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Significance

ZC3H11A (zinc finger CCCH 
domain–containing protein 11A) 
protein has been identified as a 
critical factor required for the 
growth of human nuclear–
replicating viruses. Hence, 
ZC3H11A is considered as a 
potential therapeutic target for 
the development of antiviral 
agents for medically important 
human viruses. This study sheds 
light on the cellular function of 
ZC3H11A during embryonic 
development and shows that 
ZC3H11A is required for early 
embryonic growth. Ablation of 
ZC3H11A is lethal in the 
homozygous condition and leads 
to complete failure of embryonic 
development and survival. This 
study reveals that ZC3H11A is 
critical for metabolic regulation 
and viability of early embryos.
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DEVELOPMENTAL BIOLOGY

Ablation of ZC3H11A causes early embryonic lethality 
and dysregulation of metabolic processes
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ZC3H11A (zinc finger CCCH domain–containing protein 11A) is a stress-induced 
mRNA-binding protein required for efficient growth of nuclear-replicating viruses. 
The cellular functions of ZC3H11A during embryonic development are unknown. 
Here, we report the generation and phenotypic characterization of Zc3h11a knockout 
(KO) mice. Heterozygous null Zc3h11a mice were born at the expected frequency 
without distinguishable phenotypic differences compared with wild-type mice. In 
contrast, homozygous null Zc3h11a mice were missing, indicating that Zc3h11a is 
crucial for embryonic viability and survival. Zc3h11a –/– embryos were detected at 
the expected Mendelian ratios up to late preimplantation stage (E4.5). However, 
phenotypic characterization at E6.5 revealed degeneration of Zc3h11a –/– embryos, 
indicating developmental defects around the time of implantation. Transcriptomic 
analyses documented a dysregulation of glycolysis and fatty acid metabolic pathways in 
Zc3h11a–/– embryos at E4.5. Proteomic analysis indicated a tight interaction between 
ZC3H11A and mRNA-export proteins in embryonic stem cells. CLIP-seq analysis 
demonstrated that ZC3H11A binds a subset of mRNA transcripts that are critical for 
metabolic regulation of embryonic cells. Furthermore, embryonic stem cells with an 
induced deletion of Zc3h11a display an impaired differentiation toward epiblast-like 
cells and impaired mitochondrial membrane potential. Altogether, the results show 
that ZC3H11A is participating in export and posttranscriptional regulation of selected 
mRNA transcripts required to maintain metabolic processes in embryonic cells. While 
ZC3H11A is essential for the viability of the early mouse embryo, inactivation of 
Zc3h11a expression in adult tissues using a conditional KO did not lead to obvious 
phenotypic defects.

ZC3H11A | mRNA export | embryonic development | RNA-binding proteins

The zinc finger CCCH domain–containing protein 11A (ZC3H11A) is a stress-induced 
messenger RNA (mRNA)-binding protein that is required for the efficient growth of several 
human nuclear–replicating viruses, including HIV (HIV-1), influenza A virus, human 
adenovirus, and herpes simplex virus 1 (1). Proteomic studies on human cells have indicated 
that ZC3H11A is a component of the transcription-export (TREX) complex (2). Functional 
studies indicated that ZC3H11A selectively exports newly transcribed viral mRNAs to the 
cytoplasm during viral infection (1, 3). Thereby, inactivation of ZC3H11A in human cells 
impaired the export of a subset of viral mRNA transcripts and resulted in a dramatic 
reduction in viral growth (1). These important functions of ZC3H11A in the growth cycle 
of several human viruses make ZC3H11A a potential target for the development of an 
antiviral therapy. The aim of the present study was to develop an animal model to study 
the molecular functions of ZC3H11A in prenatal and postnatal development.

