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Highlights

• New models with more physical insights of losses in water distribution networks

• Integrating pressure gradient along pipes leads to more accurate leakage models

• Reference hydraulic grade lines and leakage outflows are computed by discretization

• Other new gradually refined models are compared to the existing and reference ones

• New method and models give better predictions without much computation overhead
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Abstract

In last decades, several mathematical models have been proposed to simulate background leakages in water distribution
networks (WDNs). Some of these models already consider the dependence of leakages to pressure, but they still neglect
the gradient of pressure along the pipes. In this article, new models to take into account of this gradient are presented.
One of them computes reference background leakage outflows, using a recursive algorithm which discretizes the pipes into
sub-pipes until the hydraulic grade line (HGL) along each pipe converges. The other new models consist in gradually
refining a state of the art one. All models are then tested and compared on both a single leaky pipe and a WDN derived
from a real leaky network. The results of this comparison show clearly the better estimations obtained from our new
models when compared to the existing one. Finally, accurate leakage models are essential to estimate the level of leakages
and, more generally, the good working order of WDNs. Thus, our new models will help in taking the best decisions for
optimal functioning and rehabilitation of the WDNs. Moreover, our recursive discretization approach could be reused for
other applications in WDNs, or derived to more general fields of applied mathematics and scientific computation.

Keywords:
water distribution network (WDN), background leakage, pressure-dependent model (PDM), recursive discretization
method

1. Introduction

1.1. Water distribution networks

In developed countries, drinkable water is provided to consumers through large interconnected and pressurized water
distribution networks (WDNs), composed of pipes, water storage (tanks, reservoirs) and hydraulic equipments (valves,
pumps) (fig. 1).
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Figure 1: Water distribution network C-Town from [21], composed of 432 pipes, 7 tanks, 1 reservoir, 1 valve and 11 pumps.

Hydraulic models are used to design and operate the WDNs, in order to satisfy the demands of the consumers while
limiting the construction and functioning costs. These models are also very helpful to define sampling plans, and to
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analyze the sensitivity of parameters. Once they are calibrated, WDN models can be coupled to transport models, to
optimize the position of new sensors (of pressure, contaminants, etc.), or to measure the benefit of the current ones.
Finally, performance and criticality indicators can be calculated to estimate the resilience of the WDNs and their state of
degradation [23, 33].

In WDN models, the networks are described by directed graphs, in which the pipes and the equipments are the arcs
(a.k.a. links), and the water storage and the junctions connecting the pipes are the vertices (a.k.a. nodes). The incidence
matrices associated to the graphs show the relationships between the vertices and the arcs. In steady-state analysis, the
heads at water storage nodes are fixed, and the flow rates and the piezometric heads (called just “heads” thereafter) at
junctions are computed by solving the mass and energy conservation equations, corresponding respectively to Kirchhoff’s
first and second laws [3]. Because WDNs are systems which are dynamic, sparse, non-linear, looped, possibly very large
and subject to numerous constraints, modeling them has always been a challenge for applied mathematicians and computer
scientists, from early [4, 14, 30] to recent [1, 7, 9].

1.2. Background leakages

Leakages appear in WDNs when they age, causing significant water losses. Among the leakages, some are too small
to be detected by traditional acoustic equipments; they are called “background leakages”, or “diffuse outflows”. Even if
they are small, background leakages run continuously, often for a long time, and thus contribute greatly to water losses
[17]. Because drinkable water is a limited resource which has to be preserved as much as possible, civil engineers and
scientists work, since several decades, on detecting and reducing leakages. To do so, they always need for more accurate
mathematical models and efficient simulation tools [26].

Currently, one of the best ways to detect leakages in a WDN is to use a dual modeling approach, which consists in
transforming the tenuous variations of pressures induced by the leakages to equivalent but clearer flow rate variations [29].
Once the leakages are located, operators can then repair or replace the concerned components. However, further work is
needed to determine the conditions of applicability of the dual model to real networks.

Background leakages cannot, by definition, be precisely located. Thus, the only way to reduce them, while preserving
a good quality of service, is through a smart control of the pressures [5, 16]. Indeed, since leakages increase much with
pressure, the pressures in the WDNs must be sufficient to transport the water from storage to consumers, but low enough
to limit the leakages [17].

[11] first proposed a pressure-dependent model (PDM) of the background leakages in water distribution networks,
derived from the Torricelli’s law, supposing that there is no gradient of pressure along the pipes. Like so, the lineic (i.e.,
per length unit) leakage outflow in each pipe is independent of the position along the pipe, and is computed from an
approximated mean value of the pressure-head into each pipe.

Next, [12] reused the model of [11], combining it with a PDM model of user consumptions based on the Wagner pressure
outflow relation (POR) [32]. Thereby, [12] run steady-state simulations of leaky WDNs derived from real networks.

Due to background leakages, the flow rates at the upstream ends of the pipes are different than the ones at their
downstream ends. However, in the equations of [12], the computation of the head-loss along each pipe considers a unique
value for the flow rate, then neglecting a significant loss of axial momentum along the pipe. Thus, to correct that issue,
[10] proposed to add an extra resistance term in the equation of the conservation of energy.

Using a different approach, [15] proposed a slow-transient (a.k.a. unsteady-incompressible, or rigid water column)
model to simulate background leakages and inertia phenomena in WDNs subject to slow variations of flows and heads.
There, conversely to [10], the friction head-losses are computed by integrating the variation of the flow rates due to
background leakages. But, as [10], leakages are simplified to be independent of the pressure in pipes.

All previous models of background leakages have their own advantages and drawbacks. Indeed, the models from [10]
and [15] both consider the variations of the flow rates along the pipes, but they neglect the dependence of leakages to
pressure. The model of [12] simulates leakages which depend on the pressure, but it neglects the variation of the flow rate
along each pipe.

The model from [12] has already been tested by [13], and calibrated by [2, 19]. Thus, we choose it as the state of
the art one. However, this model supposes leakage outflows which are independent of the gradients of pressure along the
pipes, and computes the friction head-losses without integrating the variation of the flow rate along each pipe.

1.3. Hypothesis, objectives and research strategy

We believe that taking into account the gradient of pressure along the pipes permits to model the background leakages
in the WDNs more accurately, and that integrating the variation of the flow rates along the pipes prevents from neglecting
a significant loss of axial momentum. Thus, our first objective is to propose new steady-state PDM models of background
leakages, which consider the gradients of pressure and integrate the variation of the flow rates along the pipes. This way,
civil engineers and WDN managers could benefit from more accurate models to simulate WDNs.

Also, like many other authors (e.g., [1, 4, 7, 9, 14, 30]), we think that WDNs modeling needs the use of rigorous
numerical methods. Thus, our second objective is to implement our new models in a generic, efficient and easy to diffuse
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way, so they could be easily adapted and reused for other applications in WDNs, or even a source of inspiration for more
general fields of applied mathematics and scientific computation.

To achieve these two goals, we will first describe the background models at the pipe scale. Then, we will write the
equations of equilibrium at the WDN scale, and propose an optimized Newton algorithm to solve them. Next, we will
explain how we check and compare the models to each other. Finally, we will present our results and discuss them.

2. Methods

This section first presents, at the pipe scale, the state of art background leakage model from [12] and our new models.
Next, it explains how to integrate all models into the equations of equilibrium of the WDNs, and how to solve these
equations. Finally, it describes the networks and method we use to check and compare the models between each other.

In absence of other indications, scalar parameters and variables are denoted in italic (e.g., x), vectors in italic bold
(e.g., v), matrices in italic bold upper-case (e.g., M), scalar functions in upright (e.g., f(x)), vector functions in upright
bold (e.g., f(v)), matrix functions in upright bold upper-case (e.g., M(v)), and sets in blackboard style (e.g., R).

Also, all heads, head-losses and pressure-heads are expressed in mH2O (metres water column), which are consistent
to m. All flow rates and leakage outflows are expressed in l s−1, rather than m3 s−1, to avoid problems of stability due to
machine precision, which could appear when some flow rates are very close to 0 [25].

2.1. Models of background leakages in a single pipe

This sub-section describes how to model a single pipe presenting background leakages, using an existing solution and
proposing new ones.

2.1.1. Lineic background leakage outflow

We consider a leaky pipe of length ℓ (in m), and we denote x ∈ [0, ℓ] the position along it. We denote also p0 and
pℓ the pressure-heads respectively at x = 0 and x = ℓ. Then, assuming that p0 and pℓ are known, [11] computes the
approximated mean pressure in the pipe as

p̃ =
p0 + pℓ

2
. (1)

Next, [11] uses the Torricelli’s equation to model lineic background leakage outflow (in l s−1 m−1) along the pipe as

qLL(p) = β
(
[p̃]

+
)α

, (2)

where α corresponds to the type of leakage (unit-less), β represents the level of degradation of the pipe (in l s−1 m−1−α),
and [p̃]

+
refers to the positive part of p̃. Equation (2) can be used to model both local and background leakage outflows.

For background leakages, 0.5 < α ≤ 2.5 [17, 20], and 10−7 ≤ β ≤ 10−1 [2, 19].

2.1.2. Theoretical model of background leakage, flow rate and friction head-loss

We suppose here that a function permitting to compute the exact pressure-head at any position x ∈ [0, ℓ] is perfectly
known, and we denote it ptheo(x). Then, we can extend eq. (2) to

qtheoLL (x) = β
([

ptheo(x)
]+)α

. (3)

Next, we suppose that the flow rate at the middle of the pipe, denoted q0 .5 , is known too. Then, using eq. (3), we can
compute the flow rate at any x ∈ [0, ℓ] as:

qtheo(x) = q0 .5 −

∫ x

ℓ/2

qtheoLL (y) dy . (4)

Note: denoting q0 and qℓ the flow rates at respectively x = 0 and x = ℓ, and supposing that either q0 or qℓ is known,
then we could have defined qtheo(x) as a function of q0 or qℓ rather than a function of q0 .5 . But the use of q0 .5 leads to
symmetrical and more generic formulation of qtheo(x). We therefore choose to define qtheo(x) as a function of q0 .5 , as in
eq. (4).

Finally, we use the Hazen-Williams model [34] to compute the friction head-loss along the pipe. To do so, denoting ◦
the diameter of the pipe (in mm) and C

HW
its roughness coefficient (unit-less), and supposing the pipe is cylindrical, we

first compute the friction coefficient of the pipe as:

f =
10.67

(1000C
HW

)
γ
(◦/1000)

4.87 . (5)
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Next, from eq. (4) and eq. (5), we compute the friction head-loss from position 0 to position x ∈ [0, ℓ] as:

ξtheo(x) = f

∫ x

0

qtheo(y)
∣∣qtheo(y)

∣∣γ−1
dy , (6)

where γ = 1.852 is the Hazen-Williams exponent (unit-less).
Unfortunately, no one knows the function ptheo(x), and so neither the functions qtheoLL (x), qtheo(x) and

ξtheo(x) ∀x ∈ [0, ℓ]. Thus, we propose in next sections 2.1.3 and 2.1.4 to approximate the functions{
qtheoLL (x), qtheo(x), ξtheo(x)

}
by different mathematical models, supposing that only p0 , pℓ and q0 .5 are known.

2.1.3. State of the art background leakage model

We choose as the state of the art background leakage model the one initially proposed by [12], and already validated by
[12, 13]. In this model, denoted hereafter M0, [12] suppose that the lineic leakage outflow and the flow rate are invariant
along the pipe.

To construct M0, [12] reused the function (2) from [11]. Thereby, denoting q̃LL = β
(
[p̃]

+)α
, [12] computed, at any

x ∈ [0, ℓ], the lineic leakage outflow as
qM0
LL (x) = q̃LL (7)

and the flow rate as
qM0(x) = q0 .5 . (8)

Finally, [12] used the Hazen-Williams model [34] to compute the friction head-loss from position 0 to position x ∈ [0, ℓ] as

ξM0(x) = f

∫ x

0

q0 .5
∣∣q0 .5

∣∣γ−1
dy = f q0 .5

∣∣q0 .5
∣∣γ−1

x. (9)

2.1.4. Reference model from recursive discretization

We propose here a new model based on the recursive discretization of a pipe into sub-pipes, until the difference between
the hydraulic grade lines (HGLs) along the pipe computed at two consecutive iterations becomes small enough. In this
new model, the background leakage outflow rates, the flow rates and the friction head-losses in the initial undiscretized
pipe and in each discretized sub-pipe are computed with the functions of the model M0 (see section 2.1.3). Each iteration
of the discretization algorithm corresponds to a level of discretization of the pipe.

