
HAL Id: hal-04125659
https://hal.inrae.fr/hal-04125659v1

Submitted on 15 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Components of agricultural productivity change:
Replication of US evidence and extension to the EU

Stefan Wimmer, K Hervé Dakpo

To cite this version:
Stefan Wimmer, K Hervé Dakpo. Components of agricultural productivity change: Replication of US
evidence and extension to the EU. Applied Economic Perspectives and Policy, 2023, 45 (3), pp.1332-
1355. �10.1002/aepp.13377�. �hal-04125659�

https://hal.inrae.fr/hal-04125659v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


ETH Library

Components of agricultural
productivity change: Replication of
US evidence and extension to the
EU

Journal Article

Author(s):
Wimmer, Stefan ; Dakpo, K. Hervé

Publication date:
2023-09

Permanent link:
https://doi.org/10.3929/ethz-b-000614452

Rights / license:
Creative Commons Attribution-NonCommercial 4.0 International

Originally published in:
Applied Economic Perspectives and Policy 45(3), https://doi.org/10.1002/aepp.13377

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-2628-748X
https://doi.org/10.3929/ethz-b-000614452
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1002/aepp.13377
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


F E A TUR ED AR T I C L E

Components of agricultural productivity
change: Replication of US evidence and
extension to the EU

Stefan Wimmer1 | K Hervé Dakpo1,2

1Agricultural Economics and Policy
Group, ETH Zürich, Zürich, Switzerland
2Université Paris-Saclay, INRAE,
AgroParisTech, PSAE, Palaiseau, France

Correspondence
Stefan Wimmer, Agricultural Economics
and Policy Group, ETH Zürich, Zürich,
Switzerland.
Email: swimmer@ethz.ch

Editor in charge: Robert Finger

Abstract

Increasing agricultural productivity is a policy priority

in many countries. O'Donnell (Am. J. Agric. Econ. 94(4):

873–890, 2012) decomposed productivity change in US

agriculture using a Lowe total factor productivity (TFP)

index. We replicate the original study, assess its robust-

ness to alternative TFP indices, and extend the analysis to

EU agriculture. We consistently find that productivity

growth in US agriculture is mainly driven by technical pro-

gress. In EU agriculture, TFP growth is less pronounced,

and both technical change and efficiency change contrib-

ute to productivity changes. In both US and EU agricul-

ture, the magnitude of measured productivity change

varies across indices, highlighting the need to rely on mul-

tiple indices for robust policy recommendations.

KEYWORD S
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decomposition, technical change, total factor productivity

J E L C LA S S I F I CA T I ON

D24, O47, Q10

Producing sufficient food for a growing world population with changing dietary demands is a
major challenge for agriculture (FAO, 2017). At the same time, environmental pressures require
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minimizing the use of limited resources such as land or chemicals. Improvements in agricul-
tural productivity enable farmers to produce more outputs with the same amount of inputs, or
to use fewer inputs to produce the same amount of output, and is therefore a policy priority in
many countries. In the past decades, global agriculture achieved large productivity gains, but
recent evidence suggests that productivity growth is slowing down in industrialized countries
(Fuglie, 2015, 2018).

The evaluation and design of public policies aiming at productivity growth require an appro-
priate measurement of productivity as well as the identification of the sources of productivity
change, such as technical change or efficiency change. In this paper, we replicate O'Donnell
(2012b), who decomposed productivity change in US agriculture (1960–2004) into several eco-
nomically meaningful measures, and extend the analysis to agriculture in the European Union
(EU) (2000–2019). To improve comparability, we additionally measure productivity in the EU
and the United States using a global agricultural production data set from 1961 to 2020.

The preferred productivity measure for sectors using multiple inputs to produce multiple
outputs is total factor productivity (TFP). O'Donnell (2011) refutes widely used TFP indices,
such as Fisher or traditional Malmquist indices, as they violate the transitivity property, chal-
lenging their suitability to make multitemporal and multilateral comparisons of TFP. In the
productivity context, transitivity ensures that comparing productivity of two firms directly
yields the same index number as comparing two firms indirectly through another firm, and
hence allows for consistent comparisons involving more than two observations. In an influen-
tial paper, O'Donnell (2012b) suggested an index number decomposition method using a TFP
index attributed to Lowe (1823) that satisfies the transitivity property, by using sample average
prices as fixed weights to aggregate outputs and inputs.1 The empirical results in O'Donnell
(2012b) suggest that technical change was the primary driver of US agricultural productivity
growth in the period 1960–2004, and that technical efficiency was higher and more stable than
scale-mix efficiency.

The present study aims to replicate these results, compare the results to alternative produc-
tivity indices, and extend the analysis to EU agriculture. In this paper, we focus on indices that
satisfy the transitivity property besides other basic axioms from index number theory as
explained in detail in O'Donnell (2016). First, we replicate the original findings using the addi-
tive Lowe index and US state-level data provided by the US Department of Agriculture (USDA).
Second, we test the robustness of the results to another additive index that uses averages of
shadow prices (estimated using data envelopment analysis) instead of observed prices as
weights (hereinafter called “A-DEA”), a multiplicative index that uses estimated elasticities
based on stochastic frontier analysis (hereinafter called “M-SFA”), and a global Malmquist
index proposed by Pastor and Lovell (2005). We also test the robustness with respect to the
returns to scale assumption. Third, we extend the analysis to EU agriculture using official
production data from Eurostat (Eurostat, 2023) over the period 2000–2020, which provide
country-level information about the same agricultural outputs and inputs as contained in the US
state-level data. Finally, since the periods covered by the US and EU data sets differ, we employ
the International Agricultural Productivity (IAP) data set, also provided by USDA, which covers
the years 1961–2020 and is the globally most complete data on agricultural output and inputs.

Besides O'Donnell (2012b), several studies have decomposed TFP change in US agriculture
into individual components (e.g., Andersen et al., 2012; Capalbo, 1988; Mugera et al., 2016;
O'Donnell, 2014; Plastina & Lence, 2018). Similar to the study to be replicated, Capalbo (1988),
Andersen et al. (2012), O'Donnell (2014), and Plastina and Lence (2018) all use state-level data
and consistently find that technical progress is the major driver of US productivity growth.

COMPONENTS OF AGRICULTURAL PRODUCTIVITY CHANGE 1333
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Mugera et al. (2016) find the same result using farm-level data from Kansas. In EU agriculture,
studies on TFP growth and its components are more limited. The existing analyses mostly rely
on selected country studies and single farm types, such as Cuesta (2000) for Spanish dairy
farms; Brümmer et al. (2002) for dairy farms in Germany, Poland, and the Netherlands; or
Sipiläinen (2007) for Finnish dairy farms. Using country-level data from EU member states,
Bar�ath and Fert}o (2017) found that TFP has slightly decreased in EU agriculture between 2004
and 2013, with varying importance of technical change and efficiency change.

