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[…] 

Sans la curiosité de l'esprit, que serions-nous ? 

Telle est bien la beauté et la noblesse de la 

science: désir sans fin de repousser les 

frontières du savoir, de traquer les secrets de 

la matière et de la vie sans idée préconçue des 

conséquences éventuelles.  

Marie Skłodowska-Curie, 1938 
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2.5 List of abbreviations 

 

4E-BP1: 4E-binding protein 1  
AA: amino acid 
ACVR1B: activin receptor type-1B 
ActR-2A/B: activin receptor type-2A/B 
ACVR2A/B: activin A receptor type 2A/B 
AKT: protein kinase B  
ALS: autophagy-lysosomal system  
AMH: anti-müllerian hormone  
AMPK: AMP(5′-adenosine monophosphate)-
activated protein kinase 
ATF4: activating transcription factor 4  
ATG: autophagy related genes  
ATP: adenosine triphosphate 
BAIBA: beta-aminoisobutyric acid 
BCL2: B-cell lymphoma-2 
BDNF: brain-derived neurotrophic factor 
BMP: bone morphogenetic protein 
BMPR1A/B: bone morphogenetic protein 
receptor type 1A/B 
BNIP3: BCL2 Interacting Protein 3 
BRE: BMP response element  
BSA: bovine serum albumin  
bZIP: basic leucine zipper  
C/EBPβ: CCAAT enhancer binding protein β 
CARE: C/EBP-ATF response elements  
CCN2/4: cellular communication network 
factor 2/4 
CDKN1A: cyclin-dependent kinase inhibitor 1  
CDS: coding sequence  
ChIP: chromatin immunoprecipitation  
CLOCK: clock circadian regulator 
COL1A1: collagen type 1 alpha 1 chain 
CREB: cyclic AMP response element binding  
CSA: cross sectional area  
CTGF: connective tissue growth factor  
DEG: differentially expressed gene 
DHA: docosahexaenoic acid  
DMEM: dulbecco's modified eagle medium  
DUB: deubiquitinase or deubiquitinating 
enzyme 
ECM: extracellular matrix  
eIF2α: eukaryotic translation initiation factor 2 
alpha 
eIF4E: eukaryotic translation initiation factor 
4E 
EIF4EBP1: eukaryotic translation initiation 
factor 4E binding protein 1  
ELISA: enzyme linked immunosorbent assays  

ER stress: endoplasmic reticulum stress  
FBS: fetal bovine serum 
FBXO30/32: F-Box Protein 30/32 
FC: fold change  
FFA: free fatty acid 
FGF-2/21: fibroblast growth factor-2/21  
FOXO1/3: forkhead Box-O 1/3 
FST: follistatin 
FSTL-1: follistatin-related protein 1 
GADD34: growth arrest and DNA damage-
inducible 34 
GADD45A: growth arrest and DNA damage 
inducible alpha 
GCN2: general control nonderepressible 2 
GDF1/5/7/10/11: growth differentiation 
factor 1/5/7/10/11 
GDP: guanosine diphosphate 
GFP: green fluorescent protein 
GSK3: glycogen synthase kinase-3 
GSH/GSSG: glutathione/oxidized glutathione 
ratio  
GTP: guanosine-5'-triphosphate 
HDAC4: histone deacetylase 4  
HF: halofuginone 
HM: human myotube 
HRI: heme-regulated inhibitor 
HS: hindlimb suspension  
I-SMAD: inhibitory SMAD  
IB: immunoblotting  
IBA: interbout arousal 
ID1-4: DNA-binding protein inhibitor 1-4 
IGF-1: insulin growth factor-1  
IL-4/6/7/10/15/1ra:interleukin  
4/6/7/10/15/1ra 
INHBA/B: inhibin subunit beta A/B 
IP: immunoprecipitation 
ISR: integrated stress response 
JAK: janus kinase 
KD: kinase dead 
KO: knockout  
LIF: leukemia inhibitory factor 
Luc: luciferase 
MAP1LC3A: microtubule associated protein 1 
light chain 3 alpha 
MAPK: mitogen-activated protein kinase  
MEF2: myogenic enhancer factor 2  
MEKK4: mitogen-activated protein kinase 
kinase kinase 4 



 
 

14 
 

MPB: muscle protein breakdown  
MPS: muscle protein synthesis  
MR: metabolic rate  
mRNA: messenger ribonucleic acid 
MSTN: myostatin 
mTOR: mechanistic target of rapamycin  
mTORC 1/2: mechanistic target of rapamycin 
complex 1/2 
MuRF1: muscle ring finger-1 
MUSA1: muscle ubiquitin ligase of SCF complex 
in atrophy-1 
MuSK: muscle-specific kinase 
MYH: myosin heavy chain 
MyoD: myoblast determination protein 
NF-κB: nuclear factor-kappa B 
NMJ: neuromuscular junction  
NOG: noggin 
NRF2: NFE2 (nuclear factor erythroid 2)–
related factor 2  
NUPR1: nuclear protein 1 transcriptional 
Regulator 
OXPHOS: oxidative phosphorylation 
PAX3: paired box 3 
PBS: phosphate buffered saline  
pcDNA: plasmid cloning desoxyribonucleic acid 
PDK4: pyruvate dehydrogenase kinase 
isoenzyme 4  
PERK: PKR-like ER kinase  
PGC-1α: peroxisome proliferator-activated 
receptor-gamma coactivator 1 
PI3K: phosphoinositide 3-kinase 
PINK1: PTEN (phosphatase and TENsin 
homolog) induced kinase 1 
PKR: double-stranded RNA-dependent protein 
kinase  
PPAR-α: peroxisome proliferator-activator 
receptor 
PPP1R15A: protein phosphatase 1 regulatory 
subunit 15A 
ProRS: prolyl-tRNA synthetase  
PVDF: polyvinylidene difluoride  
R-SMAD: receptor-regulated SMAD 
RBM3: RNA binding motif protein 3  
ROS: reactive species oxygen  

RPS6: ribosomal protein S6  
RPS2/4X/5/7/A: ribosomal protein of the small 
subunit 2/4X/5/7/A 
RT-qPCR: reverse transcription and 
quantitative polymerase chain reaction  
S: summer 
S6K1: ribosomal protein S6 kinase 1  
SARA: SMAD anchor for receptor activation  
SBE: SMAD binding element  
SBS: summer bear serum  
SDS-PAGE: sodium dodecyl sulfate–
polyacrylamide gel electrophoresis 
SMAD: SMAD family member  
SMOX: spermine oxidase  
STAT: signal transducers and activators of 
transcription 
sWAT: subcutaneous white adipose tissue 
TAK1: TGF-β-activated kinase 1 
Tb: body temperature  
TBS-T: tris-buffered saline tween-20 
TCA: tricarboxylic acid cycle  
TFE3: transcription factor binding to IGHM 
enhancer 3 
TFEB: transcription factor EB 
TG: triglyceride  
TGF-β: transforming growth factor-β 
TGFBR1: transforming growth factor beta 
receptor 1 
TGX: tris-glycine eXtended  
TNF-α: tumor necrosis factor- α  
TRAF6: TNF Receptor Associated Factor 6   
TRIB3: tribbles pseudokinase 3  
TRIM63: tripartite motif containing 63 
Ub: ubiquitin 
UCP3: uncoupling protein 3  
ULK1: unc-51 like autophagy activating kinase 
uORF: upstream open reading frame 
UPR: unfolded protein response  
UPS: ubiquitin-proteasomal system  
W: winter 
WAT: white adipose tissue 
WBS: winter bear serum 
WNT/FZD: wingless/int1-frizzled 
 

  



 
 

15 
 

3. Preface  

Muscle wasting results from a wide range of pathophysiological conditions such as cancer and renal 

failure, but also microgravity, bed rest or inactivity. Muscle wasting is associated with adverse health 

effects such as a decline in independence and an increased morbidity and mortality. With increasing 

physical inactivity and improved life expectancy, muscle wasting is a major public health problem. 

Muscle atrophy results from an imbalance between protein synthesis and degradation, and a variety 

of intracellular players are involved in this dysregulation, including the TGF-β superfamily and the ATF4 

pathway. Their biological roles in muscle physiology are mainly described in humans or laboratory 

rodents. Despite the wealth of knowledge on this subject, an approved and readily available 

therapeutic or preventive treatment is still lacking. Hibernating brown bears are fascinating mammals 

because they naturally resist muscle atrophy although they remain completely inactive and starved for 

5-7 months during the hibernation period. The main objective of this thesis was to find new underlying 

mechanisms that could become therapeutic targets to combat muscle atrophy in humans. To achieve 

this goal, we (1) used a comparative physiology approach in hibernating bears naturally resistant to 

atrophy, (2) investigated the role of the interaction between the ATF4 and the TGF-β/BMP pathways 

in unloaded mice susceptible to atrophy, and finally (3) initiated experiments in human muscle cells to 

validate hypotheses arising from the first two studies.  

This manuscript is therefore a compilation of all the work carried out during my 3-year thesis on the 

regulation of the TGF-β superfamily and ATF4 signalling pathways in the skeletal muscle of the 

hibernating brown bear and the unloaded mouse. It will be divided into 3 distinct parts. First, a state-

of-the-art of (1) skeletal muscle physiology and muscle atrophy, (2) TGF-β superfamily and ATF4 

signalling pathways, and their pivotal roles in muscle homeostasis, as well as (3) bear hibernation and 

the first clues to explain its resistance to muscle atrophy. In the second part, two studies will be 

presented. The first one is a published article on the transcriptomic analysis of muscles of brown bears 

during hibernation and of mice during unloading. The second study is a paper currently under review 

on the effect of ATF4 induction on skeletal muscle in both healthy and unloaded mice, and also in 

hibernating brown bears. A discussion of perspectives and questions arising from the data follows both 

studies. Finally, the last part consists of the presentation and discussion of the preliminary results of 

the effect of bear serum on human muscle cells. This thesis is written in english, and therefore a 

substantial abstract in french requested by the doctoral school is included in the Appendix, together 

with 2 articles of which I am co-author: one is an original article related to tissue adapatations (muscle, 

adipose tissue and serum) in the hibernating brown bear and the other is a review on ubiquitin ligases 

and their role in muscle atrophy.  



