launch in the 
future. The combined use of AMSR-E/2/3 brightness temperature (TB) 
observations could generate long-term data of SM and VOD, which are 
valuable for climate change studies. 

Concurrent with the development of passive microwave spaceborne 
missions, the scientific community has also made large efforts for 
improving the retrieval methodology of SM and VOD at the global scale. 
Most SM and VOD retrievals designed for AMSR-E/2 are based on the 
tau-omega model (Mo et al., 1982), which is the zero-order solution of 
RTE by neglecting multiple scattering between vegetation and the sur
face. These retrieval algorithms could be grouped into three categories 
(Zhao et al., 2021):  

(1) Algorithms based on the reverse-order RTE. Such algorithms 
usually only care about the accuracy of SM and require auxiliary 
data to compensate for vegetation and roughness effects. For 
example, the single channel algorithm (SCA, Jackson, 1993) 
implemented on AMSR-E adopted the historic averages of 
normalized difference vegetation index (NDVI) from the 
Advanced Very-High-Resolution Radiometer (AVHRR) for esti
mating the vegetation water content (VWC, equivalent to VOD) 

to reduce the unknowns. Although there was no public SCA- 
generated SM product from AMSR-E, this algorithm was tested 
to perform well over four experimental watershed sites (Jackson 
et al., 2010). It should be noted that the performance of such 
algorithms highly depends on the accuracy of auxiliary data and 
the calibrated model parameters related to vegetation and surface 
roughness.  

(2) Iterative algorithms based on forward simulations of RTE. These 
algorithms usually use numerical solutions to estimate SM or 
VOD or both SM & VOD simultaneously by minimizing the cost 
function between forward TB simulations and observations. In 
the early stage of AMSR-E in-orbit, the multichannel iterative 
approach, which can simultaneously retrieve SM, VWC, and 
effective soil temperature, was chosen as the baseline algorithm 
(Njoku et al., 2003). However, RTE contains many nonlinear 
equations, and there are co-correlations in the observations. 
Iterative algorithms may generate multiple minima, which brings 
uncertainties to the final results. In this regard, researchers 
considered multi-temporal or multi-orbit observations to enhance 
the robustness of retrieval. The core assumption in multi- 
temporal or multi-orbit retrieval is that vegetation undergoes 
slower temporal changes than SM within a certain time window 
or several overpasses (Al Bitar et al., 2017; Konings et al., 2017; 
Wigneron et al., 2000). For example, Karthikeyan et al. (2019) 
retrieved the SM, VOD, and surface roughness simultaneously 
using the X-band AMSR-E observations, assuming that vegetation 
was invariant over seven days and roughness was constant 
throughout the year. Although the multi-temporal or multi-orbit 
strategies can reduce the retrieval noise, they may also mask the 
real change of vegetation after a rainstorm or severe drought. In 
addition to multi-parameter simultaneous retrieval, some studies 
use the observed or modeled SM as an input to retrieve VOD only. 
For example, Wang et al. (2021) combined the AMSR2 observa
tions at X-band and SM from ERA5-land reanalysis data to 
retrieve VOD based on the forward simulations of X-band mi
crowave emission of the biosphere (X-MEB).  

(3) Algorithms based on microwave indices. These algorithms 
combine different channel information into appropriate indices 
and then establish their analytical relationship with geographic 
parameters. For example, the principle of the land parameter 
retrieval model (LPRM) is that VOD can be analytically derived 
from the microwave polarization difference index (MPDI) and 
soil emissivity (Meesters et al., 2005). LPRM was selected as the 
NASA operational algorithm for ASMR-E/2 to provide continuous 
SM and VOD data. However, many studies (Chen et al., 2013; Cui 
et al., 2017; Jackson et al., 2010) found that LPRM SM from 
ASMR-E/2 had a large positive bias when compared with in situ 
observations. It was indicated that LPRM is susceptible to errors 
correlated with MPDI, which measures the polarization differ
ence between H-polarized and V-polarized TB. The value of MPDI 
may be low for small angular measurements, dry conditions, or 
dense vegetation, which makes LPRM lose sensitivity to SM (Van 
der Schalie et al., 2015; Zhao et al., 2020a). The standard algo
rithm from JAXA utilized the index of soil wetness (ISW) and 
polarization index (PI) to compile a lookup table and then esti
mate SM through the inverted lookup table (Fujii et al., 2009; 
Koike et al., 2004). Previous studies (Chen et al., 2017; Cui et al., 
2017; Zheng et al., 2022) found that the JAXA SM from AMSR2 
presented a relatively poor performance compared with network- 
based SM observations. Because the indices used in LPRM and 
JAXA contain information from both vegetation and soil, they can 
bring uncertainties to the SM retrievals. In this regard, the mi
crowave vegetation indices (MVIs) were developed by Shi et al. 
(2008) to separate signals from soil and vegetation, and they 
were successfully utilized for AMSR-E SM estimation in the 
physically based statistical methodology proposed by Zhao et al. 
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(2011). However, the calculation of MVIs, the ratio of two highly 
correlated variables, requires high-quality data. Even if AMSR-E/ 
2 observations are affected by weak radio frequency interference 
(RFI), which may lead to non-negligible uncertainties in MVIs, 
thus limiting its applications. It should be noted that the deriva
tion of analytic relationships between microwave indices and 
geographic parameters is usually based on some assumptions (e. 
g., VOD and single scatter albedo should be the same for both 
polarizations in LPRM). Therefore, the uncertainty of such algo
rithms is directly affected by the model assumptions. 

Although these algorithms could achieve good SM retrieval perfor
mance at the global scale or over some specific sites, most of them ignore 
or simplify the discrepancy of vegetation effects at different microwave 
frequencies, polarizations, and incidence angles. It is recognized that 
VOD varies at different microwave channels (hereafter the channel de
notes incidence angle, polarization, and frequency), especially at the 
ground-based scale. Griend et al. (1996) showed that microwave 
transmissivity (the exponential equivalent of VOD) varies with inci
dence angles and indeed differs in both polarizations (V-polarized 
transmissivity is smaller than H-polarized) over a wheat field. Wigneron 
et al. (1995) developed an analytical formulation to relate VOD at 
different polarizations and angles and then achieved reliable SM re
trievals over crop fields. Van de Griend and Wigneron (2004) performed 
a reanalysis for the vegetation attenuation coefficient b which relates 
VWC to VOD (VOD = b • VWC) and confirmed the b-factor is highly 
dependent on frequencies and canopy types. Ground-based radiometer 
observations in the Soil Moisture Experiment in the Luan River (SMELR, 
Zhao et al., 2020b) also indicated that b-factor at L band is not always 
the same for both different incidence angles and polarizations. However, 
in contrast to the ground-based experiments, researchers usually hy
pothesize that the polarization dependence of vegetation properties is 
weak at the satellite scale due to the large spatial heterogeneity of the 
satellite footprints. Moreover, most of the algorithms were implemented 
at a single band and it is difficult to estimate polarized VOD due to the 
lack of enough observations. Even when multi-frequency observations 
were used, they usually related VOD to a single VWC (Njoku and Li, 
1999). Although ignoring the dependence of VOD on polarization or 
simplifying the frequency difference of VOD can reduce the unknowns to 
better serve the SM retrievals, these simplifications may lead to a risk of 
VOD retrieval, resulting in interpretation errors and failure to correctly 
understand VOD in plant physiology (Konings et al., 2021). 

It is worth noting that there are few studies investigating the 
discrepancy of VOD in polarization and frequency at the satellite scale. 
Therefore, it is desirable and significant to design an algorithm that can 
estimate polarization- and frequency-based VOD while taking into ac
count the accuracy of SM retrieval. In this context, this study adopted a 
multi-channel collaborative algorithm (MCCA) developed by Zhao et al. 
(2021) to tackle the above issues. The new algorithm comprehensively 
considers the physical relationship between multiple microwave chan
nels and could retrieve SM and multi-channel VODs simultaneously. 
MCCA has been tested in ground-based radiometer measurements at 
corn and grass fields from the SMELR campaign and has shown good 
retrieval performance (Zhao et al., 2021). However, MCCA has not yet 
been implemented on satellite-based multi-frequency observations at 
the global scale. 

It is a chance but also a challenge for us to explore the performance of 
MCCA at the global scale. In this study, we extended MCCA to the AMSR- 
E/2 configurations at the global scale. The main objectives of this study 
include: (1) to generate a long-term SM and VOD product using MCCA; 
(2) to compare the performance of MCCA SM and VOD with other 
products derived from or merged with AMSR-E/2 observations; and (3) 
to assess the dependence of VOD on polarization and frequency. 