Our replication study contributes to the understanding of agricultural productivity changes
by estimating and decomposing TFP changes in US and EU agriculture, which together account
for nearly 20% of worldwide agricultural gross production in 2018 (FAO, 2020). We thereby add
to the limited evidence on TFP in European agriculture. Employing various TFP measurement
techniques including nonparametric and parametric approaches, we evaluate the sensitivity of
the results in the original article by O'Donnell (2012b) to alternative choices and methods. The
results show that the original results can be successfully reproduced and that its main results
are very robust. Overall, we find that TFP growth in US agriculture has been mainly driven by
technical progress (encompassing technological progress and environmental change), while
TFP growth in EU agriculture has been less pronounced, and TFP change has been driven by
both technical and efficiency changes.

In the following section, we summarize the methods used to measure productivity change
and its components. Next, we present the replication of the original study: We shortly describe
the data used in O'Donnell (2012b), describe the replicated results, and provide robustness
checks. Subsequently, we extends the analysis to EU agriculture. The final section discusses the
results, offers policy implications, and concludes.

METHODS

This section summarizes the aggregate quantity-price framework developed by O'Donnell (2011,
2012a, 2012b). In this framework, xit �ℝM

þ and qit �ℝN
þ are vectors of input and output quanti-

ties for unit i in year t, and the corresponding input and output price vectors are denoted by
wit �ℝM

þ and pit �ℝN
þ. Aggregate input and aggregate output are defined as Xit ¼X xitð Þ and

Qit ¼Q qitð Þ, where Q :ð Þ and X :ð Þ are non-negative, non-decreasing, and linearly homogeneous
aggregator functions. TFP is given by the ratio of aggregate output and aggregate input
(e.g., Jorgenson & Griliches, 1967):

TFPit ¼Qit

Xit
ð1Þ

Comparing TFP of unit i in period t with TFP of firm h in period s yields the TFP index

TFPIhsit ¼ TFPit

TFPhs
¼QIhsit
XIhsit

, ð2Þ

where QIhsit ¼Qit=Qhs and XIhsit ¼Xit=Xhs are output and input quantity indices. With implicit
aggregate output prices Pit and input prices Wit, the profitability index is
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PROFIhsit ¼ PROFit

PROFhs
¼TTIhsit�TFPIhsit , ð3Þ

where the terms of trade index TTIhsit ¼ PIhsit=WIhsit measures implicit changes in output prices
relative to input prices. O'Donnell (2012a) shows that any TFP index that consists of aggregate
input and output quantities as in Equation (2) can be decomposed into measures of technical
change and TFP efficiency change, i.e.,

TFPIhsit ¼ TFPit

TFPhs
¼TFP�

t

TFP�
s
� TFPEit

TFPEhs
, ð4Þ

where TFP�
t denotes the maximum level of TFP in period t, and TFPEit ¼TFPit=TFP�

t is ratio of
observed TFP over maximum TFP.

In this paper, we view the production technology as a technique for transforming inputs
into outputs, and aim to decompose productivity change into technical change (encompassing
technological progress, i.e., the discovery of new techniques, and environmental change) as
well as efficiency change including changes in technical efficiency (i.e., ability to use the right
technique or to implement the right technique properly). The employed indices and their
decompositions are explained in the following.

Additive productivity indices (Lowe and A-DEA)

The Lowe TFP index is obtained by using the linear aggregator functions Q qitð Þ/p0
0qit and

X xitð Þ/w0
0xit, where p0 and w0 are pre-determined unit- and time-invariant reference prices

directly obtained from the data (e.g., sample average prices):

TFPILowehsit ¼ p0
0qit

p0
0qhs

�w0
0xhs

w0
0xit

ð5Þ

Another additive TFP index is obtained by using average estimated shadow prices p�
0 and w�

0 as
weights, i.e. Q qitð Þ/p�0

0 qit and X xitð Þ/w�0
0 xit . We obtain these shadow prices from the estima-

tion of Shephard (1953) output and input distance functions (e.g., Färe & Grosskopf, 1990;
Grosskopf et al., 1995) using data envelopment analysis (DEA) and hence call the
corresponding additive TFP index “A-DEA”.2 We then decompose these two additive indices
into economically meaningful components using DEA techniques. For a detailed description of
these methods, we refer to the original paper by O'Donnell (2012b). In line with the original
paper, we compute a measure for technical change (i.e., technological progress and environ-
mental change) as well as the following TFP efficiency components:

• The Farrell (1957) output-oriented measure of technical efficiency, that is, the difference
between observed and maximum TFP when input levels and output mixes are fixed (herein-
after “OTE”).

• The conventional measure of output-oriented scale efficiency (e.g., Balk, 2001), measuring
the difference in TFP between at a technical efficient point and the maximum TFP when
holding output and input mixes fixed (hereinafter “OSE”).

COMPONENTS OF AGRICULTURAL PRODUCTIVITY CHANGE 1335
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• Pure output-oriented mix efficiency, measuring the difference in TFP between a technically
efficient point and a point with TFP-maximizing output mix (hereinafter “OME”).

• Output-oriented scale-mix efficiency, measuring the difference in TFP between a technical
efficient point and the maximum possible TFP (hereinafter “OSME”).

The presence of scale efficiency measures allows for the possibility that units can exploit econo-
mies of scale by increasing or decreasing production, given variable returns to scale. However,
with aggregate regional or country-level data at hand, this idea may not always be sensible
because size in such an analysis does not represent the size of an individual decision-making
unit but rather the size of the sector. Hence, it is common to assume constant returns to scale
with aggregate regional or country-level data (e.g., Chambers et al., 2020; Coelli & Rao, 2005).
For this reason, we will provide a robustness check with respect to the returns-to-scale assump-
tion below.

