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ABSTRACT  9 

Camelina sativa is a Brassicaceae that was commonly cultivated in Europe until the 19th century. Recently, it 10 

has received much interest as an alternative oil-seed crop because of its particular oil composition and low 11 

requirements in terms of agronomic inputs and its resistance to some Brassicaceae chewing insects. However, 12 

little is known about the consequences of its reintroduction on piercing-sucking insects pests that are not 13 

Brassicaceae specialists but that are likely to transmit phytoviruses. In this context, laboratory experiments were 14 

conducted to investigate the potential colonization of camelina by four major aphid species of northern France. 15 

Orientation tests, feeding behavior assessed by Electrical Penetration Graph and demographic bioassays showed 16 

that the polyphagous species, Aphis fabae (Scop) and Myzus persicae (Sulzer), were able to land, feed, and 17 

reproduce on the plant. They even fed and performed better on camelina than the Brassicaceae specialist 18 

Brevicoryne brassicae (L.). Surprisingly, to a lesser extent, Camelina sativa could also be a suitable host for the 19 

cereal specialist Rhopalosiphum padi (L.). The colonization ability of camelina by the different aphids is 20 

discussed in terms of the degree of specialization and physico-chemical characteristics of the plant. Camelina 21 

may therefore constitute a reservoir for aphid species issued from surrounding crops and their associated 22 

pathogens. 23 

 24 
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Introduction  28 

The consumption of vegetable oils in the world is expected to increase by 2% per year [1]. Although some 29 

concerns have been raised relating to potential competition with food crops [2], vegetable oils used for biofuels 30 

and biodiesel present many advantages (e.g. natural viscosity, toxicity, biodegradability) which make them 31 

attractive sustainable alternatives to the non-renewable petroleum derivatives [3–5]. These oils can be extracted 32 

from major conventional oil crops [6], including soybean (Glycine max), rapeseed/canola (Brassica napus), palm 33 

(Elaeis guineensis), sunflower (Helianthus annuus), cottonseed (Gossypium hirsutum), flax (Linum 34 

usitatissimum) and peanut (Arachis hypogaea). In northern Europe, rapeseed is the dominant oilseed crop used 35 

for biofuel and some pests and diseases present throughout the plant lifecycle are key constraints to its 36 

production [7]. Control of oilseed rape pests relies on heavy use of insecticides that are costly and negatively 37 

impact biodiversity [8]. 38 

It has been shown that an increase in the plant species diversity may facilitate natural pest control in annual 39 

cropping systems [9]. In order to reduce Europe's dependence on non-renewable feedstocks, long-term breeding 40 

programs and agronomic studies are necessary to increase diversity of oil crops. New promising oilseed crops 41 

such as camelina (Camelina sativa) or brown mustard (Brassica juncea), which present special chemical 42 

composition and agronomic properties can provide alternative to current production systems [5, 10]. 43 

Camelina sativa (L.) Crtz. also known as the false flax, or the gold-of-pleasure, is a Brassicaceae which was an 44 

important oil crop in Europe during the Bronze and Iron Ages [11]. It was cultivated until the 19th century in 45 

France and to a lesser extent in Holland, Belgium and Russia [12]. In the early twentieth century, 5000 hectares 46 

of false flax were still cultivated in northern France [13]. Camelina is recognized for its rusticity because it can 47 

tolerate a wide range of pedoclimatic conditions [13] and requires low agronomic inputs [14]. The plant has 48 

lower nitrogen requirements and a shorter growing season than rapeseed [15–17]. Moreover, camelina is 49 

reported to be tolerant to drought and heat [18], resistant to cold [19] and to different pathogens and insects [20, 50 

21] thanks to various anti-nutritional compounds produced (e.g., Matthaüs and Zubr [22]). This plant can be used 51 

in mixed cropping systems with legumes, not only for water and nitrogen management [23, 24], but also for 52 

weed control [25]. Camelina oil offers good opportunities as a biofuel crop and functional food as it contains 53 

exceptionally high levels of omega-3 fatty acids, and over 50% of its fatty acids are polyunsaturated [26, 27]. 54 