2. Datasets and methodology 

2.1. Datasets 

2.1.1. Brightness temperature from AMSR-E/2 
In this study, multi-frequency gridded L3 TB products from AMSR-E/ 

2 were used to retrieve SM and VOD. Considering that the contribution 
of the surface signal decreases with increasing frequency, this study only 
used the TB observations from AMSR-E/2 at 6.925, 10.65, 18.7 GHz for 
SM and VOD retrieval and 36.5 GHz at vertical polarization for effective 
temperature estimation (Holmes et al., 2009). To ensure the data con
sistency between the two sensors, we adopted a similar strategy as Yao 
et al. (2021) for TB inter-calibration. The only difference is that the TB 
reference used here is from AMSR-E instead of AMSR2. The harmonized 
multi-frequency TB data (2002− 2021) was then used to generate long- 
term SM and VOD product. 

2.1.2. In situ soil moisture for validation 
To effectively validate the retrieved SM, ground-based measure

ments from 25 dense networks were used. These SM networks are from 
the International Soil Moisture Network (ISMN), the United States 
Department of Agriculture (USDA) watersheds, and the National Tibetan 
Plateau Data Center (TPDC). These SM networks cover a wide variety of 
climate regimes, land cover types, topography, and soil types around the 
world. Each network consists of multiple instrumented stations, and 
they have been proven to serve well in the calibration/validation ac
tivities of remotely-sensed SM retrievals (Colliander et al., 2017; Dorigo 
et al., 2011; Zheng et al., 2022). Details about each SM network are 
listed in Table A1 in Appendix A. It should be noted that sampling depth 
and representing depth was mismatched. Theoretically, the microwave 
remote sensing penetration depth varies across stations and time, and it 
is argued that topsoil moisture contributes the most to the microwave 
signal at C-, X- and Ku-bands. During the validation, we used the shal
lowest layers (most networks are <5 cm, except Adelong where it is 0–8 
cm) as the reference and ignored the variation in penetration depth. This 
is a common practice used in many previous studies (Jackson et al., 
2010; Ma et al., 2019; Zheng et al., 2022). 

2.1.3. Vegetation datasets 
Unlike SM, VOD is treated as a transition variable in RTE rather than 

an intuitive and easily measured parameter. It is challenging to imple
ment a quantitative assessment of VOD. It is acknowledged that VOD is 
affected by water stress and is also sensitive to vegetation biomass. Many 
extant studies (Grant et al., 2016; Li et al., 2021) showed that VOD can 
generally capture similar seasonal cycles and interannual variations as 
NDVI. In this context, this study used aboveground biomass (AGB) and 
NDVI to indirectly evaluate the MCCA-derived VODs, the standard 
LPRM products from NASA (Richard de Jeu and Owe, 2011, 2014), and 
the VODCA product (Moesinger et al., 2020). The AGB map circa 2015 
was produced from in situ inventory plots, spaceborne Lidar, and optical 
and microwave imagery through maximum entropy modeling (Saatchi 
et al., 2011). NDVI was extracted from MOD13C1 and MYD13C1 
collection 6 (Didan, 2015a, 2015b) and combined to form the 8-day 
observations. In addition, pixels with snow/ice, clouds, estimated 
from historic time series, ‘marginal’ quality, non-processed, and non- 
land data were filtered before the analysis. To achieve uniform spatial 
resolution in the VOD assessment, both AGB and NDVI data were 
resampled to 0.25◦ by spatial averaging. 

To be mentioned, in the absence of ground-truth VOD data, the 
spatial correlation between VOD and AGB and the temporal correlation 
between VOD and NDVI cannot be used as criteria for determining 
which VOD product performs better, but it can help to determine the 
similarities and differences between different VOD products. It is 
recognized that VOD could not simply be related to either water stress or 
biomass alone. 
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2.1.4. Other datasets 
Soil texture, including the sand and clay fractions, was extracted 

from the regridded Harmonized World Soil Database (HWSD v1.2) for 
the usage in the soil dielectric model (Wieder et al., 2014). Since MCCA 
adopted the iterative calculation method, we extracted 11 years 
(2010− 2020) of SM (level 1) from auxiliary files used for SMOS SM 
retrieval and made an average for the same day across all 11 years as the 
initial SM data. The initial SM data is the model output from the Euro
pean Centre for Medium-Range Weather Forecasts (ECMWF). To be 
noted, the initial SM data is independent of satellite observations and 
used to initialize the iteration process rather than constraining the pa
rameters in the cost function. 

The land cover map for 2015 based on International Geosphere- 
Biosphere Programme (IGBP) schema was extracted from MCD12Q1 
(Friedl and Sulla-Menashe, 2019) for the VOD comparison across 
different vegetation types. For the time series analysis of SM and VOD at 
selected sites or points, daily precipitation from the Integrated Multi- 
satellite Retrievals for Global Precipitation Measurement Final Precipi
tation Level 3 (GPM_3IMERGDF, version 06) (Huffman et al., 2019) was 
adopted in this study. To ensure a consistent spatial scale, all the above 
auxiliary data were aggregated to the 0.25◦ grid. 

To further clarify the advantages of the proposed algorithm and 
retrieved SM, this study also made an inter-comparison with different 
SM products from AMSR-E/2 or reprocessed SM products, including the 
standard product from JAXA (Fujii et al., 2009; Koike et al., 2004), the 
official LPRM products from NASA (Owe et al., 2008; Richard de Jeu and 
Owe, 2011, 2014), the CCI passive merged SM product (CCI-P v07.1) 
from ESA (Dorigo et al., 2017; Gruber et al., 2019) and the artificial 
neural network (ANN) product by Yao et al. (2021). 

2.2. Methodology 

2.2.1. Multi-channel collaborative algorithm 
Like most SM retrieval algorithms, MCCA is based on a zero-order 

approximation of RTE, known as the tau-omega model (Mo et al., 
1982), which neglects multiple scattering effects within vegetation. 
Moreover, a two-component version for better separating the soil and 
vegetation contributions (Shi et al., 2008) was considered in MCCA, that 
is: 

TBmeasuredch = Ve
ch +Vt

ch • e
s
ch (1)  

where subscript ch represents different channels, hereafter used to 
indicate the polarization (P), incidence angle (θ), and frequency (f); 
superscript s denotes rough soil surface; TBmeasured

ch is the total brightness 
temperature measured at channel ch; es

ch represents the emissivity 
coming from the rough soil surface, which is a function of the soil 
dielectric constant ϵs

ch and the surface roughness Rou; Ve
ch is the vege

tation emission term; Vt
ch is the vegetation transmission term. Ve

ch and Vt
ch 

are described as follows: 

Ve
ch =

[
Fv • evch • (1+Γch)

]
• Tv (2)  

Vt
ch = [(1 − Fv)+Fv • Γch ] • Ts −

(
Fv • Γch • evch

)
• Tv (3)  

where Fv is the vegetation coverage within the radiometer footprint; ev
ch 

is the vegetation emissivity, given by the equation ev
ch =

(1 − ωch) • (1 − Γch). In this equation, ωch is the vegetation single scatter 
albedo, and Γch is the transmissivity denoting the one-way attenuation 
effect of vegetation. Tv and Ts represent effective vegetation and soil 
temperature, respectively, which are considered to be approximately 
equal by assuming the vegetation and soil are in thermal equilibrium. 

When there is more than one channel of observations, the relation
ship (abbreviated as Fcond) between any two channels without any as
sumptions can be expressed as follows (Zhao et al., 2021): 

Fcond : TBmeasuredch(2) = Ve
ch(2) − SrVr • Ve

ch(1) + SrVr • TBmeasuredch(1) (4)  

where Sr =
es

ch(2)
es

ch(1)
is the ratio of soil emissivity as a function of SM and 

surface roughness Rou; and Vr =
Vt

ch(2)
Vt

ch(1)
is the ratio of vegetation trans

mission terms. Eq. (4) implies that when the brightness temperature and 
corresponding soil and vegetation parameters at one channel are known, 
the brightness temperature at another channel can be predicted. Eq. (4) 
is a key conditional restriction in MCCA as it relates to the information of 
all available channels. 

SM and surface roughness are considered to be independent of 
microwave observations. In contrast, MCCA treats effective single 
scatter albedo (ω) and VOD as variables that depend on polarization, 
incidence angle, and frequency. When multi-channel information is 
provided, the unknown parameters increase to include 
{
SM,Rou,ωch(1) , τch(1) ,ωch(2) , τch(2) ,…,ωch(N) , τch(N)

}
. This is an ill- 

posed problem as there are more unknowns than observations. To 
reduce the number of unknowns, Zhao et al. (2021) proposed a 
general VOD relationship (abbreviated as Fasm) between any two 
channels based on previous studies (Jackson and Schmugge, 1991; 
Wigneron et al., 1995): 

Fasm :
τch(2)
τch(1)

=

(
f2
f1

)Cf

•
sin2θ2 • CP2 + cos2θ2

sin2θ1 • CP1 + cos2θ1
(5)  

where Cf > 0 and CP > 0 are parameters characterizing the dependence 
of τch on frequency and polarization, respectively, and should depend on 
vegetation types. 