Multiplicative productivity index (M-SFA)

As a robustness check to the (nonparametric) additive indices, we estimate a multiplicative pro-
ductivity index based on parametric output distance functions following Njuki et al. (2018) and
Dakpo et al. (2021). The output distance function is estimated using stochastic frontier analysis
(Aigner et al., 1977; Meeusen & van Den Broeck, 1977), and hence we call the corresponding
multiplicative TFP index “M-SFA”. We assume that the technology can be approximated by the
following (linearized) Cobb–Douglas functional form:

� lnq1it ¼ α0þ
XN
n¼2

αn ln
qnit
q1it

þ
XK
k¼1

βk lnxkitþ
XJ

j¼1

XT�

h¼1

γhjRjiShttþνitþuit ð6Þ

The greek letters α, β, and γ in Equation (6) are parameters to be estimated. In case of constant
returns to scale, we normalize the dependent variable and all input variables by one com-
mon input variable so that

PK
k¼1βk ¼�1. The error term consists of the random fluctuation

term νit following a normal distribution, and of the technical inefficiency term uit following a
half-normal distribution, and both error term components are assumed to be independently dis-
tributed from each other and from the regressors. Rji is a binary variable that is one if unit i
belongs to region j and zero otherwise, and Sht is a binary variable that is one if time period t
lies within the hth 5-year period an zero otherwise. T� indicates the number of 5-year time
periods. The interaction of the time trend t with these binary variables allows the rate of techni-
cal change—which captures shifts in the production frontier that may be due to changes in
environmental variables and/or technological progress—to vary every fifth year and across
regions, in an attempt to mirror the assumptions in the DEA approach in O'Donnell (2012b).
We then use the estimated parameters from Equation (6) to construct a multiplicative TFP
index of the form

TFPIM�SFA
hsit ¼

YN
n¼1

qnit
qnhs

� �αn
" #

�
YK
k¼1

xkhs
xkit

� �λk
" #

, ð7Þ
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where λk ¼ βk=
PK

j¼1βj and α1 ¼ 1�PN
n¼2αn, and decompose it into an output-oriented environ-

ment and technology index (OETI), an output-oriented technical efficiency index (OTEI), an
output-oriented scale efficiency index (OSEI), and a statistical noise index (SNI). For the techni-
cal details, we refer to Njuki et al. (2018)3 and Dakpo et al. (2021).

Global Malmquist productivity index

The global Malmquist put forward by Pastor and Lovell (2005) is calculated and decomposed as

TFPIGMhsit ¼
DG
c xit,qitð Þ

DG
c xhs,qhsð Þ¼

Dt
c xit,qitð Þ

Ds
c xhs,qhsð Þ�

DG
c xit,qitð Þ

Dt
c xit ,qitð Þ �

Ds
c xhs,qhsð Þ

DG
c xhs,qhsð Þ

� �
¼OTEIhsit�BPChsit , ð8Þ

where the output distance function DG xit,qitð Þ evaluates the efficiency of unit i in year t against
the global benchmark technology defined over the entire data set. OTEI is the output-oriented
technical efficiency index as defined above, and BPC indicates “Best Practice Change” and is a
measure of technical change. In particular, BPC⋛ 1 indicates whether the benchmark technol-
ogy in period t is closer or farther away from the global benchmark technology than the bench-
mark technology in period s (Pastor & Lovell, 2005). The subscript c indicates that the global
Malmquist index assumes constant returns to scale. Contrary to the traditional Malmquist pro-
ductivity index (see Caves et al., 1982), the global Malmquist index considers only one global
benchmark technology, and hence there is no need to calculate the geometric mean of two mea-
sures. As a result, the global Malmquist index satisfies the transitivity property. Another virtue
of the global Malmquist index is that it is immune to infeasibility problems which often arise
from the traditional Malmquist index.

REPLICATION OF O'DONNELL (2012)

This section replicates the results in O'Donnell (2012b). We briefly introduce the data and pre-
sent the replicated results. We then assess the robustness of the main findings to alternative
TFP indices including a parametric approach, and finally compare the results to a more recent
country-level data set.

Data

O'Donnell (2012b) employs agricultural price and quantity data provided by the Economic Research
Service (ERS) of the USDA. This data set has been widely used to measure US agricultural produc-
tivity (e.g., Ball et al., 2004; Ball et al., 2016; Chambers & Pieralli, 2020; Njuki et al., 2018;
O'Donnell, 2014; Plastina & Lence, 2018). For each of 48 contiguous US states over the period
1960–2004, prices and implicit quantities for three outputs (crops, livestock, and other farm outputs)
and four inputs (capital, labor, land, and materials) are provided. Implicit quantities are obtained by
dividing revenues and costs by Fisher price indices4 with bases equal to unity in Alabama in 1996.
Importantly, the data accounts for quality changes in inputs such as chemicals, capital, or land. A
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detailed description of the methods are provided in Ball et al. (2016). Summary statistics for all vari-
ables used in our analysis are reported in Table S1 in the online appendix.

Results

In line with O'Donnell (2012b), we estimate separate variable-returns-to-scale production tech-
nologies for individual regions to account for different production environments, and specify
moving windows (see Table S3 in the online appendix). Following the original paper, window
sizes for each region are selected so that each regional frontier uses “at least as twice as many
observations as there are input and output variables in the data set” (O'Donnell, 2012b, p. 883),
but we test the sensitivity of this choice below. All estimations were carried out in the statistical
software R (R Core Team, 2020).5 We successfully reproduced all results presented in the origi-
nal paper, including all reported decimal points (two decimals).6 We present these results in the
online appendix. For example, Figure S1 contains the replicated plots from the original paper
(see Figures 2, 3, 6, and 7 in O'Donnell, 2012b), in which the profitability decomposition is
shown for the example of Alabama, and TFP change is compared between Alabama, Florida,
and Wyoming. The online appendix further presents profitability, TFP, and efficiency change
(Table S4), output-oriented components of efficiency change (Table S5), and average annual
rates of TFP and efficiency changes (Table S6) for all 48 states, corresponding to tables 2–4 in
the original paper, as well averaged over all states.

To summarize the results from the original paper, we aggregated the profitability decompo-
sition to the whole United States by taking geometric averages of yearly state-level changes rela-
tive to each states' 1960-level. For example, the average change in TFP between year 1960 and

1961 is given by ΔTFP1961,1960 ¼
Q48

i¼1
TFPi,1961

TFPi,1960

� � 1
48
, where i denotes the individual states. As

shown in Figure 1, TFP gains compensated losses in terms of trade (ΔTT) (panel a), technical
change (ΔTFP�) has been the primary driver of TFP growth in US agriculture (panel b), and out-
put-oriented technical efficiency (OTE) was higher and more stable than scale-mix efficiency (OSME)
in US agriculture (panel c). The corresponding plots derived from the A-DEA index are presented in
Figure S2 in the online appendix to facilitate the comparison with the European results.