The TREX complex serves a key function in nuclear mRNA export and consists of 
multiple conserved core subunits including ALYREF (RNA-binding adaptor of TREX), 
UAP56 (DEAD-box-type RNA helicase), and a stable subcomplex called THO, which 
in turn consists of at least six subunits (4, 5). Proteomic studies using human cells have 
indicated that ZC3H11A is an auxiliary component of the TREX complex, but did not 
consider it as a core subunit of the TREX complex (6, 7). THO proteins are conserved 
from yeast to human and play pivotal roles during embryonic development, cell differ-
entiation, and cellular response to stimuli (8, 9). It has been reported that disruption 
of THO proteins, such as THOC1, THOC2, or THOC5, leads to early embryonic 
lethality (9–11). The TREX complex controls the mRNA export in a selective manner, 
where individual TREX components appear to be required for the export of distinct 
subsets of mRNAs (12). For instance, THOC2 or THOC5 is required for the export 
of mRNAs essential for pluripotency such as Nanog, Sox2, and Klf4 in mouse embryonic 
stem cells (mESCs) (9). Despite several reports characterizing the role of THO proteins 
during embryogenesis, the cellular function of ZC3H11A during embryonic develop-
ment is unknown.
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In the current study, we established Zc3h11a knockout (KO) 
mouse models to study the effect of Zc3h11a loss of function on 
embryonic development. Our results identify ZC3H11A as a fun-
damental protein required for early embryonic growth. Disruption 
of ZC3H11A is lethal in the homozygous condition and leads to 
complete failure of embryonic development and survival. Using 
proteomic and RNA-seq analyses, we show that the ZC3H11A 
protein interacts with TREX complex core proteins in mESCs. 
ZC3H11A is apparently an auxiliary factor participating in the 
export and posttranscriptional coordination of selected mRNA 
transcripts required to maintain the metabolic processes in embry-
onic cells. Interestingly, Zc3h11a inactivation in adult mouse 
tissues using an inducible mouse model showed that the ZC3H11A 
protein is dispensable for postnatal tissue growth.

Results

Zc3h11a Inactivation in Mice Is Lethal in the Homozygous 
Condition. Zc3h11a is located on chromosome 1 in both human 
and mouse genomes and harbors the coding sequence of another 
gene encoding the DNA-binding zinc-finger protein ZBED6 
(13–18) (Fig. 1A). We used two strategies to target the Zc3h11a-
coding exons without affecting Zbed6. The first Zc3h11a mouse 
model was developed by targeting exon 3 using the CRISPR/Cas9 
system with two guide RNAs flanking the targeted sequences. 
This resulted in both a deletion of 567 bp including the entire 
exon 3 and a frameshift (Fig. 1B). The second mouse model was 
developed by inserting loxP sites flanking the coding sequence of 
exon 2 using homologous recombination (Fig. 1C). These loxP 
mice were crossed with mice expressing Cre recombinase in germ 

line (PGK-Cre), which resulted in a deletion of 1.5 kb containing 
exon 2 and removal of the zinc-finger domains of the encoded 
ZC3H11A protein (Fig. 1C). For each model, heterozygous mice 
were crossed and the offspring were genotyped. No Zc3h11a–/– 
mice were obtained from heterozygous matings (Fig. 1 D and E), 
with the exception of one single homozygous Zc3h11a–/– female 
from the loxP mouse model (1 out of 204 mice). When we crossed 
this KO female with Zc3h11a+/– males, 10 out of 10 progeny were 
heterozygous Zc3h11a+/–. The probability to get this outcome if 
both parents are heterozygous is P = 0.510 = 0.001. The result 
confirms our interpretation that one single homozygous KO 
survived and was fertile.

Zc3h11a Deletion Results in Embryonic Degeneration. In order to 
explore at what point ZC3H11A is essential for embryonic survival, 
we collected and genotyped embryos at different time points post 
Zc3h11a+/– X Zc3h11a+/– mating (Fig. 2A). The genotyping of 
embryos at embryonic day E4.5 prior to implantation revealed 
expected Mendelian proportions (Fig.  2A). However, a clear 
deviation from expected Mendelian proportions was observed 
after implantation (Fig. 2 A, Bottom). Remarkably, phenotyping 
at E6.5 showed dramatic changes in the morphology of the 
Zc3h11a–/– embryos with a large degree of tissue degeneration, 
whereas Zc3h11a+/– heterozygotes appeared morphologically 
indistinguishable from the WT embryos (Fig. 2B).

