Prediction of daily nutritional requirements of gestating sows based on their behaviour and machine learning methods

Maëva Durand, Christine Largouët, Louis Bonneau de Beaufort, Jean-Yves Dourmad, Charlotte Gaillard

To cite this version:

Maëva Durand, Christine Largouët, Louis Bonneau de Beaufort, Jean-Yves Dourmad, Charlotte Gaillard. Prediction of daily nutritional requirements of gestating sows based on their behaviour and machine learning methods. ESPHM - 14th European symposium of porcine health management, May 2023, Thessalokini, Greece. pp.1-1, 2023. hal-04119697

HAL Id: hal-04119697
https://hal.inrae.fr/hal-04119697

Submitted on 6 Jun 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Prediction of daily nutritional requirements of gestating sows based on their behaviour and machine learning methods

M. DURAND, C. LARGOUËT, L. BONNEAU, J.Y. DOURMAD, C. GAILLARD

BACKGROUND & OBJECTIVE

- **Precision Feeding** aims to define the right feeding strategy according to individual’s nutrient requirements, to reduce feed cost and environmental losses.
- Usually, the nutrient requirements of gestating sows are calculated by a mechanistic nutritional model requiring input data such as sows and herd characteristics.
- Aim of this study: Prediction of nutritional requirements using machine learning methods and sensor data.

MATERIAL AND METHODS

Step 1: Scenarios definition

1. Electronic feeder
2. Automatic weighting system
3. Camera, accelerometer
4. Electronic drinker

10 Scenarios (1 or combination of 2 sensors) => Digital Farm Configuration

Step 2: Prediction of nutrient requirements using 9 ML algorithms

Sow characteristics at insemination

Housing conditions

Reference values = Estimation of nutritional requirements by a mechanistic model (INRA Porc)

9 supervised ML algorithms trained for regression tasks

Train dataset: (70 %)
Test dataset: (30 %)

RESULTS

Integration of sow and housing characteristics (scenarios SP) reduced the RMSE by 20% for energy and 35% for lysine.

Lower MAPE obtained using scenarios SP with automatic weighting system + feeder for lysine (6.31%) and with feeder + activity sensors for energy (3.88%).

CONCLUSION

- Machine learning methods using sensor data and behavioural data can accurately predict the sows daily requirements (error under 7 % for energy and 12% for lysine) which could simplify the application of precision feeding on farms.
- Sow’s activity, feeding behaviour, and body weight are the best predictors. Adding sow and housing characteristics significantly improves the results.
- Gradient Tree Boosting is the most accurate ML algorithm.