Robustness

The first robustness check relates to the selection of the window size. By definition, the larger
the window, the lower the technical efficiency and the larger the maximum TFP in a given
period. To investigate the extent to which the window definition matters, we have estimated
the technologies using small (2 years), medium (4 years), and large (8 years) windows and pre-
sent the results for one state per region in Table S7. In most cases, more TFP change is attrib-
uted to technical efficiency change rather than technical change if the window size increases.
Irrespective of the window size, technical change is more pronounced than technical efficiency
change, which can also be seen in the average growth rates for the entire US.

Next, we assess the robustness of the original results across different TFP indices and returns
to scale-assumptions. To compute the A-DEA index, we estimated shadow prices for each individ-
ual observation, assuming either varying or constant returns to scale, using the multiplier version
(dual) of the Shephard input and output distance functions from a DEA representation. The

1338 APPLIED ECONOMIC PERSPECTIVES AND POLICY
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sample mean values of these estimated shadow prices are then used to calculate the aggregated
output and input quantities. This procedure avoids average shadow prices (and hence, weights)
with zero values. For the M-SFA index, Tables S8 and S9 in the online appendix show that the
estimated coefficients for the Cobb–Douglas production frontier in Equation (6) are positive for
all outputs and negative7 for all inputs both under variable and constant returns to scale, and thus
satisfy the monotonicity conditions. The global Malmquist index is only calculated under constant
returns to scale, following the original paper by Pastor and Lovell (2005).

Detailed state-level results for all indices are presented in Tables S10–S21 in the appendix.
The main results are summarized in Table 1, reporting the average annual growth rates (calcu-
lated as the arithmetic mean of ln TFP2004= TFP1960ð Þ= 2004�1960ð Þ as in the original paper)

a b

c

FIGURE 1 Lowe profitability decomposition for US agriculture under variable returns to scale using the

state-level USDA data (1960–2004), aggregated over 48 contiguous states. (a) Profitability, quantity, and price

change (1960 = 1). (b) Components of TFP change (1960 = 1). (c) Efficiency levels.

COMPONENTS OF AGRICULTURAL PRODUCTIVITY CHANGE 1339
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for TFP, technical change, and TFP efficiency change for all estimated indices. The Lowe TFP
index, which does not depend on the returns to scale-assumption by construction, indicates
higher TFP gains (+1.78% per year) than all other indices (e.g., +0.83% per year for the A-DEA
index under variables returns to scale). However, all indices agree that technical change was
the primary driver of TFP growth in US agriculture (ranging from 0.63% to 1.70% annually),
while TFP efficiency change is very close to zero (between �0.08% and 0.07% annually)
according to all indices. Under varying returns to scale, the (nonparametric) A-DEA and
the (parametric) M-SFA indices yield similar results. Yet, under constant returns to scale,
the M-SFA index results in higher TFP gains, with higher technical change than indicated
by the A-DEA index. While differences between DEA- and SFA-based results may arise
from the different treatments of stochastic noise (Atkinson et al., 2003), more theoretical
and empirical research is needed to formally trace out the consequences of the choice
between parametric and nonparametric productivity measurement on productivity and its
components.

Figure 2 shows the kernel density plots (panel a) and the average TFP change across all
states (panel b). A kernel-analysis procedure (Combes et al., 2012) indicates that the distribu-
tions of productivity changes are statistically significantly different8 except for the Lowe indices
under constant and variable returns to scale, which are identical by construction, and for the
A-DEA and the global Malmquist index under constant returns to scale. Nevertheless, panel b
shows that productivity changes from 1960 to 2004 follow a similar pattern across all indices,
with highest productivity gains indicated by the Lowe indices. Overall, the comparison of the
considered indices shows that the choice of the index matters for the magnitude of measured
TFP growth, but the sources (i.e., technical change and efficiency change) are consistent across
indices in this empirical application.

With respect to the TFP efficiency components, the Lowe indices under variable and
constant returns to scale yield very similar results. In Rhode Ireland (RI), where gains in
output-oriented scale efficiency (OSE) have been achieved according to the index assuming var-
iable returns to scale (see Table S5), these gains are attributed to gains in technical efficiency
(OTE) and mix efficiency (OME) when constant returns to scale are assumed. In West Virginia
(WV), where the index based on variable returns to scale indicated a decrease in scale efficiency
(OSE), this TFP loss is attributed to a loss in technical efficiency (OTE) under the index assum-
ing constant returns to scale. In most states, the scale efficiency (OSE) component under

TABLE 1 Average annual growth rates (%) in TFP and components in US agriculture (1960–2004) based on

different indices.

TFP index TFP Technical change Efficiency change

Lowe (VRS) 1.78 1.70 0.07

Lowe (CRS) 1.78 1.70 0.07

A-DEA (VRS) 0.83 0.91 �0.08

A-DEA (CRS) 0.73 0.74 �0.01

M-SFA (VRS) 0.89 0.90 �0.03

M-SFA (CRS) 1.02 0.99 0.01

Global Malmquist 0.64 0.63 0.00

Note: TFP is total factor productivity. VRS and CRS indicate variable returns to scale and constant returns to scale, respectively.
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variable returns to scale is already one or very close to one when assuming variable returns to
scale, and hence imposing constant returns to scale has little effect on the overall results.

Replication using recent data

The publication of US state-level agricultural production data has been suspended after 2004,
limiting the current policy relevance of the results. Moreover, we cannot directly compare the
productivity growth rates to the rates from the EU sample, which covers the years 2000–2019
(see below). Hence, to provide a perspective on productivity change in US agriculture beyond
2004, we use US country-level data for the period 1948–2019 from the same data source,
although the use of aggregate data masks differences across individual states. As described in
Ball et al. (2016), the country-level variables are constructed in a very similar way as the state-
level data, the main difference being that interstate transfers of intermediate inputs are consid-
ered outputs in the state-level data, and that the land variable is aggregated to the capital vari-
able. As shown by Figure S3 in the online appendix, the Lowe TFP index suggests that US
agricultural productivity growth continues after 2004 but potentially at a lower rate than in ear-
lier decades.

a

b

FIGURE 2 Comparison of TFP change in US agriculture with different indices and returns to scale-

assumptions using the state-level USDA data (1960–2004). (a) Kernel density plots of state-level TFP changes. (b)

TFP change over time at the US average. Note that the Lowe TFP index (but not its decomposition) is identical

under constant and variable returns to scale by construction and hence overlapping.
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EXTENSION TO EU AGRICULTURE

In this section, we extend the US evidence to EU agriculture. As mentioned above, no consis-
tent price data exist across EU member states. While Eurostat computes price indices for each
EU member state, those indices are not comparable across countries. Thus, we cannot estimate
the Lowe index but instead focus on the additive TFP index constructed with estimated shadow
prices (i.e., the A-DEA index), and the global Malmquist index.9 We first provide an overview of
the data and then present the results.