For a given brightness temperature at a certain channel (TBmeasured
ch ) 

with corresponding known variables, 
{
es

ch,ωch, Fv,Tv,Ts}, a VOD value 
can be derived based on the reverted tau-omega model. As proposed by 
Zhao et al. (2021), vegetation transmissivity (Γch) can become the only 
unknown in a quadratic equation after rearranging the tau-omega 
model. Thus, vegetation transmissivity can be analytically derived as 
follow: 

Γ−
ch =

− b′

−
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
b′2 − 4 • a′

• c′
√

2 • a′ (6)  

or another solution: 

Γ+
ch =

− b′

+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
b′2 − 4 • a′

• c′
√

2 • a′ (7) 

The superscript “-” or “+” represents the root of a quadratic equation 
with subtraction or addition, respectively. Considering the definition of 
vegetation transmissivity in nature, only the value of Γch between 0 and 
1 is valid. For the dual polarization configuration, whether to use Eq. (6) 
or Eq. (7) at a certain frequency band depends on the criterion that the 
vegetation transmissivity at horizontal polarization should be close to 
that at vertical polarization. The coefficients {a′

, b′

, c′

} are defined as: 

a′

= −
(
1 − esch

)
• (1 − ωch) • Tv (8)  

b′

= esch • [T
s − (1 − ωch) • Tv ] (9)  

c′ = (1 − ωch) • Tv − TBvch (10)  

where TBv
ch is the brightness temperature emitted from vegetated areas: 

TBvch =
TBmeasuredch − (1 − Fv) • esch • Ts

Fv
(11) 

After vegetation transmissivity is solved, VOD can be derived by the 
following formula: 

VODch = − ln(Γch) • cosθch (12) 
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In particular, parameters Cf and CP are only related to the vegetation 
types and independent of microwave observations. If these two param
eters can be given or calibrated, the retrieval unknowns will be reduced. 
For the AMSR configuration in this study, vegetation single scatter al
bedo (ω) was further assumed to depend only on frequency, and vege
tation cover fraction was set as 1 to facilitate the MCCA retrieval. Thus, 
there are five unknowns {SM,Rou,ω06,ω10,ω18}, where the subscript 
“06”, “10”, and “18” denotes the frequency of C-, X-, and Ku-bands, 
respectively, and VOD can be derived from the reverted tau-omega 
model. According to the aforementioned description, the retrieval pro
cedure of MCCA can be carried out in the iterative form as follows: 

(i) estimating the initial values of 
{
SM0,Rou0,ω0

06,ω0
10,ω0

18
}

and 
then selecting a core channel and calculating the corresponding VOD 
from Eq. (6), Eq. (7), and Eq. (12). As for this study, H-polarization at 
10.65 GHz (10H) was set as the core channel based on the following 
factors: (1) X-band is less susceptible to RFI than C-band at global scale 
and has the stronger penetration ability than Ku-band (Njoku et al., 
2005). (2) H-polarization at X-band is more sensitive to SM than the V- 
polarization (Mladenova et al., 2014). Based on the assumed relation
ship between VODs at different channels (Eq. (5)), the VOD at collabo
rative channels can be estimated when the parameters Cf and CP are 
known. 

(ii) with the input parameters 
{

SM0,Rou0,ω0
06,ω0

10,ω0
18, τ0

ch(2:N)

}
, the 

TB at collaborative channels can be calculated with the Fcond of Eq. (4). 
(iii) establishing the cost function between observed and simulated 

TB at collaborative channels and repeating the iterative process. When 
the cost function approaches the minimum, the parameters 
{SM,Rou,ω06,ω10,ω18} can be determined and then VOD at different 
channels can be estimated from Eq. (6), Eq. (7), and Eq. (12). The cost 
function is as follows: 

minΦ(X) =
∑N

i=2
Wi •

(
TBestimatech(i) − TBmeasuredch(i)

)2

σ
(
TBch(i)

) (13)  

where i is the index of the auxiliary channel, N is the total number of 
channels, TBestimate

ch(i) is the simulated TB from Eq. (4), and TBmeasured
ch(i) is the 

observed TB at collaborative channels. Wi is the weight describing the 
contributions from different collaborative channels and was set to 1 
here. σ

(
TBch(i)

)
is the measurement noise at each channel and was set to 

1 K. 
In this study, only six channels (10H, 10V, 06H, 06V, 18H, 18V) from 

AMSR-E/2 were used in MCCA, and one of them (the 10H core channel) 
was used as a constraint. To make the retrievals possible, the parameters 
Cf and CP should be known. Thus, the number of correlated observations 
is equal to the number of unknowns ({SM,Rou,ω06,ω10,ω18}). Param
eter Cf was determined by model selection as described later, and 
parameter CP was set as 1, which is a commonly used assumption in 
previous studies (Fernandez-Moran et al., 2017; Wigneron et al., 2017). 
It is worth noting that setting the parameter CP to 1 does not prevent 
retrieving the VOD at both H- and V-polarizations, because the param
eters {SM,Rou,ω06,ω10,ω18} were firstly obtained and then the final 
VOD was estimated from Eq. (6), Eq. (7), and Eq. (12). 

To be mentioned, there are two differences between MCCA and other 
algorithms implemented on AMSR. First, MCCA is a multi-channel 
(frequency and polarization) retrieval method, while other algorithms 
like LPRM or X-MEB were performed on independent retrievals at 
different frequencies. Second, it is assumed in MCCA that VOD varies 
with polarization while SM is independent of polarization, which is 
opposite to SCA. This assumption in MCCA is more in line with physical 
reality, because SM is a state variable of soil independent of polarization, 
while VOD accounts for the microwave attenuation through vegetation 
and should be susceptible to polarization. 

For the implementation of MCCA, the effective soil temperature was 
estimated using the Ka-band (37 GHz) observations according to the 

method of Holmes et al. (2009). For the daytime (ascending) observa
tions, the following equation is used: 

Ts = 0.898 • TB37V + 44.2 (14)  

for the nighttime (descending): 

Ts = 0.893 • TB37V + 44.8 (15) 

To account for the surface roughness effect, we used the Qp model 
proposed by Shi et al. (2005) in this study. It is a parameterized multi- 
frequency polarization surface emission model and has been proven to 
perform well in the AMSR configuration (Shi et al., 2005). In this study, 
we further adopted the parametric scheme of the Qp model, because it 
can be simply described as a single-surface roughness property—the 
ratio of the surface root mean squared height (s) and the correlation 
length (l). The Mironov model has been widely applied for SM retrieval 
with the SMOS and SMAP missions (Mironov et al., 2004), and here was 
also utilized for calculating soil dielectric constants under different soil 
moisture content. 

2.2.2. Parameter tuning 
Although multi-channel information is provided in AMSR, there 

should be fewer unknowns than observations. When MCCA was imple
mented on AMSR-E/2, we made two simplifications: (i) vegetation sin
gle scatter albedo is only dependent on microwave frequency; (ii) 
parameters Cf and CP were calibrated before the retrievals. With these 
two assumptions, the equivalent five observations are equal to the five 
equivalent unknowns ({SM,Rou,ω06,ω10,ω18}), and then the retrieval 
can be carried out. Furtherly, parameter Cf is the main concern of this 
study. In this study, we assumed that Cf is constant with time and only 
varies with locations/pixels. Therefore, the parameter Cf was deter
mined per-pixel through a model selection, that is, the optimal Cf leads 
to the minimum sum of the cost function: 

min
Cf
J =

∑M

j=1

⎡

⎢
⎣minΦ(X) =

∑N

i=2
Wi •

(
TBestimatech(i) − TBmeasuredch(i)

)2

σ
(
TBch(i)

)

⎤

⎥
⎦ (16)  

where M is the number of observations. The external optimization 
process is similar to one of the previous studies (Feldman et al., 2018; 
Konings et al., 2017). For the global study, a full year of data from 
AMSR-E descending orbit in 2010 was selected for tuning parameters. 
Considering the computational tractability, Cf was set from 0 to 1.5 with 
an increment of 0.1 (it has been tested that the interval <0.1 makes little 
effect on the final inversion results). The global map of Cf is shown in 
Fig. B1 in Appendix B, and the result exhibited different ranges of Cf 

with different vegetation types. It should be pointed out that Cf serves as 
a parameter for the retrieval in this study, and there is no measured or 
published data for its verification. 