ZC3H11A Is Highly Expressed at the Early Stages of Embryonic 
Development. The lethal effect of Zc3h11a inactivation in mouse 
embryos encouraged us to explore the cellular localization of 
ZC3H11A at early embryonic stages. We used immunofluorescence 
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Fig. 1. Development of Zc3h11a–/– mouse models. (A) The Zc3h11a locus showing the targeted exons for generating Zc3h11a–/– mouse models. (B) Two CRISPR/
Cas9 guide RNAs were used to delete exon 3 of Zc3h11a. Scissors indicate the location of the gRNAs and the length of deleted sequences. (C) Two homology arms 
were used to insert loxP sites flanking exon 2. The conditional knockout mice were crossed with mice expressing Cre in germ line to eliminate the sequences 
between the loxP sites, resulting in the elimination of the entire exon 2 coding sequences. (D and E) Genotyping of the offspring of Zc3h11a heterozygous 
matings (Zc3+/– X Zc3+/–) using the CRISPR/Cas9-based KO mouse model (D) and the loxP/Cre-based KO mouse model (E). The total numbers of genotyped mice 
at week 4 are indicated.D
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(IF) staining to visualize the ZC3H11A protein and the nuclear 
speckles marker SRSF2 (SC35) for expression profiling in 
mouse 2-cell and blastocyst stages. The IF analysis showed that 
ZC3H11A is expressed at a detectable level as early as the 2-cell 
stage, with clear nuclear localization (Fig. 3 A, Top). The z-stack 
imaging of the blastocysts showed that ZC3H11A was expressed in 
trophectoderm (TE) (Fig. 3 A, Middle) as well as in inner cell mass 
(ICM) (Fig. 3 A, Bottom). The localization pattern of ZC3H11A 
in ICM was overlapping with the nuclear speckles as indicated 
using the anti-SRSF2 antibody (Fig. 3 A and B). This subcellular 
localization of ZC3H11A in mouse embryonic cells is similar to 
the ZC3H11A localization in human cell lines (1). Reanalyzing 
single-cell RNA-seq data from Deng et  al. (19) revealed that 
Zc3h11a mRNA is highly expressed in mouse embryos as early 
as the zygotic stage, indicating maternal contribution (Fig. 3C).

Disrupted Metabolic Pathways in the Zc3h11a–/– Embryos. The 
degeneration of Zc3h11a –/– embryos during early embryonic 
development (E6.5) encouraged us to perform whole-transcriptome 
analysis of stage E4.5 embryos to reveal the dysregulated pathways 
that led to the degeneration of Zc3h11a –/– embryos at E6.5. 
We collected embryos from Zc3h11a+/– X Zc3h11a+/– matings 
and extracted the RNA from the embryonic part for sequencing 
(Fig.  4  A, Left). Principal component analysis (PCA) of RNA-
seq data showed that Het (Zc3h11a+/–) and WT (Zc3h11a+/+) 
embryos clustered together and apart from the KO (Zc3h11a–/–) 
embryos (Fig. 4A). This result is in agreement with the observed 
morphological similarity between WT and Het embryos (Fig. 2B). 
Furthermore, the differential expression (DE) analysis between WT 