Data

One of the article's objectives is to compare sources of productivity change between US and
EU agriculture. Ideally, we would like to employ European agricultural data (a) on the same
outputs and inputs, (b) constructed with the same methods, and (c) observed over the same
period as in the US data set. Unfortunately, the data collection methods vary across national
statistical agencies. The primary data source for EU agricultural inputs and outputs is the
Eurostat database (see below). The provided input and output categories resemble the ones in
the state-level US data, and therefore allow us calculating the same productivity components
including scale and mix efficiency. However, the Eurostat data set does not correct for changes
in input qualities10 and is reasonably complete only from year 2000 onwards. To facilitate a
more direct comparison between US and EU agricultural productivity over an identical period,
we use an additional data set that covers all countries on the globe (see below). This data set
reports different input categories than the US state-level and the EU country-level data sets.
Both data sets are described in the following two subsections.

Eurostat database

We obtain panel data on agricultural outputs and inputs at the country level from the
Eurostat (2023) database. Specifically, we extract data on three outputs (crops, livestock,
and other output) and four inputs (capital, labor, land, and materials) for 25 EU countries
for the years 2000–2019.11 All variables except for labor and land use are sourced from the
“Economic Accounts for Agriculture” data set, whose main purpose is the analysis of pri-
mary income in the agricultural sector, rather than productivity measurement as in the
USDA data set.12 Other output includes both agricultural services and secondary activities
(e.g., transformation of agricultural outputs) that are inseparable from agricultural activi-
ties. While the selection of input variables is in line with previous literature on productivity
measurement in EU agriculture (Agri, 2016; Baležentis et al., 2021; Bar�ath & Fert}o, 2017;
Kijek et al., 2019), we distinguish more output categories than the mentioned studies in line
with the output choice in the US analysis. Concerning productive inputs, labor is measured
in annual working units and land is measured in hectares. The capital variable represents
fixed capital consumption. Finally, intermediate inputs consist of seeds, energy consump-
tion, fertilizer use and soil improvements, plant protection, veterinary expenses, animal
feed, maintenance, services, and other goods. All outputs and inputs except labor and land
are expressed in monetary terms and deflated with disaggregated output- and input-specific
price indices at the national level with the base year 2005. To improve the comparability
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across countries, the resulting values at constant prices are converted by Eurostat to pur-
chasing power standards using Purchasing Power Parities of each country. Table S1 in the
online appendix presents descriptive statistics for the all variables next to the state-level
USDA data introduced above.

USDA International Agricultural Productivity database

Our second source of agricultural production data is the IAP data set compiled by USDA-ERS.
This data set provides agricultural output and input data for 172 countries over the period
1961–2020. The majority of the variables are sourced from the FAOSTAT database of the United
Nations Food and Agriculture Organization (FAO), supplemented with national statistics
data.13 Output is measured as gross agricultural output at constant 2004–2006 average interna-
tional prices (by contrast, the state-level US and country-level EU data use prices received by
farmers). Inputs considered are land in hectares of rainfed cropland equivalents, labor (head-
count without quality adjustments), capital input (machinery and livestock), fertilizer use in
metric tonnes of nitrogen, phosphorus pentoxide, and potassium oxide, and animal feed in
1000 Mcal metabolizable energy. Thus, the construction of the data set differs greatly from
the US state-level and the Eurostat data. For our analysis, we extract data for the US as well
as 21 European countries14, for which Table S2 in the online appendix reports descriptive
statistics.

Results

In this section, we present the main results for the measurement and decomposition of TFP in
European agriculture based on the A-DEA and the global Malmquist indices. We restrict our
attention to the assumption of constant returns to scale as they are theoretically and empirically
more consistent considering the use of country-level data. We first present the TFP change and
components for the period 2000–2019, which are based on the Eurostat EAA database. Next,
we directly compare TFP change between EU and the United States based on the IAP data set,
covering the longer period 1961–2020.

EU productivity from 2000 to 2019

To account for different production environments, we estimate region-specific frontiers for four
biogeographical regions according to the European Environment Agency (2017).15 Temporal
variations in the production environment are accounted for by estimating region-specific tech-
nologies using a moving window of observations (see Table S3 in the online appendix). As in
the US case, we summarize the results on EU agriculture by computing the geometric aver-
ages of country-level productivity components. Panel a in Figure 3 shows that on average,
both technical change (ΔTFP�) (technological progress and environmental change) and TFP
efficiency changes (ΔTFPE) contributed to productivity growth according to the A-DEA index
in EU agriculture. At the aggregate level, the yearly average TFP growth rate amounts to 0.92%
(ln1:19= 2019�2000ð Þ, see numbers in Table 2) in the observed period (which is shorter and
more recent compared to the period covered by the state-level data from the US). After 2014,

COMPONENTS OF AGRICULTURAL PRODUCTIVITY CHANGE 1343

 20405804, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aepp.13377 by E

th Z
ã¼

R
ich, W

iley O
nline L

ibrary on [02/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



there is a slight decrease in efficiency, while more gains arise from the technical component.
Panel b in Figure 3 reveals that output-oriented technical efficiency (OTE) and mix efficiency
(OME) were high and fairly stable over the data period, while improvements have been
achieved in scale-mix efficiency (OSME). As there is no scale effect under the assumption of
constant returns to scale, the changes in OSME are entirely due to residual mix efficiency.16

This is potentially in line with the structural change, especially sectoral re-specialization, expe-
rienced by the European agriculture (Neuenfeldt et al., 2019).

Table 2 shows that at the individual country level, Latvia achieved the largest TFP gains (þ74%)
among all EU countries over the sample period, followed by Belgium (þ73%), Romania
(þ58%), and Poland (þ47%) according to the A-DEA index. As in the case of the Lowe index,
the transitivity property also allows consistent comparisons across units. For example, in 2019, the
Netherlands were 16% more productive than Germany (ΔTFP¼ 0:57=0:49¼ 1:16), and Belgium
and Spain are the most productive countries in 2019. Technical change varies between �13%
(i.e., technical regress) in the Mediterranean region and+21% (i.e., technical progress) in the
Atlantic region. Most countries achieved gains in TFP efficiency (e.g., +62% in Latvia), while
some countries also experienced losses (e.g., �17% in France). Belgium, Denmark, Estonia and
Sweden were fully TFP efficient in 2019, and the largest gains in TFP efficiency over the data
period were achieved by Latvia, Spain, and Belgium. Zooming in on the sources of TFP efficiency
change, Table 3 shows that gains in TFP efficiency were mainly driven by gains in output-
oriented scale-mix efficiency (OSME), as seen above in the discussion of the aggregate results.