2.2.3. Evaluation method 
In this study, SM and VOD are the variables we focus on in MCCA 

inversion results. For each dense SM network, a rectangular boundary 
was defined by the maximum and minimum latitude and longitude of 
the stations within the network. The arithmetic mean of all stations in 
the SM network was taken as the ground truth, and the retrieved SM of 
the grid cells (0.25◦ or EASE2) located within the rectangular boundary 
were averaged and compared with the ground truth. Up-scaling the 
station observation is much more complex since SM heterogeneity is 
driven by many factors (precipitation distribution, topography, soil 
texture and land cover). Although arithmetic averaging is not an optimal 
way to reduce the effects of spatial heterogeneity, it is the most direct 
method to ensure that all SM networks are evaluated under the same 
criterion. In addition, the period used for the SM validation was aligned 
with the available period when all six satellite-based and in-situ SM data 
are available at the same time from 2002 to 2021. Four classical 
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statistical metrics were used to evaluate the six SM products, including 
Pearson’s correlation coefficient (R), root mean square error (RMSE), 
mean bias and the unbiased root mean square error (ubRMSE). Because 
the time interval of each SM network measurement varied from 10 min 
to 60 min, we consistently used the in-situ observations at the local time 
of 2:00 to perform the validation. Evaluation was not performed on the 

ascending data since the ANN only provided SM in descending orbit. To 
ensure the fairness of the inter-comparison, these SM products corre
sponding to the network were filtered by their quality control (QC) file, 
and the statistical metrics calculation was only conducted in the inter
section of all data. 

We randomly selected three full years of data (2014–2016) for the 

Fig. 1. Annual means and seasonal amplitudes of soil moisture averaged over the period from 2014 to 2016. (a-b) MCCA. (c-d) CCI-passive. (e-f) ANN. (g-h) LPRM-C. 
(i-j) LPRM-X. (k-l) JAXA. 
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spatial analysis among different SM and VOD products. Poor data were 
removed according to the following criteria: (1) values <0; (2) values 
over frozen land surface; (3) values affected by RFI; (4) values beyond 
the IQR range. In addition, pixels with an effective number of values 
lower than 30 for one year were discarded. 

When the VOD was indirectly evaluated with AGB and NDVI, strict 
data processes should be carried out further. To reduce the effect of 
water stress, we averaged data from descending and ascending orbits to 
daily values after filtering based on the aforementioned criteria. Because 
the AGB used here is a static map circa 2015, the annual averaged VOD 
from 2014 to 2016 was calculated for the comparison. For the temporal 
consistent comparison with NDVI for three years (2014–2016), daily 
VOD was averaged per pixel to give 16-day mean values, which were 
produced every 8 days (Grant et al., 2016). For example, ‘day 001’ in
cludes acquisitions between days 1 and 16, ‘day 009’ includes acquisi
tions between days 9 and 24, etc. In addition, pixels with the summed 
fraction of urban, wetland, open water, and ice >10% were masked. 

3. Results 

3.1. Performance of SM retrievals 

3.1.1. Spatial patterns of SM 
The global spatial pattern of six SM products (MCCA, CCI-P, ANN, 

LPRM-C, LPRM-X, and JAXA) is shown in Fig. 1. The left column is the 
annual average of SM, and the right column represents the seasonal 
amplitude of SM. Seasonal amplitude (SA) is defined as the difference 
between 95% and 5% percentile of the data after smoothing using a 45- 
day sliding average window (Konings et al., 2017). The mean and sea
sonal amplitude of SM were calculated from the annual averages over 
three years (2014–2016). 

In general, MCCA shows similar spatial patterns of SM as ANN, which 
is fed with the SMAP SM product, with the lowest SM values in desert 
regions (e.g., the Sahara of Africa, desert areas in central Asia, and the 
Taklamakan in the northwest of China) and relatively high SM values in 
dense forests (e.g., boreal forest areas, Amazon, the southeast of Asian, 
and southeast of China). CCI-P has slightly larger SM values than MCCA 
and ANN in the above dry areas and also shows high values in the boreal 
forest region. Because a mask for rainforest was applied in the merging 
process for CCI-P, there are some blank areas near the equator in Fig. 1 
(c-d). The spatial features of LPRM-C are very close to those of LPRM-X 
in most regions, and they present higher SM values on the whole. In 
comparison with MCCA, LPRM-C and LPRM-X produced much higher 
SM values in boreal forest areas (exceeding 0.6 m3/m3) and smaller or 
the same SM values in the Sahara. JAXA presents very low SM values 
over most of the globe, except northern Russia, northeastern Canada, 
and southwestern Brazil. As to the SM variation across different regions, 
MCCA and ANN show a distinct dry-wet gradient in the north-south 
direction of Africa and the west-east direction of the continental 
United States. Regarding the absolute SM values, there are irregular 
differences among MCCA, CCI-P, and ANN. In northeastern Canada, 
ANN shows the highest SM values, followed by MCCA and CCI-P. In 
southeastern China, MCCA has the largest SM values, followed by ANN 
and CCI-P. In eastern Brazil, the descending order of SM values is CCI-P, 
MCCA, and ANN. In Australia, MCCA is very similar to ANN, and is 
lower than CCI-P. The rank order of the magnitudes is not consistent. 

The right column of Fig. 1 clearly shows the seasonal variation of SM, 
with similarities but also differences among the six products. Overall, 
LPRM-C and LPRM-X have the largest magnitude of seasonal variations, 
and MCCA is comparable to CCI-P in the seasonal amplitude of SM. In 
addition, the seasonal amplitudes of ANN and JAXA are smaller than 
that of MCCA over most regions. Regarding the distribution of seasonal 
cycles, analogous spatial patterns can generally be found in Fig. 1(b, d, f, 
h, j, l). For example, all datasets have relatively high values of seasonal 
amplitude in the Indian Peninsula, Indochina, the Sahel region, and the 
Miombo woodlands, which are significantly affected by the monsoon 

precipitation. On the other hand, the seasonal amplitude of MCCA in 
eastern Siberia is lower than that in western Siberia, which is similar to 
those of CCI-P, ANN, and LPRM-C, while LPRM-X and JAXA show little 
difference in seasonal amplitude of SM between the eastern and western 
Siberia. In the eastern United States, all the SM products except JAXA 
exhibit seasonal changes, and LPRM-X has the highest amplitude values 
of SM followed by LPRM-C, CCI-P, MCCA, and ANN. JAXA also fails to 
capture the seasonal changes of SM in Australia while the other five SM 
products can. In addition, the seasonal amplitude of MCCA in Australia 
is very similar to that of ANN, and LPRM-C/X and CCI-P show larger 
seasonal fluctuations than MCCA in Australia. 

3.1.2. Validation and inter-comparison of SM products 
The validation statistics of six SM products are shown in Table 1, and 

the RMSE values are shown in Table A2 in Appendix A. In terms of the 
correlation with in situ observations, each SM product has a wide range 
of R values among various networks. For the MCCA-derived SM, R 
values vary from 0.139 (SMN-SDR network) to 0.892 (Benin network). 
The R-value of CCI-P reaches the minimum (0.230) at the Manitoba 
network and the maximum (0.861) at the Benin network, while the ANN 
reaches the minimum (0.102) at the Adelong network and the maximum 
(0.844) at the REMEDHUS network. For the standard SM products from 
NASA and JAXA, the R range is 0.082–0.883 for LPRM-C, 0.164–0.867 
for LPRM-X, and 0.100–0.806 for JAXA, respectively. Generally, MCCA 
produced higher values of R than JAXA except for the Manitoba, Walnut 
Gulch, and Maqu networks. On the other hand, MCCA shows similar 
performances with LPRM-C/X and is comparable to ANN in terms of R. 
The ANN SM is based on pixel-wise neural network training from the 
SMAP L3 SCA-V products, and it can be considered as a proxy of SMAP 
SM. Thus, this may be a reason explaining why ANN shows larger R 
values than MCCA in Walnut Gulch, Little Washita, Fort Cobb, and Little 
River networks. CCI-P obtains the highest R values over most of net
works (16 over 25). Because CCI-P is a merged product that combines 
multiple passive microwave missions including SMOS and SMAP, and 
microwave observations at L-band are superior to C-, X-, and Ku-bands 
in capturing the temporal variation of SM. The better R performances 
of CCI-P over individual networks may be related to the weighted 
merging strategy in the reprocessing. 