The functions (7) and (8) are piecewise constant per sub-pipe. They lead to a good numerical approximation of the
continuous theoretical functions (3) and (4) providing that the pipe is discretized in enough sub-pipes. Since ξM0 depends
linearly on qM0, using ξM0 in each sub-pipe permits to approximate the continuous theoretical function ξtheo as well.
Thus, we will consider hereafter this new model as the reference one, and denote it “Ref”.

We will now describe the discretization algorithm through a simple example, iteration by iteration. To do so, we first
denote qx, px and hx respectively the flow rate, the pressure-head and the head at the position x along the pipe, ∀x ∈ [0, ℓ].
Also, ∀{x1, x2} ∈ [0, ℓ]× [0, ℓ], x1 ≤ x2, we denote:

p̃x1x2
=

px1
+ px2

2

and
˜qLLx1x2

= β
([
p̃x1x2

]+)α

respectively the approximated mean pressure-head and the approximated lineic background leakage outflow rate in the
interval [x1, x2]. Finally, we define:

qL[x1,x2] = ˜qLLx1x2
(x2 − x1)

and
ξ[x1,x2] = ξM0(x2)− ξM0(x1)

respectively the background leakage outflow rate and the friction head-loss cumulated from x1 to x2. We explain in next
paragraphs what is done at each iteration of the discretization algorithm, following the example on fig. 2.

At iteration 0 (i.e., initial state), the conservation of energy and mass along the undiscretized pipe leads to the system
of equations: 

 h
(0)
0 − h

(0)
ℓ − ξ

(0)
[0,ℓ]

q
(0)
0 − q

(0)
ℓ − q

(0)
L[0,ℓ]


 = 0 . (10)

Then, the discretization algorithm solves the system (10) to compute the HGL h(0) =
(
h
(0)
0 , h

(0)
ℓ

)T
at positions

x(0) =
(
0, ℓ
)T

, and goes to iteration 1.
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0

h
(0)
ℓ

∥∥∥h(1) − h̃(0)
∥∥∥
∞

> 10−3 m ⇒ continue

h
(0) =

(
h
(0)
0 , h

(0)
ℓ

)T
q
(0)
0

1

2

s

h
(0)
0

h
(1)
0

h
(2)
0

h
(1)
ℓ

h
(2)
ℓ

q
(0)
ℓ

h
(1)
ℓ/2

q
(1)
ℓ

q
(2)
ℓ

q
(1)
ℓ/2

h
(1) =

(
h
(1)
0 , h

(1)
ℓ/2, h

(1)
ℓ

)T
;

h
(2)
ℓ/2h

(2)
ℓ/4

q
(2)
ℓ/4

h
(2) =

(
h
(2)
0 , h

(2)
ℓ/4, h

(2)
ℓ/2, h

(2)
ℓ

)T
;

∥∥∥h(2) − h̃(1)
∥∥∥
∞

> 10−3 m ⇒ continue

x0 ℓ

q
(1)
0

q
(2)
0

q
(2)
ℓ/2

ℓ/2

ℓ/4 ℓ/4 ℓ/2

ℓ

ℓ/2

h
(3)
0

q
(3)
0

h
(3)
ℓ/2

q
(3)
ℓ/2

h
(3)
ℓ

q
(3)
ℓ

h
(3)
ℓ/4

q
(3)
ℓ/4

ℓ/8 ℓ/4ℓ/8

h
(3)
ℓ/8

q
(3)
ℓ/8

h
(3)
3ℓ/4

q
(3)
3ℓ/4

ℓ/4 ℓ/4

= sc

3
= sc + 1

h
(3) =

(
h
(3)
0 , h

(3)
ℓ/8, h

(3)
ℓ/4, h

(3)
ℓ/2, h

(3)
3ℓ/4, h

(3)
ℓ

)T
;

∥∥∥h(3) − h̃(2)
∥∥∥
∞

≤ 10−3 m ⇒ STOP

Figure 2: Illustration to describe the functioning of the discretization algorithm when applied on a leaky pipe.

At iteration 1, the algorithm discretizes the pipe in 2 sub-pipes of equal length ℓ/2. Except for their length, the new
sub-pipes have exactly the same characteristics as the initial undiscretized pipe: same diameter, roughness, leakage type
and level of degradation. The conservation of energy and mass along the sub-pipes leads to the system of equations:




h
(1)
0 − h

(1)
ℓ/2 − ξ

(1)
[0,ℓ/2]

h
(1)
ℓ/2 − h

(1)
ℓ − ξ

(1)
[ℓ/2,ℓ]

q
(1)
0 − q

(1)
ℓ/2 − q

(1)
L[0,ℓ/2]

q
(1)
ℓ/2 − q

(1)
ℓ − q

(1)
L[ℓ/2,ℓ]




= 0 . (11)

The discretization algorithm solves the system (11) to compute h(1) =
(
h
(1)
0 , h

(1)
ℓ/2 , h

(1)
ℓ

)T
at positions x(1) =

(
0, ℓ/2, ℓ

)T
.

Then, it tests the convergence with the criterion:

∥∥h(1) − h̃(0)
∥∥
∞

≤ 10−3 mH2O, (12)

where the vector h̃(0) contains the values of h(0) interpolated at the positions x(1) using a piecewise cubic Hermite
interpolating polynomial (PCHIP), and 10−3 mH2O corresponds to 1/10th of the best precision expected when measuring
heads physically in a WDN, and so under which the gain in precision becomes negligible. In the example of fig. 2, the
criterion (12) is satisfied for the second sub-pipe but not for the first one; then, the algorithm continues to the next
iteration.

At iteration 2, the algorithm discretizes only the first sub-pipe (i.e., the sub-pipe where the convergence criterion
(12) was not satisfied) in two sub-pipes of equal length ℓ/4. The conservation of energy and mass along the 3 resulting
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sub-pipes leads to: 


h
(2)
0 − h

(2)
ℓ/4 − ξ

(2)
[0,ℓ/4]

h
(2)
ℓ/4 − h

(2)
ℓ/2 − ξ

(2)
[ℓ/4,ℓ/2]

h
(2)
ℓ/2 − h

(2)
ℓ − ξ

(2)
[ℓ/2,ℓ]

q
(2)
0 − q

(2)
ℓ/4 − q

(2)
L[0,ℓ/4]

q
(2)
ℓ/4 − q

(2)
ℓ/2 − q

(2)
L[ℓ/4,ℓ/2]

q
(2)
ℓ/2 − q

(2)
ℓ − q

(2)
L[ℓ/2,ℓ]




= 0 . (13)

The algorithm solves the system (13) to compute h(2) = (h
(2)
0 , h

(2)
ℓ/4 , h

(2)
ℓ/2 , h

(2)
ℓ )T at positions x(2) = (0, ℓ/4, ℓ/2, ℓ)T . Then, it

tests the convergence as: ∥∥h(2) − h̃(1)
∥∥
∞

≤ 10−3 mH2O, (14)

where the vector h̃(1) contains the values of h(1) interpolated at the positions x(2) using the same method as at iteration 1.
The criterion (14) is not satisfied for the first and the third sub-pipes; then, the algorithm continues to the next iteration.

At iteration 3, the algorithm discretizes the first sub-pipe in two sub-pipes of length ℓ/8, and the third sub-pipe in two
sub-pipes of length ℓ/4. The conservation of energy and mass along the 5 resulting sub-pipes leads to:




h
(3)
0 − h

(3)
ℓ/8 − ξ

(3)
[0,ℓ/8]

h
(3)
ℓ/8 − h

(3)
ℓ/4 − ξ

(3)
[ℓ/8,ℓ/4]

h
(3)
ℓ/4 − h

(3)
ℓ/2 − ξ

(3)
[ℓ/4,ℓ/2]

h
(3)
ℓ/2 − h

(3)
3ℓ/4 − ξ

(3)
[ℓ/2,3ℓ/4]

h
(3)
3ℓ/4 − h

(3)
ℓ − ξ

(3)
[3ℓ/4,ℓ]

q
(3)
0 − q

(3)
ℓ/8 − q

(3)
L[0,ℓ/8]

q
(3)
ℓ/8 − q

(3)
ℓ/4 − q

(3)
L[ℓ/8,ℓ/4]

q
(3)
ℓ/4 − q

(3)
ℓ/2 − q

(3)
L[ℓ/4,ℓ/2]

q
(3)
ℓ/2 − q

(3)
3ℓ/4 − q

(3)
L[ℓ/2,3ℓ/4]

q
(3)
3ℓ/4 − q

(3)
ℓ − q

(3)
L[3ℓ/4,ℓ]




= 0 . (15)

The algorithm solves the system (15) to compute h(3) =
(
h
(3)
0 , h

(3)
ℓ/8 , h

(3)
ℓ/4 , h

(3)
ℓ/2 , h

(3)
3ℓ/4, h

(3)
ℓ

)T
at positions

x(3) =
(
0, ℓ/8, ℓ/4, ℓ/2, 3ℓ/4, ℓ

)T
. Then, it tests the convergence with the criterion:

∥∥h(1) − h̃(2)
∥∥
∞

≤ 10−3 mH2O, (16)

where the vector h̃(2) contains the values of h(2) interpolated at the positions x(3) using the same method as at iterations 1
and 2. The criterion (16) is satisfied; then, the algorithm stops. The differences between the HGL computed at iterations
2 and 3 are less than 10−3 mH2O. Thus, the discretization algorithm converged at iteration sc = 2.

At iteration sc + 1 = 3, we computed the values of hx and qx ∀x ∈ {0, ℓ/8, ℓ/4, ℓ/2, 3ℓ/4, ℓ}. From each hx, we can also
compute the lineic background leakage outflow rate qLLx as:

qLLx = β
(
[hx − ux]

+)α
, (17)

where ux is the elevation at the position x along the undiscretized pipe. Finally, from all values of qLLx, qx and hx, we can
determine by PCHIP interpolation the functions qLL(x), q(x) and ξ(x), x ∈ [0, ℓ]. Since these functions compute values
that are very close to the ones we would obtain with the theoretical model of section 2.1.2, we will consider them as the
reference ones, and denote them qRef

LL (x), qRef(x) and ξRef(x) hereafter.
∀x ∈ [0, ℓ], the elevation ux = u(x) at the position x along the undiscretized pipe is computed by linear interpolation

from the elevations u0 = u(0) and uℓ = u(ℓ) at the pipe’s extremities, as:

u(x) =
uℓ − u0

ℓ
x+ u0. (18)
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Actually, graphs of WDNs are generally designed in order to simulate linear pipes. Thus, the linear interpolation of the
elevation u(x) is justified supposing that the graph of the network to which belongs the pipe is well-designed, with arcs’
slopes not exceeding 3%. However, a more accurate model of elevation could easily replace this linear one, providing that
the real elevation of the ground is known at different positions along the pipe.

The convergence criterion, defined at iterations 1, 2 and 3 by respectively eqs. (12), (14) and (16), can be generalized
to any iteration s > 0 as: ∥∥h(s−1) − h̃(s)

∥∥
∞

≤ 10−3 mH2O, (19)

where the vector h̃(s−1) contains the PCHIP interpolation of h(s−1) at the positions x(s).

2.1.5. Lineic leakage outflow invariant along the pipe but affine flow rate

We propose here a new model, denoted M1, obtained by refining the state of the art one M0. Indeed, we consider in
M1, as for model M0, that the lineic leakage outflow is invariant along the pipe; but we now also suppose, conversely to
M0, that for M1 the flow rate is affine along the pipe, as initially proposed by [15].

