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Carbon storage in soils is one of the most promising strategies for mitigating greenhouse
gas emissions and the associated climate change. In this context, how plant root
systems respond to the elevation of the atmospheric CO2 concentration is of crucial
importance because these organs are the main source of C input into the soils. It is
expected that root growth will be stimulated by elevated CO2 as a consequence of
enhanced photosynthesis, and that this will favour belowground C sequestration. In add-
ition, larger root systems with optimized architecture are also expected to improve water
and nutrient acquisition by plants, and to indirectly stimulate photosynthetic CO2 capture.
This review critically examines the evidence supporting these expectations from a
molecular physiology perspective. We illustrate the strong but highly variable effects of
elevated CO2 on root system size and architecture, and provide an update on the signal-
ling mechanisms that may trigger these effects. This highlights the lack of knowledge on
the physiological and genetic bases of the root growth and development response to ele-
vated CO2, but shows that candidate genes and genetic resources are largely available to
fill this gap.

Introduction
The continuous elevation of the atmospheric CO2 concentration and its dramatic effects on climate
change now urgently call for efficient mitigation solutions. In its sixth assessment report, the IPCC
(Intergovernmental Panel on Climate Change) has compared various mitigation options for reducing
net greenhouse gases emissions (working group III report, figure SPM.7: https://www.ipcc.ch/report/
ar6/wg3/figures/summary-for-policymakers/figure-spm-7). It shows that one of the options with the
highest potential is carbon sequestration in agriculture, which can lead to a net emission reduction in
∼3.5 GtCO2-eq yr−1 by 2030, therefore almost at the same level as the shift to wind or solar energy.
The main compartment into which carbon can be stored in agriculture is the soil. Indeed, at the
global level soil C represents ∼1500–3000 Gt C, that is two to four times the total C content of the
atmosphere, and up to five times that of the Earth vegetation [1,2]. Moreover, the C stored in soil
organic matter can be stabilized for much longer periods of time than the C stored in vegetation, thus
limiting its re-emission to the atmosphere [3,4]. Considering current C stocks in the soils, it appears
that a relevant strategy will be to increase C storage in croplands, because their soils have generally
been strongly depleted in organic matter and their potential for additional C storage is consequently
much higher than soils of other land types [2,5–7]. Long-term sequestration of C in soils is deter-
mined by complex interactions between biotic and abiotic factors of the soil, including among others
the amount and the chemical composition of the organic inputs, the activity of micro-organisms
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including those involved in plant symbioses, and the availability of minerals for interaction with the organic
matter [3,4,8–11]. Thus, defining efficient approaches for improving C storage in cropland soils definitely
requires mobilizing soil sciences, but not only. We also need to think about a new generation of crops that will
fulfil a dual role: food and feed production and ecosystemic service associated with enhanced C sequestration
in the soil. Because the main origin of soil C is the organic C input from plant roots [4,9,10,12], elaborating
crop varieties with improved root system traits appears as a major strategy in this matter [2,7,11]. Increasing
the size of the root system is certainly a relevant objective, but modifying its architecture may even be more
important. In particular, deeper rooting is often highlighted as a major desirable trait for improving C input
and long-term storage into the soil, due to the fact that soil organic matter is generally much less abundant
and much more stable in the lower than in the upper soil layers [2,3,10,11].
On the plant side, the overall process ending with C input into the soil includes photosynthetic CO2 capture

in plant shoots, shoot-to-root translocation of the fixed C, incorporation of this C into root structures, and
eventually transfer to the soil following root exudation of organic compounds or root decomposition. Because
for most crops, improving C allocation to the roots creates a risk of yield loss if it is at the expense of C accu-
mulation into the harvested aboveground organs, a main issue in this context is to enhance all steps of the
overall process, including photosynthesis. Accordingly, C balance calculations indicate that increasing net
primary production of croplands is required for efficient C sequestration in their soils [6,13]. Until now, little
progress has been achieved in increasing the intrinsic efficiency of photosynthesis in crops [14]. Nevertheless,
because the current atmospheric CO2 concentration is not saturating for Rubisco activity in C3 plants, the ele-
vation of this concentration results in a stimulation of photosynthesis (the so-called CO2 fertilization effect).
Indeed, most studies performed with C3 crops grown at elevated CO2 concentration (eCO2) indicate that shoot
growth and development are stimulated, and that yield is significantly increased as compared with ambient
CO2 (aCO2), although this can be highly variable between experimental set-ups and species [15–18].
Furthermore, it is now more and more documented that the CO2 fertilization effect associated with the ∼50%
increase in the atmospheric CO2 concentration since the 19th Century actually already resulted in a stimulated
net aboveground plant primary production, which constituted a significant terrestrial C sink and thus a nega-
tive feedback on global warming [19–22]. In comparison, much less is known about the effects of eCO2 on
root growth and development, in particular at physiological and molecular levels [16,23–26]. This is a strong
knowledge gap making unclear if the enhanced aboveground biomass production mediated by the CO2 fertil-
ization effect actually translates into improved root traits favouring C sequestration in the soil.
Our aim in this article is to provide an overview of the recent literature on the responses of the root system

size and architecture to eCO2, focusing on the signalling mechanisms that are proposed to drive these responses
at the root growth and development levels. We also discuss the hypothesis that, in addition to favouring C
storage in the soil, stimulated growth and optimized architecture of the root system in response to eCO2 can
have two other positive synergistic effects. First, increased soil exploration with optimized architecture may
improve water and nutrient acquisition efficiency [27]. Second, enhanced C allocation to the root system may
indirectly stimulate photosynthesis, by preventing the eCO2-induced down-regulation of photosynthetic cap-
acity (the so-called acclimation of photosynthesis to eCO2) resulting from sink limitation in the utilization of
photosynthates [28]. Most of the literature discussed below concerns C3 plants, because eCO2 has generally
little impact on growth of C4 plants [15,17].