The reintroduction of camelina in Europe could bring major agronomic and economic benefits, but may also 55 

modify local ecosystems balance [28, 29]. One major risk is that Camelina may act as a reservoir of pests or a 56 
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reservoir of vector of viruses. According to theoretical models, the introduction of a new host plant into an 57 

established host-parasite system can sometimes reduce (“dilute”) or increase (“spill-back”) the transmission of 58 

pathogens to native host species [30]. The suitability of camelina could depend on the degree of herbivore 59 

specialization of the aphid pests, which are the major vectors of phytoviruses on Brassicaceae. However, the 60 

interaction between aphids and camelina has not been studied so far. A systemic approach is essential to assess 61 

the risk of the introduction of C. sativa on a wide range of potential insects usually associated or not with the 62 

crop. Thus, we investigated the colonization process of four major aphid pests (Hemiptera: Aphididae) which are 63 

all vectors of Brassicaceae phytoviruses [31–35]. Aphis fabae (black bean aphid) and Myzus persicae (green 64 

peach aphid) are two polyphagous species, while Brevicoryne brassicae (cabbage aphid) feeds exclusively on 65 

plants of the Brassicaceae family, and Rhopalosiphum padi (bird cherry aphid) is a specialist of monocots. 66 

In laboratory experiments we investigated if the four aphid species could successfully land on, feed and 67 

reproduce on Camelina sativa, relatively to their degree of specialization towards Brassicaceae. We then discuss 68 

the agronomical and epidemiological implications of our findings. 69 

70 
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Materials and Methods 71 

Insects and Plants 72 

For each species, colonies were initiated from a single apterous parthenogenetic female and were separately 73 

maintained in ventilated Plexiglas
®
 cages (360 x 240 x 110 mm) in growth chambers under controlled conditions 74 

(20 ± 2°C, 60 ± 5% relative humidity (RH), and 16L:8D photoperiod at 4.7 klux) to induce parthenogenesis. 75 

Aphid clones were used to minimize intraspecific variability and to ensure a certain uniformity of response. 76 

The M. persicae colony was established from one parthenogenetic female collected in 1999 in a potato field near 77 

Loos-en-Gohelle (France) and was reared on potato plants (Solanum tuberosum cv.“Desirée”). The colonies of 78 

R. padi and B. brassicae, provided in 2008 by INRA-Le Rheu (Rennes, France), were reared on barley 79 

(Hordeum vulgare cv.”Cervoise”) and on rapeseed (Brassica napus cv. “Stego”) respectively. The colony of 80 

A. fabae, provided in 2012 by Gembloux Agro-Bio-Tech (Belgium) was reared on broad beans (Vicia faba 81 

cv.”Maya”). 82 

Plantlets used for the experiments were obtained from tubers for potato and from seeds for the other plants. They 83 

were grown for 4 weeks in 60 mm plastic pots with commercial sterilized potting soil under the controlled 84 

conditions described above. Camelina sativa (cv. “Calena”) seeds were provided by the University of Natural 85 

Resources and Life Sciences, Vienna (Austria). 86 

Early steps of the camelina plantlets colonization process 87 

The aim of this test was to observe the abilities of the four different aphids species to fly towards and land on 88 

camelina. The experimental set up used was modified from Boquel et al. [36] and consisted of 10 ventilated 89 

Plexiglas
®
 chambers (180 x 120 x 75 mm) used simultaneously inside which a single camelina plant was set 90 

(Fig. 1). At 80 mm from the plant, a single alate aphid was positioned with a small paintbrush at the top of a 91 

small tower (50 mm high), which was placed in a Petri dish lid containing water to avoid aphid plant 92 

colonization by walking. Twenty-four hours after its introduction, aphid location (on the plant, inner walls or 93 

ground of the experimental chamber) was recorded. This bioassay was conducted with alate aphids synchronized 94 

in their flight phase according to Brunissen et al. [37]. For each experimental set up, 10 aphids were tested 95 

taking care to use the 4 aphid species, with at least 2 individuals per species. For each aphid species, a total of 20 96 

individuals were individually tested. 97 
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Electrical penetration graph studies 98 