Regarding ubRMSE, MCCA has the narrowest range among different 
networks than other five SM products. As shown in Table 1, the ranges of 
ubRMSE from MCCA, CCI-P, ANN, LPRM-C, LPRM-X, and JAXA are 
0.028–0.068 m3/m3, 0.034–0.082 m3/m3, 0.026–0.136 m3/m3, 
0.035–0.117 m3/m3, 0.035–0.140 m3/m3, 0.024–0.121 m3/m3, 
respectively. In addition, MCCA presents the lowest ubRMSE values over 
9 networks, same as ANN and 2 more than CCI-P. For the NASA standard 
products, both LPRM-C and LPRM-X produce relatively larger ubRMSE 
values than MCCA over most networks (24 over 25). MCCA also out
performs JAXA in terms of ubRMSE for most networks (17 over 25). 

The bias ranges of MCCA, CCI-P, ANN, LPRM-C/X, and JAXA are 
− 0.101-0.112 m3/m3, − 0.103-0.226 m3/m3, − 0.060-0.217 m3/m3, 
− 0.005-0.340 m3/m3, 0.040–0.348 m3/m3, − 0.259-0.049 m3/m3, 
respectively. In total, ANN obtains the bias close to zero over 9 networks, 
followed by MCCA over 6 networks and LPRM-C over 4 networks. 
Overall, both LPRM-C and LPRM-X show relatively large positive biases 
on most networks, while JAXA shows sizeable negative biases. 

Because some stations of FMI, HOBE, Adelong, Kyemba, Yanco, 
REMEDHUS, TERENO, UDC-SMOS, Walnut Gulch, Fort Cobb, Little 
River and Pali networks were located on different land cover types 
(relabeled by the MODIS IGBP map), the weighted average SM based on 
the fraction of land cover was also adopted to validate the SM products. 
As shown in Fig. B2 in Appendix B, only TERENO and Walnut Gulch 
networks show a slight improvement in the validation among all six SM 
products. As for other SM networks, the differences in error metrics 
between the two kinds of validation have both positive and negative 
values. Overall, these differences in error metrics are small in magni
tude, indicating that the validation using the arithmetic average SM is 
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Table 1 
The network-based statistical validation results of six SM products. The best performance of the six SM products in each network is typeset in boldface.  

Network No. R (p < 0.05)  ubRMSE (m3/m3)  Bias (m3/m3) 

MCCA CCI-P ANN LPRM-C LPRM-X JAXA  MCCA CCI-P ANN LPRM-C LPRM-X JAXA  MCCA CCI-P ANN LPRM-C LPRM-X JAXA 

Benin 1415 0.892 0.861 0.822 0.843 0.798 0.618  0.057 0.073 0.057 0.076 0.069 0.058  0.056 0.226 0.107 0.067 0.040 ¡0.027 
Niger 1042 0.833 0.620 0.802 0.883 0.867 0.806  0.028 0.039 0.026 0.035 0.035 0.036  0.014 0.121 0.022 0.017 0.040 0.049 
FMI 690 0.187 0.332 0.279 0.211 0.214 0.100  0.033 0.041 0.040 0.098 0.091 0.093  ¡0.017 0.031 0.113 0.340 0.348 0.040 
HOBE 2034 0.483 0.664 0.555 0.082 0.547 0.351  0.044 0.045 0.046 0.080 0.066 0.107  0.062 − 0.023 0.017 0.247 0.223 − 0.024 
Adelong 633 0.799 0.846 0.102 0.871 0.810 0.608  0.052 0.050 0.136 0.099 0.110 0.067  − 0.048 0.015 0.217 0.126 0.040 − 0.059 
Kyemba 2442 0.697 0.794 0.749 0.731 0.771 0.527  0.062 0.056 0.078 0.080 0.090 0.074  − 0.042 0.069 0.068 0.020 0.062 − 0.057 
Yanco 3015 0.736 0.853 0.807 0.785 0.775 0.534  0.049 0.038 0.059 0.057 0.064 0.062  ¡0.024 0.058 0.047 0.053 0.075 − 0.047 
REMEDHUS 3552 0.805 0.857 0.844 0.826 0.819 0.608  0.046 0.064 0.037 0.091 0.114 0.037  0.011 0.121 0.007 0.135 0.106 − 0.062 
Manitoba 678 0.150 0.230 0.425 0.176 0.164 0.373  0.059 0.074 0.067 0.109 0.129 0.089  ¡0.006 0.010 − 0.031 0.123 0.165 − 0.127 
Ontario 558 0.421 0.485 0.325 0.344 0.385 0.223  0.062 0.072 0.060 0.114 0.140 0.107  − 0.086 0.010 ¡0.006 0.126 0.199 − 0.181 
Saskatchewan 696 0.670 0.800 0.759 0.294 0.500 0.280  0.048 0.039 0.042 0.101 0.091 0.068  0.054 0.080 0.027 0.219 0.256 − 0.088 
TERENO 2127 0.613 0.704 0.686 0.582 0.635 0.301  0.065 0.056 0.057 0.069 0.090 0.091  0.011 0.075 0.036 0.076 0.204 − 0.117 
UDC-SMOS 905 0.353 0.477 0.301 0.466 0.473 0.211  0.053 0.065 0.056 0.087 0.123 0.081  ¡0.048 − 0.080 − 0.060 0.160 0.174 − 0.212 
Walnut Gulch 4417 0.512 0.712 0.657 0.624 0.509 0.592  0.039 0.054 0.027 0.061 0.081 0.028  0.062 0.205 0.045 0.052 0.140 ¡0.014 
Little Washita 2230 0.526 0.670 0.736 0.647 0.505 0.392  0.063 0.051 0.041 0.074 0.097 0.054  − 0.030 − 0.012 0.011 0.003 0.113 − 0.096 
Fort Cobb 2036 0.511 0.679 0.700 0.651 0.537 0.471  0.051 0.047 0.043 0.060 0.082 0.050  − 0.101 − 0.023 − 0.017 0.002 0.090 − 0.099 
Little River 3793 0.650 0.735 0.751 0.567 0.595 0.347  0.046 0.037 0.039 0.069 0.084 0.071  0.078 0.052 0.116 0.168 0.200 0.020 
St Josephs 1381 0.634 0.699 0.522 0.575 0.544 0.170  0.057 0.060 0.068 0.079 0.115 0.099  − 0.053 − 0.056 ¡0.006 0.014 0.162 − 0.154 
South Fork 1011 0.550 0.596 0.544 0.503 0.487 0.345  0.063 0.082 0.063 0.117 0.138 0.087  − 0.072 ¡0.003 − 0.059 0.028 0.115 − 0.173 
Reynolds Creek 2178 0.671 0.648 0.614 0.691 0.730 0.524  0.048 0.058 0.051 0.082 0.082 0.057  0.013 0.050 0.011 ¡0.005 0.092 − 0.062 
Maqu 1258 0.302 0.353 0.302 0.349 0.335 0.326  0.068 0.082 0.089 0.087 0.089 0.066  0.041 − 0.103 ¡0.002 0.109 0.073 − 0.259 
Naqu 862 0.678 0.800 0.687 0.762 0.771 0.598  0.060 0.063 0.066 0.065 0.070 0.121  0.024 0.023 0.004 0.122 0.159 − 0.051 
Pali 344 0.532 0.623 0.587 0.538 0.598 0.464  0.038 0.040 0.030 0.060 0.062 0.033  0.112 − 0.026 ¡0.024 0.129 0.177 − 0.107 
Shiquanhe 197 0.626 0.625 0.608 0.653 0.643 0.543  0.051 0.034 0.026 0.051 0.051 0.024  0.019 0.080 ¡0.014 0.110 0.154 − 0.071 
SMN-SDR 443 0.139 0.454 0.180 0.261 0.223 0.110  0.065 0.040 0.051 0.061 0.067 0.044  − 0.030 ¡0.015 − 0.058 0.054 0.072 − 0.106 
Overall 39,937 0.709 0.446 0.704 0.711 0.735 0.397  0.073 0.100 0.074 0.109 0.111 0.096  0.007 0.058 0.033 0.087 0.132 − 0.066  
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relatively reasonable. 
Fig. 2 shows the comparison of different SM products with in situ 

observation over all networks. Although the R-value of MCCA (0.709) is 
slightly lower than that of LPRM-C (0.711) and LPRM-X (0.735), it has 
the best performance in terms of RMSE (0.074 m3/m3), ubRMSE (0.073 
m3/m3) and bias (0.007 m3/m3). ANN shows slightly lower performance 
than MCCA with the R value of 0.704, RMSE value of 0.081 m3/m3, 
ubRMSE value of 0.074 m3/m3, and bias value of 0.033 m3/m3. LPRM-C 
shows a similar pattern to LPRM-X, and they have large overestimations 
in the total scatter plot. On the contrary, JAXA exhibits a slightly weak 
correlation and has a sizeable underestimation. It should be pointed out 
that the R value of CCI-P is not high in the overall comparison, which is 
caused by lower covariance between the CCI-P and in situ SM over all 
networks. When the SM is <0.2 m3/m3, there is an overestimation in 
CCI-P. This is similar to the LPRM products in that they are derived from 
the same algorithm but with different versions. 