and Het did not detect any significant DE genes with FDR <0.05. 
Therefore, we performed the DE analysis between KO embryos 
vs. WT and Het embryos that revealed 660 DE genes (FDR < 
0.05) out of ~11,000 expressed genes (Dataset S1). Among these 
DE genes, 419 were up-regulated and 241 were down-regulated 
in KO embryos (FDR < 0.05). Hallmark gene set enrichment 
analysis (GSEA) using all DE genes in KO embryos revealed a 
significant depletion (FDR < 0.05) of genes involved in glycolysis, 
fatty acid metabolism pathways, and epithelial–mesenchymal 
transition (EMT) processes (Fig. 4 B–D). The heatmaps present 
the expression of the subset of genes that contributed the most 
to the indicated pathway enrichment among significantly down-
regulated genes in KO embryos (Fig.  4 B–D). Among the key 
down-regulated genes, contributing to the significant GSEA result, 
are lactate dehydrogenase A (Ldha), which has an essential role 
in glycolysis, and disruption of Ldha causes congenital disorders 
of carbohydrate metabolism (20, 21); enoyl-CoA hydratase and 
3-hydroxyacyl CoA dehydrogenase (Ehhadh), which is involved 
in fatty acid beta-oxidation using acyl-CoA oxidase (22, 23); and 
dickkopf WNT signaling pathway inhibitor 1 (Dkk1), which is 
involved in several processes including cell fate determination and 
cell differentiation processes during embryogenesis (24). On the 
contrary, the positively enriched gene sets among up-regulated genes 
in the KO mice included genes in the P53 pathway and autophagy 
process–related genes (Fig. 5 A and B and SI Appendix, Fig. S1). 
This includes the upregulation of autophagy-related 12 (Atg12) and 
microtubule-associated protein 1A/1B light chain 3A (Map1lc3a) 
genes (Fig. 5E). MAP1LC3A is known as an LC3A protein and is 
required for autophagosome formation (25).
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Fig. 2. Ablation of Zc3h11a leads to early embryonic degeneration. (A, Top) Schematic illustration showing embryonic stages and time points of collecting 
embryos for genotyping of Zc3h11a. (A, Low) Results of PCR genotyping of collected embryos at the above time points. (B) Morphology of collected embryos at 
E6.5 from Zc3h11a heterozygous mating (Zc3+/– X Zc3+/–).
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To get further insight on which cell type in blastocysts was most 
affected by Zc3h11a inactivation, we explored the expression pro-
file of the DE genes in Zc3h11a–/– embryos in embryonic lineages 
(ICM and epiblast) and TE. Using previously published datasets 
of mouse gene expression [GSE76505 (26)], the ICM/TE ratio 
of expression was computed for genes down-regulated and 
up-regulated in the KO embryos (FDR ≤ 0.05, fold change ≥ 2). 
We also explored the expression of DE genes at earlier stages using 
gene expression dataset (E-MTAB-2950) (27). This showed that 
down-regulated genes in Zc3h11a–/– embryos are primarily 
expressed in the ICM/early epiblast rather than TE (Fig. 5C), 
while the expression of the up-regulated genes is nearly equally 
present in ICM/early epiblast and TE (SI Appendix, Fig. S2). The 
down-regulated genes in Zc3h11a–/– embryos with high expression 
in the ICM include Ldha, teratocarcinoma-derived growth factor 
1 (Tdgf1 alias Cripto), growth differentiation factor 3 (Gjb3), and 
phosphofructokinase (Pfkp) (Fig. 5D). GDF3 is an analog of 
NODAL and uses TDGF1 as a cofactor (28). Ldha, Pfkp, Pfkm, 
and Pdk2 are down-regulated in Zc3h11a–/– embryos and are 
involved in glycolysis and lactate production, as indicated in the 
GSEA (Fig. 4). At periimplantation stages, there is a major met-
abolic switch from oxidative phosphorylation to anaerobic glyc-
olysis, with increased lactate production (29, 30). Tdgf1 has been 

reported as an essential factor regulating this metabolic switch 
(31). This provides a plausible explanation for the finding that the 
down-regulated pathways revealed by the GSEA results mostly 
concern metabolic regulation processes. Altogether, this strongly 
suggests that the primary consequence of ZC3H11A deficiency 
is in the ICM, due to perturbed metabolic regulation. The enrich-
ment of genes associated with autophagy and apoptosis-related 
pathways (Fig. 5 A and B) among the up-regulated genes in 
Zc3h11a–/– embryos could be a secondary effect caused by the 
metabolic stress encountered by the ICM cells (32, 33).

ZC3H11A Is Associated with the RNA Export Machinery in 
Embryonic Stem Cells. In human somatic cells, ZC3H11A 
has been recently characterized as an RNA-export protein that 
functions through its interaction with TREX complex proteins 
(1). In order to identify its interacting partners in embryonic 
cells and to investigate whether ZC3H11A maintains its 
association with the TREX complex in mESCs, we performed 
co-immunoprecipitations (co-IPs) using anti-ZC3H11A, anti-
THOC2, and anti-IgG antibodies followed by mass spectrometry 
(MS) analyses (Fig.  6A). Statistical analyses of detected MS 
intensities from the biological replicates (n = 4) revealed a number 
of proteins with statistically significant interaction with ZC3H11A 
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and THOC2 (Fig. 6B). Proteins belonging to the TREX complex 
and RNA-export machinery are highlighted in bold. The log-
fold change in protein intensities in the ZC3H11A co-IP relative 
to the IgG co-IP is presented along with the adjusted P-values 