The DC-electrical penetration graph (DC-EPG) technique [38] was used to investigate the aphid feeding 99 

behaviour on Camelina sativa. A thin gold wire (20 µm in diameter and 2 cm in length) was tethered on the 100 

insect’s dorsum by conductive water-based silver glue. Eight aphids were then connected to the Giga-8 DC-EPG 101 

amplifier and placed on a plantlet leaf of eight different plants and a second electrode was inserted into the soil 102 

of the potted plants to complete the electrical circuit. The recordings were performed continuously for 8 h during 103 

the day, with one aphid per plant. Alate aphids were synchronized in their flight phase prior to the EPG testing. 104 

The whole aphid-plant system was placed inside a Faraday cage at 20 ± 1° C. Acquisition and analysis of the 105 

EPG waveforms were carried out with PROBE 3.5 software (EPG Systems, www.epgsystems.eu). Parameters 106 

from the recorded EPG waveforms were calculated with EPG-Calc 6.1 software [39]. These parameters were 107 

based on six different EPG waveforms described by Tjallingii and Esch [40] corresponding to : (C) stylet 108 

pathways in plant tissues except phloem and xylem; (pd) to potential drops (intracellular stylet punctures); (E1) 109 

to salivation in phloem elements; (E2) to passive phloem sap ingestion; (G) to active xylem sap ingestion; and 110 

(F) to derailed stylet mechanics. For each aphid species, 20-21 individuals were tested. 111 

Aphid performance on their host plants and on camelina 112 

The aim of this test was to study, for each species of aphids, their performance on camelina plantlets compared 113 

to those on their host plant. First instar nymphs (< 24h old) of aphids were obtained from parthenogenetic adult 114 

females placed on an artificial diet 24 h before the experiment. The artificial diet was prepared according to 115 

Febvay et al. [41] and modified by Down et al. [42]. For each aphid species, groups of five nymphs were 116 

transferred onto the abaxial face of leaves in the middle of the canopy and enclosed in clip-cages. In each clip-117 

cage, the date of appearance of the first offspring was used to define the end of the pre-reproductive period. At 118 

the end of this period, one single apterous adult female was kept in a clip-cage. Fecundity was assessed every 119 

two days for a duration equivalent to twice the pre-reproductive period as described in Le Roux et al. [43]. Pre-120 

reproductive period duration, daily fecundity, intrinsic rate of natural increase (rm) and the population’s doubling 121 

time (DT = ln2/rm) were calculated using the DEMP 1.5.2 Software [44] on replicates ranging from 31 to 40 122 

individuals. The intrinsic rate of natural increase (rm) was calculated as             , where x is the age, 123 

lx the age-specific survival, and mx the age-specific fecundity [45]. This parameter was selected to compare the 124 

ability of the different aphid species to establish a population on camelina and on their host plant. 125 

http://www.epgsystems.eu/
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Statistical analysis 126 

Mean values are given with their standard error of the mean (SEM). A generalized linear model, using a 127 

binomial distribution (R 3.0.0 - R Development Core Team 2013 [46]), was applied to compare the aphid 128 

abilities to leave the platform and to land on camelina. 129 

EPG parameters were compared between aphid species by using a Kruskal-Wallis one-way analysis of variance 130 

(H value), followed by nonparametric pairwise comparisons using the Siegel and Castellan solution [47] with a 131 

Dunn's correction [48] of the alpha threshold. The Intrinsic rate of natural increase (rm) of each aphid species was 132 

compared on camelina and on their respective host plant by a Mann-Whitney U test using the Siegel and 133 

Castellan solution [47]. Because homocedasticity of all distributions were not confirmed, EPG and rm analysis 134 

were performed with the Kruskal & Wallis's utility and Mann & Whitney 's utility, carried out by Georgin and 135 

Gouet [49] (http://Anastats.fr). 136 

137 
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Results 138 

Early steps of camelina plantlets colonization process 139 

At the end of the 24-h choice bioassay the four aphid species exhibited the same ability to leave the platform 140 

(GLM using a binomial distribution, χ² = 0.894; P > 0.05) or to land on camelina (GLM using a binomial 141 

distribution, χ² = 0.885; P > 0.05) (Fig. 2). The percentage of taking off ranged from 35 % (R. padi) to 60 % 142 