 
 

16 
 

4. State of the art  

4.1  Skeletal muscle: The Holy Grail for whole-body homeostasis 

4.1.1 Introduction  

4.1.1.1 Skeletal muscle physiology 

The word “muscle” was first used by Middle French speakers in the 14th century, from the existing Latin 

words mus meaning “mouse” and musculus which translates to both “little mouse” and “muscle.” 

Ancient Romans thought that some muscles, especially the biceps, looked like little mice running under 

a person’s skin. Our organism contains about 600 “little mice” accounting for approximately 40% of 

our total body weight, making skeletal muscle the most abundant tissue in the human body.  

Generalities. Two types of muscles coexist: (1) the so-called smooth muscles located in walls of hollow 

organs (e.g intestine, stomach) under involuntary control, and (2) the striated muscles divided into two 

types, the cardiac muscles which also contract spontaneously, and the skeletal muscles which cover 

our skeleton and allow movements under voluntary control. Skeletal muscle is a very dynamic and 

plastic tissue. It is essential for movement, gesture and posture for functional autonomy. It also acts 

as the main tissue for energy metabolism, with heat production and absorption, use and storage of 

energy substrates (i.e. glucose, lipids and amino acids). Skeletal muscle is composed of water (75%), 

proteins (20%) and other constituents such as carbohydrates, lipids and minerals. It accounts for 

approximately 50-75% of body proteins and 30-50% of whole-body protein turnover [1,2].  

Organisation. Skeletal muscle is a highly organised tissue containing several bundles of myofibers with 

each layer successively surrounded by the extracellular matrix (Figure 1). Myofibers are multinucleated 

and post-mitotic cells and contain adult stem cells called satellite cells that contribute to muscle 

growth and repair. Each myofiber contains thousands of myofibrils which are composed of the basic 

cellular unit of muscle, the sarcomere. The sarcomere itself is composed of billions of myofilaments, 

both thick (myosin) and thin (actin), which are essential for muscle contraction requiring high ATP 

consumption (Figure 1). Myofilaments represent the main protein content of muscle (i.e. 70-80% of the 

total protein content of a single fibre) [1,2]. The size of the muscle is primarily determined by the 

number and the size (i.e. cross-sectional area, CSA) of each myofiber, although fat and extracellular 

matrix infiltration can also influence its size [1,2].  
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Typology. Myofibers are classified into different types, with different characteristics such as the 

sarcomeric myosin heavy chain (MYH) gene expression, strength-velocity, response to neural inputs, 

or metabolic properties [3] (Figure 1). Since the first half of the 19th century, scientists have 

distinguished skeletal muscles based on their colours and contractile properties: (1) red muscles 

composed of slow-twitch fibres (i.e. type 1) rich in mitochondria with oxidative metabolism and (2) 

white muscles composed of fast-twitch fibres (i.e. type 2) poor in mitochondria with glycolytic 

metabolism [4]. Over the past 40 years, this oversimplified schema has evolved with the notion of 

diversity of muscle fibre types, and four major fibre types have been identified in adult mammalian 

skeletal muscle (i.e. types 1, 2A, 2X, and 2B) (Figure 1). Humans, however, lack type 2B fibres, and the 

proportion of MYH within the same muscle may differ between mammals [3,5]. Skeletal muscle fibre 

type and mitochondrial function are sometimes uncoupled, for example for fast type 2A fibres with 

abundant mitochondrial content [2,3,6] (Figure 1). Based on differential MYH expression, a muscle may 

also consist of hybrid fibres (i.e., 1/2A, 2A/2X, 2X/2B), which allow muscles to utilise ATP in a nearly 

continuous gradient and thus be endowed with a fast type 2B to slow type 1 muscle contraction rate 

[2,3]. The heterogeneity of muscle fibres is the basis for the flexibility to use the same muscle for a 

Figure 1. Skeletal muscle organisation and contractile apparatus structure. 
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variety of tasks, from fast and intense contraction (e.g. jumping) to slow and low-intensity activity (e.g. 

posture). 

Mitochondria. Skeletal muscles are highly vascularised and innervated, and contain components of 

the metabolic machinery (e.g. mitochondria, sarcoplasmic reticulum), allowing efficient energy 

production. The precise coordination of activity between each of these components is essential to 

maintain muscle homeostasis and associated motor activity. The energy requirement during an intense 

contraction increases the normal ATP consumption in skeletal muscle by 100-fold [7]. To support this 

high energy demand, skeletal muscle relies in part on mitochondrial oxidative phosphorylation 

(OXPHOS) for ATP production. Adult myofibers exhibit specific subcellular localisation of distinct 

populations of mitochondria, namely subsarcolemmal (i.e. just below the plasma membrane) and 

intermyofibrillar. These two distinct populations of mitochondria are functionally highly 

interconnected but have a specific shape and exhibit differences in their biochemical and functional 

properties [8–11]. The morphology, arrangement, and connectivity of the mitochondrial network are 

adapted to the specific functional needs of each fibre type. For example, oxidative fibres have a grid-

like organisation with elongated mitochondria oriented both parallel and perpendicular to the muscle 

contraction axis, in contrast to the mitochondrial network of glycolytic fibres, which is fragmented and 

oriented perpendicular to the muscle contraction axis [12]. Maintaining a functional mitochondrial 

network in skeletal muscle is fundamental to fulfilling the metabolic demands imposed by contraction, 

thereby regulating fuel utilisation, energy expenditure, and overall metabolism. Mitochondrial 

integrity and function are highly regulated by quality control systems (e.g., mitochondrial biogenesis, 

dynamics, and degradation) to maintain homeostasis [2,13]. Moreover, mitochondrial dysfunction has 

been linked to several human muscle diseases called mitochondrial myopathies [14–19]. 

 

4.1.1.2 Muscle-organ crosstalk 

Myokinome. Over the past decades, skeletal muscle has been extensively studied for its role as an 

endocrine organ, producing and secreting hundreds of cytokines and other peptides, i.e. myokines, 

with autocrine, paracrine, or endocrine effects [20–23] (Figure 2). The first myokine described was 

myostatin [24] followed by interleukin-6 (IL-6). The latter is increased 100-fold in the bloodstream 

during exercise and shows multiple metabolic effects at the whole the body level [25,26]. Given the 

broad physiological and metabolic effects of physical activity throughout the body, it was clear that 

there was more than one myokine [27,28]. The biological name myokinome provided a new concept 

for understanding how muscles communicate with the rest of the body, and more than 650 myokines 

have been identified [20–23] (Figure 2). Myokines (e.g. myostatin, IL-6, cathepsin B, irisin, IL-15) are 
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synthesised and released from myofibers during muscle contraction and provide communication 

between skeletal muscles and other organs, including the brain, adipose tissue, bone, liver, intestine, 

pancreas, endothelial cells, and skin, as well as communication within the muscle itself [20–22]  (Figure 

2, Figure 3). The biological roles of myokines include widespread body functions such as cognition, lipid 

and glucose metabolism, white fat browning, bone formation, endothelial cell function, hypertrophy, 

and skin structure (Figure 2, Figure 3). For muscle itself, myokines play a role in mitochondrial 

biogenesis, fat oxidation and glucose metabolism, and act as signals for muscle hypertrophy or atrophy 

[20,21,29] (Figure 3). It should be noted that most of the myokines are not yet sufficiently well 

characterised with respect to their biological functions [20–23]. Establishing proper crosstalk between 

body organs and muscles is essential for whole-body homeostasis [20–23]. 

 

Amino acid reservoir. Another major role of skeletal muscle is to be a reservoir of amino acids. Muscle 

amino acids can be mobilised in the absence of an adequate nutrient supply or in situations of 

increased need in other tissues to maintain their protein mass [30–32]. For example, obese individuals 

maintain normal plasma amino acid concentrations even after 60 days of total fasting [33]. Studies 

conducted by Jewish physicians in concentration camps during World War 2 suggested that death by 

starvation (i.e. uncomplicated by severe disease) occurred when amino acids mobilised from muscle 

proteins became insufficient to maintain the precursors necessary for gluconeogenesis. Indeed, amino 

Figure 2. Myokinome overview of muscle-organ crosstalk. 
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acids released from muscles serve as precursors for the maintenance of blood glucose levels through 

hepatic gluconeogenesis during starvation [34]. In the context of disease prevention and health 

maintenance, reduced muscle mass compromises the body’s ability to respond to stress and chronic 

disease due to inappropriate crosstalk between muscles and organs. Therefore, loss of muscle mass is 

incompatible with life, and maintenance of muscle protein content through appropriate turnover is 

vital to maintain whole body homeostasis (see section 4.1.3). 

