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Summary

Genomic models that incorporate dense SNP genotypes are increasingly being used and
studied for inference of variance parameters and narrow-sense heritability. The variance
parameters of a linear mixed model linking a phenotype to SNP genotypes can be inferred
using restricted maximum likelihood, which produces consistent, asymptotically normal
estimates of variance components, when the SNP genotypes are those of the causal loci. Such
properties are not guaranteed to hold when the covariance structure of the data specified by
the genomic and the true models differs substantially. Since in practice we do not have
knowledge of the true genetic relationship matrix among individuals, genomic models that
incorporate SNP genotypes are used instead to compute a genomic relationship matrix. The
patterns of realized relationships at different sets of loci (e.g., markers and causal loci) vary
across the genome, and therefore a genomic relationship matrix may provide a poor
description of true genetic relationships at causal loci, potentially leading to incorrect
inferences. This work offers a theoretical analysis based on splitting the likelihood equations
into components, isolating those that contribute to incorrect inferences, and providing an
informative measure to compare the covariance structure of the data specified by the genomic
and the true models. The theory presented is also used to evaluate and explain the success of a
number of recently reported approaches in removing sources of bias of heritability estimates.
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Introduction

Genomic models that incorporate dense marker information are increasingly being used and
studied for inference of variance parameters and narrow-sense heritability (Yang et al., 2010;
Golan and Rosset, 2011; Speed et al., 2012). We define a genomic model as any linear mixed
model (LMM) linking a phenotype to SNP genotypes without knowledge of the causal
quantitative trait loci (QTL) associated with the phenotype. The variance parameters of the
LMM can be inferred using restricted maximum likelihood (REML) (Patterson and
Thompson, 1971), which produces consistent, asymptotically normal estimates of variance
components. These asymptotic properties of REML estimators are not guaranteed to hold
when the likelihood of the genomic model used for inference differs from that of the true
model that generated the data. In such a situation, the likelihood is misspecified. In a
Gaussian setup this will be the case when the covariance structures of the data specified by
the genomic and the true models differ.

The correct covariance structure requires knowledge of the true genetic relationship

matrix ( ) among individuals at causal loci. Since these are typically unknown, in practice
the genomic model makes use of marker genotypes instead in order to compute a genomic
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relationship matrix ( ), which may provide a poor description of realized relationships at
causal loci and this can lead to misspecification of the likelihood. In the setting that we
explore in this work, the likelihood misspecification of a genomic model is exclusively due to

the use of instead of .
REML was first implemented for populations of nominally unrelated individuals with

a genomic model in Yang et al. (2010), where the focus of inference was the proportion of the
variance of the quantitative trait (in that case, height in humans) explained by the LMM
including all genotyped SNPs simultaneously. In recent years, concerns have been raised
about the quality of inferences of variance parameters when genomic models have been used,
without directly addressing the problem of likelihood misspecification.

The problem of misspecification of the likelihood of the genomic model was first
raised by de los Campos et al., 2013 and was studied using simulation by de los Campos et
al., 2015. In the latter study, a distinction was made between two genetic parameters: the
additive genetic variance and the genomic variance or amount of additive variance that can be
captured by regression on SNPs, not necessarily including the QTL.

In this work we look into the problem of misspecification of the likelihood to evaluate
the bias of REML estimators of heritability. The objective was to provide a theoretical
analysis based on the splitting of the likelihood equations into components, isolating those
that contribute to incorrect inferences. The theory presented is also used to evaluate and
explain the success of a number of recently reported approaches in removing sources of bias
of heritability estimates.

Materials and methods

Consider that we have genomic data containing s SNP genotypes, which may or may not
contain the QTL. SNPs that are not QTL are referred to as markers. We assume the following
additive mixed model to relate SNPs to phenotypes:

, (1)

where is the overall mean, is the standardized SNP genotypes matrix (with

: , and ; is the count of the

minor allele at the j-th SNP with minor allele frequency (MAF) , of the i-th individual, for

all i=1,…,n and j=1,…,s), is a vector of random SNP effects and

is a vector of the model's residuals. If consists of QTL only ( ),
then equation (1) describes the true model that generates the phenotypes .

The covariance structure of the phenotype data that is specified by the genomic model

( : , , and ) differs from

that specified by the true model ( : ,

is the number of QTL, , and ), leading to a likelihood
misspecification.

To evaluate the potential asymptotic bias of the REML estimators of the variance
components under the genomic models, we evaluated the REML equation, comparing its
behaviour to that of the REML equation under the true model, which is known to yield
asymptotically unbiased estimators of the variance components, even if normality does not
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hold and the number of QTL increases dramatically tending to infinity (Jiang, 1996).
Differentiating the REML log-likelihood function (Harville, 1977) with respect to , we
obtain the REML equation (Jiang, 2007):

, (2)

where , and under the true model (QTL only), and

are sub-indexed with . is the solution of equation (2), and can be directly used to obtain

the REML estimator of heritability, , due to invariance property of maximum
likelihood estimators.