(M. persicae and B. brassicae). The percentage of aphids landing on camelina ranged from 20 % (R. padi) to 143 

35 % (M. persicae). 144 

Electrical penetration graph studies 145 

There was a significant effect of the aphid species for the following parameters (Table 1) : total duration of 146 

probing (H = 28.98; P < 0.001), number of probes (H = 17.43; P < 0.001), number of pathway phases 147 

(H = 14.61; P < 0.01), time of 1st probe to 1st E and E2 (H = 17.32 & H = 17.91; P < 0.001), mean phloem 148 

salivation phase (E1) duration (H = 16.45; P < 0.001) and mean phloem sap ingestion (E2) duration (H = 25.49; 149 

P < 0.001). 150 

Total duration of probing was significantly longer for the two polyphagous species A. fabae and M. persicae 151 

than for the two oligophagous species B. brassicae and R. padi (P < 0.05). The number of probes was 152 

significantly higher for B. brassicae and R. padi (P < 0.05). 153 

Regarding pathway phase parameters, the total duration of this phase and the mean number of potential drops 154 

were not significantly different between aphid species (H = 2.97 & H = 6.71; P > 0.05). 155 

For the phloem phase parameters, R. padi exhibited at least a two times greater shorter salivation phase (E1) than 156 

the other aphid species (H = 15.28; P < 0.01). Concerning the mean phloem sap ingestion (E2), R. padi ingested 157 

almost no phloem and B. brassicae fed for a duration of four to five times less than A. fabae and M. persicae. 158 

However, mean duration of the xylem sap ingestion (G) phase was not significantly different between aphid 159 

species (H = 4.18; P > 0.05). Finally, the total duration of stylet derailment phase in the mesophyll (F) was 160 

inconsequential for all species (H = 6.43; P > 0.05). 161 

Aphid performance on their host plants and on camelina 162 

Biological and demographic parameters of adult aphids were measured for each species of aphid on camelina 163 

and its respective host-plant, but only the rm data are presented when aphids were tested on their host plant. 164 
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Kruskal-Wallis statistical analysis showed an aphid species effect on all parameters on camelina presented in 165 

Table 2 : pre-reproductive period (H = 95.6; P < 0.05), longevity (H = 106.1; P < 0.05), daily fecundity 166 

(H = 60.1; P < 0.05), intrinsic rate of natural increase (rm) (H = 28.1; P < 0.05) and doubling time (H = 28.1; 167 

P < 0.05). Inter-specific pairwise comparisons showed that the pre-reproductive period was significantly higher 168 

for B. brassicae and shorter for R. padi compared to all other species of aphid on camelina (P < 0.05). Daily 169 

fecundity was significantly lower for R. padi, and conversely, more than twice as high for A. fabae (P < 0.05). 170 

Adult longevity was nearly as long for M. persicae and B. brassicae than for A. fabae and R. padi (P < 0.05). 171 

The intrinsic rate of natural increase and doubling time of A. fabae were significantly higher compared to 172 

B. brassicae and R. padi (P < 0.05). The rm and doubling time of M. persicae and R. padi were significantly 173 

lower compared to B. brassicae (P < 0.05). 174 

The Intrinsic rate of natural increase (rm) of each aphid species was compared on camelina and on its respective 175 

host plant (Fig. 3). The oligophagous species B. brassicae and R. padi had a significantly higher rm on their 176 

respective host plants B. napus and H. vulgare (U = 296 and U = 325, respectively; P < 0.001). Conversely, for 177 

M. persicae, the rm was significantly lower on its rearing plant (U = 247; P < 0.01). Finally, for A. fabae, this 178 

parameter was not significantly different between the two plants (U = 521; P > 0.05). 179 

180 
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Discussion 181 

 This study clearly showed that the four aphid species are likely to successfully colonize Camelina 182 

sativa as they all produced progeny on this plant. However, the two polyphagous species A. fabae and 183 