 

 

4.1.2 Muscle protein turnover  

During embryonic and early postnatal development, muscle growth occurs primarily through 

myogenesis and fusion of satellite cells [35,36]. In adult organisms, regulation of muscle mass results 

from growth within existing myofibers primarily via cellular pathways that control protein turnover 

[37,38] (see Appendix 10.4). Muscle proteins are constantly renewed, i.e. synthesised and degraded 

(Figure 4). The balance between the rates of muscle protein synthesis (MPS) and muscle protein 

breakdown (MPB), i.e. the net muscle protein balance, determines muscle protein content and 

homeostasis (Figure 4). MPS and MPB are sensitive to many factors, including nutritional status, 

hormonal balance, physical activity, injury or diseases. A decrease in muscle size in fully mature 

organisms, i.e. muscle atrophy (see section 4.1.3), results from a negative protein balance, whereas an 

increase in muscle size, i.e. hypertrophy, results from a positive protein balance. Muscle hypertrophy, 

Figure 3. Myokinome overview of muscle autocrine/paracrine crosstalk. 
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in response to physical activity or a high-protein diet, is an interesting field of investigation that is of 

clinical interest in the search for treatments to limit or prevent muscle wasting. 

 

4.1.2.1 Muscle protein synthesis  

External stimuli. Amino acids (AA) provided by an appropriate diet act as extra- and intra-cellular 

anabolic molecules and are essential for inducing MPS [39,40] (Figure 4). High-protein diets do not 

enhance MPS as long as energy and protein requirements are met in the muscles and other organs. 

Amino acids bioavailability is strongly influenced by protein source, digestibility, and protein intake 

pattern, and is important for optimising MPS [40,41]. Mechanical cues are also considered anabolic 

stimuli, based on two basic lines of evidence: (1) muscles atrophy when mechanical load is reduced 

(e.g. bed rest) [42] and (2) muscle overload is sufficient for skeletal muscle hypertrophy [43,44]. Life 

on Earth has evolved in a 9.8m/s2 environment that loads organisms. Therefore, cells have evolved 

with a plethora of sensors that detect mechanical stimuli. These mechanosensors help cells to adapt 

not only directly to the force produced by the contraction of a muscle fibre but also to more indirect 

mechanical signals, such as the stiffness of the extracellular matrix (ECM) that surrounds each cell 

[44,45]. However, these mechanical signals remain incompletely characterised. The increase in MPS 

after food intake is a systemic transient phenomenon, whereas physical activity stimulates a long-term 

Figure 4. Muscle protein balance in physiological conditions.  

AA: amino acid 
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local adaptive response. Furthermore, adequate nutrition after physical activity can take advantage of 

anabolic pathways initiated by physical activity [41,46,47]. 

mTOR. One of the most recognized players in MPS is the mechanistic target of rapamycin (mTOR), 

which controls anabolic and catabolic signalling in skeletal muscle, resulting in the modulation of 

muscle hypertrophy and wasting [48,49] (Figure 5). mTOR inhibition by rapamycin or genetic 

invalidation respectively reduces the increase in MPS and/or muscle size after exercise in humans [50], 

or results in severe myopathy leading to premature death in mice [51]. mTOR is a serine/threonine 

kinase that (1) senses a variety of environmental and intracellular changes, including nutrient 

availability, energy status and mechanical stimulation, and (2) coordinates a variety of cellular 

processes, including cell growth and survival, differentiation and autophagy [48,49,52]. There are two 

biochemically and functionally distinct mTOR complexes, namely mTORC1 and mTORC2 [48,52] (Figure 

5). Both complexes share the mTOR catalytic subunit and are distinguished by their accessory proteins, 

and their unique substrates and functions [48,52] (Figure 5).  

 

Figure 5. mTORC1 and mTORC2 intracellular organisation and their biological effects. 



 
 

23 
 

On one hand, mTORC2 regulates cell survival and cytoskeleton organisation [48,52]. On the other hand, 

mTORC1 controls protein synthesis by activating S6K12, which promotes ribosome biogenesis, and by 

inhibiting 4E-BP13 leading to protein translation (Figure 5). mTORC1 also promotes muscle hypertrophy 

by phosphorylating and suppressing ULK14 activity resulting in the inhibition of autophagy, one of the 

major protein degradation processes in muscle [48,52] (Figure 5).  

 

4.1.2.2 Muscle protein breakdown 

Physical activity, nutritional interventions, hormonal balance or inflammation also influence muscle 

protein breakdown (MPB) (Figure 4). The mechanisms are much less understood than for MPS, mainly 

because MPB measurement is technically more challenging than for MPS [53,54]. The main systems 

that contribute to MPB in skeletal muscle are the autophagy-lysosomal system (ALS) and the ubiquitin-

proteasomal system (UPS).  

Autophagy-lysosomal system. The word autophagy is derived from two Greek words auto meaning 

“self”, and phagy meaning “eating”. Three different systems of autophagy have been described in 

mammals: macroautophagy, chaperone-mediated autophagy, and microautophagy. In this 

manuscript, ALS will refer to macro-autophagy, the most explored system in MPB. ALS involves the 

formation of a nascent membrane structure, i.e. the phagophore, surrounding bulk intracellular 

components, such as organelles, damaged proteins, or other target proteins (e.g. transporters, ion 

channels, receptors) (Figure 6). The origin of the membrane, i.e. endosomal, trans-golgi, nuclear or de 

novo synthesis, is unclear. After maturation of the autophagosome, it fuses with lysosomes to generate 

an autolysosome (Figure 6). Finally, activation of lysosomal proteases, i.e. cathepsins, or other enzymes 

such as DNAses or lipases, leads to the degradation of the autolysosome content and recycling of AAs 

[55] (Figure 6). It should be noted that ALS cannot degrade proteins in intact myofibrils; therefore, 

additional catabolic pathways are required [56,57]. Under normal conditions, ALS primarily prevents 

the accumulation of damaged organelles and misfolded proteins, but also degrades glycogen and lipid 

droplets, thus providing glucose, free fatty acids (FFAs), or AAs to the entire body to support basic 

cellular metabolism. In response to different stresses, such as starvation, ALS acts as a pro-survival 

mechanism in skeletal muscle, providing metabolic substrates [55].  Skeletal muscle is one of the 

organs with the highest rate of autophagy flux when nutrients are lacking [58]. In particular, basal 

autophagic flux is higher in glycolytic fibres than in oxidative fibres [59]. This is particularly important 
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because muscles may regulate ALS differently during specific stresses depending on their fibre type 

composition. Additionally, because muscle cells are highly sensitive to insulin [60], known to inhibit 

ALS [61], the autophagy flux fluctuates according to the food intake throughout the day and the level 

of physical activity [62,63]. While too much autophagy flux contributes to muscle wasting (see section 

4.1.3), inhibition of ALS also leads to muscle atrophy [64]. In addition, inhibition of ALS leads to the 

accumulation of abnormal mitochondria, oxidative stress and protein aggregates, causing 

degeneration, weakness and premature death of myofibers [62–65]. Therefore, proper autophagic flux 

is required to maintain healthy muscle cells [62,63]. 

 

Mitophagy. In healthy skeletal muscles, damaged and depolarized mitochondria are selectively 

removed by the mitophagy process, which is a selective form of autophagy. The most studied 

mitophagy involves the ubiquitin-protein ligase Parkin and the mitochondrial kinase PINK15 [13,19,66]. 

Studies have demonstrated that mitochondrial dynamics and mitophagy are essential for skeletal 

muscle homeostasis [13,19,66]. There is a growing body of evidence that alterations in mitophagy or 

mitochondrial distribution and dynamics are present in muscles during wasting conditions (e.g. ageing, 
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Figure 6. Autophagy-lysosomal system. 

AA: amino acids 
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disuse or cancer cachexia) [66–68]. Importantly, enhancing mitophagy through genetic or nutritional 

approaches improves skeletal muscle function in aged rodents [13,19,66]. Thus, improving mitophagy 

in skeletal muscle appears to be a promising therapeutic target to prevent or even treat skeletal muscle 

dysfunction.  

Ubiquitin-proteasomal system. The UPS is perhaps the best-known cellular proteolytic system and is 

responsible for degrading the majority of misfolded or defective proteins in all cell types. The UPS plays 

a fundamental role in normal muscle physiology, including degrading myofibrillar proteins [69,70]. 

Most proteins undergo degradation by being targeted to the 26S proteasome through the covalent 

attachment of a multi-ubiquitin chain (Figure 7). Protein ubiquitination involves the action of 3 

enzymes: ubiquitin-activating enzymes E1, ubiquitin-conjugating enzyme E2, and ubiquitin-ligase E3 

(Figure 7). The ubiquitin-tagged proteins are then recognized by the 26S proteasome, which initiates 

the ATP-dependent degradation process within the catalytic core (Figure 7). Through this mechanism, 

the UPS performs substrate-specific proteolysis [71]. Protein ubiquitination is both dynamic and 

reversible. Deubiquitinase or deubiquitinating enzymes (DUB) catalyze the removal of ubiquitin from 

target proteins and are also involved in ubiquitin maturation, recycling and editing. Several reports 

have demonstrated a relationship between UPS and lifespan, with proteasome activity decreasing with 

age in skeletal muscle, causing dysfunction [72]. Moreover, inhibition of proteasome activity in skeletal 

muscle is associated with a defect in muscle growth and shortened lifespan in rodent models [70,73]. 

Figure 7. Ubiquitin-proteasomal system. 
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UPS and ALS crosstalk.  UPS and ALS have long been considered independent. However, emerging 

evidence suggests that there is a crosstalk between both pathways in skeletal muscle. Although ALS 

had been thought to be a non-specific degradation system, it has also been reported to degrade 

ubiquitinated proteins [74]. Studies also suggest that ALS and UPS are complementary because 

proteasome-deficient mice exhibit increased autophagic flux [70,73]. Therefore, the UPS and ALS are 

compensatory mechanisms, both essentials to sustain muscle homeostasis and integrity. However, 

since they are important for the health of skeletal muscle, dysfunctions in both systems lead to muscle 

pathological conditions. 