Responses of root system growth and architecture to eCO2
Many studies have investigated the responses of plant growth and development to eCO2 on the ecosystem,
community, population, physiological and molecular scales [15,16,29,30], but in contrast with the abundance
of data available on aboveground tissues, knowledge of the effects of eCO2 on root system growth, morphology
and anatomy is limited [16,31]. As detailed below, the responses of root growth and development to eCO2 are
highly variable, often preventing general conclusions. In addition to the strong methodological difficulties asso-
ciated with root phenotyping, several factors, such as differences between species, between experimental set-ups
and between other environmental parameters contribute to this.

Root growth
The general consensus is that in C3 species, photosynthesis and C allocation to plant roots increase as atmos-
pheric CO2 rises, which leads to an increase in both above- and belowground biomass [23,24,32,33] .
Stimulatory effects of eCO2 on root biomass have been observed in Arabidopsis [34–36], forest trees [37,38],
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grasses [39] and many important crops [32,40] among which soybean [41], wheat and sugar beet [42], and
tomato [43,44]. Quantitatively, increases in root biomass of 20–40% are frequently reported [23,24,33], which
can in specific studies raise to more than 100% [38,41]. However, other studies refuted the generality of these
observations, showing no significant effect, or even a negative effect of eCO2 on root growth in trees [45–47] or
crops [42,48,49]. Various hypotheses have been proposed for explaining this lack of root growth stimulation,
such as increases in root mortality [47] or down-regulation of root growth resulting from higher water use effi-
ciency [45]. Furthermore, the extent of root growth stimulation may depend on the developmental stage, as
shown in barley where the initial increase in root growth was reversed at late vegetation stages to result in a
reduced root biomass under eCO2 as compared with aCO2 at final harvest [42].

Root/shoot partitioning of biomass
Plant strategically allocate biomass between above- and belowground tissues to optimize growth and function-
ing in fluctuating environment, and the changes in this allocation are expected to have a major importance on
C input into the soil and on the competition with yield. However, observations on the response of root:shoot
biomass ratio (R/S) to eCO2 are contradictory. On the one hand, eCO2 was shown to have a significant positive
effect on R/S at both plant or ecosystem scales[24,34,41,50–53]. This preferential stimulation of root growth has
been recorded from direct measurements of total biomass of shoot and root system in controlled environment,
or from estimates of root length from minirhizotron experiments, or estimates of root length per unit volume
of soil measured from soil cores. Substantial CO2 research conducted on different forest tree species have
revealed an increase in R/S ratio, but more frequently in agricultural crops, particularly root and tuber crops,
and grassland [30,39,42,51,54]. Nevertheless, even in these reports, there is no general consensus on the degree
of positive response on R/S, as it was shown to markedly depend on species or on interactions with water and
nutrient management [23,39,42]). On the other hand, many other reports indicated no effect of eCO2 on R/S
[33,46,48,55,56], or even a negative effect [49]. Of particular interest is a recent large-scale meta-analysis of 630
experiments concerning 460 species, showing a surprisingly stable R/S over a range of 200–1200 ppm CO2 [56].

Root system architecture
The generally observed increase in root biomass in response to eCO2 does not obligatory mean a change in
root system architecture (RSA). Indeed, an increase in root biomass could also reflect an increase in root diam-
eter and/or root tissue density, accompanied by little change in total root length, root branching or life span
[25]. As a matter of fact, thicker roots seems to be a very frequent trait associated with growth under eCO2

[23,56,57] . Recently, Wang et al. [58] demonstrated that the thicker roots trait under eCO2 of temperate
woody and herbaceous species was primarily driven by the increase in cortical thickness rather than stele
radius. However, many studies suggest that eCO2 has also a strong effect on RSA, by increasing the total root
number and total root length. This is especially true for Arabidopsis, where plants grown under CO2 enrich-
ment showed significant increase in total root/lateral root (LR) length and a higher number of these roots
[23,34,35,57]. Similar results have been obtained for different crop species, such as cotton [41], tomato [43],
and wheat [42]. The meta-analysis study from Nie et al. [24] on the data from 110 published reports showed
that the overall eCO2-induced stimulation of root length (+26%) was much stronger than that of root diameter
(+8.4%) and that eCO2 caused similar increases in root length and total root biomass (+26% vs 28.8%), sug-
gesting that root elongation plays a key role in root biomass accumulation.
Additionally, eCO2 can influence root branching pattern. Roots can vary significantly in their topology

between two extreme branching patterns, dichotomous and herringbone [59]. A herringbone pattern consists
in coarser, sparsely branched root systems more efficient at capturing mobile resources over large soil volumes
whereas dichotomous structures are highly branched root architectures providing the potential for exploration
of local soil volumes. There are only few studies that investigated in detail the root architectural responses to
eCO2, because this requires an experimental access to a more or less entire root system. Most of these studies
suggest that plants build more dichotomous root systems with an increased number of laterals in response to
eCO2 [23,25]. In Arabidopsis, eCO2 changed the root branching pattern from herringbone to dichotomous
through an increase in LRs density [34,35,57]. Similar responses were reported from Berntson and Woodward
with Senico vulgaris L [60]. However, due to the need to access to the root system, these data mainly reflect
responses of container-grown herbaceous species and these experiments were often limited to individual juven-
ile plants physiologically constrained by their environment and root volume. Interestingly, long-term studies
(up to 14 years) with loblolly pine grown on soil suggest the opposite response, with a less dichotomous
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pattern under eCO2 [37]. An alternative approach to investigate RSA in more natural or agronomic conditions
is to distinguish the respective responses of coarse and fine roots in plants grown in soil. Coarse roots
(>2 mm), accounting for up to 40% of total biomass in terrestrial ecosystems, represent a large fraction of the
more stable plant C pool and have been predicted to accrue greater biomass under eCO2 [61]. Fine roots
(≤2 mm diameter) are critical in plant water and nutrient absorption and are the main interface between
plants and the soil ecosystem. They are also an important component of the global C cycle as their production
comprises around one third of global annual net primary productivity (NPP) in terrestrial ecosystems [62].
Fine root production has been shown to be stimulated by eCO2 in ecosystems ranging from forests
[47,54,55,63], grasslands or steppe [64] and croplands [23], or a mixture of these ecosystems [24,65]. However,
the direction and magnitude of these responses vary across different study sites and negative or no effects of
eCO2 on fine roots biomass are also reported in long-term studies, depending on other environmental con-
strains [45,66]. For instance, natural disturbances such as fire and hurricane play a major role in the root
growth response of scrub-oak shrubland after 11 years of eCO2 treatment [51]. Root hairs make also a signifi-
cant contribution to increasing root surface area, facilitating physical anchorage and providing a large interface
for nutrient uptake. Elevated CO2 not only promoted the initiation of root hairs, but also increased the density
and length of root hairs in Arabidopsis [67].