To do so, denoting qM1
LL = qM1

LL (x) = q̃LL, we compute the flow rate at any x ∈ [0, ℓ] as

qM1(x) = q0 .5 − qM1
LL

(
x−

ℓ

2

)
. (20)

Then, denoting qM1
0 = qM1(0), we compute the friction head-loss from position 0 to position x ∈ [0, ℓ] as

ξM1(x) =





f

(γ + 1) qM1
LL

(∣∣qM1
0

∣∣(γ+1)
−
∣∣qM1(x)

∣∣(γ+1)
)

if qM1
LL ̸= 0

eq. (9) otherwise.

(21)

2.1.6. Affine lineic leakage outflow

The next new model, denoted M2, is a refining of model M1. Indeed, in M2, we now consider that the lineic leakage
outflow is affine along the pipe. M2 is the first background leakage model which takes into account the gradient of pressure
along the pipe without discretization.

To define M2, we first denote qLL0 = β
([
p0
]+)α

and qLLℓ = β
([
pℓ
]+)α

, and we suppose that qM2
LL (0) = qLL0 and

qM2
LL (ℓ) = qLLℓ. Then, we compute the lineic leakage outflow at any x ∈ [0, ℓ] by linear interpolation as

qM2
LL (x) =

qLLℓ − qLL0

ℓ
x+ qLL0 . (22)

Subsequently, denoting x̂(x) = (x+ ℓ/2) /2 and q̂M2
LL (x) = qM2

LL ◦ x̂(x), we compute the flow rate at any x ∈ [0, ℓ] as

qM2(x) = q0 .5 − q̂M2
LL (x)

(
x−

ℓ

2

)
. (23)

Finally, we compute the friction head-loss from position 0 to position x ∈ [0, ℓ] using a Newton-Cotes formula of degree 2,
as

ξM2(x) = f
x

6

(
ϕM2(0) + 4ϕM2(x/2) +ϕM2(x)

)
, (24)

where ϕM2(y) is the unitary friction head-loss function, defined, ∀y ∈ [0, ℓ], as

ϕM2(y) = fqM2(y)
∣∣qM2(y)

∣∣γ−1
. (25)

Note: A Newton-Cotes formula of degree 2 allows the exact integration of polynomials of degree 3. Thus, it is accurate
enough to model the slope (i.e., 1st derivative estimate) and curvature (i.e., 2nd derivative estimate) of the friction head-loss
function.

2.1.7. Pseudo-quadratic lineic leakage outflow

Finally, the last new model that we propose, and denote M3, is a refining of model M2. Indeed, in M3, we consider, as

in M2, that the lineic leakage outflow depends on qLL0 = β
([
p0
]+)α

and qLLℓ = β
([
pℓ
]+)α

; but, conversely to M2, M3

now also depends on q̃LL = β
([
(p0 + pℓ) /2

]+)α
. Like so, model M3 takes into account of the gradient of pressure along

the pipe, using the three values of lineic leakage outflows qLL0 , qLLℓ and q̃LL.
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To define M3, we first suppose that qM3
LL (0) = qLL0 , q

M3
LL (ℓ/2) = q̃LL and qM3

LL (ℓ) = qLLℓ, and that qM3
LL (x) is a quadratic

polynomial ∀x ∈ [0, ℓ]. Then, after identification of the coefficients of the polynomial, we obtain:

qM3
LL (x) =

2 (qLL0 − 2 q̃LL + qLLℓ)

ℓ2
x2 −

3 qLL0 − 4 q̃LL + qLLℓ

ℓ
x+ qLL0 . (26)

Next, simply replacing qtheoLL (y) by qM3
LL (y) in eq. (4), we compute the flow rate at any x ∈ [0, ℓ] as

qM3(x) = q0 .5 +

(
ℓ

2
− x

)
2 (qLL0 − 2 q̃LL + qLLℓ)

3 ℓ2

(
x2 + x

ℓ

2
+

ℓ2

4

)
−

3 qLL0 − 4 q̃LL + qLLℓ

2 ℓ

(
x+

ℓ

2

)
+ qLL0


. (27)

Finally, using the same method as for model M2, we compute the friction head-loss from position 0 to position x ∈ [0, ℓ]
as

ξM3(x) = f
x

6

(
ϕM3(0) + 4ϕM3(x/2) +ϕM3(x)

)
. (28)

Note: the use of q̃LL to compute qM3
LL (x) does not make qM3

LL (x) of a full higher degree compared to qM2
LL (x). Indeed, all of

{qLL0 , q̃LL, qLLℓ} are computed using only the two pressure-heads {p0 , pℓ}. Hence the qualifying of pseudo-quadratic for
M3.

2.2. Modeling of background leakages at WDN scale

This sub-section extends the modeling of background leakages from a single leaky pipe (section 2.1) to a whole leaky
WDN.

2.2.1. Variables and notations

For any leaky WDN, we denote np the number of cylindrical and longitudinal pipes of lengths ℓ =
(
ℓ1, .., ℓnp

)T
∈ Rnp ,

nj the number of junction nodes at which the heads are unknown, nt and nr respectively the number of tank and reservoir
nodes at which the heads are known and fixed, nf = nt +nr the total number of source nodes, and N = nj +nf the total
number of nodes.

Next, we denote q0 .5 =
(
q0 .5 ,1, .., q0 .5 ,np

)T
∈ Rnp , h =

(
h1, .., hnj

)T
∈ Rnj , ht =

(
ht,1, .., ht,nt

)T
∈ Rnt and

hr =
(
hr,1, .., hr,nr

)T
∈ Rnr , respectively the unknown flow rates at the middle of the pipes, the unknown heads

at junctions, the known heads at tanks and the known heads at reservoirs, and hf =
(
hT
t | hT

r

)T
∈ Rnf and

hN =
(
hT | hT

f

)T
∈ RN the heads respectively at all source nodes and at all nodes. We denote also p =

(
p1, .., pnj

)T
∈ Rnj

and lt =
(
l1, .., lnt

)T
∈ Rnt respectively the pressure-heads at junctions and the water levels at tanks. Then, writing

u =
(
u1, .., unj

)T
∈ Rnj , ut =

(
u1, .., unt

)T
∈ Rnt and ur =

(
u1, .., unr

)T
∈ Rnr respectively the elevations at junctions,

the elevations at tank bottoms (i.e., where water level is zero), and the elevations of water surface in reservoirs, we have
the relations:

p = h− u (29)

at junctions,
lt = ht − ut (30)

at tanks, and
hr = ur (31)

at reservoirs.
Next, we denote the nj × np junction-pipe, the nt × np tank-pipe, and the nr × np reservoir-pipe incidence matrices

as respectively A, At and Ar, the N × nf source-pipe incidence matrix as Af =
(
AT

t | AT
r

)T
, and the N × np node-pipe

incidence matrix as AN =
(
AT | AT

f

)T
, and we denote the positive and the negative parts of A as respectively A+ and

A−. Also, we denote q0(q0 .5 ,hN ), qℓ(q0 .5 ,hN ) and ξ(q0 .5 ,hN ), the vector functions of Rnp×N to Rnp , defined as
q0(q0 .5 ,hN ) = q0 , qℓ(q0 .5 ,hN ) = qℓ and ξ(q0 .5 ,hN ) = ξℓ. ∀k ∈ {1..np}, q0 ,k = qk(0), qℓ,k = qk(ℓk) and ξℓ,k = ξk(ℓk)
are computed using one of the models {M0..M3} described in sections 2.1.3 and 2.1.5 to 2.1.7.

Finally, we denote d =
(
d1, .., dnj

)T
∈ Rnj the demands of consumers at junctions, and pm and ps respectively the

minimal and the service pressure-heads such that ps > pm. Then, ∀i ∈ {1..nj}, the scalar function to compute the fraction
of pressure-head at junction i is defined as

z(pi) =
pi − pm
ps − pm

, (32)
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and the Wagner scalar function [32] to compute the user consumption at i as

ci(pi) =





0 if z(pi) ≤ 0

di
√
z(pi) if 0 < z(pi) < 1

di if z(pi) ≥ 1.

(33)

From eqs. (29) and (33), we denote c(h) =
(
c1(h1), .., cnj

(hnj
)
)T

the vector function of Rnj to Rnj to compute the user
consumptions at all junctions.

2.2.2. Equations of equilibrium

To find the unknown flow rates q0 .5 and heads h in a WDN at steady-state, we need to solve the non-linear system
of equations:

ρ(q0 .5 ,h) =

(
ξ(q0 .5 ,hN )−ATh−AT

fhf

A− qℓ(q0 .5 ,hN )−A+ q0(q0 .5 ,hN )− c(h)

)
= 0 , (34)

where
ξ(q0 .5 ,hN )−ATh−AT

fhf = ρe (35)

are the energy residuals in pipes, and

A− qℓ(q0 .5 ,hN )−A+ q0(q0 .5 ,hN )− c(h) = ρm (36)

the mass residuals at junctions. The use of matrices {A+,A−} and flow rates {q0(q0 .5 ,hN ),qℓ(q0 .5 ,hN )}, needed to
ensure the mass conservation at junctions when simulating PDM background leakages, represent a new formulation of the
equations of equilibrium.

2.2.3. Newton algorithm

To solve eq. (34), we choose to use the Newton’s method. To do so, we first define the Jacobian matrix function of
eq. (34) as:

J =

(
J11 J12

J21 J22

)
(37)

where,

J11 =
∂ξ

∂q0 .5
, J12 =

∂ξ

∂h
−AT , J21 = −

(
A+ −A−

)
= −A and J22 = A−

∂qℓ

∂h
−A+ ∂q0

∂h
−

∂c

∂h
. (38)

Then, denoting q
(0)
0 .5 the initial guesses of flow rates at middle of pipes, h(0) the ones of heads at junctions, and

J (m) = J(q
(m)
0 .5 ,h

(m)) the Jacobian matrix of ρ(m) = ρ(q
(m)
0 .5 ,h

(m)) at iteration m, and supposing that J (m) is invert-

ible, the Newton algorithm consists in computing, for m = 0, 1, 2, ..., the iterates q
(m+1)
0 .5 and h(m+1) as

(
q
(m+1)
0 .5

h(m+1)

)
=

(
q
(m)
0 .5

h(m)

)
−
(
J (m)

)
−1
(
ρ
(m)
e

ρ
(m)
m

)
, (39)

until the differences between two successive iterates become less than a given tolerance.
In eq. (39), computing the iterates by inverting the possibly very large matrix J (m) ∈ R(np+nj)×(np+nj) can be very

time consuming. Thus, we rather look for the descent directions on q
(m)
0 .5 and h(m), defined respectively as

δ(m)
q0.5

= q
(m+1)
0 .5 − q

(m)
0 .5 and δ

(m)
h = h(m+1) − h(m), (40)

and which satisfy the linear system: (
J
(m)
11

J
(m)
12

J
(m)
21

J
(m)
22

)(
δ
(m)
q0.5

δ
(m)
h

)
= −

(
ρ
(m)
e

ρ
(m)
m

)
, (41)

or, in developed form: (
J
(m)
11

δ
(m)
q0.5

+ J
(m)
12

δ
(m)
h

J
(m)
21

δ
(m)
q0.5

+ J
(m)
22

δ
(m)
h

)
= −

(
ρ
(m)
e

ρ
(m)
m

)
. (42)
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To solve the system (42), we first use its first equation (i.e., row) to express δ
(m)
q0.5

in function of δ
(m)
h :

δ(m)
q0.5

= −
(
J

(m)
11

)
−1 (

J
(m)
12

δ
(m)
h + ρ(m)

e

)
, (43)

assuming that the diagonal matrix J
(m)
11

∈ Rnp×np is invertible. Next, we substitute (43) into the second equation of the
system (42) to obtain:

S(m) δ
(m)
h = J

(m)
21

(
J

(m)
11

)
−1

ρ(m)
e − ρ(m)

m , (44)

where S(m) ∈ Rnj×nj is the Schur complement of the block J
(m)
11

, and is defined as:

S(m) = J
(m)
22

− J
(m)
21

(
J

(m)
11

)
−1

J
(m)
12

. (45)

Contrary to the WDN models which do not simulate PDM background leakages, it is not possible here to use a

Cholesky factorization to compute δ
(m)
h from eq. (44), because S(m) is not symmetric. Thus, since S(m) is highly sparse,

the most suitable method to compute δ
(m)
h is to use a direct sparse LU factorization, as long as S(m) is invertible. Next,

once δ
(m)
h is calculated, we can easily compute δ

(m)
q0.5

from eq. (43) because J
(m)
11

is diagonal and supposed invertible.