(Fig. 6C). The interaction between ZC3H11A and THOC2 was 
validated by a reciprocal co-IP and western blot using mESCs 
(Fig.  6D). The majority of the significant partners interacting 
with ZC3H11A are part of the TREX complex and also showed 
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significant enrichment in the THOC2 co-IP, including THOC5, 
THOC7 (Fig. 6E), THOC1, and THOC6 (Fig. 6C). ZC3H11A 
also interacts with other RNA-binding proteins that are required 
for RNA maturation, such as polyadenylate-binding nuclear 
protein 1 (PABPN1) (34); FYTTD1, which acts as an adaptor 
for RNA helicase UAP56 (35); and the RNA export adaptor 
ALYREF/THOC4 (36) (Fig. 6 D and F). Notably, almost half 
of the ZC3H11A partners detected by co-IP were also found in 

the THOC2 co-IP (SI Appendix, Fig. S3). These data indicate 
that ZC3H11A is an essential component of the TREX complex 
that is known to play pivotal roles during embryogenesis and 
for maintaining pluripotency of ESCs (9, 10). Furthermore, the 
proteomic analysis identified additional interacting partners, 
independent of the TREX complex, such as the RNA-binding 
protein DDX18; the polycomb repressive complex 2 components 
SUZ12 and JARID2; and the two zinc-finger proteins ZNF638 
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Fig. 6. ZC3H11A binds RNA-export TREX complex proteins in mESC. (A) Schematic illustration of co-immunoprecipitation (co-IP) mass-spectrometry experiments 
using anti-ZC3H11A, anti-THOC2, and anti-IgG antibodies and mouse embryonic stem cells (mESCs). (B) Heatmap of the interacting partners to ZC3H11A (adjusted 
P < 0.05). Data presented as log intensities of four replicates. Proteins associated with the TREX-complex and mRNA export are in bold. (C) Volcano plot showing 
the enrichment of co-IP proteins from anti-ZC3H11A/anti-IgG. (D) Western blot of reciprocal co-IP using anti-ZC3H11A, anti-THOC2, and anti-IgG antibodies and 
probed with the indicated antibodies. Asterisk indicates a cut in the western blot membrane. (E) Log intensities of the ZC3H11A and THOC proteins. (F) Log 
intensities of FYTTD1 (UAP56) and the polyadenylation factor PABPN1. (G) Log intensities of proteins interacting with ZC3H11A independent of THOC2 and the 
TREX complex. *, **, ***, and **** correspond to adjusted P < 0.05, 0.01, 0.001, and 0.0001, respectively. ns: not significant.
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and ZFP57 (Fig. 6G and SI Appendix, Fig. S3B). DDX18 is an 
RNA-binding protein that plays a crucial role in pluripotency and 
self-renewal of embryonic stem cells (37).

ZC3H11A Selectively Binds mRNA Transcripts in mESCs. Previous 
studies using human somatic cells indicated that ZC3H11A is an 
RNA-binding protein that selectively binds subsets of mRNA upon 
stress or viral infection (1). To study the RNA-binding properties 
of ZC3H11A in embryonic cells, we performed UV-cross-linking 
of mESCs followed by ZC3H11A immunoprecipitation (CLIP) 
and RNaseI treatment to isolate the RNA protected by ZC3H11A. 
We used two anti-ZC3H11A antibodies to minimize any artifact 
caused by antibodies, and anti-ALYREF and anti-IgG as positive 
and negative controls, respectively. High-throughput sequencing 
of the RNA isolated by CLIP (CLIP-seq) revealed an almost 

exclusive interaction between ZC3H11A and protein-coding 
mRNAs in mESCs (SI Appendix, Fig. S4A and Fig. 7A); the much 
higher number of peaks at 3′UTRs compared with 5′UTRs can 
be explained by the longer length of the former. The analysis of 
ZC3H11A CLIP-seq peaks from the two ZC3H11A antibodies 
revealed a significant enrichment of short purine-rich motifs 
(Fig. 7 B, Top). Moreover, ZC3H11A exhibited strong binding 
to the paraspeckle Neat1 transcript (SI Appendix, Fig. S4B), similar 
to what has been observed in human somatic cells (1). Comparing 
the CLIP-seq ZC3H11A mRNA targets with genes that were 
significantly down-regulated in RNA-seq data, we identified 
subsets of genes as putative direct targets of ZC3H11A in mESCs 
(Fig.  7 B, Bottom). The gene ontology analysis of these genes 
suggested that they are involved in germ cell development and 
metabolic processes (Fig. 7C). These 29 genes were dramatically 
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down-regulated in Zc3h11a–/– embryos (Fig.  7D) and are 
involved in cellular processes vital for embryonic development 
(38–41). Putative direct targets included the Tdgf1, nucleoporin 
85 (Nup85), proliferation-associated protein 2G4 (Pa2g4), and 
gap junction protein beta 3 genes (Gjb3). The CLIP-seq analysis 
detected ZC3H11A-binding sites at the 3’UTR of these genes 
that either overlapped with ALYREF-binding sites (for Tdgf1 and 
Pa2g4) or did not (Nup85) (Fig. 7E). These results suggest a crucial 
role of ZC3H11A in posttranscriptional processing and mRNA 
export of key genes in embryonic cells.