Depth patterning
The vertical distribution of roots between the soil layers is a crucial root trait determining both the C sequestra-
tion in soils and the efficiency of water and nutrient acquisition by plants [11,27]. As such, it has received sig-
nificant attention in eCO2 studies, with very variable conclusions as for many of the above-mentioned aspects
of root growth and development. Experimental evidence from a diverse set of forest ecosystems studies indi-
cates that fine root of trees exposed to eCO2 are distributed more deeply in the soil profile relative to trees
grown under aCO2 [54,68,69]. One hypothesis to explain deeper rooting distribution in forest systems would be
limited resources availability in shallower soil profile due to plant competition. For instance, N may become
increasingly limiting for long-lived plants and those plants can invest in fine root biomass deeply in the soil to
increase the exploration of deeper N resources [70]. In addition, Smith et al. [63] reported that the root
biomass response to eCO2 was greater when tree species were in polyculture compared with 4 years monocul-
ture FACE experiment, suggesting competitive interaction in monoculture which is avoided by root stratifica-
tion and resources use complementarities in polyculture. Besides trees, a deeper distribution of roots in
response to eCO2 was also reported in other species, including crops [24,64]. In contrast, many other studies
rather reported a shallower root system in plants grown at eCO2 as compared with aCO2, especially for crops
and grasses[16,23,25,49,68].

Signalling mechanisms regulating root growth and
development in response to eCO2
Regulation of sugar transporters
Growth and development of the roots primarily rely on the amount of photosynthates they receive from the
shoot through downward phloem transport. In most herbaceous and crops species, export of photosynthates
from source leaves involves the loading of sucrose into the phloem via an apoplastic route, which requires the
action of dedicated transporter proteins. Sucrose is excreted out of the phloem parenchyma cells into the apo-
plasm by the SWEET (SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTERS) facilitators, and is
subsequently taken up into the phloem companion cells by proton-coupled Suc transporters (called SUT or
SUC) [71,72]. In the roots, the same transporters families are involved in the apoplastic unloading of sucrose,
although the symplastic pathway (direct cell-to-cell transfer through plasmodesmata) may also be important
[71,73]. In addition, SUC/SUT and SWEET transporters contribute to the flux in and out of the root vacuoles
[73]. Several members of the SUC/SUT and SWEET families have been shown to be of crucial importance for
growth and development of the root system. In Arabidopsis, ko mutation of AtSUC2 leads to an arrest of the
primary root elongation following the autotrophy transition of the seedlings [74], and ko mutation of
AtSWEET17 reduces emergence and growth of LRs [75]. Moreover, the expression of SUCs/SUTs and SWEETs
is strongly regulated, and correlations were found in Arabidopsis between the transcripts levels of a subset of
these genes (AtSUC2 and AtSWEET12–13 in leaves, and AtSUC1–2 and SWEET11–13 in roots) and the parti-
tioning of carbohydrates between shoots and roots [76]. However, the data on the regulation of SUCs/SUTs and
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SWEETs expression by eCO2 are scarce, and little is known concerning the role of these transporters in the
growth and developmental responses of the roots to eCO2. In Arabidopsis leaves, eCO2 up-regulates the expres-
sion of AtSWEET12 and that of AtSUT4(SUC4), encoding a minor component of the phloem sucrose loading
system, whereas expression of AtSUC2, encoding the major component of this system, is unaffected [77]. In
rice, the comparison of three cultivars with contrasted yield responses to eCO2 showed that the expression of
OsSUT1 and OsSUT2 in the flag leaves is induced by eCO2 only in the cultivar showing the strongest yield
response, and that this induction is associated with the absence of the down-regulation of photosynthetic cap-
acity recorded in the other cultivars [78]. This supports the hypothesis that up-regulation of phloem sucrose
transporters may be important to avoid acclimation of photosynthesis to eCO2 by preventing excessive accumu-
lation of soluble sugars in the source leaves [71]. Unfortunately, neither above studies investigated the putative
consequences of the induction of AtSUT4(SUC4), AtSWEET12, OsSUT1 and OsSUT2 by eCO2 on root growth
and development. However, a recent study unravelled that expression of AtSUT4(SUC4) in the roots is induced
by exogenous sucrose provision, and that primary root growth in atsuc4 mutants is partially insensitive to
sucrose supply [79]. In addition, atsuc4 mutants display reduced sucrose accumulation in the roots, and attenu-
ated ABA and IAA responses to sucrose. As AtSUT4(SUC4) is localized at the plasma membrane of root cells,
this suggests that this transporter may contribute to the uptake of sucrose from the apoplasm into the cells,
therefore mediating the responses triggered by sucrose supply.