Using the eigen-decomposition , the REML equation (2) can be written as
the non-observable REML equation, defined as:

, (3)

where measures the correlations between eigen-vectors of the genomic
and true models, weighted by the eigen-values of the true model (remembering that each

eigen-value represents the amount of variance due to its respective component). In fact, is

a measure that evaluates whether is providing a poor description of . We refer to

equation (3) as non-observable because it is written as a function of and , which
cannot be observed directly when only phenotype and genomic data are available, and we
have no knowledge about the QTL.

Results and discussion

The term in equation (3) is the key for the evaluation of the potential
bias in REML estimators of heritability. Note that under the true model,

, and because the true models is known to yield asymptotically

unbiased estimators of the variance components, the relationship between and is what
determines (asymptotically) the presence and direction of bias of the REML estimators of

heritability ( ) to the true heritability ( ), as we present next:

1. : is asymptotically unbiased to

2. , constant: , meaning that cannot be estimated by the model

3. : is asymptotically biased downwards to

4. : is asymptotically biased upwards to

We evaluated theoretically the relationship between and for eight scenarios that
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are relevant in quantitative genetics studies. These scenarios differed in their population
structure (unrelated or related individuals) and genetic architecture (regarding MAF and LD
between QTL and markers). Table 1 presents the description of the scenarios, as well as the

theoretical relationship between and in each scenario, for genomic models that
comprised either the QTL and markers in the SNP genotypes, or the markers only. The

relationships between and were obtained by equating under the
assumptions of each scenario. Table 2 presents the description of the scenarios, as well as the

asymptotic expectation of , denoted as .

Using simulations, we studied the sampling properties of for all the evaluated
scenarios, and the results were used to support the theoretical expectations. Each scenario was
replicated 1,000 times, in a population of 2,000 individuals (population size was considered
large enough to guarantee the asymptotic properties, based on a preliminary study), with
20,000 SNPs, of which 3,000 were assigned as QTL. Figures 1-8 show that results obtained
with simulations agree with the theory derived for all the scenarios. When the QTL are in
complete LE with the markers, the addition of markers to the QTL genotypes does not induce

bias to . When the QTL are in LD with the markers, the addition of markers to the QTL

genotypes may induce bias to , if the structure of differs substantially from the structure

of , as observed in scenarios in which the MAF distribution of the QTL and markers
differ. The presence of related individuals in the population can alleviate the structural

difference between and , attenuating the bias of .
The scenarios in which QTL and markers are in complete LE have been explored

theoretical and empirically in other studies, with particular emphasis on the effect of the
eigen-values of on the likelihood of the (misspecified) genomic model (Jiang et al, 2014:
Kumar et al., 2015). Although Kumar et al. (2015) discussed the relevance of the difference

between the eigen-vectors of and , they did not discuss this difference as correlations

between the eigen-vectors, which are implied in the term that we evaluate. Moreover, the
authors asses the performance of genomic models in estimating heritability mainly by
describing the sensitivity of the likelihood to changes in the eigen-values. Indeed, the
likelihood depends sensitively on all the eigen-values, but evaluation of the likelihood given a
change in each eigen-value separately is not as informative as evaluation of the REML
equation given a change in the distribution of all eigen-values simultaneously. Jiang et al.
(2014) assesses the performance of genomic models in estimating heritability by studying the
limiting behavior of the central term in equation (2), assuming the infinitesimal model.
Although the analysis of scenarios in which QTL are in complete LE with the markers is very
important to help us understand the mechanism of REML equations, we believe that scenarios
in which QTL are in LD with the markers are more realistic. Moreover, in the presence of
LD, the distribution of the MAF of QTL and markers may alter the correlations between

phenotypes and genotypes, that are implied in equation (2), and can be measured by .
REML estimators of heritability using the method proposed by Yang et al. (2010), for

scenarios in which QTL are in LD with the markers, can be biased to the true parameters,
depending on the genetic architecture of the trait. This is the case when the distributions of
MAF differ for QTL and markers, in populations with mostly unrelated individuals. Several
approaches have been proposed, addressing the problem of biased heritability estimators, and
we relate our theoretical evaluation to their results.

First, addressing the different MAF of the SNPs, (Speed et al., 2012) suggests a
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weighting of the SNPs by their MAF, which would give the same weighting to terms
involving in equation (3), owing to the change in the definition of the heritability.
obtained using the SNPs suitably weighted according to the scenario will improve the

relationship between and reducing the bias of . The definition of a suitable weight
must be explored further, and the theory provided in this study provides a tool that can be
used for such investigations.