ZC3H11A Is Required for In Vitro Derivation of ESCs. To further 
understand the role of ZC3H11A in the periimplantation 
development and especially its role in the pluripotent epiblast, 
twenty-five E3.5 blastocysts were recovered from matings between 
heterozygous mice, and cultured in vitro. From these, 14 ESC 
lines were obtained but none were homozygous KO (Χ2= 4.7, 
d.f. = 1; P < 0.05). This suggests that ZC3H11A is required for 
establishing ESC in vitro.

Mice with Postnatal Zc3h11a Ablation Are Healthy and Viable. 
We developed an inducible Zc3h11a-KO model to assess the 
effect of Zc3h11a ablation postnatally. LoxP-Zc3h11a mice 
were crossed with mice containing fusion of a mutated estrogen 
receptor T2 and Cre recombinase (Cre-ER), allowing temporal 
control of floxed gene deletion upon tamoxifen induction in vivo 
(42). We generated a strain that is homozygous Zc3h11a-loxP 
(Zc3loxP/loxP) with one copy of Cre-ER (CRE.ER+ Zc3loxP/loxP) and 
crossed it with the original strain (Zc3loxP/loxP) lacking Cre-ER. 
The offspring were injected with tamoxifen at weeks 3 to 4 after 
birth (Fig. 8A). Genotyping of the tamoxifen-injected mice at 
week 6 using genomic DNA from tail biopsies revealed a balanced 
ratio between WT and induced KO (iKO) due to the presence/
absence of Cre-ER (Fig. 8B). By injecting CRE.ER+ Zc3loxP/loxP 
mice with tamoxifen postnatally, we succeeded in achieving 
>90% reduction of Zc3h11a expression in multiple adult tissues 
including bone marrow, liver, and spleen (Fig. 8 C and D). The 
examination of tamoxifen-injected mice was carried out at week 
12 and involved histology staining of multiple organs including 
stomach, pancreas, and small and large intestine tissues. The 
histology phenotyping did not exhibit obvious defects between 
the floxed (WT) and iKO adult mice (Fig. 8E and SI Appendix, 
Fig.  S5). Furthermore, the measurement of body weight and 
the weight of dissected kidney and spleen tissues from WT 
and inducible ZC3-KO adult mice did not show significant 
differences (Fig. 8F).

Impaired Differentiation and Metabolism in Zc3h11a-Induced 
Ablation in ESCs. After treatment with tamoxifen, iKO ESCs 
did not show any mortality or growth defect and maintained 
pluripotency as shown by RT-qPCR analysis (SI  Appendix, 
Fig. S6A). This shows that ZC3H11A is not required for ESC 
maintenance, once they are established, in agreement with the 
Mendelian recovery of blastocysts. In vivo, the defects occur at the 
periimplantation stages, corresponding to a change in pluripotency 
from a naïve to a primed state (43). To mimic this evolution, 
we converted ESCs into primed epiblast-like cells (EpiSCs), by 
transferring them to a medium containing FGF2 and activin A. 
During such in vitro conversion, a higher cell loss was observed 
for iKO cells than that for floxed controls (SI Appendix, Fig. S6B) 
and the iKO EpiSCs colonies were less compact and smaller than 
WT (SI Appendix, Fig. S6C). Genotyping performed on cDNA 
confirmed the absence of WT cells among the iKO population 
(SI Appendix, Fig. S6D). The expected changes in gene markers of 

the naïve and primed pluripotency states were observed for both 
types of cells (SI Appendix, Fig. S6E). Although not statistically 
significant, Ldha and Tdgf1 were slightly down-regulated in 
iKO cells at day 4. We then assessed changes in mitochondrial 
activity in the naïve state (ESCs) and after 2 d of conversion. 
For that, we used a sensitive live reporter of mitochondrial 
membrane potential, the carboyanine dye JC-1. It allowed the 
simultaneous detection of monomer forms (green fluorescence) 
at low mitochondrial potential and aggregates (red fluorescence) 
formed at high potential (Fig. 8G). Interestingly, we observed that 
iKO cells have a lower ratio of aggregates/monomers at both time 
points, suggesting an impaired energy metabolism in the absence 
of Zc3h11a (Fig. 8H). These results are in line with the defective 
metabolism of in vivo developed KO embryos, as deduced from 
RNA-seq data.