Sugar signalling
Beside their role as energy substrates and C skeletons, sugars are key signal molecules governing, in interaction
with other signals, many if not all growth and developmental processes (see [80–83] for general reviews). It is
then often hypothesized that the responses of root system size and architecture to eCO2 result from the action
of sugar signalling mechanisms activated by increased sugar availability [29,84]. Indeed, exogenous sucrose
supply to the roots mimics the effects of eCO2 on primary and LR growth [57], and changes in root elongation
in response to various environmental cues correlate with those of local hexose concentrations in the growing
zone of the roots [85]. In the section below, we focus on the main sugar-sensing pathways identified in plants
[86] that involve HXK (HEXOKINASE), TOR (TARGET OF RAPAMYCIN) and SnRK1 (SUCROSE
NON-FERMENTING-RELATED KINASE 1) kinases, or heteromeric G-proteins (Figure 1). We also mention a
couple of molecular regulators like PIP5K9 (PHOSPHATIDYL INOSITOL MONOPHOSPHATE 5 KINASE)
and WOX7 (WUSCHEL RELATED HOMEOBOX 7), that were not related to these main pathways, but are
nevertheless involved in the sugar regulation of root growth (Figure 1). Most studies investigating the root
responses to sugars indicate that the associated developmental changes result from changes in hormone distri-
bution and signalling triggered by the sugar sensing pathways. These interactions between sugars and hormones
will be briefly mentioned in this section but not treated in detail as they have been the matter of recent dedi-
cated reviews [80,83,87].
The HXK glycolytic enzyme has a key dual metabolic/signalling function and acts as a glucose sensor

[81,86,88]. In Arabidopsis, HXK1-dependent sugar sensing has positive or negative effects on root growth at
low or high exogenous glucose supply, respectively. Concerning primary root growth, HXK1 was shown to
mediate part of the growth stimulation in response to exogenous glucose supply (up to 3% concentration)
because this stimulation was markedly attenuated in the gin2 (GLUCOSE INSENSITIVE 2) HXK1 mutant as
compared with the wild-type [89]. This accelerated root growth by glucose could be explained by an alteration
of auxin transport in the root, associated with an increased expression of the PIN1 (PIN-FORMED1) and PIN2
(PIN-FORMED2) auxin efflux transporters at the transcript and protein level, respectively [89]. Interestingly, a
similar mechanism may be involved in the opposite effect of HXK1, which represses primary root growth at
higher glucose concentrations. Indeed, providing glucose at 3 or 5% concentration led to an inhibition of PIN1
expression in the root meristem, associated with changes in auxin accumulation at the root tip, and a reduction
in the apical meristem size and cell number [90]. In addition, HXK1-mediated repression of primary root
growth has recently been shown to involve autophagy and production of ROS (REACTIVE OXYGEN
SPECIES) upstream of auxin [91]. HXK1 also regulates LR development by stimulating both LR primordia ini-
tiation and emergence at low glucose concentrations or high light [92]. The glucose- or high light-induced LR
development involves BRI1 (Brassinosteroid Insensitive 1)-dependent brassinosteroid signalling downstream of
HXK1, and auxin transport or regulatory genes, including PIN2, AXR3 (AUXIN RESISTANT 3) and the
SLR-ARF7/9 (SOLITARY-ROOT - AUXIN RESPONSE FACTOR 7/9) module, further downstream of
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brassinosteroids [92]. In addition, ethylene antagonizes this glucose-brassinosteroid signalling pathway and
represses LR emergence by acting downstream of HXK1–BRI1, but upstream of auxin [93].
The TOR and SnRK1 kinases are central regulators integrating nutrient, energy and hormone signals to

modulate metabolism and growth [82,86,94]. TOR is generally activated by high energy or nutrient status,
whereas SnRK1 is at the opposite active under low energy status. In Arabidopsis roots, TOR promotes both cell
multiplication in meristems and cell expansion in the elongation zone in response to glucose [95,96].
Glucose-TOR signalling regulates meristem activity through the phosphorylation of the E2Fa transcription
factor, which transcriptionally activates cell cycle S-phase genes and therefore accelerates cell division in
response to photosynthetic sugar production in the shoot and glycolytic sugar metabolism in the roots [95].
This TOR-E2Fa relay was shown to be independent from HXK1 and auxin/cytokinin signalling pathways. Very
recently, TOR was reported to act on meristem activity at an additional level by modulating genome-wide chro-
matin dynamics [97]. Indeed, FIE (FERTILIZATION-INDEPENDENT ENDOSPERM), a component of PRC2
(POLYCOMB REPRESSIVE COMPLEX 2) that catalyzes repressive histone mark deposition (H3K27me3) is a
TOR target. TOR-dependent phosphorylation of FIE promotes its cytoplasm to nucleus translocation, which
results in a specific increase in H3K27me3 marks (as compared with other histone marks) and therefore in epi-
genetic silencing of key regulatory genes [97]. SnRK1 also regulates meristem activity in Arabidopsis roots but

Figure 1. Model of sugar sensing pathways involving Hexokinase (HXK), TOR and SnRK1, or heteromic G-proteins and molecular

regulators related to sugar regulation of Arabidopsis root growth.

The different developmental root responses rely on changes in hormone distribution and signalling triggered by the sugar sensing pathways. In

response to glucose starvation, SnRK1 regulates meristem activity leading to primary root growth inhibition. TOR also regulates meristem activity

but in the opposite direction by phosphorylating specific protein targets involved in cell cycle activation or in key gene regulation. TOR can also act

on root elongation by modulating auxin distribution through the phosphorylation of PIN2. The HXK glycolytic enzyme has a dual effect on root

growth depending on low or high exogenous glucose supply. These responses rely on change in PIN1/PIN2 expression, altering auxin transport in

the root elongation zone. At low glucose concentration, lateral root intiation/emergence is stimulated by HXK1. This involves a BRI1-dependent

brassinosteroid signalling, ethylene and auxin signalling pathway. In addition, several genes were identified as regulators of sugar-induced changes