To visualize the performance of each product, five networks from 
different continents (Benin in Africa, Yanco in Oceania, TERENO in 
Europe, Reynolds Creek in America, and Naqu in Asia) were selected for 
the time series of analysis. As presented in Fig. B3-B7 in Appendix B, 
MCCA shows good consistency with the in situ SM for all these networks. 
Like other SM products, MCCA can track well the temporal variations of 
SM caused by rainfall, irrigation, and surface thawing and can also 
capture well the dry-down of soil. 

3.2. Performance of VOD retrievals 

3.2.1. Spatial patterns of VOD 
MCCA retrieved VODs were inter-compared with the LPRM products 

and the VODCA products based on the data from 2014 to 2016. The 
annual averages and seasonal amplitudes of VODs were calculated in the 
same way as SM, and their spatial patterns are shown in Fig. 3. All the 
VOD products have similar spatial distributions with the lowest values in 
semi-arid areas and the highest values in tropical forests. In general, the 
magnitude of VOD increases with frequency, which is more obvious in 

the MCCA products. The annual averages of VOD from different prod
ucts are different, even for the VOD at the same band. VOD at Ku-band 
from MCCA shows the highest values (about 1.7–1.8) in the densely 
vegetated regions while VOD at C-band from VODCA presents the lowest 
values (nearly 0.6). Although all the VOD products exhibit different 
magnitudes in absolute values, they are still comparable to each other in 
terms of spatial gradients over the globe. For example, VODs increase 
significantly and synchronously with the vegetation density from 
northwest to southeast China. It is worth noting that most VOD gradient 
variations are consistent with the dry-wet changes of SM or climates. 

Regarding the seasonal amplitude, some similar spatial features can 
still be found among different VOD products. The Sahel region and 
Miombo woodlands, which are affected by the tropical monsoon, show 
strong seasonal cycles of VOD. In regions including western Russia, the 
Indian Peninsula, the northeastern United States, and the southeastern 
coastal zone of Australia, VODs also exhibit distinct seasonality. Overall, 
VOD at Ku-band from MCCA has the highest values of seasonal ampli
tude. The V-polarized VODs from MCCA are slightly larger than the H- 
polarized VODs. In addition, MCCA-derived VODs have larger magni
tudes than the other VOD products at C-, or X-, or Ku-bands. Interest
ingly, both polarized VODs at Ku-band from MCCA present some 
seasonal variations around the river streams in Amazon and Congo 
rainforest regions. It is recognized that the penetration ability of Ku- 
band is the weakest compared with the C- and X-bands, so the obser
vation at Ku-band is susceptible to the surface canopy water (rain 
interception and dew formation). This phenomenon does not appear in 
the Ku-band of VODCA, which may be related to the processing method 
for VODCA products. According to the description of Moesinger et al. 
(2020), the Cumulative distribution function (CDF) matching technique 
was applied to scale outliers and the arithmetic mean between tempo
rally overlapping observations was taken for aggregating the data. This 
fusion method may remove some physical variations, possibly caused by 
surface canopy stored water. 

Boxplots of the average from MCCA VOD per land cover types shows 
that barren and sparsely vegetated areas have the lowest VOD values on 

Fig. 2. Total soil moisture scatter with in situ observations. (a) MCCA (b) CCI-passive (c) ANN (d) LPRM-C (e) LPRM-X (f) JAXA. Circles and bars represent the 
median and inter-quartile ranges of SM for 0.03 m3/m3 wide bins. 
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the whole (Fig. 4). In contrast, forest areas show higher VOD values, 
especially the evergreen broadleaf forest which presents the highest 
VOD values. Notably, the MCCA VOD values increase with frequency for 
each land cover type, which is consistent with the physical expectation. 

To better investigate the seasonal dynamics of different VOD prod
ucts, we selected four pixels (Table 2) with different land cover types 
and climates to visualize the time series of data. The values of VOD were 
smoothed by applying a seven-day moving average, and each column 

Fig. 3. Annual means and seasonal amplitudes of vegetation optical depth (VOD) averaged over the period from 2014 to 2016. (a-b) MCCA VOD-06H. (c-d) MCCA 
VOD-06V. (e-f) MCCA VOD-10H. (g-h) MCCA VOD-10V. (i-j) MCCA VOD-18H. (k-l) MCCA VOD-18V. (m-n) LPRM VOD-06. (o-p) LPRM VOD-10. (q-r) VODCA VOD- 
06. (s-t) VODCA VOD-10. (u-v) VODCA VOD-18. The marks ’’06’’, ’’10’’, and ’’18’’ denote the frequency of C-, X-, and Ku-bands, respectively. ’H’ denotes the 
horizontal polarization, and ’V’ denotes the vertical polarization. 

Fig. 4. Boxplot of time-averaged MCCA VODs for different IGBP classes and channels. The central mark within each box shows the median value, and the bottom and 
top edges mark the extent of the 25th and 75th percentiles. Whiskers include 99.3% of all data. The marks ’’06’’, ’’10’’, and ’’18’’ denote the frequency of C-, X-, and 
Ku-bands, respectively. ’H’ denotes the horizontal polarization, and ’V’ denotes the vertical polarization. 
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represents the VOD at different bands. The seasonal dynamics of all VOD 
products are synchronized well with NDVI except the Amazon forest 
site. For example, both VOD and NDVI peak in July or August and reach 
a minimum in January or February in the grassland of the USA and the 
cropland of Australia (Fig. 5 (a, c)). At the woody savanna site of Congo 
(Fig. 5(b)), after suffering a long period of drought, all the VOD data 
present a sharp upward trend at the beginning of the rainy days. This 
indicates that VOD can capture well the water variation in vegetation. 
Interestingly, there exists a small peak shape of MCCA-derived VODs at 
all channels from January to April 2015 at this site, which is highly 

consistent with NDVI. This phenomenon also occurs in the VOD prod
ucts from LPRM at C-band and VODCA at Ku-band, but to a lesser extent 
than MCCA. In the Amazon forest site (Fig. 5 (d)), NDVI shows marginal 
seasonality throughout the year while MCCA and other VOD products 
show slight decreases from May to June. MCCA VODs are mostly higher 
than other VOD products at the four sites, while VODCA presents the 
lowest VOD values. To be noted, it is still challenging to validate the 
absolute value or accuracy of VOD, because it is a physical variable 
associated with the RTE and parameters used during the retrieval. Fig. 5 
also shows that the seasonal fluctuation of VOD from MCCA in V po
larization is larger than that in H polarization. The differences in MCCA 
VODs related to polarization and frequency are discussed in section 4.2. 

3.2.2. Spatial/temporal correlation between VOD and AGB/NDVI 
Fig. 6. illustrates the density plots of different VOD products 

compared with AGB circa 2015 developed by Saatchi et al. (2011) at the 
global scale. It is shown that VODs have different ranges due to the 
differences in their retrieval algorithms. There is a clear evolution in the 
scatter plots for different frequencies in MCCA VODs. In contrast, the 
scatter plots of C- and X-bands from VODCA and LPRM are almost 
identical for both frequencies, while Ku-VOD from VODCA is shifted to 
higher values. All the density scatter plots present similar patterns of 
VOD changing with AGB. VOD show a sign of saturation when the AGB 

Table 2 
Information on the selected four sites for vegetation optical depth (VOD) 
comparison.  