 

4.1.3 Muscle atrophy 

4.1.3.1 Causes and consequences 

Causes. The loss of muscle mass and strength in the adult body is referred to as muscle atrophy. Muscle 

loss arises from inherited (congenital or genetic) or acquired conditions (pathological or physiological 

conditions) [75] (Figure 8). In addition, older adults exhibit age-induced muscle atrophy, primarily due 

to anabolic resistance, which may predispose this population to more pronounced muscle loss when 

exposed to periods of reduced physical activity [76].  Pathological conditions that cause muscle atrophy 

include cancer cachexia [77], chronic obstructive pulmonary disorders [78], diabetes and obesity [79], 

chronic kidney diseases [80], heart failure [81], sepsis [82], burns [83], and conditions associated with 

anorexia or malnutrition [84]. Physical inactivity also leads to muscle wasting, especially following leg 

fractures, immobilisation and bed rest [85–90] and even in those with sedentary lifestyles, as observed 

during COVID-19 home confinement [91]. It should be noted that 60-85% of people worldwide lead a 

sedentary lifestyle (World Health Organisation). Muscle atrophy results from an imbalance between 

MPS and MPB, with a negative balance in favour of protein breakdown [75] (Figure 8). Data suggest 

that both (1) decreased MPS and (2) increased MPB contribute to muscle loss and that the relative 

contribution of each process to muscle loss depends on the pathophysiological condition [92–94]. 

During this thesis, we were primarily interested in disuse-induced muscle atrophy. 
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Consequences and treatments. The resulting muscle wasting is characterised by muscle alterations 

such as myofiber shrinkage, changes in fibre types or myosin isoforms, and net losses of cytoplasm, 

organelles, and total proteins. Loss of myofibers and/or a decrease in myofiber diameter are the most 

prominent histopathologic features of skeletal muscle atrophy (Figure 9). As mentioned above, skeletal 

muscle plays a central and major role in whole-body homeostasis. Lack of physical activity is associated 

with a wide network of diseases, including type 2 diabetes, cardiovascular diseases, cancer, dementia, 

and osteoporosis [22,95]. These adverse effects are likely, to some extent, mediated by a lack of 

release of myokines and/or resistance to their effects [20,23]. In addition, skeletal muscle is a major 

organ of insulin-induced glucose metabolism. Therefore, a loss of muscle mass is closely related to 

insulin resistance and metabolic syndrome [96]. Muscle atrophy limits daily activities, reduces quality 

Figure 8. Muscle protein imbalance in pathophysiological conditions leading to muscle atrophy. 

AA: amino acid 
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of life and lengthens recovery time after illness, while increasing morbidity and mortality (Figure 8). 

Given its adverse consequences, increasing sedentary lifestyle and life expectancy worldwide, muscle 

wasting affects millions of people and remains a major economic and social burden. Currently, 

strategies for treating skeletal muscle atrophy include physical exercise, nutritional interventions and 

some medications [75]. In addition, natural products have a wide range of effects on muscle function. 

However, their low bioavailability and low intestinal absorption limit their application [97]. To date, no 

drugs have been approved for clinical use, no effective remedies for muscle atrophy have been 

discovered, and exercise or nutritional interventions are strategies that are not suitable for all patients 

(e.g., immobilised or intensive care unit patients). Thus, although our understanding has improved 

considerably over the last two decades, mainly through the use of laboratory models inducing muscle 

atrophy, there is still a need to discover new targets and drugs to combat it.     

 

4.1.3.2 An interconnected network of cellular actors  

Signalling pathways. MPS and MPB are influenced by a wide range of external and internal molecular 

actors. External stimuli (1) include mechanical load, inflammatory factors such as cytokines (e.g. IL-6, 

TNF-α6), endocrine factors such as growth factors (e.g. IGF-17, insulin), catecholamines and 

angiotensin, and (2) activate various intracellular pathways (Figure 10). This interconnected network of 

intracellular actors contributes to the regulation of muscle protein balance by working in synergy or in 

antagonism to promote anabolism or catabolism [2,37,38,75] (see Appendix 10.4). In the context of 

muscle atrophy, dysregulation of one or more of these actors results in a blunting of anabolic signalling 

in favour of catabolism leading to either MPS inhibition, UPS and ALS overactivation, or both 

[2,37,38,75] (see Appendix 10.4) (Figure 10). In brief, anabolic pathways suppressed in many atrophy 
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Figure 9. Histopathological 
characteristics of healthy muscle 
(A) versus atrophied muscle (B) 
with a decrease of myofiber cross 
sectional area (CSA). 
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conditions include signalling from PI3K8-AKT9-mTORC1, ß2-adrenergic, WNT/FZD10, calcineurin, hippo 

and bone morphogenetic protein (BMP). In contrast, catabolic pathways overactivated in many cases 

of atrophy include signalling from transforming growth factor-β (TGF-β), AMPK11, NF-κB12, 

glucocorticoid receptors, angiotensin, IL-6-JAK/STAT13, kinin, sphingolipids, notch or activating 

transcription factor 4-endoplasmic reticulum stress (ATF4 and ER stress) [2,37,38,75] (see Appendix 

10.4) (Figure 10). The precise interconnection and biological actions of these actors still need to be fully 

elucidated. A detailed description of their regulation is beyond the scope of this manuscript. 

Nevertheless, a review of which I am a co-author is appended for more details (see Appendix 10.4). 

Atrogenes. Atrogenes (i.e. atrophy-related genes) are referred to as a set of genes whose expression 

changes in different catabolic situations associated with muscle wasting. Regulation at the protein level 

is sometimes more complex to elucidate [98,99]. The atrogenes belong to different cellular pathways, 

mainly the UPS and ALS proteolytic systems, and include the E3-ubiquitin ligases containing tripartite 

motif 63 (TRIM63)/muscle ring finger-1(MuRF1) and F-Box protein 32 (FBXO32)/Atrogin-1, as well as 

some autophagy players such as cathepsin L and BCL2-interacting protein 3 (BNIP3) [99]. For example, 

TRIM63/MuRF1 targets myofibrillar proteins (i.e. thin and thick filaments), as well as sarcomere 

structural components such as telethonin, for UPS-dependent degradation [100]. FBXO32/Atrogin-1 is 

involved in the degradation of ribosomal proteins and translation initiation factors, as well as several 

other proteins such as myoblast determination protein (MyoD), desmin, and vimentin (i.e. the 

intermediate filament in muscle). Thus, overexpression of FBXO32/Atrogin-1 in the context of muscle 

atrophy may reduce MPS and regeneration and thus leads to muscle wasting [101]. Atrogenes are 

markers of atrophy, but their involvement as active inducers of atrophy remains an open question. 

Furthermore, whether rodent atrogenes are shared with humans remains to be established for most 

of them. 

Drugs targeting. Several actors in this interconnected network have been proven effective when 

targeted to limit or counteract skeletal muscle atrophy in rodent models. For instance, targeting 

myostatin ligand or its activin receptor type 2B (TGF-β signalling) has shown beneficial effects in 

preserving muscle mass in different catabolic conditions (see section below 4.2.2.2). Moreover, the 

stimulation of β2‐adrenoceptors prevents or even reverses muscle wasting and weakness in several 
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catabolic conditions, including cancer cachexia [102], ageing [103] and muscular dystrophies [104]. Yet, 

so far, no effective drug has been used in the clinical practice.  

 

 

Figure 10. Overview of anabolic and catabolic signalling pathways involved in muscle protein homeostasis (from 
Peris-Moreno et al., 2021, see Appendix 10.4 [38]). 
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In this thesis project, we focused on the pivotal role in muscle homeostasis of the TGF-β superfamily 

(see section below) and the Integrated Stress Response signalling (see section 4.3).  

 

4.2  A pivotal role for the TGF-β superfamily in skeletal muscle homeostasis  

4.2.1 Overview 

The transforming growth factor-β (TGF-β) superfamily is an ubiquitious family that regulates a 

multiplicity of biological actions including proliferation, differentiation and apoptosis. This superfamily 

is divided into two signalling pathways, named TGF-β and bone morphogenetic protein (BMP).  

Ligands. More than 30 secretable ligands belong to this family including activins A and B (INHBA and 

INHBB genes), myostatin (MSTN gene), TGF-β1-3, growth differentiation factor GDF1/10/11 for TGF-β 

signalling, and AMH14, BMP2-7, GDF5/7 for BMP pathway (Figure 11). 

Signal transduction. Ligands bind to a type 2 receptor, which subsequently recruits the type 1 receptor 

to form an heteromeric complex. These receptors pair up in different combinations to mediate the 

response of each ligand and the subsequent intracellular response [105–107]. Once the receptors are 

complexed, the adaptor protein SARA15 recruits the receptor-regulated SMAD family member (R-

SMAD), i.e. SMAD2 and 3 for the TGF-β signalling and SMAD1,5 and 8 for the BMP signalling (Figure 11). 

Thereafter, the receptor complexes phosphorylate the R-SMAD making them recognizable by the 

common TGF-β and BMP mediator, SMAD4. Subsequently, SMAD4 forms an heteromeric complex with 

SMAD1/5/8 or SMAD2/3 that translocates into the nucleus and elicits a cell/environment/ligand 

specific transcriptional program [105–108] (Figure 11). 
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Muscle atrophy is a social and economic burden that results from an 
imbalance in muscle protein synthesis in favour of muscle protein 
breakdown. However, despite a better understanding of the anabolic and 
catabolic signalling pathways dysregulated during atrophy, there is still no 
proven therapeutic or preventive treatment suitable for all patients. 
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Regulation. Regarding the wide range of ubiquitous biological actions, the TGF-β superfamily is tightly 

regulated at multiple steps. First of all in the ECM, several mechanisms enable the activation of the 

secreted ligands from their latent inactive state. Second of all, the active ligands can be sequestrated 

by antagonists within the ECM, for instance by follistatin (FST gene) the best described for TGF-β 

signalling, and noggin (NOG gene) for BMP [109] (Figure 11). Moreover, each ligand can bind to several 

receptor subtypes which, themselves, can be post-translationally modified, adding layers of complexity 

[105–107].   