Discussion

ZC3H11A is important for the growth of nuclear-replicating 
viruses, where viruses take advantage of the ZC3H11A protein 
to facilitate the export of their mRNA transcripts into cytoplasm. 
Thereby, ZC3H11A is considered a possible target for the devel-
opment of antiviral therapy. Hence, we developed ZC3H11A 
mouse models to study their physiological functions across 
developmental stages. The current study reports that ZC3H11A 
is an essential protein required for the viability of mouse 
embryos. Loss of function of ZC3H11A leads to developmental 
defects and embryonic degeneration at periimplantation stages 
associated with the dysregulation of metabolic pathways such as 
glycolysis and fatty acid metabolic processes. Interestingly, the 
defects mainly originate from the epiblast, as most of the 
down-regulated genes are expressed predominantly in this line-
age. Moreover, even though ZC3H11A is expressed in all cells 
of the blastocyst, Tdgf1, one of its key down-regulated target 
genes, is expressed specifically in the epiblast cells (31). TDGF1 
(also called Cripto) is a membrane-bound protein, a coreceptor 
for NODAL/GDF3 (44). TDGF1 and NODAL signaling plays 
important roles during specification of the early lineages and 
maintenance of the pluripotent epiblast at early postimplanta-
tion stages (44). Interestingly, it also controls the metabolic 
switch occurring at the time of implantation in the mouse, when 
cells transit from an OXPHOS-based metabolism to a glycolytic 
one (29, 31, 45). Our CLIP-seq analysis detected two strong 
peaks for ZC3H11A binding at the 3′ end of the Tdgf1 mRNA 
in mESCs (Fig. 7E). Furthermore, ZC3H11A binds the 3′ end 
of the Nup85 and Pa2g4 mRNA transcripts (Fig. 7E). Both 
Nup85 and Pa2g4 were down-regulated in the KO embryos and 
play crucial roles in embryonic development (38–41). For 
instance, NUP85 is a core component of the nuclear pore com-
plex (NPC) proteins and is required for mRNA export and 
maintenance and assembly of the NPC (40, 41, 46). Loss-of-
function studies showed that inactivation of the NPC proteins 
in mouse models resulted in early embryonic lethality (47–49). 
Recent phenotypic characterization of the Nup85 KO mouse 
model from the International Mouse Phenotyping Consortium 
(www.mousephenotype.org, accessed August 22, 2022) (50) has 
indicated complete preweaning lethality of Nup85–/– mice. 
Furthermore, the ErbB3-binding protein-1 gene (Ebp1/Pa2g4) 
is implicated in regulating the proliferation and differentiation 
during developmental stages. The Pa2g4 KO mice exhibited 
growth retardation and were 30% smaller than wild-type mice 
(51). A recent study has reported more severe phenotypes in 
Pa2g4-deficient mice with death between E13.5 and 15.5, mas-
sive apoptosis, and cessation of cell proliferation (38). These D
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putative ZC3H11A targets identified by CLIP-seq are known 
to be critical for embryonic viability and implicated in diverse 
cellular functions, and disruption of their expression leads to 
embryonic degeneration.

Another key down-regulated gene in KO embryos is Ldha, the 
enzyme that controls the level of anaerobic glycolysis by catalyzing 
the transformation of pyruvate into lactate. Hence, in KO embryos, 
the establishment of a more anaerobic glycolysis is impaired, which 