The global Malmquist TFP index, presented in Table 4, indicates lower TFP gains in EU
agriculture than the A-DEA index, at a yearly average growth rate of 0.55%
( ln1:11= 2019�2000ð Þ) during the observed period. According to this index, largest TFP gains
were achieved by Slovakia (þ64%), Hungary (þ50%), Belgium (þ34%), and Finland (þ27%).
The most productive countries in 2019 are Belgium, Denmark, Spain, Greece, and Ireland.
Except for Greece, these countries are also among the top five TFP countries according to the
A-DEA index. Similar to the A-DEA index, the global Malmquist index attributes the main TFP
growth to improvements in the best practice gap and the technology gap ratio, which are

a b

FIGURE 3 TFP decomposition for EU agriculture under constant returns to scale using the A-DEA index

and the Eurostat data (2000–2019), aggregated over 25 countries. (a) Components of TFP change. (b) Efficiency

levels.

1344 APPLIED ECONOMIC PERSPECTIVES AND POLICY

 20405804, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aepp.13377 by E

th Z
ã¼

R
ich, W

iley O
nline L

ibrary on [02/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



measures of technical change, while output-oriented technical efficiency is high and stable
throughout the data period.

EU versus US productivity from 1961 to 2020

Finally, we turn to the results for the period 1961–2020 based on the IAP data set. With this
data, we estimate the technology jointly for all available 24 EU countries or regions and the

TABLE 2 TFP, technical change, and efficiency change in EU agriculture (2000–2019) using the A-DEA
index under CRS.

TFP TFP* (=OET) TFPE

Country 2000 2019 Δ 2000 2019 Δ 2000 2019 Δ

AUT 0.38 0.46 1.20 0.50 0.60 1.19 0.76 0.76 1.00

BEL 0.40 0.69 1.73 0.57 0.69 1.21 0.70 1.00 1.43

CZE 0.43 0.47 1.10 0.50 0.60 1.19 0.85 0.79 0.92

DEU 0.50 0.49 0.98 0.50 0.60 1.19 0.99 0.81 0.82

DNK 0.46 0.60 1.29 0.50 0.60 1.19 0.92 1.00 1.08

ESP 0.52 0.66 1.27 0.78 0.68 0.87 0.68 0.98 1.45

EST 0.32 0.42 1.32 0.39 0.42 1.07 0.82 1.00 1.23

FIN 0.29 0.34 1.17 0.39 0.42 1.07 0.73 0.80 1.09

FRA 0.51 0.51 1.00 0.57 0.69 1.21 0.89 0.74 0.83

GBR 0.53 0.54 1.03 0.57 0.69 1.21 0.93 0.79 0.85

GRC 0.50 0.52 1.04 0.78 0.68 0.87 0.64 0.77 1.20

HUN 0.35 0.49 1.41 0.50 0.60 1.19 0.69 0.82 1.19

IRL 0.49 0.57 1.17 0.57 0.69 1.21 0.87 0.84 0.97

ITA 0.51 0.51 1.00 0.78 0.68 0.87 0.66 0.75 1.15

LTU 0.31 0.36 1.15 0.39 0.42 1.07 0.79 0.84 1.07

LUX 0.50 0.46 0.91 0.50 0.60 1.19 0.99 0.76 0.77

LVA 0.21 0.37 1.74 0.39 0.42 1.07 0.54 0.87 1.62

MLT 0.76 0.65 0.86 0.78 0.68 0.87 0.97 0.96 0.98

NLD 0.57 0.57 1.00 0.57 0.69 1.21 1.00 0.83 0.83

POL 0.35 0.51 1.47 0.50 0.60 1.19 0.69 0.85 1.23

PRT 0.44 0.50 1.13 0.78 0.68 0.87 0.57 0.73 1.29

ROU 0.27 0.42 1.58 0.50 0.60 1.19 0.53 0.70 1.32

SVK 0.31 0.41 1.31 0.50 0.60 1.19 0.62 0.68 1.10

SVN 0.37 0.46 1.25 0.50 0.60 1.19 0.73 0.76 1.05

SWE 0.38 0.42 1.10 0.39 0.42 1.07 0.98 1.00 1.02

EU25 1.19 1.10 1.08

Note: TFP is total factor productivity, TFP* is the maximum possible TFP based on the output-oriented environment and
technology (OET) index, and TFPE is TFP efficiency.
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United States. Having only one observation for the entire United States, we cannot separate distinct
production environments there (as done with the 10 distinct regions in the state-level analysis), and
hence do not decompose productivity change into its components.17 Panel a in Figure 4 shows the
productivity change for selected European countries as well as for the United States based on the A-
DEA index. As seen in Panel b, average TFP growth in EU and US agriculture has been similar
until about 2005, after which the EU experienced a slightly negative TFP change, which was not
found for in the country-level EU data from Eurostat. At the individual country-level, some EU
countries or regions (Benelux, Cyprus, Germany, Denmark, Spain, Netherlands, and Portugal)
achieved higher TFP gains than the US average according to the A-DEA index (see Table 5). At the

TABLE 4 TFP decomposition for EU agriculture (2000–2019) using the Global Malmquist index.