in root growth and development such as PIP5K9 or WOX7.
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in the opposite direction, leading to an inhibition of primary root growth in response to sugar starvation [98].
SnRK1-induced low energy signalling involves bZIP11 (BASIC LEUCINE-ZIPPER 11) and related transcription
factors, which activate the IAA3/SHY2 (INDOLE-3-ACETIC ACID INDUCIBLE 3, SHORT HYPOCOTYL 2)
regulatory module to repress the expression of PIN1 and PIN3 in the primary root tip, thereby leading to local
auxin depletion and reduced meristem size [98]. Besides meristem activity, TOR triggers the stimulation of root
elongation in response to glucose by phosphorylating and stabilizing PIN2, which mediates the transport of
auxin out of the root elongation zone [96]. This ensures that the root elongation zone remains a low auxin
response zone, which is a requirement for efficient cell expansion and root elongation. Finally, TOR is also
involved in the formation of adventitious roots from shoot tissues, through TIR1 (TRANSPORT INHIBITOR
RESPONSE1)/AFB (AUXIN-SIGNALLING F-BOX)-dependent auxin signalling [99].
In Arabidopsis, the heterotrimeric G-protein complex (GPA1, AGB1 and AGG proteins) is through to be

coupled with the plasma membrane RGS1 (REGULATOR OF G-PROTEIN SIGNALLING 1) receptor-like
protein to mediate extracellular glucose sensing [86]. G protein-dependent sugar signalling was shown to play a
significant but complex role in regulating LR growth and development. Indeed, while RGS1 acts as a positive
regulator of LR density [100], the three G-protein subunits appear to have contrasted functions, with GPA1
promoting, and AGB1/AGG repressing auxin-induced cell division in LR primordia [100,101]. Furthermore,
the readout of the G protein-dependent sugar signalling is further complicated by the fact it modulates the
glucose-auxin interaction in LR development, which can translate either in synergistic or antagonistic effects of
both signals [83,102].
In addition, several genes were identified as regulators of sugar or photosynthesis-induced changes in root

growth and development, but were not to date related to the above mentioned main sugar signalling pathways.
For instance, PIP5K9, a key enzyme in the phosphatidylinositol signalling pathway, was shown to negatively
regulate the activity of the CINV1 (CYTOSOLIC INVERTASE 1) invertase in Arabidopsis roots, thereby alter-
ing sucrose metabolism and sugar-mediated elongation of the primary root [103]. The Arabidopsis WOX7 tran-
scription factor gene is expressed in LR primordia where it is strongly induced by increasing sucrose
concentrations [104]. As compared with the wild-type, a wox7 mutant and WOX7-overexpressing plants
display higher and lower LR numbers in glucose-containing media, respectively. This suggested that WOX7
contributes to the inhibitory effect of high sugar on LR initiation [104].

eCO2-induced hormonal signalling
Studies that directly investigated the mechanistic bases of the root developmental responses to eCO2 are scare.
However, most of them point out a role of hormone signalling pathways, but surprisingly rarely in connection
with sugar signalling (Figure 2). In Arabidopsis, tomato and tall fescue, eCO2 promotes the development of
root hairs and/or LRs [35,67,105,106]. These effects are associated with a higher IAA accumulation and/or sen-
sitivity in the roots, and the induction of auxin biosynthesis genes, such as YUCCA8 in Arabidopsis[35], or
FaYUCCA11 in tall fescue [105]. For root hairs, the growth stimulation in response to eCO2 is almost totally
suppressed in auxin signalling or transport mutants (axr4-1, aux1-7 and pin1-1). Moreover, auxin (NAA) and
eCO2 similarly induced gene expression of the positive regulators of root hair development CPC (CAPRICE),
TRY (TRIPTYCHON) and ROP2 (RHO-RELATED PROTEIN FROM PLANTS 2), while they repress that of
the negative regulator WER (WEREWOLF) [67]. These data suggest a positive role of auxin signalling in the
eCO2-induced stimulation of LRs or root hairs development.
Nevertheless, auxin is certainly not the only player as cytokinins (CKs) were also reported to mediate the

stimulation of root growth in response to eCO2. Indeed, eCO2 induces the expression of CK biosynthesis genes
in the roots, such as IPT3 (ISOPENTENYLTRANSFERASE 3) and CYP735A2 (CYTOCHROME P450) in
Arabidopsis[107], or FaIPT8 (ISOPENTENYLTRANSFERASE 8) in tall fescue [105]. Although this did not
always result in a higher accumulation of active CKs forms in the roots, the positive role of CKs was evidenced
by the fact that CK biosynthesis multiple mutants (ipt3ipt5ipt7 or cyp735a1cyp735a2) display a reduced root
growth stimulation in response to eCO2 as compared with the wild-type [35,107]. Moreover, ethylene is prob-
ably also involved because the eCO2-enhanced development of root hairs in tomato is accompanied by a
marked stimulation of ethylene production [106]. It has been proposed that the activation of both auxin and
ethylene signals in response to eCO2 leads to an enhanced NO (Nitric Oxide) production in the roots, also con-
tributing to the stimulation of LRs and root hairs formation [108,109].
Despite the abundant literature showing that sugars interact with hormones in controlling root growth (see

previous section), whether sugar signalling always explains how eCO2 triggers auxin, CKs or ethylene synthesis
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in roots remains unclear. As a matter of fact, depending on studies, exogenous sugar supply can mimic the
effects of eCO2-induced hormone signalling on root growth [107], or not [35]. Alternatively, the possibility
remains that eCO2 acts on root growth through changes in long distance transport of hormones between roots
and shoots, independently of local sugar signalling in the roots [35,107]. Interestingly, a recent report unrav-
elled that the rice OsGF14b 14-3-3 protein, which activates IAA signalling in shoots [110], acts as a negative
regulator of root growth stimulation by eCO2[111].