compromises survival when the environment becomes more hypoxic 
as embryos implant. Upregulation of autophagy as observed in KO 
embryos can be viewed as a reaction to a suboptimal metabolic envi-
ronment (33). Although KO embryos can survive up to E6.5, they 
have already undergone a process of degeneration, as suggested by 
the upregulation of P53-mediated apoptotic pathway already at E4.5. 
The transcriptomic analysis also indicated a significant dysregulation 
in the EMT process (Fig. 4C). The EMT process is fundamental for 
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Fig. 8. Phenotype characterization of conditional Zc3h11a-KO mice and ESCs. (A) The loxP-Zc3h11a mouse model was crossed with mice containing a fusion of 
a mutated estrogen receptor and Cre recombinase (Cre-ER). The mice were bred to obtain two genotypes of homozygous loxP-Zc3h11a mice (Zc3loxP/loxP): one 
with one copy of Cre-ER (CRE.ER+ Zc3loxP/loxP) and the other with null Cre-ER (CRE.ER– Zc3loxP/loxP). These mice were crossed and the offspring were injected with 
tamoxifen at weeks 3 to 4 after birth. The time line indicates the time points of injection and sample collection for genotyping and phenotyping. (B) Genotyping 
of the Cre-ER Zc3loxP mice. (C) qPCR analysis of Zc3h11a mRNA expression in the bone marrow, liver, and spleen tissues from WT and induced Zc3-KO (iKO) mice 
both injected with tamoxifen. ** and *** correspond to t-test P < 0.01 and 0.001, respectively. (D) Western blot analysis of spleen tissues dissected from WT 
and iKO adult mice. (E) Histology (H&E staining) of the small intestine from WT and induced iKO adult mice. (F) Body weight in grams (g) and weight of dissected 
kidney and spleen in milligrams (mg) from WT and induced iKO adult mice. Results are means ± SEM. (G) Fluorescence imaging of the mitochondrial membrane 
potential reporter JC-1 in WT and iKO ESCs before (D0) and after 2 d of in vitro conversion toward epiblast-like stage. Aggregates formed under high potential 
appear red, while monomers (low potential) are green. (H) Boxplots showing ratios of aggregates to monomers in WT and iKO at D0 and D2 of conversion. **** 
corresponds to Wilcoxon rank-sum test, P < 0.0001.
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embryonic development and takes place during implantation of the 
embryo into the uterus and during early gastrulation, where embryo 
is transformed from a single layer to three germ layers. Defects in 
EMT and subsequently in gastrulation usually lead to a failure in 
embryonic development (52, 53).

The ZC3H11A protein exhibited strong interactions with 
members of the RNA-export machinery in ESCs, and the top 
interacting partners with ZC3H11A are members of the TREX 
complex, including THO proteins (Fig. 6). The enrichment anal-
ysis of interacting partners with ZC3H11A showed significant 
enrichment of proteins involved in the metabolism of RNA, 
mRNA 3′-end processing, and transport of mature transcript to 
cytoplasm (SI Appendix, Fig. S3A). These proteomics results are 
in agreement with the analysis of the CLIP-seq of ZC3H1A in 
mESCs that revealed an almost exclusive interaction between 
ZC3H11A and protein-coding mRNAs (Fig. 7A). It also supports 
the model of action that ZC3H11A interacts with TREX-complex 
proteins and contributes to efficient mRNA maturation and 
export of the target transcripts. In agreement with this model, 
several studies have described the pivotal roles of the 
TREX-complex in the embryonic development (9–11). THO 
proteins such as THOC1, THOC2, and THOC5 play essential 
roles during early development but in a different way than 
ZC3H11A, as their depletion affects pluripotency establishment 
and maintenance (9, 10). In contrast, ZC3H11A depletion does 
not directly affect pluripotency maintenance. The fact that 
Zc3h11a–/– blastocysts did not give rise to ESC lines in the present 
study may be due to the metabolic impairment rather than a 
defect in pluripotency maintenance, as they all form outgrowth, 
in contrast to Thoc1–/– embryos (10). This is further demonstrated 
by the impaired mitochondrial membrane potential after inacti-
vation of Zc3h11a in ESCs.

Our results provide evidence that ZC3H11A is required for the 
posttranscriptional regulation of genes that are crucial for the 
embryonic cell. In contrast to the severe phenotypes in Zc3h11a 
germline KO embryos, Zc3h11a inactivation in the adult tissues 
did not cause obvious defects. The phenotypic characterization of 
the inducible ZC3-KO adult mice indicated a dispensable role for 
ZC3H11A in adult tissues, and a single surviving Zc3h11a–/– female 
showed no pathological conditions, was fertile, and gave birth to 
10 progeny from three litters. Furthermore, complete inactivation 
of Zc3h11a in human and mouse cell lines did not lead to signif-
icant effects on cell growth or viability (1, 3).

Methods

Detailed descriptions on how we developed Zc3h11a–/– mice; performed RNA 
sequencing, protein characterization, MS, CLIP-seq analysis, and bioinformatic 
analysis; and developed and characterized embryonic stem cells can be found 
in SI Appendix.
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