M. persicae and the two specialist species B. brassicae (cabbage specialist) and R. padi (cereal specialist) 184 

performed differently. 185 

Camelina colonization ability 186 

Host plant colonization by alate aphids is regulated by a sequence of steps [50, 51]: first, the host location and 187 

landing, followed by plant exploration and evaluation by brief testing probes. In the 24-h no-choice test, all four 188 

aphid species showed the same ability to leave the platform, to fly toward C. sativa and to land on it. In our 189 

experimental set up, flight orientation was probably triggered not only by volatile organic compounds emitted by 190 

the plant [52–54] but also by visual stimuli [55]. Furthermore, the time to the first probe was not different among 191 

the four aphid species. This suggests that C. sativa potential cues located on the plant's surface (e.g., wax or 192 

toughness of the leaf surface or volatiles) did not modulate orientation (attractive vs. repellent) nor probing 193 

(phagostimulant vs. deterrent) by aphids. These observations may seem surprising, as one would expect that the 194 

two generalist aphid species would be less attracted than the Brassicaceae specialist, B. brassicae and the cereal 195 

specialist not at all. Indeed, generalist aphids are usually indifferent or repelled by isothiocyanates emitted by 196 

Brassicaceae [53, 56], while specialist aphids are stimulated by secondary compounds [50]. However, Matthaüs 197 

and Zubr [22] indicated that camelina emitted mainly non-volatile isothiocyanates, certainly limiting attractant 198 

and repellent effects. 199 

Once initial contact and plant surface assessment has been made, aphids probe the epidermis and then display 200 

stylet pathway activity in the mesophyll before ingesting sap within phloem tissues, defining the final acceptance 201 

of the plant [51]. In the present EPG study, the suitability of camelina for all the aphid species is supported by 202 

the absence of any stress indicator such as high xylem sap consumption, longer salivation phase (E1) or many 203 

phases of stylet derailment [57–59]. In our study, although the total duration of phloem ingestion was reduced in 204 

B. brassicae compared to the two generalist aphids, other parameters such as the time to the first phloem 205 

ingestion stylet derailment and pathway phase periods were similar for all three species. These results are not 206 

consistent with previous studies which showed that specialist insects make faster decisions than generalist ones 207 

[60]. However they confirm that the lower acceptability of camelina by B. brassicae was not due to features of 208 

the peripheral tissue layers of the leaves but to phloem-located cues. One hypothesis is that aphids encountered 209 
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deterrents compounds which could explain the high number of probes and pathway phases observed in 210 

B. brassicae and R. padi, although the total duration of the pathway phase remained equivalent for all aphids 211 

species. Indeed, the number of probes is higher in the less suitable host [61]. A first candidate could be the 212 

camalexine which is a phytoalexin found specifically in C. sativa and not in rapeseed [62,63]. Onyilagha et al. 213 

[64] studied other compounds involved in the response of a Brassicaceae specialist insect, the crucifer flea beetle 214 

(Phyllotreta cruciferae) (Coleoptera: Chrysomelidae) to camelina. They showed that camelina tissues present a 215 

large concentration of feeding deterrent components, such as flavone and quercetin glycosides, contrary to 216 

Brassica species such as B. napus, which contains large amounts of kaempferol identified as a phagostimulant. 217 

B. brassicae exhibited the same difficulties as the crucifer flea beetle on camelina, suggesting that C. sativa 218 

bears original deterrent compounds that specifically affect Brassicaceae specialists. The possibility that 219 

M. persicae and A. fabae may have prevented the coagulation of phloem proteins and the formation of callose 220 

after entering phloem vessels cannot be excluded [65]. 221 

Concerning aphid performance on plants, survival and above all daily fecundity on camelina were also 222 

contrasted between the aphid species tested, confirming the results obtained from the EPG study. A. fabae and 223 

M. persicae exhibited both the highest rm and phloem sap consumption. It is noteworthy that the short longevity 224 

of A. fabae was compensated by a very high daily fecundity, corresponding to a trade-off relative to plant quality 225 

[66]. As expected, on camelina, the cereal specialist R. padi ingested very little phloem sap and its performances 226 

were very weak compared to the other aphid species. This indicates a type of antixenosis in which the strong 227 

feeding behavior alteration on the plant leads to the alteration of insects' physiological parameters [67]. 228 