In addition, the inhibitory SMADs (I-SMAD), SMAD6 and SMAD7 can antagonize the signal initiated by 

ligands by competing with R-SMAD for the binding to a given receptor. SMAD6 selectively inhibits BMP 

signalling whereas SMAD7 inhibits signalling for both TGF-β and BMP signalling (Figure 11). Moreover, 

both signalling are also tightly regulated by ubiquitination/deubiquitination processes from receptor 

and R-SMAD activation to induction of the transcriptional program [38,105–107] (Figure 12). Finally, 

Figure 11. TGF-β superfamily organisation and signal transduction. 
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SMADs are also subject to numerous others post-translational modifications such as acetylation, ADP-

ribosylation and linker-domain phosphorylation, all of which changing the fate of the intracellular 

response [105].   

 

TGF-β superfamily is a master regulator of adult muscle mass with (1) TGF-β signalling as a negative 

regulator and (2) BMP signalling as a positive regulator [110,111]. 

 

4.2.2 TGF-β signalling: The master regulator of skeletal muscle atrophy 

Pathophysiological conditions. TGF-β is a catabolic pathway of great interest within the field of 

skeletal muscle biology. In the late 1990’s, the discovery that deletion of the myostatin gene (MSTN), 

one of its ligands, and inhibition of its receptor, caused a profound hyper-muscularity in mice, cattle, 

sheep, and dogs sparked the initial interest in its role in atrophy [24,112–114]. Thereafter, MSTN was 

found to be elevated in muscles or blood in all type of catabolic situations characterised by muscle 

atrophy, such as in ageing subjects, in response to prolonged bed rest, in patients with acquired 

Figure 12. TGF-β superfamily regulation by E3-ubiquitin ligase and deubiquitinase enzymes. 

Green and blue circles respectively represent deubiquitinase and E3-ubiquitin ligase enzymes. The schema is 
adapted from Cussonneau et al., 2021. Full and dotted lines respectively represent the SMAD and non-SMAD 
signalling. SBE: SMAD Binding Element. 
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immune deficiency syndrome, renal failure or heart failure [115–119]. Serum levels of other TGF-β 

ligands such as activin A also rise in response to cancer, kidney failure and heart failure, all associated 

with muscle wasting [115,120–122]. In addition, TGF‐β1 is remarkably elevated in plasma of patients 

with muscular dystrophies [123]. Besides, microRNA positively controlling TGF-β signalling are 

increased in muscles of patients following 10 days of sustained bed rest or in patients in intensive care 

unit [124,125].  

The binding of myostatin or activin A/B to activin receptor type-2B (i.e. to a lesser extent type 2A) ActR-

2B/A (ACVR2A/2B genes) leads to the recruitment and phosphorylation of SMAD2/3 and is associated 

with muscle atrophy in a multiplicity of catabolic situations [110,114,118,126–128].  

 

4.2.2.1 TGF-β underlying mechanisms inducing muscle atrophy 

Activation of MPB. TGF-β signalling is involved in the transcription of the atrogenes FBXO32/Atrogin-

1 and TRIM63/MuRF1 known to be involved in ubiquitin-proteasome proteolysis. Mice or cultured 

mice myotubes treated with TGF-β ligands (i.e. activin A/B, myostatin) show muscle atrophy through 

the activation of SMAD2/3 resulting in overexpression of Fbxo32/Atrogin-1 and/or Trim63/MuRF1 

atrogenes [127,129] (Figure 13). Similarly, exposing healthy mice to exogenous GDF11 ligand results in 

muscle wasting through the activation of the SMAD2-ubiquitin-proteasome pathway and autophagy 

axis [130] (Figure 13). Furthermore, overexpression of the transforming growth factor beta receptor 1 

(Tgfbr1) in mice muscles also increases the expression of the atrogene Fbxo32/Atrogin-1 and induces 

muscle fibre atrophy via a SMAD2/3-dependent mechanism [131] (Figure 13). Conversely, mice with 

muscle specific deletion of Smad2 or 3 are resistant to muscle atrophy induced by Tgfbr1 

surepexression or denervation [131,132]. Additionally, inhibition of TGF-β signalling through muscle-

specific KO type 1 receptors (i.e Tgfbr1 and Acvr1b) or follistatin administration, induces muscle 

hypertrophy in mice by reducing Fbxo32/Atrogin-1 and Trim63/MuRF1 expression [133,134].  

Mechanistically, overexpression of Smad3 in mice muscles is sufficient to induce Fbxo32/Atrogin-1 

expression and ultimately induces muscle fibres atrophy [135]. In cultured mice myotubes, SMAD3 

synergises with the transcription factor FOXO316 to induce the expression of Trim63/MuRF1 [136] 

(Figure 13). Finally, myostatin treatment also inhibits the expression of MyoD and Pax317 myogenic 

genes in cultured myotubes [129]. Altogether, these data showed that the canonical TGF-β signalling 

(i.e. SMAD2/3) is required for muscle damage. 
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Inhibition of MPS. TGF-β catabolic action also involves inhibition of protein synthesis. Myostatin or 

activin A administration are sufficient to inhibit protein synthesis in mice muscles through inhibition of 

the AKT/mTORC1 signalling [127,131,137,138]. The same phenotype is observed by overexpressing 

Smad3 [133,135] (Figure 13). Additionally, inhibition of TGF-β signalling through muscle-specific KO 

type 1 receptors (i.e Tgfbr1 and Acvr1b) or follistatin administration, induces muscle hypertrophy in 

mice by increasing AKT phosphorylation [133,134]. Moreover, the hypertrophic effect of myostatin 

blockade is reduced when mTORC1 is genetically or pharmacologically inhibited [131,133,137]. The 

mechanisms linking SMAD2/3 to AKT/mTORC1 signalling in muscle atrophy conditions remain unclear. 

Treatment with insulin-like growth factor 1 (IGF-1) activates AKT and increases the interaction between 

AKT and SMAD3, leading to inhibition of TGF-β signalling in cultured myoblasts [139]. IGF-1/AKT 

Figure 13. TGF-β signalling involvement in muscle atrophy. 

The dotted lines correspond to the signalling impaired in numerous muscle wasting conditions, and the 
questions marks the unsolved questions. 
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signalling is altered in many catabolic situations in muscles [140], and impairement of IGF-1 receptor 

during muscle immobilisation contributes to SMAD2/3 protein accumulation [132]. Accordingly, TGF-

β signalling might be further amplified in these situations due to compromised interaction between 

AKT and SMAD3. In turn, this may reinforce the vicious circle between activation of TGF-β signalling 

and impairment of AKT-mTORC1 signalling (Figure 13). 

 

Other muscle detrimental actions. A proteomic analysis of mice muscles overexpressing follistatin has 

uncovered changes in energy metabolism, fibres type,  insulin and calcium signalling, providing insight 

into the intracellular modifications sensitive to TGF-β signalling [141]. In addition, TGF-β signalling in 

mice represses mitochondrial biogenesis [142,143] and is associated with mitochondrial disruption in 

cancer cachexia-induced muscle wasting in mice [144] (Figure 13). TGF-β-induced muscle wasting is also 

linked to reactive species oxygen (ROS). Injection of TGF-β1 ligand into mice muscles increases ROS 

content and induces atrophy, both being reversed by administration of an antioxidant treatment, 

suggesting that TGF-β1-induced muscle atrophy was ROS-dependent [145]. Finally, the TGF-β pathway 

is also known to play a major role in fibrosis, promoting muscle mechanical changes and muscle injury 

in many muscular dystrophies in mice and humans [146,147] (Figure 13). 

 

4.2.2.2 TGF-β-targeted mediation in muscle atrophy: Panacea or smokescreen ? 

The establishment of myostatin and activins as robust negative regulators of skeletal muscle has 

designated these ligands and partners as attractive therapeutic targets for various musculoskeletal 

disorders.  

Promising results in vivo.  Follistatin (FST gene) is a potent extracellular inhibitor of myostatin and of 

several other ligands of the TGF-β superfamily and its overexpression results in muscle hypertrophy in 

mice. This hypertrophy exceeded that observed in Mstn KO mice and was further exacerbated when 

overexpressing Fst in Mstn KO mice [133,148]. Inhibition of activin A by a specific antibody leads to 

muscle hypertrophy in mice and monkeys [128], and codelivery of specific activin A and myostatin 

inhibitors induces a synergistic response with an increase in muscle mass of up to 150% in mice [149]. 

Finally, the concomitant neutralization of both ACVR2A and ACVR2B receptors with BYM338 antibody 

results in a stronger skeletal muscle hypertrophy [150].   

These observations led to the utilisation of such strategies during muscle atrophy situations: 

Pharmacological inhibition of myostatin alleviates muscle wasting in cachectic mice [151]. Inhibition of 

the receptor TGFBR1 by the LY364947 molecule abolishes diaphragm atrophy in rats undergoing sepsis 

[152]. Genetic or pharmacological blockade of the myostatin/activin A receptor ACVR2B improves 

muscle mass and function in mice models of cancer cachexia, spinal muscular atrophy, or microgravity 
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[153–155]. Overexpression of Smad7, the intracellular TGF-β antagonist, prevents cancer-mediated 

muscle wasting in mice [156,157]. Other effective strategies using muscle-specific microRNAs have also 

been investigated. For instance, overexpression of miR-206 attenuates muscle atrophy during 

denervation in rat by inhibiting TGF-β-SMAD2/3 axis [158]. The system renin-angiotensin is involved in 

muscle loss. Interestingly, treatment with an angiotensin 2 inhibitor prevents muscle atrophy in mice 

through a blockade of the TGF-β-induced SMAD2/3 activation [111,145]. Finally, the use of angiotensin 

2 inhibitor, extracellular or receptor antagonists shows improvement in muscle function in different 

muscular dystrophies by inhibiting the TGF-β signalling and hence its consequences as a pro-fibrotic 

pathway [146].  