Peptide signalling
The CEP (C-TERMINALLY ENCODED PEPTIDE) gene family encodes short proteins that generate 14 or 15
aa-long signalling peptides (CEPs) after cleavage at the C-terminus [112]. In Arabidopsis, CEPs play a key role
in systemic N signalling governing root nitrate uptake [113–115]. In addition, CEPs act on root development in
both Arabidopsis and Medicago, in particular by regulating LR and nodule formation [112,116]. Interestingly,
many MtCEP and AtCEP genes are induced in the roots by eCO2 or sucrose [116,117], with the exception of
AtCEP3, which is at the contrary strongly repressed by eCO2 [112]. Functional analysis showed that CEPs act
as repressors of root development. Over-expression of AtCEP1, 2, 3, 4, 5, 6 and 9 reduces primary root length
as compared with the wild-type [112,118,119]. Moreover, combined approaches using over-expressors, null
mutants or silenced transformants, and exogenous supply of the putative 15 aa peptide products demonstrated
that MtCEP1,2,5 and 11, and AtCEP1, 3 and 5 are repressors of LR formation [112,116,118,119]. For AtCEP3
and 5, the effect is due to a repression of LR primordia initiation, but not of the following steps of LRP devel-
opment [112,119]. However, CEP5 was also reported to reduce the meristem size in emerged LRs [117].

Figure 2. Genetic and hormonal control of root development in response to elevated atmospheric CO2 concentrations (eCO2).

Genetic and hormone networks are color-coded. eCO2 promotes the development of root hairs, lateral roots and/or primary root. These effects are

generally associated with hormone biosynthesis, accumulation and sensitivity. The CEP gene family encodes short signalling peptides perceived by

LRR-RKs receptors (CEPR1/CRA2). CEPs act as negative regulators of root formation in Arabidopsis and Medicago and many MtCEP and AtCEP

genes are regulated by eCO2.
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As for the regulation of root nitrate uptake, the inhibitory effect of CEPs on LR development involves their
perception by LRR-RKs receptors (CEPR1 and 2 in Arabidopsis) [117,119,120]. Most importantly, the action of
CEPRs in inhibiting LR growth is dependent on photosynthates availability. Indeed, the Arabidopsis cepr1
mutant can display reduced LR density and lower LR length as compared with the wild-type, indicating a posi-
tive role of CEPR1 in LR development, which is opposite to that of its CEP ligands [117,119,120]. However,
this phenotype is totally reversed under high light conditions or exogenous sugar supply, with a markedly sti-
mulated LR development in cepr1 single or cepr1cepr2 double mutants as compared with the wild-type
[117,120]. As a consequence, these mutants display a strongly amplified stimulation of LR formation in
response to sugars. Given the sugar inducibility of most CEP genes, this suggests that CEPs/CEPRs predomin-
antly act as a negative regulatory module to dampen the sugar- or eCO2-induced stimulation of LR formation.
One exception to this may be CEP3, which unlike other CEP genes, was down-regulated by eCO2 [112]. This
may then relieve CEP3-mediated repression of LRP initiation, and at the opposite contribute to the
eCO2-induced stimulation of LR formation.
Unlike for the regulation of root nitrate uptake, the CEP–CEPR module does not only act at the systemic

level, but also locally. Indeed, both CEP and CEPR genes are expressed in the roots, and often specifically in or
nearby LR primordia or in the basal meristem where LR primorida are initiated [116,118,119]. Furthermore,
grafting experiments show that CEPRs function in both roots and shoots to regulate LR development
[117,120]. However, a recent study indicated that in both Arabidopsis and Medicago, the CEP–CEPR signalling
also controls the gravitropic set-point angle of LRs, to increase the overall width of the root system [121]. In
this case, CEPR1 or CRA2 (COMPACT ROOT ARCHITECTURE 2) (its putative ortholog in Medicago) act
specifically in the shoot, but not in the root, possibly by lowering rootward transport of auxin.

Interactions with nitrogen and water
N/eCO2 interactions in the regulation of root growth/architecture
There is a large amount of evidence in many different species showing that root growth and development
responses to eCO2 are strongly affected by other abiotic factors, at the first rank of which N and water
[35,37,39,43,50,65], although there may be exceptions [42,64]. As a matter of fact, root system size and architec-
ture are highly plastic in response to changes in N or water availability per se [122–125]. Often, stimulation of
root growth by eCO2 is more obvious under moderate N stress [35,65,105], which can be explained by the fact
that N limitation favour root over shoot growth, a tendency that is amplified under eCO2 when photosynthates
are even more available in source leaves for preferential allocation to the roots. In addition, at the molecular
level N signalling pathways strongly interact in the roots with the above-mentioned hormonal or peptide signal-
ling components participating in the eCO2 or sugar-induced changes in root growth, e.g. auxin transporters,
auxin and cytokinin biosynthesis enzymes or CEPs [113–115,126–129]. However, although some work was
done to elucidate how eCO2 or sugar signalling mechanisms control N acquisition and metabolism [84,130],
no attempts have been made yet to investigate how N signalling mechanisms modulate the root developmental
responses to eCO2.

Ideotypes for efficient root acquisition of water and N
A key point that remains under debate is to determine whether the eCO2-induced changes in root system size
and architecture actually lead to improved N or water acquisition efficiency, or not. It is commonly postulated
that an increased size of the root system favours the acquisition of water and nutrients, owing to the larger
exchange surface between the plants and the soil, and to a more efficient soil exploration by the root system
[28,131]. Accordingly, Arabidopsis or oil seed rape genotypes with improved root growth actually have a higher
N uptake capacity [132,133]. Conversely, mutants impaired in root development can be deficient in N uptake
[134]. Furthermore, many reports indicated that an improved biomass production in response to eCO2 could
be attributed to a stimulation of the uptake of water or nutrients, associated with an increase in root system
growth [135–141].
However, root system architecture may be more relevant than total size for understanding the relationship