TFP OTE BPG TGR

Country 2000 2019 Δ 2000 2019 Δ 2000 2019 Δ 2000 2019 Δ

AUT 0.74 0.85 1.15 1.00 0.98 0.98 1.00 1.00 1.00 0.74 0.87 1.17

BEL 0.75 1.00 1.34 1.00 1.00 1.00 0.78 1.00 1.27 0.95 1.00 1.05

CZE 0.65 0.81 1.23 0.96 1.00 1.04 0.87 0.93 1.07 0.78 0.87 1.11

DEU 0.81 0.83 1.02 1.00 0.99 0.99 0.91 0.98 1.08 0.90 0.86 0.96

DNK 0.80 1.00 1.25 0.99 1.00 1.01 0.85 1.00 1.18 0.96 1.00 1.05

ESP 0.91 1.00 1.09 1.00 1.00 1.00 0.92 1.00 1.09 1.00 1.00 1.00

EST 0.80 0.73 0.91 1.00 1.00 1.00 1.00 1.00 1.00 0.80 0.73 0.91

FIN 0.50 0.63 1.27 0.98 1.00 1.02 0.95 1.00 1.05 0.53 0.63 1.19

FRA 0.82 0.93 1.15 1.00 0.99 0.99 0.99 0.99 1.01 0.83 0.95 1.15

GBR 0.95 0.97 1.02 0.98 1.00 1.02 0.99 1.00 1.01 0.97 0.97 1.00

GRC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

HUN 0.56 0.84 1.50 1.00 1.00 1.00 1.00 1.00 1.00 0.56 0.84 1.50

IRL 0.91 1.00 1.10 1.00 1.00 1.00 0.97 1.00 1.03 0.94 1.00 1.06

ITA 0.99 0.95 0.96 1.00 1.00 1.00 0.99 0.95 0.96 1.00 1.00 1.00

LTU 0.62 0.58 0.94 1.00 1.00 1.00 0.88 1.00 1.14 0.71 0.58 0.82

LUX 0.87 0.81 0.93 1.00 0.98 0.98 0.99 1.00 1.01 0.88 0.83 0.94

LVA 0.61 0.73 1.18 0.92 1.00 1.08 0.99 1.00 1.01 0.67 0.73 1.08

MLT 1.00 0.97 0.97 1.00 1.00 1.00 1.00 0.97 0.97 1.00 1.00 1.00

NLD 0.98 0.99 1.01 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.01

POL 0.67 0.77 1.14 0.96 1.00 1.04 0.89 1.00 1.12 0.79 0.77 0.97

PRT 0.81 0.78 0.96 0.90 0.89 0.98 0.89 0.89 0.99 1.00 0.99 0.99

ROU 0.95 0.88 0.93 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.88 0.93

SVK 0.52 0.85 1.64 1.00 0.98 0.98 1.00 1.00 1.00 0.52 0.87 1.67

SVN 0.75 0.89 1.19 0.98 0.97 0.99 0.92 1.00 1.08 0.83 0.92 1.11

SWE 0.66 0.72 1.09 1.00 1.00 1.00 1.00 1.00 1.00 0.66 0.72 1.09

EU25 1.11 1.00 1.04 1.06

Note: TFP is total factor productivity, OTE is output-oriented technical efficiency, BPG is the best practice gap, and TGR is a
technology gap ratio capturing technical and environmental differences across the four biogeographical regions.
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aggregate level, the US achieved higher gains in TFP over the years 1961–2016 than the EU (+42%
vs.+20%). This difference is much more pronounced when considering the global Malmquist index,
as shown in the same table (+60% vs. +8%), according to which none of the European countries
has achieved TFP gains as high as the aggregate US. In absolute terms, few European countries are
slightly more productive than or as productive as the aggregate United States in 2020, according to
the global Malmquist index, for example the Benelux countries, Spain, or Ireland, which were also
among the most productive countries according to the Eurostat data.

DISCUSSION AND CONCLUSION

In this article, we replicated the measurement and decomposition of state-level TFP in US agri-
culture (1960–2004) in O'Donnell (2012b), assessed its robustness to alternative indices, and
provided new estimates for TFP and its components in EU agriculture. We successfully
reproduced all results from the original paper and found consistent evidence that technical
change (encompassing technological progress and environmental change) was the main driver
of TFP growth in US agriculture from 1960 to 2004. We showed that this result was not driven
by the choice of window sizes and that the same conclusion can be derived from a nonparametric
additive TFP index that uses estimated shadow prices instead of observed prices as aggregation

a

b

FIGURE 4 Agricultural TFP changes (1961–2020) in selected EU countries and the United States (a) and in

aggregate EU and the United States (b), based on the A-DEA TFP index under constant returns to scale and the

International Agricultural Productivity data.
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weights (A-DEA index), from a parametric multiplicative TFP index based on an econometrically
estimated output distance function (M-SFA index), and from a global Malmquist index. However,
the Lowe TFP index presented in the original study indicates higher annual average TFP growth
rates than the remaining indices considered in our replication study.

Extending the analysis to EU agriculture (2000–2019) and considering the A-DEA index,
which is equivalent to the Lowe TFP index except for the use of estimated shadow prices rather
than observed prices for the outputs and inputs weights, we find that both technical change
and TFP efficiency changes contributed to changes in country-level TFP during the years 2000

TABLE 5 TFP in EU and US agriculture using the A-DEA index and the global Malmquist index and the

International Agricultural Productivity data (1961–2020).

A-DEA TFP Global Malmquist TFP

Region 1961 2020 Δ 1961 2020 Δ

AUT 0.29 0.32 1.09 0.76 0.90 1.19

BGR 0.27 0.22 0.81 0.71 0.84 1.19

BLX 0.32 0.58 1.83 0.91 1.00 1.09

CSK 0.30 0.30 0.99 0.63 0.77 1.22

CYP 0.27 0.38 1.44 0.69 0.77 1.11

DEU 0.24 0.41 1.72 0.59 0.79 1.33

DNK 0.25 0.38 1.52 0.57 0.84 1.46

ESP 0.31 0.49 1.59 0.73 1.00 1.37

EST 0.38 0.23 0.60 1.00 0.94 0.94

FIN 0.21 0.23 1.13 0.60 0.60 1.00

FRA 0.31 0.39 1.27 0.82 0.93 1.13

GBR 0.26 0.36 1.37 0.61 0.79 1.29

GRC 0.45 0.58 1.28 1.00 1.00 1.00

HUN 0.26 0.31 1.18 0.58 0.76 1.31

IRL 0.29 0.34 1.18 0.92 1.00 1.08

ITA 0.42 0.46 1.11 0.99 0.93 0.94

LTU 0.25 0.29 1.15 1.00 1.00 1.00

LVA 0.23 0.25 1.10 0.98 0.79 0.80

MLT 0.48 0.43 0.91 1.00 0.82 0.82

NLD 0.33 0.54 1.64 0.74 1.00 1.35

POL 0.37 0.41 1.10 0.83 1.00 1.20

PRT 0.33 0.49 1.49 0.97 0.79 0.82

ROU 0.24 0.24 1.01 0.80 0.48 0.61

SWE 0.21 0.23 1.06 0.55 0.72 1.31

USA 0.27 0.38 1.42 0.61 0.98 1.60

EU aggregated 1.20 1.08

Note: TFP is total factor productivity.
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to 2019. As in the US case, output-oriented technical efficiency is high and stable, a result which
is also supported by the global Malmquist index. Furthermore, we find a strong overlap in the
list of the most productive countries identified by the A-DEA and global Malmquist indices.