 

Disillusion in human clinical trials.  Based on the pre-clinical studies, numerous TGF-β-inhibiting 

pharmacologic agents have progressed in human trials or are still currently under evaluation [119]. 

Treating elderly patients requiring hip replacement with an anti-myostatin has proven to be safe, 

although preservation of muscle mass following surgery was minimal [159]. Another anti-myostatin 

molecule showed promising results with amelioration of muscle locomotor function in spinal muscular 

dystrophy patients [119]. Other phase 2 clinical trials showed that the use of an antibody blocking the 

activin type 2 receptor was safe but with little or no functional benefit in patients with muscle wasting 

(i.e. hip fracture surgery, sporadic inclusion body myositis, sarcopenic elderly, cachexia,  chronic 

obstructive pulmonary disease) [160–163]. 

Therefore, although these molecules were promising in rodents, they have shown only a minimal effect 

in humans or have demonstrated important side effects [119,164]. Indeed, most myostatin inhibitors 

also repress the activities of other closely related TGF-β family members including GDF11, activins, and 

BMPs, increasing the potential off-targets. Consequently, a careful distinction between targets is 

required to evaluate the use of these medications in human clinical practice [119,164]. 

 

4.2.3 BMP signalling: The silver bullet for muscle atrophy ? 

The BMP signalling pathway was originally discovered for its ability to induce bone formation. BMP 

signalling is important in embryogenesis and development in all organ systems, and also in the 

maintenance of adult tissue homeostasis [165]. The role of BMP in the regulation of muscle mass was 

only discovered in 2013 [166,167] (Figure 14). For this reason, much less is known about this pathway 

and its underlying mechanistic in muscle homeostasis. 

Fundamental in healthy adult muscle.  BMP signalling controls the mass of healthy adult muscles, 

since increasing the expression of the ligand Bmp7 or a constitutively active BMP receptor type 1A 
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(caBmpr1a, ALK3 protein) promotes a SMAD1/5-dependent hypertrophy phenotype in mice [166,167]. 

Furthermore, inhibition of the BMP pathway by using inhibitors of ligand-receptor interaction (i.e. LDN-

193189 or noggin), or invalidation of Smad1 or 5, leads to muscle atrophy in healthy adult mice muscles 

[166]. In addition, the profound increase in muscle mass observed in Mstn KO mice is mediated by the 

activation of BMP signalling via SMAD1/5, whereas overexpressing the selective BMP inhibitor Smad6, 

significantly reduces this hypertrophic phenotype [149].   

Regulation in catabolic conditions. SMAD1/5 phosphorylation increased in rodent muscles exhibiting 

atrophy associated with motor nerve degeneration, intensive care disuse or with amyotrophic lateral 

sclerosis  [166,167]. In addition, the expression of BMP-related components, i.e. BMP ligands Gdf5 and 

Gdf6 and the BMP receptor type 1B (Bmpr1b, ALK6 protein), increase in denervated mice muscles. 

Similarly, the DNA-binding protein inhibitor (ID1)-luciferase reporter, which mirrors BMP 

transcriptional activity also increases in this situation [166,167]. However, SMAD1/5/8 

phosphorylation is down-regulated, whereas gene expression of the BMP inhibitor noggin is up-

regulated in muscles of tumour-bearing mice, and in muscles of pre-cachectic and cachectic patients 

[168]. Additionally, a decreased in gene expression of BMP-related components is also observed in the 

elderly with muscle atrophy following hip arthroplasty [169]. 

A central role to counteract muscle atrophy.  Administration of tilorone, a molecule capable of 

inducing BMP signalling, restores BMP-mediated signalling in muscles, limits muscle wasting, and 

lengthens the survival of tumour-bearing mice [168]. These data showed the necessity of 

promoting/maintaining BMP signalling to limit cancer-induced muscle atrophy [168]. Overexpression 

of caBmpr1a/ALK3 or Bmp7 in mice blunts muscle atrophy induced by denervation or cancers 

[166,167], while Smad6 or Nog overexpression suppresses SMAD1/5 phosphorylation and exacerbates 

muscle atrophy during denervation and fasting [166,167]. Besides, the role of altered BMP signalling 

in muscle atrophy was confirmed by Sartori et al. who observed a severe aggravation of denervation-

induced muscle atrophy in Gdf5 KO mice [166]. Moreover, Mstn KO mice, which are usually resistant 

to denervation-induced muscle atrophy, lose this ability when BMP signalling is concomitantly blunted 

[166].  Finally, a long non-coding RNA, Chronos, impairs muscle growth in ageing mice by repressing 

BMP signalling [170]. Altogether, these data strongly suggest that (1) activation of the BMP pathway 

in skeletal muscle during catabolic conditions is an adaptive response to counteract atrophy, and (2) a 

deficiency in this signalling plays a critical role in aggravation of muscle frailty [166,167]. 

Intracellular actions. In innervated mice muscles, hypertrophy induced by increased expression of 

Bmp7 or caBmpr1a/ALK3 is associated with increased phosphorylation of AKT and of two mTORC1 

substrates (i.e RPS6 and 4E-BP1), which is blunted by rapamycin treatment. These data provided the 
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first demonstration that the mTORC1 pathway is indispensable in the regulation of BMP signalling-

induced muscle growth [167] (Figure 14). In denervated mice muscles, overexpression of Nog 

significantly enhances the expression of the Fbxo30. This gene encodes a protein identified as MUSA1 

for muscle ubiquitin ligase of SCF complex in atrophy-1 [166]. The authors proved that BMP signalling 

acts as a positive regulator of muscle mass by repressing the transcription of Fbxo30/MUSA1, whose 

induction is required for denervation-induced atrophy [166] (Figure 14). Similarly, increased expression 

of the BMP inhibitor Smad6 also results in increased Fbxo30/MUSA1 expression in denervated muscles 

[167]. Inhibition of the BMP signalling is also associated with increased expression of Trim63/MuRF1 

and Fbxo32/Atrogin-1 during muscle atrophy associated with denervation [167] and cancer [168] in 

mice. The repression of the expression of these atrogenes by the BMP pathway is believed to be 

through the suppression of the HDAC418-Myogenin axis, which is involved in the transcription of 

TRIM63/MuRF1, FBXO32/Atrogin-1, and FBXO30/MUSA1 [167] (Figure 14). 

                                                           
18 histone deacetylase 4 

Figure 14. BMP signalling involvement in muscle hypertrophy. 

The dotted lines correspond to the signalling impaired when BMP signalling is activated.  
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4.2.4 A finely tuned balance between TGF-β and BMP signalling 

4.2.4.1 SMAD4 shared custody 

SMAD4 is the shared actor between the TGF-β and BMP signalling (Figure 15). Smad4 KO mice slightly 

lose muscle mass and are even more susceptible to muscle wasting during denervation or fasting [166]. 

Mstn KO mice exhibit a significant activation of the SMAD1/5/8 transcriptional activity with greater 

recruitment of SMAD4 on the promoter of BMP target genes. On the contrary, Gdf5 KO mice lead to 

an increased binding of the SMAD4-SMAD2/3 complex to the promoter of TGF-β target genes [166].  

 

This has prompted the concept of a competition between SMAD 2/3 and SMAD 1/5/8 for SMAD4 

recruitment. The authors speculated that inhibiting TGF-β signal would release SMAD4 from SMAD2/3 

to be more available for SMAD1/5/8. In muscle wasting scenarios, TGF-β over activation is considered 

Figure 15. SMAD4 recruitment in muscle in basal (A) or muscle wasting (B) conditions. 

B. A. 
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as a factor which reduces the availability of SMAD4 for BMP signalling (Figure 15). This article has 

strongly highlighted the need for a fine-tuning of the BMP/TGF-β balance to maintain muscle 

homeostasis [166] (Figure 15). This is consistent with the Myhre syndrome, a human rare autosomal 

dominant genetic condition characterised by muscle hypertrophy. This syndrome is explained by a 

missense mutation of SMAD4-leading to defects in ubiquitination, and hence Myhre syndrome 

patients have increased levels of SMAD4 protein rather than SMAD4 loss [171].  

 

4.2.4.2 TGF-β/BMP non-canonical signalling and its dual role in muscle homeostasis 

Non-SMAD signalling. In addition to the canonical SMAD-mediated TGF-β superfamily signal 

transduction, activated receptors also transduce signals through non-SMAD signalling [172] (Figure 16). 

For example, the TGF-β-activated kinase 1 (TAK1) protein, originally identified as a member of the 

MAPK19 family, is a major component of the non-canonical TGF-β superfamily signalling. TAK1 interacts 

with the TNF Receptor Associated Factor 6  (TRAF6), which is bound to a receptor type 1 of the 

canonical SMAD signalling [173,174] (Figure 16). Once the receptors type 1 and 2 are complexed , TRAF6 

undergoes autoactivation and subsequently activates TAK1. Thereafter, TAK1 phosphorylates MAPK 

actors leading notably to the activation of the p38 MAPK [173,175] (Figure 16). 