Finally, after computing both δ
(m)
h and δ

(m)
q0.5

, we can replace

−
(
J (m)

)
−1
(
ρ
(m)
e

ρ
(m)
m

)
by

(
δ
(m)
q0.5

δ
(m)
h

)

in eq. (39), and compute the new iterates q
(m+1)
0 .5 and h(m+1) as

(
q
(m+1)
0 .5

h(m+1)

)
=

(
q
(m)
0 .5

h(m)

)
+

(
δ
(m)
q0.5

δ
(m)
h

)
. (46)

To test for the convergence of scheme (46), we use a stop criterion that is almost the same as the one already used by
[9]. Indeed, we consider that the convergence is reached as soon as, ∀y ∈ {q0 .5 ,h},





∥∥y(m+1) − y(m)
∥∥
∞∥∥y(m+1)

∥∥
∞

≤ 10−6 if
∥∥y(m+1)

∥∥
∞

≥ 10−6

∥∥y(m+1) − y(m)
∥∥
∞

≤ 10−6 otherwise.

(47)

The only difference with [9] is that our version of the criterion also handles the case where
∥∥y(m+1) − y(m)

∥∥
∞

≤ 10−6.

2.3. Extension of the discretization algorithm to WDN scale

At section 2.1.4, we proposed a new reference model “Ref”, based on the recursive discretization of a pipe into sub-
pipes until the difference between the hydraulic grade lines (HGLs) of two consecutive discretization levels becomes small
enough.

To extend the algorithm to the scale of a whole WDN, we simply apply, at each iteration s > 0 of the discretization
algorithm (s = 0 corresponds to the solving of the undiscretized network), the following procedure:

1. iterate over each pipe k ∈ {1..np} of the WDN, to look if k needs, according to the convergence criterion (19), to be
discretized more,

2. for each (sub-)pipe that needs to be (re-)discretized: replace the (sub-)pipe by 2 (sub-)sub-pipes connected by a new
intermediate junction node,

3. and solve the system of energy and mass conservation equations (34) that describes the new discretized WDN, for
the flow rates and heads at the extremity nodes of the pipes and the interior points of the discretized pipe at the
same time,

until the convergence criterion (19) becomes satisfied ∀k ∈ {1..np}. Then, at the last iteration, the heads computed at
the extremities of the undiscretized pipes are the reference heads. Also, in each pipe k, the flow rates along k obtained at
the last iteration permit to compute, by PCHIP interpolation, the reference flow rate at the middle of k.

In the 2nd item of the procedure above, the new intermediate junction nodes have no demand, and their elevations
are computed by linear interpolation from the elevations at the extremities of the (sub-)pipes. For the same reasons as
the ones already exposed at a pipe’s scale (see section 2.1.4), using linear interpolation to compute the elevations of the
intermediate junction nodes is justified.
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In the 3rd item of the procedure, the system of equations that models the new discretized WDN is composed of all
the sub-systems of equations that describe the discretized and undiscretized pipes. E.g., for any discretized pipe, this
sub-system can be one of eqs. (11), (13) and (15).

2.4. Numerical enhancements

Some sources of instabilities could hinder the convergence of the Newton algorithm described in section 2.2.3. We
present them below, along with numerical enhancements to overcome them.

All these numerical enhancements are of primary importance to ensure the convergence of the Newton algorithm in
many common situations. However, we choose, to preserve readability and remain focus on background leakage modeling,
to describe them in the supplementary material.

2.4.1. Pipes with zero flows

To compute
(
J

(m)
11

)
−1

and solve the system eq. (41) with models M0 and Ref, we need, for each (sub-)pipe k, to

inverse the derivative of the friction head-loss function (9) for x = ℓk with respect to q0 .5 ,k. This derivative is defined as

dξM0
k (ℓk)

dq0 .5 ,k
(q0 .5 ,k) = γ fk ℓk

∣∣q0 .5 ,k
∣∣γ−1

. (48)

However, eq. (48) gives 0 when q0 .5 ,k = 0. Thus, using eq. (48) as it may lead to division by zero errors.
To avoid these errors, we choose to reuse the cubic regularization of eq. (9) and the quadratic regularization of eq. (48)

initially proposed by [22].

2.4.2. Consumer nodes with pressure-heads close to minimum or service pressure-head

For each model, we need to compute at each (intermediate-)junction node i the derivative of the fraction of pressure-
head zi (eq. (32)) with respect to the pressure-head pi = hi − ui, as

dzi
dpi

=
1

ps − pm
, (49)

and next the derivative of the Wagner user consumption ci (eq. (33)) with respect to pi, as

dci
dpi

(pi) =




di

dzi
dpi

1

2
√

zi(pi)
if 0 < zi(pi) < 1

0 otherwise.

(50)

However, eq. (50) is undefined at pi = pm and discontinuous at pi = ps. Thus, using eq. (50) as it may lead to convergence
errors when pi is close to pm or ps.

To avoid these errors, we choose to reuse the cubic regularizations of eq. (33) and the quadratic regularizations of
eq. (50) initially proposed by [24].

2.4.3. Leaky pipe(s) with pressure(s) close to zero

For each leaky pipe k, we need to compute the derivative with respect to pk of the function

qLL,k(pk) = βk

(
[pk]

+
)αk

, (51)

for one, several or all of pk ∈ {p0 ,k, p̃k, pℓ,k}, according to the background leakage model we use (i.e., M0/Ref, M1, M2 or
M3). The derivative of eq. (51) is defined as:

dqLL,k
dpk

(pk) =

{
αk βk pk

αk−1 if pk > 0

0 otherwise.
(52)

However, eq. (52) is discontinuous at pk = 0 ∀αk ∈ ]0.5, 1[. Thus, using eq. (52) as it could lead to convergence errors
when pk is close to 0 and αk ∈ ]0.5, 1].

To avoid these errors, we implement our own new cubic regularization of eq. (51) and quadratic regularization of
eq. (52) for pressure-heads close to 0. These regularizations are described in the supplementary material.
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200m

Figure 3: Single leaky pipe of length ℓ = 1500m, connecting a tank to a junction .

2.4.4. WDN with highly contrasted values of flow rates and/or pressures

At each Newton iteration m, the magnitude of the elements in J (m) depends strongly on the values of q
(m)
0 .5 and h(m)

(see section 2.2.3). However, in a WDN, the values in q
(m)
0 .5 and h(m) may be very different from one part of the WDN

to another, according, e.g., to user demands, tank levels, use of pumps and/or valves, etc. In such cases, using J (m) as it
could lead to convergence errors.

To prevent these errors, we adapt the preconditioning method initially proposed by [8], so it now deals with user
consumptions and background leakages depending on pressure too.

2.4.5. Initial guesses far from the solution

Finally, the bottleneck of the Newton algorithm is the resolution, at each iteration, of the linear system (44). But this
algorithm can need numerous iterations if the initial guesses of flow rates at middle of pipes and heads at junctions are
far from the solutions at equilibrium. In this case, the simulation of large WDNs could become unfeasible in reasonable
computation time.

To deal with such situation, we choose to reuse the damping algorithm initially proposed by [9], extending it so it now
takes pressure-dependent background leakages into account too.

2.5. Checking and comparison

In this sub-section, we describe the test cases used to check and compare the models M0, M1, M2, M3 and Ref. We
also propose a method to estimate the convergence order of the discretization algorithm used in model Ref. Finally, we
show how to compute the total background leakage outflow in each pipe of a WDN.

2.5.1. Test cases

The first test case aims at checking for the good functioning and stability of the models for a very simple network.
Thereby, this test consists in simulating a single leaky pipe of length ℓ = 1500m, connecting one tank to one junction, both
located at the ground level (fig. 3). The junction has a demand d = 10 l s−1, and the tank has a fixed head ht = 10mH2O.
The pipe has a diameter ◦ = 200mm, a Hazen-Williams friction coefficient C

HW
= 120, background leakages of type

α = 1.5, and a level of degradation β = 10−3 l s−1 m−1−α. These values of {α, β} correspond to a very high level of
leakages, and are chosen to magnify the differences between the leakage models. Finally, this first test case explores the
potential of models {M0,M1,M2,M3} to adjust the model Ref, using a classical calibration method described in the
supplementary material. The Epanet2 and leakages input files of the network are also available in the supplementary
material (files SinglePipe Epanet2.inp and SinglePipe Leakages.csv).

Next, through a second test case, we propose to compare the models M0, M1, M2, M3 and Ref on a bigger network
derived from a real leaky WDN. To do so, we simulate the network C-Town, already used by [13, 21] (fig. 1). We set
the demands d at junctions to half of the nominal demands, which leads to a mean demand d = 0.35 l s−1. The pumps
and the valve are all closed, because the initial levels of the water in tanks are all positive. The Epanet2 input file of
the network is available in the supplementary material (file C-Town Epanet2.inp). For background leakages parameters
{α,β}, we first use the same values as in [13], such that αk = 0.9 and βk ∈ {1, 2, 4}× 10−5 l s−1 m−1−α, ∀k ∈ {1..np}; the
corresponding leakages file is also provided as supplementary material (C-Town Leakages.csv). Next, to find the range
of applications of the different models according to the degradation level of the pipes, we successively use, for all pipes, a
value of β going from 10−7 to 10−2 l s−1 m−1−α, while maintaining αk = 0.9 ∀k ∈ {1..np}.

For both test cases, we use minimal pressure-heads pm = 0mH2O and service pressure-heads ps = 20mH2O. Also, all
simulations are run on an Intel Core i9 with 32GB of memory, and all computations are done in double-precision.

2.5.2. Order of convergence

To quantify the efficiency of the discretization algorithm used in model Ref, we compute its order of convergence. To

do so, we denote h
(sc+1)
N the HGL at the iteration sc +1 of the discretization algorithm, and, ∀s ∈ {1..sc}, we denote ˜̃h(s)

N

the HGL at iteration s interpolated at the same positions as h
(sc+1)
N . Then, denoting ε(s) =

∥∥h(sc+1)
N − ˜̃h(s)

N

∥∥
∞

the infinity

norm between h
(sc+1)
N and ˜̃h(s)

N , the order of convergence η of our discretization algorithm is defined from the relation
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ε(s) = a sη, (53)

with a a constant. Thus, to estimate η, we first compute ε(s) ∀s ∈ {1..sc}. Next we rewrite eq. (53) in log - log scale as

∣∣log(ε(s))
∣∣ = log(a) + η log(s). (54)

Finally, we compute η by linear regression of eq. (54).

2.5.3. Derived leakage outflow

Models M0, M1, M2, M3 and Ref permit to approximate the functions qtheoLL (x) (eq. (3)), qtheo(x) (eq. (4)) and ξtheo(x)
(eq. (6)). But, to obtain a more explicit indicator of the level of background leakages in each pipe, we also compute, for
each model, the total leakage outflow as

qL = |qℓ − q0 |, (55)

where q0 and qℓ are the flow rates at respectively the start and the end of the pipe.
For the second test case (see section 2.5.1), we obtain the vector of background leakage outflows

qL =
(
qL,1, .., qL,np

)T
∈ Rnp . To compare the models at the global scale, we then compute the 1-norm of qL.

We suppose that the difference between the qL or 1-norm computed with two different models becomes significant
when it is greater than 10−2 l s−1. Indeed, this threshold corresponds to the best precision one can expect from physical
measurements [19, 26, 33].

2.6. Implementation and framework

We implement our models in Python1, using the Anaconda distribution2. At each Newton iteration, we solve the linear
system (44) using the sparse solver UMFPACK [6] through its SciPy [31] interface3. Also, in the discretization algorithm
of model Ref, we use the PCHIP interpolator4 from SciPy.