between root development and nutrient or water acquisition efficiency [27,142]. Indeed, it has even been pro-
posed that reducing the size of the root system may be advantageous for improving water use efficiency and
resistance to drought, provided this is compensated by more optimal architectural or anatomical traits [143]. In
maize, genotypes with a low number of LRs or of crown roots performed much better under drought stress
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than genotypes with a more branched root system [144,145]. This is in particular explained by the fact that
plants with fewer laterals or crown roots display a deeper rooting phenotype, associated with an increased
mean root length. This is postulated to allow the roots to grow further down and colonize lower soil domains,
where water remains more available than in the topsoil. There have been only few attempts to investigate this
hypothesis under eCO2 conditions, but a series of experiments on wheat and canola plants subjected to con-
trasted irrigation regimes confirmed that a greater stimulation of root growth in deep soil layers in response to
eCO2 was actually associated with higher water use and yield [138–141]. With the same rationale, deep rooting
is also expected to result in an increase in N uptake by the plant and a reduced leaching of nitrate in the soil
[27,146–149].
The developmental mechanisms associated with deep rooting phenotypes are still largely obscure. However,

a series of recent studies highlighted the importance of the root growth angle as a key architectural trait deter-
mining topsoil or subsoil foraging [150], and allowed the identification of underlying molecular regulators
(Figure 3). Indeed, steeper angles result in deeper root systems. In rice, the DRO1 (DEEP ROOTING 1) protein
of unknown function favours gravitropic downward bending of the root tip growth, resulting in steeper root
angles [151]. Increasing OsDRO1 expression or introducing a favourable allele of OsDRO1 into a shallow-
rooting rice genotype enhanced root colonization of deep soil layers without affecting total root biomass or

Figure 3. Exemples of key genes and functions controlling deep or shallow root system architecture in diverses species.
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total root length. This improved both drought resistance, root N uptake and yield [146,151]. At the opposite,
the rice actin binding protein RMD (RICE MORPHOLOGY DETERMINANT) inhibits gravitropic downward
bending by delaying statolith sedimentation in collumella cells [152]. This results in a shallower crown root
angle, leading to a preferential root colonization of the upper zones of the soil and an improved acquisition of
phosphate that is predominantly located in the topsoil [152]. In maize, deep rooting also has a positive effect
on N acquisition [153,154]. Recently, the ZmCIPK15 (CBL-INTERACTING PROTEIN KINASE 15) serine-
threonine protein kinase was identified from a genetic screen for variation in root growth angle and was shown
to favour shallow rooting by lowering growth angle of crown roots [149]. Accordingly, a cipk15 transposon
insertional mutant had a steeper root growth phenotype and performed better than the wild-type in field trails,
with an 29% increase in shoot N accumulation and an 18% greater shoot biomass production under N limiting
conditions [149]. However, no differences were found in shoot biomass between the mutant and the wild-type
in response to drought. In wheat and barley, the key regulator of flowering VRN1 was found to also regulate
root system architecture. The mutant allele present in spring varieties (which do not require vernalization for
flowering) increases the root growth angle, leading to deeper root systems as compared with wild-type winter
types [155]. Interestingly, NILs carrying the spring allele have a reduced R/S, confirming that deep rooting is
not necessarily associated with a larger size of the root system. In Arabidopsis, the EXOCYST70A3 (EXOCYST
SUBUNIT EXO70 FAMILY PROTEIN A3) gene, encoding a putative component of vesicle-tethering complex
involved in exocytosis, plays an important role in controlling the auxin-dependent gravitropic response, by
regulating the level of the PIN4 auxin transporter at the plasma membrane [156]. Surprisingly, the
EXOCYST70A3 alleles that confer a shallow root system were also those associated with an increased resistance
to drought. As these alleles are overrepresented in accessions originating from areas with a high variability in
weekly precipitation, this may reflect a higher efficiency of shallow root systems for taking advantage of sparse
rainfalls [156]. This illustrates the fact that a deep rooting phenotype may not always be beneficial, and that the
concept of ideotype markedly depends on the precise environmental scenario that is considered [157].
Interestingly, modelling approaches indicate that in maize, dimorphic root phenotypes with both shallow
seminal roots and steep nodal roots perform well in all scenarios considered, and outperform the deep rooting
phenotypes [153]. This raises the question of whether an increased C allocation to roots in response to eCO2

may allow stimulating both horizontal and vertical development of the root system, to avoid problematic trade-
offs and combine the respective advantages of shallow and deep rooting. Finally, the CEP–CEPR1/CRA2 regu-
latory module was found to regulate the gravitropic set-point angle of LRs in Arabidopsis and Medicago, favour-
ing the horizontal extension of the root system through inhibition of shoot-to-root auxin transport [121]. As a
consequence, cepr1 and cra2 mutants display a reduced width of the root system, but it is unclear if this also
results in a deeper rooting phenotype.

Interactions with photosynthesis
Sink limitation of photosynthesis
One crucial question to address when stimulating C allocation to roots for improving C storage in soil is to
know whether this will negatively impact yield, most often determined by C accumulation in reproductive
sinks. Such trade-offs between growth of belowground and aboveground organs can explain the negative corre-
lations often found between plant biomass production and C storage in soils in response to eCO2 [26]. To
avoid this, increases in net C input in agrosystems are required, through stimulated photosynthesis [13,26].
However, with regard to the response to eCO2, one interesting hypothesis is that stimulated photosynthesis
may not only be a requirement for, but also a consequence of, increased root growth. Indeed, full stimulation
of photosynthetic activity by eCO2 in C3 plants is frequently prevented by the so-called acclimation of photo-
synthesis to eCO2, which results from a negative feedback exerted by soluble sugars over-accumulating in
source leaves [84,158,159]. As a consequence, it is frequently proposed that photosynthesis is sink-limited
under eCO2, due to the inability of sink organs to use all the sugars produced by the eCO2-induced stimulation
of C fixation [28,160,161]. This is supported by eCO2 experiments where surgical or genetic alterations of the
source/sink ratio in the shoots have unravelled a strong positive correlation between photosynthetic activity of
the source leaves and sink strength of the other aboveground organs [162–165]. The same rationale could apply
for an increased C sink due to a larger root system, suggesting that promoting root growth in response to eCO2

may be relevant to ‘pull’ the overall C fixation system. However, the effects of an increased sink strength of the
root system in response to eCO2 have received little attention to date. One exception are the legumes, which
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are one functional group that responds the best to eCO2 in terms of biomass production and yield [161,166].
This is often explained by the huge C cost associated with the development and the N2-fixing activity of the
nodules, which constitute major C sinks preventing over-accumulation of soluble sugars in the leaves [167–
169]. Although data are still lacking with non-legumes, this supports the potential importance of root growth
in modulating source/sink relationships and avoiding acclimation of photosynthesis to eCO2.