TRAF6 a pro-atrophic actor. TRAF6 mediates the activation of p38 and induces the expression of the 

atrogenes Trim63/MuRF1 and Fbxo32/Atrogin-1, as well as autophagic-related actors in atrophying 

muscles during denervation and starvation in mice [176–178] In addition, TRAF6 protein levels increase 

in muscles of gastric cancer patients [179]. Conversely, Traf6 deletion suppresses the increase 

expression of Fbxo32/Atrogin-1 and Trim63/MuRF1, improves AKT phosphorylation, and limits muscle 

atrophy in mice during ageing, starvation, denervation, cancer cachexia or dexamethasone treatment 

[176–179].  

A dual role for TAK1. TAK1-p38 signalling is activated under activin A treatment in mice myotubes and 

in vivo ending up by up‐regulation of Fbxo32/Atrogin-1 and muscle atrophy. Interestingly, the catabolic 

effect of activin A was abolished by p38 inhibitor administration [180]. Moreover, muscles damages 

were alleviated through pharmacologic inhibition of TGF-β1-TAK1 axis by the neuroprotective 

molecule catalpol in a model of Duchenne muscular dystrophy [181].  

In addition to the possible role of TAK1 in muscle atrophy, TAK1 has also been reported to be required 

for the maintenance of skeletal muscle mass in adult mice. Inducible skeletal muscle-specific Tak1-KO 

mice leads to severe muscle wasting which is accompanied by increased proteasome activity, elevated 

autophagy, redox imbalance and mitochondrial dysfunctions associated with decreased p38 
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phosphorylation [182,183]. Overexpression of Tak1 in mice induces muscle hypertrophy, increases 

protein synthesis, and attenuates denervation-induced muscle atrophy, while its genetic inactivation 

leads to neurogenic atrophy [184]. A very recent study has revealed promising findings. The authors 

identified a strong physical interaction between TAK1 and SMAD1 in denervated mice muscles. The 

authors assumed that TAK1 could regulate the spatial distribution of SMADs proteins by promoting (1) 

the nuclear localisation of SMAD1-SMAD4 to suppress FBXO30/MUSA1 transcription and (2) the 

cytosolic retention of the inhibitor SMAD6 in denervated muscles. The underlying mechanisms are 

however still completely unknown [184]. Whether such an interplay between TAK1 and SMADs also 

exists in other catabolic conditions has never been investigated (Figure 16). 

 

Figure 16. Non-SMAD TGF-β/BMP signalling and its dual involvement in muscle homeostasis. 

The red and green lines represent respectively the catabolic and anabolic signalling, and the questions marks the 
unsolved questions. 
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MEF2 a pro-maintenance actor. Myogenic enhancer factor 2 A-D (MEF2A-D) proteins are key 

transcriptional regulators of skeletal muscle development, sarcomeric gene expression, fibre type 

control and glucose uptake metabolism [185–187]. p38 MAPK directly phosphorylates MEF2, increases 

its transcriptional activity in myoblasts from mice or rats, and is required for a proper differentiation 

process [188,189]. In addition, Traf6 deletion in mice myotubes inhibits MEF2 transcription [190].  

Furthermore, SMAD3 interacts with MEF2C resulting in reducing MEF2C transcriptional activity in mice 

myoblast cells and thus disrupt differentiation [191]. Finally, activin A treatment in human muscle cells 

reduces MEF2C expression and activity and leads to myotubes atrophy [192]. To our knowledge, no 

study has ever explored the TGF-β/BMP-TRAF6-TAK1-p38-MEF2 axis in skeletal muscle in vitro or in 

vivo (Figure 16). 

The pivotal role for TRAF6-TAK1-p38 in muscle homeostasis beneath TGF-β and BMP signalling is full 

of unsolved questions. How does TAK1 act as a pro-atrophic actor through TGF-β-p38, and promotes 

muscle gain through BMP? How does TGF-β/BMP ligand-receptors pair to activate SMAD and non-

SMAD signalling? How do these signals interact? These unsolved questions warrant further 

investigation (Figure 16). 

 

 

4.3  The Integrated Stress Response signalling: Beneficial or harmful for skeletal 

muscle?  

The Integrated Stress Response (ISR) signalling is another pathway involved in muscle homeostasis. 

First of all, an overview of the signalling organisation will be presented and second of all, a focus will 

be made on the role of ISR in muscle homeostasis. 

4.3.1 Overview 

The ISR is a well-conserved signalling present in eukaryotic cells, which is activated in response to a 

range of physiological stresses [193,194]. Such stresses commonly include extracellular factors such as 

hypoxia, amino acids deprivation, glucose deprivation, heme deficiency, viral infection, and 

intracellular stresses such as ER stress. The core event of the ISR activation is the phosphorylation of 

TAKE HOME MESSAGE 

 

A major conceptual insight emerging from these studies is that the balance 
between TGF-β and BMP signalling pathways plays a key role in determining 
skeletal muscle fate. Therapies targeting TGF-β induce challenging side effects due 
to its pleiotropic role. At present, extensive effort should be directed toward 
further a better understanding of the role of BMP signalling in muscle homeostasis.  
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the alpha subunit of the eukaryotic translation initiation factor 2 (eIF2α) on its serine 51 (p-eIF2α) 

[193,194] (Figure 17). To date, four kinases have been reported to phosphorylated eIF2α: PKR-like ER 

kinase (PERK), double-stranded RNA-dependent protein kinase (PKR), heme-regulated inhibitor (HRI), 

and general control nonderepressible 2 (GCN2) [193,194] (Figure 17). They all dimerise and auto-

phosphorylate to be activated in response to distinct environmental stresses: amino acid deprivation 

for GCN2, ER stress for PERK, heme deficiency for HRI and viral infection for PKR [193,194] (Figure 17). 

Phosphorylation of eIF2α leads to two consequences (1) a general inhibition of the translational 

machinery and (2) the translation of selected mRNA including ATF4. 

 

Inhibition of protein translation. In normal conditions, the GDP20-bound form of eIF2α is exchanged 

for a GTP21-bound form by the action of the guanine nucleotide exchange factor eIF2B (Figure 17). This 
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Figure 17. The Integrated Stress Response pathway organisation and signal transduction. 
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event converts eIF2α to its active form which can recruit the translation initiation ternary complex and 

subsequently initiates the first step of protein translation. Upon stress conditions, p-eIF2α inhibits 

eIF2B action, which thus remains in its GDP-bound form, preventing the formation of the ternary 

complex and leading to the global inhibition of protein translation [193,194] (Figure 17). 

Translation of specific mRNAs. In parallel, p-eIF2α results in the translation of specific mRNAs, 

including the activating transcription factor 4 (ATF4) (Figure 18). The mechanism is highly conserved, 

from yeasts to mammals. The ATF4 transcript is constitutively expressed in many cells and has several 

small upstream open reading frames (uORF) at its 5′ end, being out of frame with the main protein-

coding sequence (CDS). These uORFs mediate basal repression of ATF4 translation (Figure 18). Upon 

normal conditions, when the ternary complex is abundant (i.e. eIF2α non-phosphorylated), ribosomes 

initiate scanning at uORF1 and re-initiate at uORF2 overlapping with ATF4 CDS, hence precluding ATF4 

translation (Figure 18). Upon stresses conditions (i.e. p-eIF2α), a limited number of ternary complexes 

are formed. Ribosomes still initiate scanning at uORF1 but, due to low levels of the ternary complex, 

ribosomes take longer to re-initiate translation. Hence, they re-initiate scanning at the ATF4 CDS (Figure 

18). Therefore, upon p-eIF2α, this results in approximately fivefold higher ATF4 protein expression 

[193–195].  

 

Figure 18. ATF4 mRNA sequence and its translation upon (A) basal condition or (B) stress 
condition.  

uORF: upstream open reading frame; CDS: coding sequence. 
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Biological role of ATF4. ATF4 is a bZIP22 transcription factor that belongs to the ATF/CREB23 protein 

family [196]. ATF4 is a key determinant of cellular fate in response to ISR activation, mainly acting as a 

transcriptional activator of a cohort of genes involved in cellular stress adaptation (Figure 17). ATF4 has 

several dimerisation partners that influence its regulation of gene transcription and governs cellular 

outcome. ATF4 produces distinct tailored responses with the transcription of target genes being highly 

dependent on the cellular context/stresses [193,194]. For instance, upon nutritional stress, ATF4 

stimulates the expression of genes involved in amino acid transport and biosynthesis, and in 

autophagy, to supply new amino acids for de novo protein synthesis [197–199] (see section 4.3.2). 

Moreover, ATF4 induces the transcription of the protein phosphatase 1 regulatory subunit 15A 

(PPP1R15A, GADD3424 protein), the main eIF2α phosphatase, acting as an important negative feedback 

loop to restore protein synthesis once the stress is overcome [193,194,200] (Figure 17). It has been 

proposed that the relative duration and intensity of the ISR signalling dictate the cellular outcome. 

Therefore, ATF4 may also facilitate the execution of a cell death transcriptional program when cellular 

homeostasis cannot be restored, by activating the transcription of apoptotic genes [201–204] (Figure 

17). 

Other regulations of ATF4 translation and transcription. ATF4 translation can also be stimulated by 

anabolic hormones and growth factors, including insulin or IGF-1 (Figure 17), which activate mTORC1 

to increase ATF4 translation [205–208]. mTORC1 activation enables ribosomes to bypass short uORF 

in the 5' of ATF4 mRNA in the same way as ISR activation does [195,207–209]. In contrast to p-eIF2α, 

mTORC1 activity increases both ATF4 translation and general protein synthesis [205–208]. In this 

context, ATF4 heterodimers primarily induce the transcription of genes that promote amino acid 

uptake and synthesis to facilitate anabolism (Figure 17). 