Also, we choose to integrate all our developments into the framework OOPNet, which provides convenient way to read
Epanet input files and to convert them to object oriented data structures [27, 28].

3. Results and discussion

We present here the results obtained from the test cases presented in section 2.5.1. For each test case, we first check
the functioning of the discretization algorithm. Next, we discuss the execution times of each model. Finally, we compare
the models between each other.

For the first test case only (i.e., the single leaky pipe), we also compare the results of the models {M0,M1,M2,M3}
after the calibration of their leakage parameters using the method described in the supplementary material, supposing
that the measured data needed for the calibration are equal to the results of the Ref model. Like so, we explore the
potential of models {M0,M1,M2,M3} to adjust model Ref.

3.1. First test case: single leaky pipe

This first test case, that corresponds to the simulation of a single leaky pipe, is a useful and simple benchmark to
verify the accuracy and stability of proposed models.

3.1.1. Discretization algorithm

For this test case, the discretization algorithm needs 6 iterations to find the reference HGL hRef
N = h

(5)
N (fig. 4). We can

see that new sub-pipes and intermediate junction nodes are created at each iteration (figs. 4a to 4e). Also, as expected,
the discretization is irregular. For example, at iteration 6 the number of sub-pipes is equal to 58 (fig. 4e) while at iteration
5 it is equal to 31 (fig. 4d). This signifies that 2 of the 31 sub-pipes from iteration 5 have not been rediscretized because
they did not need it.

At convergence, the pipe is discretized in 31 sub-pipes (fig. 4d). This high number of needed sub-pipes can be explained
by the strong values of the leakage parameters used. The order of convergence is equal to 3.10 (fig. 4f), which is more
than cubic and so very good. The CPU time elapsed during the discretisation process is equal to 330ms. This is quick,
but normal when simulating a single pipe.

1https://docs.python.org/3/
2https://www.anaconda.com/
3https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.spsolve.html
4https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.html
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Figure 4: Evolution of the hydraulic grade line (HGL) h
(s)
N

(figs. 4a to 4e), and convergence order η (fig. 4f), when applying the discretization
algorithm of model Ref to the single leaky pipe of fig. 3. h: head (in mH2O) at position x ∈ [0, ℓ] (in m) along the pipe. s ∈ {0..sc + 1}:

iteration of the discretization algorithm (s = 0: initial state, s = sc: convergence). n
(s)
p : number of sub-pipes at iteration s.

˜
h
(s)
N

: HGL at

iteration s, interpolated at positions of h
(s+1)
N

. ε(s): infinity norm between h
(sc+1)
N

and ˜̃h
(s)
N

. ˜̃h
(s)
N

: HGL at iteration s interpolated at positions

of h
(sc+1)
N

(see section 2.5.2 for deeper explanations).
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Finally, replacing the use of model M0 by the one of M1, M2 or M3 in the discretization algorithm leads to the same
HGL at convergence. Thus, the algorithm remains stable whatever the model we use, and all models M0, M1, M2 and M3
give equivalent results providing that the pipe is discretized in enough sub-pipes. These results were expected because all
the functions used internally in the models are continuous.

3.1.2. Execution times

The simulation of the leaky pipe lasts respectively 25ms with M0, 35ms with M1, 50ms with M2, 66ms with M3,
and 367ms with Ref. Thus, we can clearly see that our new models M1, M2, M3 and Ref need more time than the state
of the art one, but this is normal because the equations in our new models are more complex. Also, we can see that the
increase of computation time is relative to the complexity of the models.

Model Ref is naturally much more time consuming than other models because it consists in running internally 6 times
the model M0, on more and more discretized networks, and because it needs PCHIP interpolation between each of these
internal runs. The difference between the elapsed time of the discretization algorithm (330ms; see section 3.1.1), and
the total elapsed time of the model Ref (367ms), is equal to 367 − 330 = 37ms (≈ 10 % of the total elapsed time), and
corresponds to the post-processing needed to aggregate and interpolate the heads and flow rates in the discretized pipe
at convergence to the head and flow rate at the undiscretized pipe scale. Finally, the simulation of the leaky pipe with
model Ref remains less than half of a second, which is an acceptable time, especially since we are using the interpreted
language Python.

3.1.3. Comparison of the models before calibration

The drawn profiles of functions
{
qiLL(x), q

i(x), hi(x)
}
, i ∈ {Ref,M0,M1,M2,M3} are consistent with the degrees

of each model (figs. 5a, 5c and 5e). Indeed, since we use model M0 in the discretization algorithm, it is normal that
qRef
LL (x) and qRef(x) are step functions. Also, as expected, qM0

LL (x) and qM1
LL (x) are constant along the full pipe, qM2

LL (x)
is affine, and qM3

LL (x) is slightly convex. Finally, ∀i ∈ {Ref,M0,M1,M2,M3}, hi(x) logically starts from the fixed head
at tank ht = 10mH2O. Globally, we can see that the higher the degree of the model is, the better the curves from
{M0,M1,M2,M3} fit the ones from model Ref.

The absolute errors on
{
qiLLx, q

i
x, h

i
x

}
when compared to

{
qRef
LLx, q

Ref
x , hRef

x

}
, x ∈ {0, ℓ/2, ℓ}, are generally smaller for

the new models {M1,M2,M3} than for the state of the art model M0 (figs. 5b, 5d and 5f). For example, from model M0
to models M1, M2 and M3, the errors on qiLLℓ decrease (in absolute value) by respectively 11.30 %, 64.80 % and 69.20 %,
and the ones on hi

ℓ/2 by respectively 19.40 %, 31.10 % and 40.30 %. However, at some positions, some of the new models

{M1,M2,M3} give worse results than M0. In particular, the error on hi
ℓ increases (in absolute value) by 58.80 % from M0

to M1. But these greater error is weighed against the smaller ones on qM1
LLℓ/2 (−21.00 %) and qM1

LLℓ/2 (−82.90 %). Finally,
model M3 gives generally better results than M2, which gives itself better results than M1. This order is consistent with
the increasing complexity of models {M0,M1,M2,M3}.

3.1.4. Comparison of the models after calibration

We present here the results of the models {M0,M1,M2,M3} after the calibration of their leakage parameters, and
compare them against the results of model Ref.

Globally, the calibrated leakage parameters αi, i ∈ {M2,M3} (α cannot be calibrated for {M0,M1}), are very close to
the uncalibrated α. Conversely, the calibrated βi, i ∈ {M0..M3}, differ much from β (fig. 6). Indeed, the relative errors on
α when compared to αi are equal to ∼ 2 ‱, while the relative errors on β when compared to βi are all more than 22 %.
Thus we can say, for this test case, that β is much more sensitive than α to the leakage model in use. Also, we observe a
greater error on β for M1 (34.60 %) than for {M0,M2,M3} (between 22.30 % and 24.10 %). This is probably due to the
impossibility to calibrate α for M1, while constraining its flow rate qM1(x) to pass through qRef

ℓ . In other words, for M1
the calibration of β has to compensate for the absence of calibration of α.

Using models {M0..M3} with calibrated leakage parameters, the drawn profiles of the functions
{
qiLL(x), q

i(x), hi(x)
}

follow the same tendencies before calibration. But, as expected, the curves of the calibrated functions now fit more closely
the reference ones

{
qRef
LL (x), qRef(x), hRef(x)

}
(figs. 7a, 7c and 7e). In particular, hi(x) now passes (or almost passes)

through hRef
ℓ ∀i ∈ {M0..M3} (fig. 7e). This gain in accuracy is even more visible for models {M2,M3}, for which both

leakage parameters α and β are calibrated. Indeed, qM2(x) and qM3(x) now passes through qRef
0 and qRef

ℓ (fig. 7c).
As expected, the calibration of the leakage parameters leads to bigger reductions of the absolute errors on q0 for models

{M2,M3}: −98.90 % for M2 (vs. −64.90 % before calibration) and −99.10 % for M3 (vs. −68.40 % before calibration)
(see fig. 7d). Likewise, the calibration drives to stronger reductions of the errors on hℓ/2 ∀i ∈ {M1,M2,M3}: −87.50 %
for M1 (vs. −19.40 % before calibration), −97.30 % for M2 (vs. −31.10 % before calibration), and −96.80 % for M3
(vs. −40.30 % before calibration) (see also fig. 7f). This last result is particularly interesting since it demonstrates that,
unlike the existing model M0 from [12], our new models compute after calibration much better estimations of head at
intermediate positions along the pipe (here at x = ℓ/2) than before calibration. Thus, using our new models {M1,M2,M3}
could probably reduce significantly the number of measuring points and sensors needed to get an exhaustive and accurate
HGL along the pipe, especially once the models are calibrated.

15



0 200 400 600 800 1000 1200 1400

x

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

0.0275

0.0300

0.0325

q
L
L

Ref

M0

M1

M2

M3

(a) qi
LL(x).

0 ℓ/2 ℓ

x

0.000

0.002

0.004

0.006

0.008

0.010

0.012

∣ ∣ ∣
ε q

i L
L

∣ ∣ ∣

9
.4
1
×
1
0
−
3

3
.5
3
×
1
0
−
3

6
.5
8
×
1
0
−
3

1
.0
2
×
1
0
−
2

2
.7
9
×
1
0
−
3

5
.8
3
×
1
0
−
3

8
.0
1
×
1
0
−
4

4
.2
0
×
1
0
−
3

2
.3
1
×
1
0
−
3

8
.0
1
×
1
0
−
4

3
.6
5
×
1
0
−
3

2
.0
3
×
1
0
−
3

M0

M1

M2

M3

(b) qiLLx vs. qRef
LLx.

0 200 400 600 800 1000 1200 1400

x

5

10

15

20

25

30

35

q

Ref

M0

M1

M2

M3

(c) qi(x).

0 ℓ/2 ℓ

x

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

∣ ∣

ε q
i

∣ ∣

1
.2
6
×
1
0
+
1

3
.5
0

1
.5
4
×
1
0
+
1

2
.1
5

2
.7
7

8
.0
8
×
1
0
−
14
.4
3

4
.0
7
×
1
0
−
1

6
.4
6
×
1
0
−
1

3
.9
8

2
.5
9
×
1
0
−
1

6
.0
7
×
1
0
−
1

M0

M1

M2

M3

(d) qix vs. qRef
x .

0 200 400 600 800 1000 1200 1400

x

5

6

7

8

9

10

h

Ref

M0

M1

M2

M3

(e) hi(x).

0 ℓ/2 ℓ

x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

|ε
h
i
|

0
.0
0

9
.2
5
×
1
0
−
1

6
.1
1
×

1
0
−
1

0
.0
0

7
.4
5
×

1
0
−
1

9
.6
9
×

1
0
−
1

0
.0
0

6
.3
7
×
1
0
−
1

6
.3
8
×

1
0
−
1

0
.0
0

5
.5
2
×

1
0
−
1

5
.5
7
×
1
0
−
1

M0

M1

M2

M3

(f) hi
x vs. hRef

x .

Figure 5: Lineic leakage outflows qi
LL

(in l s−1 m−1), flow rates qi (in l s−1) and heads hi (in mH2O) along the leaky pipe of fig. 3, for each
model i ∈ {Ref,M0,M1,M2,M3}, using the same uncalibrated leakage parameters α = 1.5 and β = 10−3 l s−1 m−1−α for all models; these
parameters correspond to a very high level of leakages, and are chosen to magnify the differences between the models. Figures 5a, 5c and 5e
show the profiles of the functions. Figures 5b, 5d and 5f show the absolute errors between models {M0,M1,M2,M3} and Ref, at positions
x ∈ {0, ℓ/2, ℓ}, ℓ = 1500m.
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Figure 6: Relative difference (unit-less) between the uncalibrated leakage parameters ζ ∈ {α, β}, and the calibrated ones ζi ∈ {αi, βi} obtained
from the flows and heads computed by the model Ref, for the leaky pipe of fig. 3. For αi: i ∈ {M2,M3} (not possible to calibrate parameter α
for models {M0,M1}). For βi: i ∈ {M0,M1,M2,M3}.