N limitation of photosynthesis
An alternative hypothesis to the sink limitation for explaining the acclimation of photosynthesis to eCO2 is the
nutrient limitation, which has been mostly evidenced for N [170–172]. Indeed, growth of C3 plants under
eCO2 leads to a general decrease in the tissue N concentrations [130,173], and compelling evidence suggests
that at both individual plant and Earth vegetation scales, the CO2 fertilization effect is often constrained by N
limitation [170,171,174–179]. Therefore, enhanced development and optimized architecture of the root system
in response to eCO2 may also be crucial in this context, as it may stimulate root N acquisition and thus signifi-
cantly contribute to prevent nutrient limitation of photosynthesis. In agreement with this hypothesis, the
volume of soil that can be explored by eCO2-treated plants is considered as one important factor determining
the intensity of the CO2 fertilization effect, explaining why conclusions from experiments with pots often failed
to match those from field experiments [163,180]. Moreover, it was reported that a large and/or a long-lasting
CO2 fertilization effect in ecosystems is associated with increased root system growth and improved N acquisi-
tion by the plants [135–137]. However, it is generally not known whether this is directly due to improved N
uptake capacity of the plant, or to an indirect positive effect on N availability in soils resulting from modified
mineralization of the soil organic matter. In addition, root system size and architecture are not the only factors
determining root N uptake efficiency. It is likely that eCO2 also has direct negative effects on physiological pro-
cesses of N uptake and assimilation, especially when N is in the form of nitrate, which cannot be fully counter-
acted by stimulated root growth [130,181]. Interestingly, two recent reports in Arabidopsis indicate that the
altered expression of nutrient transport systems may be a major determinant of the plant responses to eCO2.
First, genes encoding components of the root high-affinity nitrate uptake system (e.g. NRT2.1 and NAR2.1)
were found to be markedly down-regulated by eCO2 [182]. Accordingly, eCO2 repressed the positive regulators
of these genes, while it induced their negative regulators. This may explain why the CO2 fertlization effect is
often less pronounced at low nitrate availability [175,176], and why legumes generally display higher CO2 fertil-
ization response and lower N concentration decline, owing to their symbiotic N2-fixation capacity [169,183–
185]. Second, eCO2 was found to down-regulate the PHT4;3 gene, encoding a chloroplastic phosphate trans-
porter [186]. This resulted in a lowered P accumulation in the chloroplast and a reduced production of phytic
acid, which in turn stimulated growth in response to eCO2.

Conclusion
The highly variable response of root system size and architecture to eCO2 does not help to drive firm conclu-
sions on how the eCO2-induced stimulation of C capture by the shoots will translate into developmental
changes of the root system that will favour C storage in soil. In addition to the methodological difficulties asso-
ciated with root phenotyping, this variability can be explained by genotypic differences between plant func-
tional groups, biotic interactions in the rhizosphere or abiotic factors such as nutrient availability. As a matter
of fact, nutrients have on their own a dramatic effect on root growth and development that can override any
change resulting from enhanced C provision from the shoot [187]. Yet, as compared with the abundant litera-
ture addressing the question of the root developmental responses to nutrients, little is known on the mechan-
isms involved in the responses to eCO2. It is striking to see that only a very limited part of all candidate genes
or genetic resources available for investigating the sugar, hormone or peptide signalling pathways listed in this
review has been used in mechanistic studies on the root responses to eCO2. In addition to the mutants and
transformants related to other putative important mechanisms not detailed here, such as trehalose-6-P signal-
ling [188] or redox signalling [189], the use of these genetic resources will certainly help making crucial
advances in our understanding of how underground organs behave in a eCO2 environment.
In this review, we discussed the hypothesis that a larger size and an optimized architecture of the root

system in response to eCO2 may have three synergistic positive effects: (i) to enhance C input into the soil for
increased terrestrial C sequestration, (ii) to improve water and nutrient use efficiency for more productive and
environmental-friendly crops, and (iii) to prevent photosynthesis acclimation to eCO2 for stimulating net CO2

capture from the atmosphere. Evidence is available to support synergism between these effects. For instance, it
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is likely that a larger root system with optimized architecture for improved water and nutrient acquisition will
help avoiding sink or nutrient limitation of photosynthesis under eCO2. Furthermore, many studies converge to
conclude that deeper root systems in response to eCO2 will enhance both water and N acquisition by plants,
and promote higher and more stable C storage into the soil. However, there are also indications that antagonis-
tic effects may arise. Indeed, increasing the overall size of the root system may not be the most relevant strategy
for improving plant resistance to drought. It may also have a detrimental effect on yield if the necessary stimu-
lation of photosynthesis in response to eCO2 is prevented by other factors (e.g. heat stress). Most importantly,
the C/N interactions should deserve specific attention. First, a higher C input into the soil can promote emis-
sions of N2O, a gas with dramatic greenhouse effect, thereby offsetting the benefit of stimulated net CO2

capture from the atmosphere [190,191]. Second, it is frequently postulated that N is a crucial factor controlling
the unwanted inverse relationship between increased plant biomass production and increased C storage in soil
[26,135]. Indeed, improved N uptake by plants leading to higher biomass production in response to eCO2 has
been proposed to result in a decrease in soil organic C associated with low soil N availability. Accordingly,
increasing N fertilization supresses this inverse relationship [26], suggesting that higher N input into agrosys-
tems is required for stimulating both crop yield and C sequestration in soils. Because further increases in N fer-
tilizer input is not a sustainable strategy, this will call for either a wider use of legume crops, or a drastically
improved cropland management to prevent N leaching in agrosystems.
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