Although, it was expected that the Brassicaceae specialist performed better on camelina than the generalist 229 

aphids [68], the generalists species seemed to be more efficient. Those results clearly indicate that Camelina 230 

sativa could become a potential host for these species mainly for the generalist ones which developed as well or 231 

even better than on their rearing host. 232 

Epidemiologic and agronomic implications 233 

 All four aphid species successfully developed and reproduced on camelina: Myzus persicae developed 234 

even better on C. sativa than on potatoes, which is consistent with the results of Le Guigo et al. [69] who showed 235 

that the polyphagous M. persicae performed better on Brassicaceae than Solanaceae. It was expected that 236 

R. padi, a cereal specialist, would be a "transient aphid"; i.e., occasionally landing, resting and hydrating on the 237 

plant [70] but surprisingly, camelina could also be a suitable host for this species, even if its performances were 238 
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lower than the other species. Therefore, A. fabae, B. brassicae, M. persicae and R. padi can be considered as 239 

camelina potential “colonizing aphids” [70, 71]. 240 

So far, very little is known about the phytoviruses that camelina may host. Séguin-Swartz et al. [72], state that 241 

camelina is likely to host three Brassicaceae viruses, the TCV (Turnip Crinkle Virus), the TRoV (Turnip Rosette 242 

Virus) and the TYMV (Turnip Yellow Mosaic Virus) and an Amaranthaceae virus, the BWYV (Beet Western 243 

Yellows Virus). In an epidemiological context, our feeding behavior analysis demonstrated that all four aphid 244 

species exhibited potential drops which is a suitable behavior for the vection of non-persistent plant viruses 245 

(requiring a landing and brief probes) [70, 73]. Their ability to form viable colonies also confirmed that the four 246 

aphid species are able to vector persistent virus (requiring a landing and a prolonged aphid phloem feeding) [70]. 247 

Therefore, virus propagation is an important risk factor to be considered carefully when planning the 248 

reintroduction of camelina in the agricultural landscape. 249 

On the other hand, camelina could serve as "virus sink" as defined by Hooks and Fereres [74]. Indeed, camelina 250 

can host aphids that also feed on non-Brassicaceae conventional crops, such as potatoes, legumes and cereals. 251 

These aphids could then lose their virus charge on camelina (for instance the Barley Yellow Dwarf Virus for 252 

R. padi or the Potato Virus Y for M. persicae) and consequently become virus-free aphids. 253 

The associations Brassicaceae - legume have often been used and promoted in organic but also conventional 254 

agriculture [23]. Intercropping usually minimizes environmental impacts by allowing lower inputs through 255 

reduced fertilizer and pesticide requirements [75]. For instance, mixed cropping peas with camelina had a great 256 

suppressive effect on weed coverage compared with sole pea [25]. The effect of mixed cropping with camelina 257 

on pest control has not been evaluated yet but is under investigation in our laboratory. 258 

When evaluating the risks posed by the introduction a new plant in an agrosystem, it is essential to use a more 259 

systemic approach, including assessing its effect on a wide range of potential insect pests usually associated or 260 

not with the focal crop. 261 

262 
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Table 1 Electrical penetration graph parameters (means ± SEM) calculated for four aphid species during an 8-h monitoring session on Camelina sativa plants. 442 

 Kruskal-

Wallis test 

A. fabae B. brassicae M. persicae R. padi 

EPG classes H(P) n = 21 n = 21 n = 20 n = 20 

General probing behaviour   

                

 

1. Time to first probe (min) 6.60 (NS) 10.02 ± 4.14 

 

28.08 ± 15.31 

 

20.59 ± 11.43 

 

30.08 ± 9.86 

 

 

2. Total duration of probing (min) 28.98 (***) 383.86 ± 21.62 a 273.68 ± 18.91 b 375.52 ± 20.75 a 236.15 ± 17.61 b 

 

3. Number of probes 17.43 (***) 9.01 ± 1.71 b 20.52 ± 2.49 a 10.05 ± 1.55 b 15.3 ± 2.13 a 

Pathway phase 
                 

 

4. Number of pathway phases  14.61 (**) 11.62 ± 1.76 b 23.81 ± 2.87 a 12.6 ± 1.73 b 17.15 ± 2.01 ab 

 

5. Total duration of pathway phases (C) (min) 2.97 (NS) 219.71 ± 26.24 

 