Finally, for each of {M0,M1,M2,M3}, when we gain precision by means of calibration for some variables at some
locations, we also loose some precision on other variables and at other locations (e.g., qiLLx on fig. 7b). This is unavoidable
since, even if more accurate, our new models remain approximations of the theoretical model.

3.2. Second test case: network C-Town

This second test case is proposed in order to validate the functioning, accuracy and stability of our models when
simulating a larger and more realistic network. For this purpose, we choose network C-Town [13, 21], which includes most
of the critical parameters needed for validation, while still remaining compact enough to perform quick simulations.

3.2.1. Discretization algorithm

For the network C-Town (fig. 1), our discretization algorithm needs 4 iterations and 12.99 s of CPU time to find the

reference HGL hRef
N = h

(3)
N . This longer elapsed time is explained by the high number of pipes and/or sub-pipes to

simulate as the network is discretized. Indeed, the discretized networks consist of n
(1)
p = 819, n

(2)
p = 1590, n

(3)
p = 1824

and n
(4)
p = 1832 pipes and/or sub-pipes at respectively iteration 1, 2, 3 and 4.

Also, none of
{
n
(1)
p , n

(2)
p , n

(3)
p , n

(4)
p

}
is a multiple of the initial number of pipes n

(0)
p = 432, which means that the

network is discretized irregularly (i.e., some pipes are more discretized than some others) at each iteration. As a reminder,
this irregular discretization prevents from over-discretization of pipes presenting low gradients of pressures, and permits
to speed-up the computations.

The order of convergence of the discretization algorithm is equal to 1.66 (fig. 4f). This means that our discretization
algorithm remains efficient even when applied to a real network with many pipes.

Finally, as for the first test case, replacing model M0 by M1, M2 or M3 in the discretization algorithm leads to the
same HGL. Thus, the algorithm remains stable whatever the model we use, providing that the pipes are discretized in
enough sub-pipes.

3.2.2. Execution times

The simulation of the network C-Town lasts respectively 0.19 s with M0, 0.32 s with M1, 0.41 s with M2, 0.45 s with
M3, and 16.18 s with Ref. As in the first test case, we can clearly see that our new models, especially the Ref one, need
more time than M0. But this is normal because our models are more complex and accurate.

Also, the difference between the elapsed time of the discretization algorithm (12.99 s; see section 3.2.1), and the total
elapsed time of the model Ref (16.18 s), is equal to 16.18 − 12.99 = 3.19 s (≈ 20 % of the total elapsed time), and
corresponds to the post-processing needed to aggregate and interpolate the heads and flow rates in the discretized network
at convergence to the heads and flow rates at the undiscretized network scale. For current test case, the elapsed time due
to post-processing is proportionally two times greater than the one found in the first test case (i.e., ≈ 10 %). This can
be explained by the greater number of iterations needed in the first test case, and by the greater number of pipes in the
second test case (the post-processing is done sequentially pipe after pipe).

Nevertheless, all these execution times remain acceptable, and could be probably reduced by re-implementing the
simulator using a compiled language, and/or parallelizing the post-processing at the end of the discretization algorithm.
However, for some applications like sensitivity analysis, for which many runs are needed, the models M0, M1, M2 and M3
should be preferred to model Ref in terms of rapidity.

17



0 200 400 600 800 1000 1200 1400

x

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

0.0275

0.0300

q
L
L

Ref

M0

M1

M2

M3

(a) qi
LL(x).

0 ℓ/2 ℓ

x

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

∣ ∣ ∣
ε q

i L
L

∣ ∣ ∣

1
.2
2
×
1
0
−
2

7
.1
8
×
1
0
−
4

3
.7
6
×
1
0
−
3

1
.3
8
×
1
0
−
2

9
.0
2
×
1
0
−
4

2
.1
4
×
1
0
−
35
.3
6
×
1
0
−
3

9
.2
1
×
1
0
−
4

2
.7
0
×
1
0
−
3

4
.9
8
×
1
0
−
3

8
.0
0
×
1
0
−
4

2
.5
1
×
1
0
−
3

M0

M1

M2

M3

(b) qiLLx vs. qRef
LLx.

0 200 400 600 800 1000 1200 1400

x

5

10

15

20

25

30

35

q

Ref

M0

M1

M2

M3

(c) qi(x).

0 ℓ/2 ℓ

x

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

∣ ∣

ε q
i

∣ ∣

1
.4
4
×
1
0
+
1

1
.7
1

1
.3
6
×
1
0
+
1

2
.8
9

4
.9
5
×
1
0
−
1

3
.1
4
×
1
0
−
1

1
.6
0
×
1
0
−
1

6
.3
8
×
1
0
−
1

3
.1
6
×
1
0
−
1

1
.3
4
×
1
0
−
1

6
.6
1
×
1
0
−
1

3
.1
5
×
1
0
−
1

M0

M1

M2

M3

(d) qix vs. qRef
x .

0 200 400 600 800 1000 1200 1400

x

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

h

Ref

M0

M1

M2

M3

(e) hi(x).

0 ℓ/2 ℓ

x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

|ε
h
i
|

0
.0
0

1
.2
7

7
.8
3
×

1
0
−
2

0
.0
0

1
.5
8
×

1
0
−
1

7
.3
3
×
1
0
−
2

0
.0
0

3
.4
0
×

1
0
−
2

6
.9
7
×
1
0
−
2

0
.0
0

4
.0
4
×

1
0
−
2

7
.2
3
×
1
0
−
2

M0

M1

M2

M3

(f) hi
x vs. hRef

x .

Figure 7: Lineic leakage outflows qi
LL

(in l s−1 m−1), flow rates qi (in l s−1) and heads hi (in mH2O) along the leaky pipe of fig. 3, for each model
i ∈ {Ref,M0,M1,M2,M3}. For {M0,M1,M2,M3}, the leakage parameters calibrated from the flows and heads computed by the model Ref are
used. Figures 7a, 7c and 7e show the profiles of the functions. Figures 7b, 7d and 7f show the absolute errors between models {M0,M1,M2,M3}
and model Ref, at positions x ∈ {0, ℓ/2, ℓ}, ℓ = 1500m.
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Figure 8: Computation of the convergence order η of the discretization algorithm when applied to network C-Town (fig. 1). s ∈ {0..sc + 1}:
iteration of the discretization algorithm (s = 0: initial state, s = sc: convergence). ε(s): infinity norm between the hydraulic grade lines (HGLs)
at s ∈ {1..sc} and the one at s = sc + 1.
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Figure 9: p-norm, p ∈ {1, 2,∞}, of the absolute errors ε between the leakage outflows qi
L

(in l s−1) computed from each model
i ∈ {M0,M1,M2,M3} and the ones computed with model Ref.

3.2.3. Comparison of the models

The 1-norms of the errors between the leakage outflows computed with models {M0,M1,M2,M3} and the ones com-
puted with model Ref vary from 1.77 l s−1 to 1.79 l s−1 (fig. 9a). The 2 and ∞-norms of these errors are respectively around
0.35 l s−1 and 0.27 l s−1 (figs. 9b and 9c). Thus, the leakage outflows computed by models {M0,M1,M2,M3} are very close
to each other, but they are also significantly different from the ones computed with model Ref. Indeed, supposing that the
pressures and the demands remain the same during all a day, then these differences represent 1.78× 3600× 24 = 153.79m3

per day, and thus more than the daily consumption of 1000 inhabitants in France [18].
The small differences between models

{
M0,M1,M2,M3

}
can be explained by the characteristics of the network C-Town.

Indeed, C-Town has low deltas of elevation along its pipes: a median equals to 3.06m, and an IPR (inter percentile range)
between percentiles 10th and 90th equals to 13.71m. Since the pressures are directly correlated to the elevations (i.e.,
p = h − u), the deltas of pressure induced by these deltas of elevation are low too. Thus, we believe that he gradients
of pressure in C-Town is enough for seeing differences between models {M0,M1,M2,M3} and Ref, but barely enough to
observe differences between M0, M1, M2, M3. Still, supposing that the pressures and the demands remain the same during
all a day, the differences between M0 and M3 represent 0.02× 3600× 24 = 1.73m3 per day, which already shows a little
improvement from M0 to M3. Moreover, we think, by analogy with the first test case, that the leakage outflows computed
from models

{
M0,M1,M2,M3

}
would show more difference with the use for each of them of specifically calibrated leakage

parameters. But we do not have, at the time of this study, the measured data which would permit us to calibrate these
parameters.

But, first of all, these small differences are due to the low degradation levels (i.e., βk ∈ {1, 2, 4} × 10−5 l s−1 m−1−α)
chosen by [13]. Indeed, when using successively, for all pipes of the network C-Town, a single value of β varying from 10−7

to 10−2 l s−1 m−1−α [2, 19], we can then observe much larger differences between the models (table 1). In particular, we
can clearly see on table 2 that the models M0 and M1, which do not depend on the gradient of pressure, are more accurate
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for very low degradation levels (i.e., ≤ 10−6 l s−1 m−1−α), and that models M2 and M3, which depend on the gradient
of pressure, are more accurate for medium and high degradation levels (i.e., ≥ 10−5 l s−1 m−1−α); this was expected
because higher values of β make naturally decreases quicker the pressure along the pipes, leading to stronger errors when
the gradient of pressure is neglected. Moreover, we notice on table 2 that, for very low degradation levels, the absolute
differences between the worst and the best models are no more than 0.07m3 per day; thus, even if the models M0 and M1
show better results for these degradation levels, the differences with models M2 and M3 are in this case barely significant.
Also, for each degradation level β, we can see that the worst and the best models differ by ∼ 3%, and that higher β
lead to higher relative differences, up-to 4.14% for β = 10−2 l s−1 m−1−α (column “Rel. Diff.” of table 2). Finally, the
model M3 is often the best one and never the worst one; this means that M3 could probably be used efficiently in most
circumstances.

Table 1: 1-norm of the absolute errors ε between the leakage outflows qi
L

(in m3 per day) computed from each model i ∈ {M0,M1,M2,M3}
and the ones computed with model Ref, for different degradation levels of pipes β (in l s−1 m−1−α).

β M0 M1 M2 M3

10−7 0.34 0.34 0.35 0.34
10−6 3.43 3.43 3.50 3.45
10−5 49.55 49.55 49.07 49.21
10−4 384.38 384.15 376.63 379.23
10−3 12,209.60 12,210.74 12,268.77 11,912.84
10−2 62,589.03 62,819.85 62,375.31 60,322.17

Table 2: Comparison of the models when simulating leakage outflows in network C-Town of second test case for different degradation levels
β (in l s−1 m−1−α). The “Best model” is the one that has the lowest 1-norm of absolute errors when compared to model Ref; this 1-norm is
reported in column “Best vs. Ref [...]” (in m3 per day). Conversely, the “Worst model” has the highest 1-norm of absolute errors. In the
column “Worst vs. Best”, the sub-column “Abs. Diff.” shows the absolute difference (in m3 per day) between the worst and the best models
for each β, and the sub-column “Rel. Diff.” presents the relative differences (in %) computed as: (worst - best) / best × 100. The 1-norms of
all models for all β are listed in table 1.

β
Best
model

Best vs. Ref
Norm 1

Worst
model

Worst vs. Best

Abs. Diff. Rel. Diff.

10−7 M0 0.34 M2 0.01 2.08
10−6 M1 3.43 M2 0.07 2.04
10−5 M2 49.07 M0 0.49 0.99
10−4 M2 376.63 M0 7.74 2.06
10−3 M3 11,912.84 M2 355.93 2.99
10−2 M3 60,322.17 M1 2,497.68 4.14

The 1-norm of the errors made by the best model among M0, M1, M2 and M3, when compared to the model Ref,
varies almost linearly with the value of the degradation level β (fig. 10). Thus, for very high β, the Ref discretization
model, even if more time consuming, should be preferred to any of {M0,M1,M2,M3} to obtain accurate results.