The comparability of the described results on TFP development in EU and US agriculture,
based on the country-level data from Eurostat and the state-level data from USDA, is limited
due to different data periods covered in the respective data sets as well as due to different meth-
odologies for the measurement of input and output quantities. To overcome this limitation,
we employed a third data set—the International Agricultural Productivity data set—which pro-
vides the globally most complete and consistent information on agricultural output and input
use. This analysis confirms that productivity growth was higher in the United States than in the
EU on average, both under the A-DEA index and the global Malmquist index. However, the
difference was much more pronounced under the latter, and the analysis based on the Interna-
tional Agricultural Productivity data revealed a slight decrease in TFP in European agriculture
after 2006, which is not found in our analysis of the Eurostat data.

Our study has several implications for policy. First, the findings suggest that investing in
R&D may lead to higher payoffs for productivity than investing in training programs, at least
when evaluated at the aggregate level, as output-oriented technical efficiency is at very high
levels both at the US state-level and at the EU country-level. Accordingly, the EU farm to fork
strategy assigns an important role to research, innovation, and technology, especially in the
direction of sustainable agriculture (Sonnino et al., 2020). Furthermore, improvements in the
output-oriented scale-mix component contributed to productivity growth in EU agriculture
according to the employed A-DEA index. This result may be in line with ongoing structural
change characterized at the sectoral level, such as the declining number of farms or production
re-specialization (e.g., Bar�ath & Fert}o, 2017; Neuenfeldt et al., 2019). Second, differences in
environmental and health regulations may be a possible explanation for more pronounced tech-
nical TFP growth through technical progress in the United States compared to the EU. In the
past decades, the EU has implemented increasingly strict regulations relating to pesticide
(Möhring et al., 2020) and nitrogen (Zhang et al., 2015) use. Furthermore, the use of antibiotics
as growth promoters in animal production (McBride et al., 2008) has been forbidden in the EU
in 2006, and genetically modified organisms are more strictly regulated in the EU (Qaim, 2020;
Smart et al., 2017) than in the United States (Kaye-Blake et al., 2008). These policies, besides
potential environmental changes such as weather conditions, may slow down technical pro-
gress, although the identification of causal effects of such policy or environmental changes on
technical change is beyond the scope of this replication study. Third, our results also indicate
that productivity change and its components differ widely across states in the United States and
across countries in the EU. The heterogeneity in production conditions implies that policy
instruments aiming at increasing productivity should be tailored to the specific needs of individ-
ual countries or states. The common agricultural policy (CAP) recognizes this by setting
common targets, while individual countries have flexibility in the implementation of certain
policies. In this context, heterogeneity in the sources of productivity change provides opportuni-
ties for researchers and policymakers to learn from developments in other countries or states.

Overall, this replication study highlights the importance of consistent and high quality data
on agricultural production for the measurement and decomposition of TFP. Contrary to the
United States state-level data, the European data on agricultural output and input use published
by Eurostat does not consider quality changes in inputs, which we regard as an important ave-
nue for further research. Further important extensions to our work include a comparison of the
contribution of weather variations to TFP changes (see, e.g., Njuki et al., 2018; Chambers
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et al., 2020; O'Donnell, 2022) and the consideration of environmental outcomes in the measure-
ment of TFP (see, e.g., Baležentis et al., 2021; Bureau & Ant�on, 2022). Finally, the causal identifi-
cation of the role of sectoral policies and structural change in explaining country- and state-level
TFP deserves further attention in future research.
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ENDNOTES
1 As argued by other authors, using fixed weights may allow “incoherent” comparisons of different possible past
time periods (e.g., Färe & Zelenyuk, 2021). One transitive TFP index that does not use fixed weights is the
benefit-of-the-doubt index.

2 Under specific choices and additional assumptions on the technology, the Färe-Primont TFP index developed
in O'Donnell (2014) simplifies to this index (see Briec et al., 2018, for details]briec_testing_2018-1.

3 The approach by Njuki et al. (2018) differs in that it includes environmental variables and hence separates
technological progress and environmental change. By contrast, our measure of technical change encompasses
both technological progress and environmental change as explained above.

4 Although the EKS procedure was applied to make the price indices transitive, they do not satisfy the unity
property (O'Donnell, 2012b).

5 The computations largely rely on the productivity package (Dakpo et al., 2018). Codes are available in supple-
mentary material online and on Github (https://github.com/swimmer008/Ag-Productivity-US-EU).

6 The variables were used exactly as prepared and published by USDA. As the data undergo quality checks prior
to publication, neither we nor the original author undertook further data cleaning steps.

7 The input weights are constructed using the reversed signs of the input coefficients.
8 For each pair of distributions, we tested the null hypothesis that there is no shift and dilation between the two.
9 For the EU case, we only estimated nonparametric indices. Estimating the distance function using stochastic
frontier analysis resulted in negative elasticity estimates, which is inconsistent with economic theory. We also
employed a Bayesian regression technique to impose monotonicity, but did not achieve convergence for the
posteriors. A possible reason may be the much smaller sample size compared to the state-level US data.

10 As discussed in Ball et al. (2016), there is a debate whether quality improvements should be regarded as input
growth or productivity growth, although economic theory guides to the former. Given the data availability, we
are not able to control for such quality changes in EU agriculture, and this limitation must be kept in mind
when interpreting the results.

11 The countries include all EU-27 member states except Bulgaria (missing data in 2000, 2001, and 2005) and
Cyprus (missing data in 2000–2002). For Italy in 2009, France in 2006 and 2009, the utilized agricultural area
is imputed as the average of prior and posterior years.

12 Output data and input data on capital and materials come from Eurostat data table aact_eaa03, and land and
labor variables come from Eurostat data tables apro_cpsh1 and aact_ali01, respectively.

13 The data sources and methodologies are described in detail in Fuglie (2012, 2015).
14 Some countries are summarized to groups depending to ensure long-term data availability.
15 We merged mountain and continental regions because the separation at the country level was not clear-cut.

Additionally, we re-estimated the technologies for the five regions identified in Bar�ath and Fert}o (2017) using
cluster analysis based on output shares and weather variables, which yielded very similar results.
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16 O'Donnell (2012a) describes that points on the unrestricted frontier may have different output and input mixes,
although all of them are mix-efficient. As a result, OSME encompasses both scale and residual mix effects.

17 The necessary assumption would be that both the European countries and the US have access to the same
technology. Productivity differences arising from different production environments or policy restrictions
would therefore be captured in the TFP efficiency term rather than in the technical component, and hence
the results on the TFP components would not be comparable to our main analysis. The overall TFP measure,
however, is not affected by this assumption.
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