215.53 ± 18.44 

 

174.25 ± 21.85 

 

184.47 ± 17.93 

 

 

6. Mean number of potential drops (pd) 6.71 (NS) 62.48 ± 6.1 

 

107.29 ± 12.52 

 

76.7 ± 8.99 

 

85.9 ± 12.65 

 Phloem phase 
                 

 

7. Time of 1
st
 probe to 1

st
 E (min) 17.32 (***) 239.59 ± 41.16 b 196.32 ± 39.89 b 181.95 ± 33.78 b 400.49 ± 29.09 a 

 

8. Total duration phloem salivation phase (E1) (min) 15.287 (**) 15.92 ± 7.3 a 7.36 ± 2.65 a 8.12 ± 3.54 a 2.49 ± 1.62 b 

 

9. Time of 1
st
 probe to 1

st
 E2 (min) 17.91 (***) 284.24 ± 41.97 ab 198.29 ± 39.73 b 204.14 ± 37.26 b 430.24 ± 21.12 a 

 

10. Total duration phloem sap ingestion (E2) (min) 25.49 (***) 111.7 ± 34.21 a 28.76 ± 9.9 a 150.32 ± 35.58 a 0.1 ± 0.1 b 

Other parameters 
                 

 

11. Total duration of xylem ingestion (G) (min) 4.18 (NS) 36.54 ± 7.34 

 

22.03 ± 5.81 

 

33.72 ± 11.2 

 

42.64 ± 9.11 

   12. Total duration of stylet derailment (F) (min) 6.43 (NS) 0 ± 0   0 ± 0   1.19 ± 1.19   6.31 ± 5.11   
 443 

Asterisks indicate a significant difference: * P < 0.05, ** P <0.01, *** P <0.001 associated with H (Kruskal-Wallis test); the letters within a row indicate significant 444 

differences associated with following pairwise comparisons. 445 

 446 

447 
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Table 2 Mean (± SEM) population parameter values of four aphid species reared on Camelina sativa. H(P) Kruskal-Wallis test values with its probability within brackets. 448 

 449 

 Kruskal-Wallis test A. fabae B. brassicae M. persicae R. padi 

  H(P) n = 34 n = 38 n = 40 n = 31 

Pre-reproductive period (days) 95.6 (***) 7.00 ± 0.17 bc 9.79 ± 0.10 a 7.95 ± 0.18 b 6.26 ± 0.12 c 

Longevity (days) 106.1 (***) 14.59 ± 0.52 b 24.90 ± 0.058 a 22.75 ± 0.25 a 13.22 ± 0.32 b 

Daily fecundity (nymphs per female) 60.1 (***) 3.50 ± 0.21 a 2.55 ± 0.11 b 2.89 ± 0.12 ab 1.41 ± 0.12 c 

rm (female per female per day) 28.1 (***) 0.31 ± 0.01 a 0.25 ± 0.00 b 0.27 ± 0.00 a 0.26 ± 0.01 ab 

Doubling time (days) 28.1 (***) 2.30 ± 0.07 b 2.86 ± 0.05 a 2.60 ± 0.05 b 2.80 ± 0.14 ab 

 450 

Asterisks indicate a significant difference: * P < 0.05, ** P <0.01, *** P <0.001 associated with H (Kruskal-Wallis test); the letters within a row indicate significant 451 

differences associated with following pairwise comparisons. 452 
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Fig. 1 Experimental device used for the colonization experiment. 453 

 454 

Fig. 2 Percentage (n = 20) of aphids that took off from platform and the percentage of aphids that landed on 455 

Camelina sativa at the end of a 24-h bioassay. 456 

 457 

 458 

 459 
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Fig. 3 Intrinsic rate of natural increase (rm) (± SEM), of different aphid species reared on Camelina sativa and on 460 

their respective host plants, i.e., Vicia fabae, Brassica napus, Solanum tuberosum, Hordeum vulgare. For each 461 

aphid species and each plant, 22 to 40 individuals were tested. Asterisks indicate a significant difference in a 462 

choice test: * P <0.05, ** P <0.01, *** P <0.001 (Mann-Whitney U test). 463 

 464 
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