The results presented in this section indicate the range of applications of the different models according to the degra-
dation level of the pipes in a real leaky network. They demonstrate the superiority of our new models M1, M2, M3 and
Ref over the pre-existing M0, for medium to high levels of leakages, and so even for low deltas of elevation along the pipes.
For low levels of leakages, the differences between the models are not significant; the models are then equivalent.

4. Conclusions

In this study, we demonstrated, through two complementary test cases, the interest in using more complex PDM
models of background leakages in WDNs. This statement relies on the comparison of a state of the art model to new
more accurate models. These new models were developed from successive original refinements of the state of the art one,
or through the recursive discretization of the pipes into sub-pipes until the HGL along each pipe converges. The choice
between our new models depends on the exhaustiveness of the measured data needed to calibrate them, on the level of
accuracy to reach, and on the a priori degradation level of the pipes (estimated, e.g., from the age of the pipes).

Among our new models, the one based on the recursive discretization of the pipes leads to reference background leakage
outflows, flow rates and friction head-losses which are very close to the ones we would obtain if we knew the exact pressures
all along the pipes. This algorithm could be easily reused to test other WDN models, or adapt to any graph structured
model from different fields of applied mathematics and scientific computation.
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Figure 10: Relation between the degradation level of pipes, β (in l s−1 m−1−α), and the 1-norm of the errors made by the best model among
M0, M1, M2 and M3 when compared to the model Ref, min
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(∥ε
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∥1) (in m3 per day), during the simulation of the leakage outflows in

the network C-Town of the second test case. Both abscissa and ordinate axes are in log-log scale.

By taking into account of the gradient of pressure-heads along the pipes, our new models predict more accurately the
background leakage outflows, especially in pipes presenting strong levels of leakages, due, e.g., to high degradation levels
of the pipes. Moreover, we believe that the gain of accuracy between the state of the art and the new models is strongly
correlated to the deltas of elevations and to the head-losses along the pipes. Indeed, important variations of elevations
and head-losses make the pressure-heads along the pipes to vary significantly too, and then should increase the benefit in
using our models. In some situations, our new models could even permit to identify partly-unsupplied pipes or high-lying
nodes, by detecting zero pressure locations along the pipes.

Despite their complexity, our new models can be easily integrated into existing software programs, providing that
their solvers allow to deal with possibly large and ill-conditioned systems. For this purpose, we implemented an efficient
Newton algorithm including several numerical enhancements. Deeper explanations of these enhancements are available in
the supplementary material. Thereby, our solver permits to simulate large networks in an acceptable time.

The characterization of the level of leakages in WDNs is of prime importance for operators and decision makers. Two
of our new models take explicitly into account the pressure-heads at both extremities of each pipe, and thus permit the
calibration of both leakage types and degradation levels of pipes. Hence, they pave the way to more reliable decision
support tools (e.g., for choosing the pipes which have to be repaired and/or replaced first). Nevertheless, this potential
application needs first to evaluate the expected values of the parameters for these new models, from physical measures in
several and contrasted real leaky networks.

Finally, all our code is part of the Python collaborative framework OOPNET [27, 28], and will be available on the
GitHub public repository5 of the project soon. This way, we are convinced that our work, which represents a significant
step forward from the previous state of knowledge, will be easily profitable to the whole community of WDN modelers.
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1. Numerical enhancements of the Newton algorithm

In our article, we propose to use a Newton algorithm to compute the flow rates in pipes and the heads at junctions
in water distribution networks (WDNs) at equilibrium. To maintain the stability of this algorithm, we integrate several
numerical enhancements into it. This section explains and illustrates these enhancements.

1.1. Regularization of the Hazen-Williams friction head loss and of its derivative

At each iteration of the Newton algorithm, we need, to compute the Schur complement of the Jacobian matrix, to
inverse the derivative of the friction head-loss along each pipe with respect to the flow rate at the middle of the pipe. For
models M0 and Ref, the friction head-loss is computed with the Hazen-Williams formula [s9], as:

ξℓ(q0 .5 ) = f ℓ q0 .5
∣∣q0 .5

∣∣γ−1
, (s1)

where γ = 1.852, f ∈ R+
∗ , ℓ ∈ R∗

+ and q0 .5 ∈ R are respectively the Hazen-Williams exponent, the friction coefficient,
the length of the pipe and the flow rate at the middle of the pipe. Thus, the derivative of eq. (s1) with respect to q0 .5 is
computed as:

dξℓ

dq0 .5
(q0 .5 ) = γ f ℓ

∣∣q0 .5
∣∣γ−1

. (s2)

Equation (s2) is 0 when q0 .5 = 0, which leads to a division by zero error when computing its inverse.
To prevent this error, [s6] proposed a cubic regularization of eq. (s1), and a quadratic regularization of eq. (s2), for

q0 .5 close to 0. We decide to reuse these regularizations. We illustrate them on fig. s1 for a pipe of length ℓ = 1m and
friction coefficient f = 1 s1.852 l−1.852, without any loss of generality. Indeed, eq. (s1), eq. (s2) and their regularizations
depend linearly on ℓ and f . Thus, fig. s1 can be transposed to any other ℓ an f , by just multiplying the values plotted on
the vertical axis by ℓ and f .
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Figure s1: Cubic regularization of the Hazen-Williams friction head loss function ξℓ(q0 .5 ) [s9] (in mH2O, fig. s1a), and quadratic regularization
of its derivative dξℓ/dq0 .5 (q0 .5 ) (in mH2O l−1 s, fig. s1b), in a pipe of length ℓ = 1m and friction coefficient f = 1 s1.852 l−1.852, for flow rates
at the middle of the pipe q0 .5 close to 0 l s−1, as initially proposed by [s6]. Here, ε = 10−3 l s−1, which is also the value of ε used in the source
code.

1.2. Regularizations of the Wagner consumption

To compute the Schur complement of the Jacobian matrix, we also need, for each model, to compute at each junction
node the derivative of the user consumption with respect to the pressure-head at that node. To compute the user
consumption, we choose the Wagner pressure-outflow relationship (POR) [s8], such that

c(p) =





0 if p ≤ pm

d

√
p− pm
ps − pm

if pm < p < ps

d if p ≥ ps,

(s3)

2



pm−ε pm pm+ε ps−ε ps ps+ε
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pm−ε pm pm+ε ps−ε ps ps+ε

p
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d
c/
d
p

Unregularized

Regularized

(b) dc/dp (p)

Figure s2: Cubic regularizations of the Wagner user consumption function c(p) [s8] (in l s−1, fig. s2a), and quadratic regularizations of its
derivative dc/dp (p) (in l s−1 mH2O−1, fig. s2b), at a junction node where demand d = 1 l s−1, and any minimum pressure-head pm and service
pressure-head ps such that pm ≥ 0mH2O and ps > pm, for local pressure-heads p close to pm and ps, as initially proposed by [s7]. Here, ε is
chosen equal to 0.1mH2O for better readability, but in the source code ε = 10−3 mH2O.

where p ∈ R+ and d ∈ R+ are respectively the local pressure-head and the user demand at the junction node, and pm ∈ R+

and ps ∈ R+
∗ are respectively the minimum and the service pressure-heads, such that pm < ps. Thus, the derivative of

eq. (s3) with respect to p is

dc

dp
(p) =





d
1

ps − pm

1

2

√
p− pm
ps − pm

=
c(p)

2 (p− pm)
if pm < p < ps

0 otherwise.

(s4)

Equation (s4) is undefined at p = pm and discontinuous at p = ps, which could lead to convergence failure when p is close
to pm and ps.

To make eq. (s4) continuous ∀p ∈ R, [s7] proposed two cubic regularizations of eq. (s3), and two quadratic regularizations
of eq. (s4), when p is close to pm and ps. We decide to reuse these regularizations. Figure s2 illustrates them for a junction
node where demand d = 1 l s−1, and any minimum pressure-head pm and service pressure-head ps such that pm ≥ 0mH2O
and ps > pm, without any loss of generality. Indeed, eq. (s3), eq. (s4) and their regularizations depend linearly on d.
Thus, fig. s2 can be transposed to any other d, by just multiplying the values plotted on the vertical axis by d.

1.3. Regularization of lineic leakage outflow and of its derivative

At each iteration of the Newton algorithm, we also compute, in each leaky pipe, the lineic leakage outflow for one
or several local pressure-head(s), and its derivative with respect to that pressure-head(s). To compute the lineic leakage
outflow, we choose the formula of [s3], defined as

qLL(p) = β
(
[p]

+
)α

, (s5)

where p ∈ R+ is a local pressure-head, [p̃]
+

its positive part, and α ∈ ]0.5, 2.5] and β ∈
[
10−7, 10−1

]
l s−1 m−1−α are the

leakage parameters. Thus, the derivative of eq. (s5) with respect to p is

dqLL
dp

(p) =

{
αβ pα−1 if p > 0

0 otherwise.
(s6)

Equation (s6) is discontinuous at p = 0 ∀α ∈ ]0.5, 1[, which could lead to convergence failure.
To make eq. (s6) continuous ∀p ∈ R and ∀α ∈ ]0.5, 2.5[, we propose a new cubic regularization of eq. (s5) and a new

quadratic regularization of eq. (s6) for p close to 0. Figures s3a and s3b illustrate this regularization when α = 0.6 and
β = 10−4 l s−1 m−1−α, without any loss of generality. Indeed, eq. (s5), eq. (s6) and their regularizations depend linearly
on β. Thus, figs. s3a and s3b can be transposed to any other β, by just multiplying the values plotted on the vertical axis
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Figure s3: New cubic regularization of the lineic leakage outflow function qLL(p) [s3] (in l s−1 m−1, figs. s3a and s3d) and quadratic regularization
of its derivative dqLL/dp (p) (in l s−1 m−1 mH2O−1, figs. s3b and s3c), in a pipe with leakage type α ∈ {0.6, 2, 2.5} (unit-less), degradation
level β = 10−4 l s−1 m−1−α, for local pressure-heads p close to 0mH2O. Here, ε is chosen equal to 10−2 mH2O for better readability, but in
the source code ε = 10−3 mH2O.

by β/10−4. However, our new regularizations can induce negative qLL when α ≥ 2. In this case, we choose to set qLL to
0. Figures s3c and s3d illustrate this threshold for α ∈ {2, 2.5} and β = 10−4 l s−1 m−1−α.

1.4. Preconditioning of the Jacobian matrix

The magnitude of the elements in the Jacobian matrix may vary strongly from one part of a WDN to another, according
to user demands, tank levels, use of pumps and/or valves, etc. Thus, using the Jacobian matrix as it is defined in our
article may cause instabilities in the Newton algorithm, and increase significantly the number of iterations needed to
converge.

Like [s6], [s1] proposed a method to improve the stability of the Newton’s algorithm when some flow rates are close to
0. To do so, denoting np the number of pipes in the WDN, [s1] limited, at each Newton iteration m, each singular value

λ
(m)
k of J

(m)
11

, k ∈ {1, .., np}, by a minimum value λ
(m)
min

defined as

λ
(m)
min

=
λ
(m)
max

κmax
, (s7)

where λ
(m)
max is such that

λ(m)
max = max

k

([
J

(m)
11

]

kk

)
, (s8)
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and κmax corresponds to a maximum threshold condition number (e.g., κmax = 1010). Like so, [s1] did not only avoid null

derivatives on the diagonal of J
(m)
11

, but also reduced the difference of magnitude order between all diagonal elements of

J
(m)
11

. However, the preconditioning method proposed by [s1] only applies to the case where consumptions are independent
of the pressure and when there is no leakage.