Location Latitude Longitude Climate zone Dominate IGBP 
Class 

USA 41.625◦

N 
100.125◦

W 
Cold, without dry 
season, hot Summer 

Grassland 

Congo 7.791◦ N 25.581◦ E Tropical, savannah Woody Savanna 
Australia 36.375◦

S 
141.625◦

E 
Arid, steppe, cold Cropland 

Amazon 5.125◦ S 76.125◦ W Tropical rainforest Evergreen 
Broadleaf Forest  

Fig. 5. Time series of different vegetation optical depth (VOD) (smoothed with a moving window filter of seven days) at C-, X- and Ku-bands at selected sites. (a) USA 
(b) Congo (c) Australia (d) Amazon. 
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Fig. 6. Density scatter plots between vegetation optical depth (VOD) at different channels against Saatchi AGB at the global scale. R is the spatial correlation co
efficient between VOD and AGB. The color bars are in the log10 scale. The marks ’’06’’, ’’10’’, and ’’18’’ denote the frequency of C-, X-, and Ku-bands, respectively. 
’H’ denotes the horizontal polarization, and ’V’ denotes the vertical polarization. 
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exceeds 100 Mg/ha. At C- and X-bands, VODs from VODCA have a steep 
increase near AGB ~50 Mg/ha, while the other products show a gradual 
smooth slope transition. This is consistent with the finding reported by 
Li et al. (2021). H-polarized VODs from MCCA have higher values of 
spatial correlation with AGB than the V-polarized except for the C-band. 
At the C-band, LPRM VOD has the largest R value (0.729) with AGB, 
followed by VODCA (0.680), and V- and H-polarized VOD from MCCA 
(R = 0.655 and 0.653). At the X-band, H-polarized VOD from MCCA 
shows the highest R value (0.678) with AGB, followed by LPRM (R =
0.659), VODCA (R = 0.645), and V-polarized VOD from MCCA (R =
0.643). At the Ku-band, H-polarized VOD from MCCA shows the stron
gest correlation with AGB (R = 0.694), followed by VODCA (R = 0.675), 
and V-polarized VOD from MCCA (R = 0.649). The phenomenon that 
the sensitivity of VOD to biomass decreases with increasing frequency is 
not common or regular here among the C-, X- and Ku-band VODs. Since 
observations from these three bands are more dominated by the vege
tation canopy, the discrepancy in the sensitivity of VOD to biomass may 
be more obvious among the L-, C-, and X-bands. 

We also analyzed the spatial correlations of VODs with the long-term 
carbon density data developed by Xu et al. (2021) and made an inter- 
comparison with the recently developed AMSR2-IB VOD product 
(Wang et al., 2021) at a regional scale (AMSR2-IB VOD is currently only 
available in Africa). As shown in Fig. B8-B10 in Appendix B, the dif
ference in the correlation between VOD and AGB or carbon density is not 
significant. Theoretically, VOD is determined by both vegetation water 
potential and biomass. The relationship between VOD and AGB should 
be much more complex rather than the simple linear correlation. Since 
studies on how to physically infer AGB from VOD are still limited, it is 
expected MCCA derived polarization, and frequency-dependent VODs 
can provide a basis for further exploration. 

Temporal correlations of VODs with NDVI were calculated for each 
pixel over the globe using synchronous 8-day data. As shown in Fig. B11 
in Appendix B, different VOD products exhibit generally similar spatial 
patterns of temporal correlation (R) values with NDVI. All VOD products 
exhibit high R values in the Sahel region, Miombo woodlands, south
eastern Brazil, and most of Europe and Russia. All VODs have non- 
significant correlations (p > 0.05) with NDVI over desert areas (e.g., 

the Sahara of Africa, desert areas in central Asia, and the Taklamakan in 
the northwest of China) and most of the tropical areas (e.g., Amazon and 
the Malay Archipelago). There are also some differences between MCCA 
and other VOD products in the temporal correlations with NDVI. MCCA 
VODs show relatively high significant correlations with NDVI in the 
equatorial region of Congo, while the other products are not signifi
cantly with NDVI. In addition, MCCA and other VOD products show the 
opposite correlations with NDVI in parts of southeast China, South Af
rica, and central and western Australia, and this is more obvious in the 
MCCA V-polarized VOD product. Special care should be taken when 
using VOD products to study vegetation phenology in these areas. 

To further investigate the difference in the temporal correlations 
between VOD and NDVI, a map showing which VOD product has the 
strongest per-pixel correlation (absolute value) with NDVI for each 
frequency is presented in Fig. 7. At the C-band, MCCA VOD at H-po
larization accounts for the largest proportion (30.17%) of pixels in 
which the correlation between VOD and NDVI are significant, followed 
by LPRM (27.09%), VODCA (21.50%) and MCCA-V (13.83%). At the X- 
band, MCCA VOD at H-polarization also exhibits the largest percentage 
(29.24%), followed by VODCA (24.98%), LPRM (22.11%) and MCCA-V 
(16.17%). At the Ku-band, the proportion of significant pixels in MCCA- 
H (38.09%) is slightly larger than that in VODCA (37.70%), while the 
proportion of MCCA-V (14.81%) is the smallest. The common areas, in 
which MCCA VODs at three frequencies have the stronger correlations 
with NDVI than other VOD products, are mainly concentrated in the 
south of the Sahel near the equator, Miombo woodlands, southeastern 
Brazil, Mexico, northeast China, and Indo-China Peninsula. 

To explore the change of temporal correlation between VOD and 
NDVI with vegetation types, we aggregated the R values of each pixel 
based on the IGBP types (as shown in Fig. B12 in Appendix B). In gen
eral, all the V-polarized VODs from MCCA show slightly lower or com
parable values of R than the H-polarized for all land cover types. As to 
the EBF type, VOD at all channels from MCCA show larger median R- 
values than VODCA and LPRM, but in CSH and OSH types, MCCA is 
much smaller than them. In the BSV type, MCCA also produces lower R 
values at C- and X-bands than VODCA and LPRM. But at Ku-band, both 
MCCA and VODCA have a wide range of R. More specifically, MCCA-H 

Fig. 7. Spatial distribution showing which vegetation optical depth (VOD) product produced the highest absolute temporal correlation (R) with MODIS NDVI over 
the period from 2014 to 2016 for (a) C-band; (b) X-band; (c) Ku-band. Grey areas correspond to the pixels where the temporal correlation between VOD and NDVI is 
not significant (p > 0.05). White areas denote “no valid data”. Numbers on graphs indicate the percentage of pixels with the maximum R-value among all the 
significant pixels of each product. 
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VOD at C-band exhibits higher values of R than VODCA and LPRM in the 
WSA, SAV, GRA, and CVM types. For forest and cropland types (ENF, 
DNF, DBF, MF, CRO), both H and V-polarized VODs from MCCA show 
comparable or slightly lower R-values relative to VODCA and LPRM 
VOD. At the X-band, the correlation of MCCA VOD with NDVI is very 
similar to the C-band for different types. At the Ku-band, both H- and V- 
polarized VODs from MCCA show a higher median value of R than 
VODCA in the DNF type. 

4. Discussion 

4.1. Consistency analysis of SM 

In this study, MCCA was implemented on the AMSR-E and AMSR2 
observations to provide a long-term SM product at the global scale. Due 
to the different performance between AMSR-E and AMSR2, the inter- 
calibration over each grid cell was performed before retrieval to 
reduce the systematic error. However, cross-calibration cannot 
completely eliminate the potential differences in TB characteristics, and 
algorithm performance may vary between sensors. Thus, MCCA SM 
consistency was examined through statistical comparison of best-quality 
retrievals between the AMSR-E and AMSR2 parts of the dataset. For the 
descending retrievals, the global mean and standard deviation of SM 
from AMSR-E over the period 2002–2011 are 0.194 m3/m3 and 0.120 
m3/m3, respectively, while those from AMSR2 over the period 
2012–2021 are 0.195 m3/m3 and 0.121 m3/m3, respectively. For the 
ascending orbit, the corresponding values from AMSR-E are 0.186 m3/ 
m3 and 0.120 m3/m3, respectively, while those from ASMR2 are 0.192 
m3/m3 and 0.118 m3/m3, respectively. It is indicated that MCCA 
retrieved SM from AMSR-E and AMSR2 are consistent, especially in 
descending orbit. 

To further evaluate the consistency of retrieved SM, the CDF of all 
the daily data from AMSR-E and AMSR2 are presented in Fig. 8. For the 
descending retrieval, both CDF curves are close to each other. For the 
ascending retrieval, the CDF of AMSR-E is slightly higher than that of 
AMSR2 when SM is in the range of 0.05–0.17 m3/m3. As a comparison, 
the CDF plots of other five SM products are shown in Fig. B13 in Ap
pendix B. The CDF of AMSR-E is slightly higher than that of AMSR2 
between 0.3 m3/m3 and 0.8 m3/m3 in the LPRM-C descending retrieval, 
while the CDF of AMSR-E is larger than that of AMSR2 overall in the 
ascending retrieval. For the LPRM-X descending retrieval, the CDF of 
AMSR-E is similar to that of AMSR2. For the LPRM-X ascending 
retrieval, the CDF of ASMR-E is slightly higher than that of AMSR2 in the 
range of 0–0.2 m3/m3. The SM product from JAXA shows good 

consistency between the two sensors for both descending and ascending 
orbits. The ANN product is only available for descending orbit, and the 
CDF from AMSR-E exhibits slightly higher levels than that of AMSR2. 
CCI-P SM is a merged product in that SM from different missions was 
rescaled through the CDF matching, so it exhibits a high degree of 
consistency between the two periods (2002–2011 and 2012–2021). 
Overall, these evidences suggest that MCCA-derived SM from AMSR-E 
and AMSR2 has a good consistency. 