Yang et al. (2015) suggested a method analogous to that proposed in Yang et al.
(2010), by fitting the model with several genomic variance components, each of them relative
to groups of SNPs with MAF within the same range. Non-observable REML equations can be
obtained for each genomic variance component, and their analysis is analogous to that

presented for one single component. Indeed the method is capable of removing the bias of .
However, as observed by Yang et al. (2015), the increase in the number of variance

components will increase the variance of , and, depending on the scenario evaluated, the
estimates may be less reliable than those obtained by fitting a single genomic variance
component. Edwards et al. (2016) also suggests the fitting of the model with several genomic
variance components, however, grouping them to genomic feature (i.e. genes and their gene
ontology), which requires the use of prior information about the genomic data. The results of
their study showed that a relevant amount of variance was attributed to the significant
features. The major advantage of grouping SNPs to genomic features instead of MAF, for the
estimation of variance components, is that the prior genomic information used for grouping

may lower the number of components, reducing the variance of . The use of prior genomic
information to fit genomic models with multiple variance components was previously
suggested by Speed and Balding (2014), who included a dynamic procedure to define a
suitable partition of SNPs.

Considering the situation where prior genomic feature information is absent, Bayesian
mixture models, such as BayesB (Meuwissen et al., 2009) or BayesR (Erbe et al., 2012), are
reasonable solutions for assigning different distributions to groups of SNP effects (Edwards et

al., 2016). Again, non-observable REML equations can be used to evaluate , and the
Bayesian models can be tuned using the information from our theoretical analysis.

Last but not least, a fifth approach includes related individuals to study populations,

which can greatly reduce the bias of , when is exists. This is because the rare QTL induce
genetic relationships between individuals. Whereas in populations of nominally unrelated

individuals common markers mask those induced genetic relationships ( ),

drastically reducing the correlations between eigen-vectors of and , resulting in ,
in populations of related individuals, the induced genetic relationships will better reflect the

kinship matrix ( ), improving the correlation between eigen-vectors of and ,

resulting in and less biased .

Conclusions

In a Gaussian setup, the likelihood of a genomic model is misspecified with respect to that of
the true model that conceptually generated the data, due to the difference between the
covariance structures of the data specified by these models. When used for inference of
variance parameters and narrow-sense heritability, the misspecified likelihood may yield
biased estimators of those parameters, and inferences must be interpreted with caution. Our
study has shown that the bias of REML estimators of heritability is linked to the relationship
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between the eigen-values and eigen-vectors of and , implied in the measure , and

bias occurs when . Moreover, the comparison between and not only identifies the

potential bias of , but is also a very informative method for comparing and , which

can be extended to a number of different approaches of obtaining using REML on
genomic models.
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Table 1. Relationship between values of and for genomic models including QTL and

markers ( and ) and including markers only ( and ), for eight different
scenarios.

Scenario Population MAF QTL/markers

1 1 generation1 complete LE 1

2 1 generation1 complete LE 1

3 1 generation1 LD <<<

4 2 generations LD <<

5 10 generations LD <

6 1 generation1 LD <<< <<<

7 2 generations LD << <<

8 10 generations LD < <

1 completely unrelated individuals

Table 2. Asymptotic expectation of for genomic models including QTL and markers ( )

and including markers only ( ), based on the relationships between and , for eight
different scenarios.

Scenario Population MAF QTL/markers

1 1 generation1 complete LE 0

2 1 generation1 complete LE 0

3 1 generation1 LD
<<<

4 2 generations LD
<<

5 10 generations LD
<

6 1 generation1 LD <<< <<<

7 2 generations LD << <<

8 10 generations LD < <

1 completely unrelated individuals
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(a) (b)

Figure 1. Simulation results for scenario 1, for genomic models including QTL only, including

QTL and markers and including markers only (a) relationship between and (b) relative

bias of , .

(a) (b)

Figure 2. Simulation results for scenario 2, for genomic models including QTL only, including

QTL and markers and including markers only (a) relationship between and (b) relative

bias of , .
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(a) (b)

Figure 3. Simulation results for scenario 3, for genomic models including QTL only, including

QTL and markers and including markers only (a) relationship between and (b) relative

bias of , .

(a) (b)

Figure 4. Simulation results for scenario 4, for genomic models including QTL only, including

QTL and markers and including markers only (a) relationship between and (b) relative

bias of , .
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(a) (b)

Figure 5. Simulation results for scenario 5, for genomic models including QTL only, including

QTL and markers and including markers only (a) relationship between and (b) relative

bias of , .

(a) (b)

Figure 6. Simulation results for scenario 6, for genomic models including QTL only, including

QTL and markers and including markers only (a) relationship between and (b) relative

bias of , .
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(a) (b)

Figure 7. Simulation results for scenario 7, for genomic models including QTL only, including

QTL and markers and including markers only (a) relationship between and (b) relative

bias of , .

(a) (b)

Figure 8. Simulation results for scenario 8, for genomic models including QTL only, including

QTL and markers and including markers only (a) relationship between and (b) relative

bias of , .