Thus, we choose to extend the method proposed by [s1], to make it now deal with pressure-dependent consumptions

and leakages. To do so, we recompute λ
(m)
max taking into account all non-null elements of J

(m)
11

, J
(m)
12

and J
(m)
22

, such that:

λ(m)
max = max

(
max

k

(∣∣∣∣
[
J

(m)
11

]

kk

∣∣∣∣
)
,max

ki

(∣∣∣∣
[
J

(m)
12

]

ki

∣∣∣∣
)
,max

ij

(∣∣∣∣
[
J

(m)
22

]

ij

∣∣∣∣
))

,

{i, j, k} ∈ {1, .., nj} × {1, .., nj} × {1, .., np}

(s9)

and we recompute λ
(m)
min

= λ
(m)
max/κmax. Finally, we limit:

• each element on the diagonal of J
(m)
11

as:

[
J

(m)
11

]

kk
= max

(∣∣∣∣
[
J

(m)
11

]

kk

∣∣∣∣, λ
(m)
min

)
× sgn

([
J

(m)
11

]

kk

)
, (s10)

• each non-null element of J
(m)
12

as:

[
J

(m)
12

]

ki
= max

(∣∣∣∣
[
J

(m)
12

]

ki

∣∣∣∣, λ
(m)
min

)
× sgn

([
J

(m)
12

]

ki

)
, (s11)

• and each diagonal or non-null element of J
(m)
22

as:

[
J

(m)
22

]

ij
= max

(∣∣∣∣
[
J

(m)
22

]

ij

∣∣∣∣, λ
(m)
min

)
× sgn

([
J

(m)
22

]

ij

)
, (s12)

where sgn(.) represents the sign function, and is used to conserve the sign of the regularized elements.

1.5. Damping scheme with Goldstein’s line search on weighted least squares

To reduce the number of iterations needed by the Newton algorithm to reach convergence, [s2] proposed a damping
method based on a line search approach. To summary, this strategy first looks for the descent directions along which the
residuals will be reduced, and then computes a step size that determines how far the iterates can move along that direction.
We decide to reuse this damping method in our models, extending it to integrate pressure-dependent background leakages
too.

In their damping method, [s2] first denoted the diagonal matrix of positive weights W ∈ R(np+nj)×(np+nj), where np

and nj are respectively the number of pipes and junction nodes in the WDN. Next, [s2] denoted the weighted least squares
(WLS) objective scalar function

θ(q0 .5 ,h) =
1

2

∥∥∥∥W
1
2ρ(q0 .5 ,h)

∥∥∥∥
2

2

=
1

2
ρTWρ, (s13)

where q0 .5 and h are respectively the flows at the middles of pipes and the heads at junctions, and ρ are the residuals
(including both mass and energy residuals) such that ρ = ρ(q0 .5 ,h). Next, from eq. (s13), [s2] defined the optimization
problem to solve as:

min
q0.5 ,h

θ(q0 .5 ,h), (s14)

and the damped scheme to solve eq. (s14) consists in computing:

(
q
(m+1)
0 .5

h(m+1)

)
=

(
q
(m)
0 .5

h(m)

)
+ σ(m)

(
δ
(m)
q0.5

δh
(m)

)
(s15)

with σ(m) a step-size. To select the correct σ(m), [s2] used the Goldstein criteria scalar function [s5]:

g(θ(m), σ(m)) =
θ(m) − θ(q̂

(m+1)
0 .5 , ĥ(m+1))

2σ(m)θ(m)
, (s16)

where (
q̂
(m+1)
0 .5

ĥ(m+1)

)
=

(
q
(m)
0 .5

h(m)

)
+ σ(m)

(
δ
(m)
q0.5

δh
(m)

)
, (s17)
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in an algorithm which divides σ(m) by 2 until g(θ(m), σ(m)) ≥ 0.1 (unit-less).
To compute the weights W , [s2] used the demands at junctions d and the heads at fixed-head nodes hf . To extend

their damping method to pressure-dependent background leakages, we now also use the leakage outflows qL (in l s−1)
reported to junctions, defined at any junction j ∈ {1..nj} as

qL,j =
∑

k∈P
−

j

∫ ℓk

ℓk/2

qLLk(xk) dxk +
∑

k∈P
+

j

∫ ℓk/2

0

qLLk(xk) dxk , (s18)

where P−
j and P+

j are the sets of pipes respectively entering and leaving the node j, ℓk is the length of pipe k ∈ P−
j ∪ P+

j ,
and qLLk(xk) is the lineic leakage outflow at the position xk of k. Then, we compute the weights W as

W =

(
M−1 0

0 N−1

)
, (s19)

with

M =

(
max

i∈{1,..,nf}
hf ,i

)2

Inp
and N =

(
max

j∈{1,..,nj}
(dj + qL,j)

)2

Inj
, (s20)

where Inp
and Inj

are the np × np and nj × nj identity matrices.

2. Calibration of background leakage parameters

In our article, we propose several background leakage models, denoted {M0,M1,M2,M3}. Model M0 corresponds to
the state of the art one, as initially proposed by [s4]. Models {M1,M2,M3} are new gradually refined versions of M0.

In this section, we propose a method to calibrate the leakage parameters {α, β} for each model, considering a single
leaky pipe of length ℓ, and supposing that all needed measured data are available.

2.1. State of the art background leakage model (M0)

To calibrate the leakage parameter β associated to model M0, denoted hereafter βM0, we suppose that the pressure-
heads at pipe extremities and the flow rate at pipe end have been measured, and we denote them respectively pmeas

0 , pmeas

ℓ

and qmeas

ℓ . Then, denoting u0 and uℓ the elevations (in m) at the start and end of the pipe, and knowing that, at any
x ∈ [0, ℓ], the pressure-head px, the elevation ux and the head hx are linked by the relation

hx = px + ux, (s21)

we also have the particular relations

hmeas

0 = pmeas

0 + u0 and hmeas

ℓ = pmeas

ℓ + uℓ. (s22)

Next, we suppose that the sources of head-loss other than the friction one are negligible. Thus, we can compute, from
hmeas
0 and hmeas

ℓ , the total head-loss along the full pipe as

ξmeas

ℓ = hmeas

ℓ − hmeas

0 , (s23)

and the flow at the middle of the pipe, qM0
0 .5 , by solving the equation of conservation of energy

ξmeas

ℓ − f ℓ qM0
0 .5

∣∣qM0
0 .5

∣∣γ−1
= 0. (s24)

Next, denoting qM0
LL = qM0

LL (x), the equation of conservation of the mass at x = ℓ is defined as:

qM0
0 .5 −

ℓ

2
qM0
LL − qmeas

ℓ = 0, (s25)

and thus permits to calculate qM0
LL as:

qM0
LL =

2
(
qM0
0 .5 − qmeas

ℓ

)

ℓ
. (s26)

Finally, defining, from pmeas
0 = hmeas

0 − u0 and pmeas

ℓ = hmeas

ℓ − uℓ, the mean measured pressure-head in the pipe as

p̃meas = (pmeas

0 + pmeas

ℓ ) /2, (s27)
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and supposing that p̃meas > 0, we obtain, ∀α ∈ ]0.5, 2.5]:

βM0 =
qM0
LL(

p̃meas

)α . (s28)

Notes:
• We choose here to use qmeas

ℓ to calibrate β; but using qmeas
0 in place of qmeas

ℓ would give the same calibrated βM0,
because qM0(x) is symmetrical about x = ℓ/2.

• It is not possible to calibrate the parameter α because qM0
LL is invariant along the pipe.

2.2. Lineic leakage outflow invariant along the pipe but affine flow rate (M1)

To calibrate the leakage parameter β, we suppose, as for model M0, that the pressure-heads at pipe extremities
and the flow rate at pipe end have been measured, and we denote them pmeas

0 , pmeas

ℓ and qmeas

ℓ . Thus, we also have
ξmeas

ℓ = pmeas

ℓ + uℓ − pmeas
0 − u0 , and we can compute qM1

LL by solving the equation of conservation of energy along the
full pipe:

ξmeas

ℓ −
f

(γ + 1) qM1
LL

(∣∣qM1
0 (qM1

LL)
∣∣(γ+1)

−
∣∣qmeas

ℓ

∣∣(γ+1)
)
= 0, (s29)

where
qM1
0 (qM1

LL) = qmeas

ℓ + ℓ qM1
LL . (s30)

Finally, as for model M0, we obtain, ∀α ∈ ]0.5, 2.5]:

βM1 =
qM1
LL(

p̃meas

)α , (s31)

where p̃meas is defined by eq. (s27).
Note: As for model M0, it is not possible to calibrate the parameter α, because qM1

LL is invariant along the pipe.

2.3. Affine lineic leakage outflow (M2)

For model M2, we suppose that the pressure-heads and the flow rates at both extremities of the pipe have been
measured, and we denote them pmeas

0 , pmeas

ℓ , qmeas
0 and qmeas

ℓ . Then, to calibrate parameters α and β, we first reformulate
the functions qLL(p), q

M2(x), ϕM2(x) and ξM2(x) (defined in the article), as functions of {α, β}, such that:

qLL0(α, β) = β
(
[pmeas

0 ]
+
)α

and qLLℓ(α, β) = β
(
[pmeas

ℓ ]
+
)α

, (s32)

qM2
0.5 (α, β) = qmeas

ℓ +
ℓ

8

(
qLL0(α, β) + 3 qLLℓ(α, β)

)
, (s33)

qM2
0 (α, β) = qM2

0.5 (α, β) +
ℓ

8

(
3 qLL0(α, β) + qLLℓ(α, β)

)
, (s34)

ϕM2
0.5 (α, β) = fqM2

0.5 (α, β)
∣∣qM2

0.5 (α, β)
∣∣γ−1

, (s35)

and

ξM2(α, β) = f
ℓ

6

(
φmeas

0 +ϕM2
0.5 (α, β) + φmeas

ℓ

)
, (s36)

where φmeas
0 = fqmeas

0

∣∣qmeas
0

∣∣γ−1
and φmeas

ℓ = fqmeas

ℓ

∣∣qmeas

ℓ

∣∣γ−1
. Then, we compute the calibrated parameters

{
αM2, βM2

}

by solving the system {
ξmeas

ℓ − ξM2(αM2, βM2) = 0

qmeas

0 − qM2
0 (αM2, βM2) = 0

(s37a)

(s37b)

where eq. (s37a) and eq. (s37b) are respectively the equations of conservation of energy along the full pipe and of mass at
x = 0.

2.4. Pseudo-quadratic lineic leakage outflow (M3)

For model M3, we suppose, as for model M2, that the pressure-heads and the flow rates at both extremities of the
pipe have been measured, and we denote them pmeas

0 , pmeas

ℓ , qmeas
0 and qmeas

ℓ . Then, to calibrate parameters α and β,

7



we reuse the functions qLL0(α, β) and qLLℓ(α, β) defined by eq. (s32), and we reformulate the functions qLL(p̃), q
M3(x),

ϕM3(x) and ξM3(x) (defined in the article), as functions of {α, β}, such that:

qLL0.5(α, β) = qLL

(
p̃meas

)
= β

([
pmeas
0 + pmeas

ℓ

2

]+)α

, (s38)

qM3
0.5 (α, β) = qmeas

ℓ +
ℓ

24

(
−qLL0(α, β) + 8 qLL0.5(α, β) + 5 qLLℓ(α, β)

)
, (s39)

qM3
0 (α, β) = qM3

0.5 (α, β) +
ℓ

24

(
5 qLL0(α, β) + 8 qLL0.5(α, β)− qLLℓ(α, β)

)
, (s40)

ϕM3
0.5 (α, β) = fqM3

0.5 (α, β)
∣∣qM3

0.5 (α, β)
∣∣γ−1

, (s41)

and

ξM3(α, β) = f
ℓ

6
(φmeas

0 +ϕ0.5(α, β) + φmeas

ℓ ) . (s42)

Finally, we can compute the calibrated parameters
{
αM3, βM3

}
by solving the system

{
ξmeas

ℓ − ξM3(αM3, βM3) = 0

qmeas

0 − qM3
0 (αM3, βM3) = 0

(s43a)

(s43b)

where eq. (s43a) and eq. (s43b) are respectively the equations of conservation of energy along the pipe and of mass at
x = 0.
Note: writing qLL0.5(α, β) = qLL

(
p̃meas

)
in eq. (s38), we then suppose that pmeas

0 .5 = p̃meas . Making this assumption is

the only way to calibrate the leakage parameters for model M3 if pmeas
0 .5 has not been measured.
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