4.2. Dependence of VOD on polarization and frequency 

The crucial feature of MCCA is that it adopts a self-constraint strategy 
and combines the multi-channel information to retrieve SM first and 
then uses the retrieved SM as input to estimate the multi-channel VODs 
by reversing the RTE. In the previous section 3.2.1, we presented the 
spatial and temporal patterns of MCCA-derived multi-channel VODs. To 
further explore the dependence of MCCA VODs on polarization and 
frequency, annual averages of polarization difference and frequency 
gradient based on per-pixel were calculated from the MCCA descending 
retrievals over three years (2014–2016). The polarization difference 
refers to the value of vertical polarized VOD minus the horizontal 
polarized one, and frequency difference refers to the value of high- 
frequency VOD minus the low-frequency one. 

Fig. 9. shows the annual averages and seasonal amplitudes of po
larization differences among MCCA VODs. In North America along the 
Rocky Mountain region, Alaska, Kazakhstan, and most of Russia and the 
Indian peninsula, the polarization differences are negative at C-band 
while positive at X- and Ku-bands. In contrast, in northeastern Canada 
and the northern Russian region near the Kara Sea, the polarization 
differences at C-band present positive values while negative at X- and 
Ku-bands. In addition, in northern Africa and most of Australia, the 
polarization difference appears positive for C- and X-bands, but negative 
or close to zero for the Ku-band. 

The seasonal amplitudes of polarization difference show similar 
patterns across the three bands over most regions of the globe. At the Ku- 
band, the seasonal amplitude of polarization difference exhibits the 
highest values over the central and eastern United States, western 
Russia, and Europe. It seems that seasonal fluctuation in polarization 
difference is more susceptible to vegetation, and the higher the fre
quency, the greater the fluctuation. It should be pointed out that RFI was 
examined here with spectral indices (TBLow Frequency −

TBHigh Frequency > 5 K) as previous studies (Li et al., 2004; Njoku et al., 
2005). However, the spectral gradient difference within 5 K may be 
associated with the weak RFI that is difficult to detect, or it may be 

Fig. 8. Cumulative distribution functions (CDF) of MCCA retrieved soil moisture from AMSR-E and AMSR2 for (a) Descending orbit; (b) Ascending orbit.  
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Fig. 9. Annual means and seasonal amplitudes of polarization difference between V- and H-polarized vegetation optical depth (VOD) averaged over the period from 
2014 to 2016. (a-b) MCCA VOD-06V minus VOD-06H; (c-d) MCCA VOD-10V minus VOD-10H; (e-f) MCCA VOD-18V minus VOD-18H. Grey areas correspond to the 
land pixels with “no valid data”. The marks ’’06’’, ’’10’’, and ’’18’’ denote the frequency of C-, X-, and Ku-bands, respectively. ’H’ denotes the horizontal polar
ization, and ’V’ denotes the vertical polarization. 

Fig. 10. Annual means and seasonal amplitudes of frequency difference among VODs averaged over the period from 2014 to 2016. (a-b) MCCA VOD-10H minus 
VOD-06H; (c-d) MCCA VOD-10V minus VOD-06V; (e-f) MCCA VOD-18H minus VOD-10H; (g-h) MCCA VOD-18V minus VOD-10V; (i-j) VODCA VOD-10 minus VOD- 
06; (k-l) VODCA VOD-18 minus VOD-10; (m-n) LPRM VOD-10 minus VOD-06. Grey areas correspond to the land pixels with “no valid data”. The marks ’’06’’, ’’10’’, 
and ’’18’’ denote the frequency of C-, X-, and Ku-bands, respectively. ’H’ denotes the horizontal polarization, and ’V’ denotes the vertical polarization. 
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associated with a physical characteristic of strong scattering effects. It is 
argued by Njoku et al. (2005) that volume and surface scattering can 
cause surface emissivity to decrease with increasing frequency in some 
cases. Therefore, the polarization difference of VOD at C-, X- and Ku- 
bands identified in this study can be attributed to either the realistic 
vegetation physics or imperfection of the zero-order RTE used in MCCA. 

Fig. 10. presents the annual averages and seasonal amplitudes of 
frequency difference among different VOD products. It is found that 
MCCA VOD at high frequency is generally larger than the low frequency 
in the horizontal polarization. However, MCCA VOD at high frequency 
shows smaller values than that at low frequency over some regions for 
the vertical polarization. For the VODCA products, X-VOD shows 
slightly lower values than C-VOD in Mexico, Turkey, Italy, east-central 
Australia, parts of South Africa, and Brazil. But for the comparison be
tween X- and Ku-bands from VODCA, Ku-VOD is significantly larger 
than X-VOD. The frequency difference between C-VOD and X-VOD in the 
LPRM product is not distinct in most of the globe, except in the Amazon, 
Congo, Southeast Asia, Mexico, Italy, and Turkey, in which X-VOD 
shows lower values than C-VOD. It is acknowledged that values of VOD 
increase with frequency. For the VODCA products, the pre-merged VODs 
were first retrieved from the same algorithm as the NASA LPRM product 
but with a different version (LPRM V6) and then merged by the CDF 
matching (Moesinger et al., 2020). The rescaling method used in VODCA 
can distinguish the differences between different frequencies but re
quires a reference data source (AMSR-E is the reference in VODCA). 
Similarly, the VOD relationship between different channels (Eq. (5)) 
used in MCCA can also ensure that the value of VOD at high frequency is 
greater than that at low frequency. More importantly, it is an inherent 
feature of MCCA, which makes the magnitude discrepancy between 
multi-frequency VOD more reasonable. 

Regarding the seasonal variation, the difference between MCCA 
VOD-10H and MCCA VOD-06H presents small seasonal amplitudes, 
similar to those of VODCA and LPRM. The seasonal amplitude of the 
difference between MCCA VOD-18H and MCCA VOD-10H is slightly 
larger than the seasonal amplitude of the difference between MCCA 
VOD-10H and MCCA VOD-06H in parts of Amazon, Sahel, Congo, 
Miombo woodlands, and western Russia, and is similar to that of the 
difference between VODCA VOD-18 and VODCA VOD-10. In contrast, 
the frequency difference from MCCA VOD in vertical polarization ex
hibits large seasonal variation. 

5. Conclusion 

This paper presented a new SM and frequency- and polarization- 
dependent VOD product using the MCCA algorithm based on the 
inter-calibrated AMSR-E/2 observations. The main feature of MCCA in 
this study is that it can fully utilize the multi-frequency and dual- 
polarization information for retrieving SM and then estimate fre
quency- and polarization-dependent VODs through reversing RTE. The 
retrieved SM from MCCA was inter-compared with the ANN, CCI-P, 
LPRM-C, LPRM-X and JAXA SM products over 25 dense SM networks. 
While quantitative assessment of VOD is still challenging, MCCA- 
derived VODs and other two VOD products (LPRM and VODCA), were 
indirectly evaluated against the vegetation AGB and MODIS NDVI. 

Overall, MCCA showed good performance on both SM and VOD. 
According to the validation results over 25 dense SM networks, MCCA- 
derived SM produced the lowest values of ubRMSE over most of net
works (9/25), same as ANN SM. In the overall comparison of 25 net
works, MCCA achieved the best scores in terms of RMSE (0.074 m3/m3), 
ubRMSE (0.073 m3/m3) and bias (0.007 m3/m3), and presented slightly 
lower value of R (0.709) than LPRM-X (R = 0.735). With respected to the 
inter-comparison among different VOD products, MCCA-derived VODs 
were comparable to the LPRM and VODCA VOD products in terms of the 
spatial correlation with AGB and the temporal correlation with NDVI. In 
addition, H-polarized VODs from MCCA showed more sensitive to 
vegetation than the V-polarized ones. More importantly, MCCA 

presented very reasonable variations across the microwave spectrum, 
while LPRM products cannot show the increase of VOD with frequency 
as theoretical expectation. Although the frequency difference was also 
distinct among the VODCA products, it was a manipulated phenomenon 
due to the CDF matching technology used in VODCA. 

It is expected that the new SM and VOD product may provide new 
insights for better understanding water fluxes in the soil-plant- 
atmosphere continuum. In addition, the retrieval was implemented on 
snapshot observations, thus MCCA can provide continuous daily data 
once the daily TB is updated. Furthermore, MCCA can be extended to 
other similar multi-frequency sensors, such as FY-3B/C/D/F/G or the 
scheduled AMSR3 and CIMR in the future. 
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