In addition to the translational regulation of ATF4, it can also be regulated at the transcript level. ATF4 

mRNA levels are low under normal conditions but are induced in response to different stresses by 

different transcription factors (Figure 17). For example, ATF4 expression is induced in response to 

oxidative stress by NRF225, chemotherapeutic drugs by CLOCK26, or ER stress and starvation by TFEB27 

and TFE328 [193,194]. Interestingly, in a positive feedback loop, ATF4 downstream gene targets, such 

as NUPR129, can also elevate ATF4 mRNA levels [210] (Figure 17). 
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How ATF4 facilitates such diverse cellular adaptations, ranging from anabolism to growth arrest, is an 

important and unsolved question. One possibility is that different ATF4 heterodimers or different 

combinations of ATF4 heterodimers mediate the different effects of signalling.  

 

4.3.2 The ISR pathway involvement in autophagy and mitochondrial homeostasis 

As written above, autophagy and mitochondrial quality control are cellular processes essential for 

muscle homeostasis, and deficiency in either is associated with muscle wasting [13,19,66]. The ISR is 

an important signalling involved in these two processes in a wide range of tissues and cells. 

Role in autophagy. During hypoxia, ER stress, amino acid deprivation, lipopolysaccharide treatment, 

or low protein diet, ATF4 binds to the specific promoter of genes involved in autophagy to promote (1) 

a pro-survival response in vitro or in the liver, heart and skeletal muscle of rodents [197,199,211–217] 

or (2) a pro-lethal autophagy response in heart and kidney [218,219] (Figure 19). ER stress or hypoxia 

leads to the upregulation of certain autophagy actors in a PERK-dependent manner in vitro and in the 

heart of mice [197,211,212,214,216,218]. Of note, PERK regulates all stages of autophagy including 

induction, vesicle nucleation, phagophore elongation, and maturation [220]. GCN2 is also essential for 

the induction of autophagy-related genes upon amino acid starvation in vitro and in the mouse 

intestine, while a mutant form of eIF2α suppresses the autophagy process [197,221–223]. Moreover, 

there are direct interactions between eIF2α subunits and core autophagy proteins, although it is not 

yet known whether these interactions are biologically significant [224,225].  

Role in mitochondrial quality control. Over the past decades, growing evidence have placed the ISR 

signalling as essential in mitochondrial quality control, through the mitochondrial unfolded protein 

response (UPRmt). UPRmt is a mitochondria stress response induced by a loss of mitochondrial 

homeostasis. UPRmt activates a transcriptional program of mitochondrial chaperone proteins and 

proteases (i.e. encoded by nuclear DNA) to promote the recovery of mitochondrial proteostasis [226]. 

Nonetheless, if the UPRmt is unable to repair mitochondrial damages, it promotes the elimination of 

the entire mitochondrion by mitophagy. Finally, if the damages persist, cells undergo senescence 

and/or apoptosis [226]. UPRmt is evolutionarily conserved and there are three key regulatory proteins 

of UPRmt, including ATF4, which is often overexpressed upon mitochondrial damage [227]. Cells 

lacking a functional gene copy of ATF4 fail to upregulate several mitochondrial enzymes and exhibit a 

reduction in mitochondrial respiration. A global transcriptomic analysis has validated the presence of 

ATF4-binding motifs in many UPRmt genes [226–228]. In skeletal muscle, evidence of ATF4 activation 

by mitochondrial stresses is growing. For instance, ATF4 protein accumulation is linked to HRI or GCN2 

activation following the loss of mitochondrial membrane potential in vitro [229,230], and is associated 
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with PERK upon a genetic defect in mitochondrial fission in mice muscles [231,232] (Figure 19). In 

addition, mitochondrial stresses, induced by a genetic defiency in mitochondrial fusion or mitophagy 

in mice muscles, increase p-eIF2α, ATF4 protein levels and the expression of an ATF4 target gene, the 

fibroblast growth factor 21 (FGF21) [233]. Of note, although the biological effects of FGF21 are largely 

unknown, it is massively induced by a defect in mitochondrial homeostasis, and in turn, improves 

mitochondrial function [233]. There is evidence that the activation of UPRmt-ATF4 following 

mitochondrial disturbances in muscles can have protective or maladaptive effects. For instance, in a 

rare children mitochondrial myopathy (i.e. Reversible Infantile Respiratory Chain Deficiency), the 

induction of ATF4-FGF21 axis and the subsequent induction of mitochondrial biogenesis-related genes 

precede the complete disease recovery phase in humans [231]. On the contrary, genetic deletion of a 

mitochondrial fusion protein in muscles leads to an accelerated ageing phenotype with increased 

muscle atrophy and inflammation through an ATF4-FGF21-dependent mechanism [234].  

Taken together, these studies highlight the intricate involvement of the ISR in autophagy and in 

mitochondrial quality control. These studies support a dual role for ATF4 in mediating survival and cell 

death responses, depending on the duration and type of stress, the cell type and the 

pathophysiological context. Moreover, much remain to be explored in understanding ISR-ATF4 

involvement in autophagy and mitochondrial quality control in muscle homeostasis.  

 

4.3.3 The ISR pathway implication in muscle atrophy 

Some of the ISR members have been associated to muscle weakness and atrophy in different catabolic 

conditions and will be discussed in the following part (Figure 19). 

4.3.3.1 The ISR kinases and eIF2α 

PERK kinase. A ligand-activatable PERK kinase induces p-eIF2α, expression of ATF4 target genes, and 

leads to severe muscle atrophy within a few days after injection in mice muscles [235]. However, 

genetic ablation or pharmacological inhibition of PERK reduces skeletal muscle mass and strength and 

increases gene expression of UPS and ALS components in healthy mice muscles [236]. In addition, Perk 

is increased in a model of cancer cachexia-induced muscle atrophy in mice, but genetic ablation or 

pharmacological inhibition of PERK exacerbates muscle atrophy [237]. Of note, in this study, they 

observed that PERK increased (1) p-eIF2α and Atf4 expression and (2) gene expression of the Unfolded 

Protein Response (UPR) components, which is another PERK downstream signalling [237]. Therefore 

further studies are needed to decipher by which downstream pathways PERK acts as a negative or 

positive regulator of muscle mass (Figure 19). 
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GCN2 kinase. Gcn2 deficiency protects mice from denervation-induced muscle atrophy while forced 

Gcn2 expression worsens denervation-induced atrophy [238]. The authors highlighted that GCN2 could 

promote FOXO3 nuclear accumulation, and the subsequent transcription of the atrogenes 

Trim63/MuRF1 and Fbxo32/Atrogin-1 [238] (Figure 19). Of note, whether the atrophic role of GCN2 is 

mediated by the downstream p-eIF2α-ATF4 signalling has not been yet demonstrated. 

PKR kinase. Levels of phosphorylated PKR and eIF2α are increased in muscles of cancer cachectic 

patients [239] and mice [240]. In addition, the pharmacological inhibition of PKR attenuates muscle 

atrophy in cancer cachectic mice through a possible inhibition of NF-κB  [240] (Figure 19). Increased 

levels of intracellular calcium might be the upstream stress activating PKR in skeletal muscle (Figure 

19). Currently, as for GCN2 kinase, the atrophic role of PKR has not been demonstrated to be linked to 

the ATF4 downstream signalling. 

eIF2α.  P-eIF2α is enhanced in muscles during cancer-cachexia and amyotrophic lateral sclerosis in 

mice or humans [237,239,241]. In addition, fasting-induced muscle atrophy is hampered when mice 

express a phosphorylation-resistant form of eIF2α [242]. However, p-eIF2α is decreased in atrophic 

mice muscles following food deprivation, while an upregulation of Atf4 and some of its target genes is 

observed [243]. In addition, p-eIF2α is also decreased in atrophying mice muscles during disuse and 

spinal cord isolation [244,245]. Therefore, p-eIF2α is definitely not a common feature of muscle 

atrophy, and its augmentation is likely more a consequence of various extracellular stresses during 

muscle wasting conditions (Figure 19). 

 

4.3.3.2 The atrogene ATF4 

Like other cell types, skeletal muscle fibres do not significantly express the ATF4 protein in the absence 

of cellular stress, especially as ATF4 is non-essential for the normal development or maintenance of 

skeletal muscle mass and function [246–248]. Mice with a lifelong absence of ATF4 expression in 

skeletal muscle fibres undergo normal skeletal muscle development and exhibit normal muscle mass 

and function until late in life, at which time they begin to exhibit protection from age-related muscle 

atrophy and weakness [246,247]. ATF4 is considered as an atrogene because its mRNA levels rise in 

muscle during many catabolic conditions that cause muscle atrophy in mice (i.e. denervation, spinal 

cord isolation, fasting, ageing, immobilisation, myopathies) [99,242,246,247,249]. In addition, a 

deletion of Atf4 in mice muscles limits muscle atrophy during starvation, immobilisation and ageing 

[242,246–248]. Additionally, a transcriptionally inactive ATF4 does not lead to a reduction of myofiber 

size during fasting in mice. This suggests that the ATF4-mediated transcriptional program is required 

to induce atrophy [242]. When ATF4 is expressed in skeletal muscle fibres, it interacts with several 
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different bZIP family members but only the heterodimerisation with C/EBPβ30 is yet known as required 

for muscle atrophy caused by immobilisation [250] (Figure 19). The ATF4-C/EBPβ heterodimer induces 

the transcription of the growth arrest and DNA damage inducible alpha (GADD45A) gene in muscle 

fibres by binding a DNA sequence that is 100% conserved in all mammalian genomes [250] (Figure 19). 

Of note, in most of the studies, the authors only measured ATF4 mRNA expression and expression of 

its target genes as evidence of its activity, because endogenous ATF4 protein cannot be reliably 

detected in skeletal muscle, presumably due to its low abundance, very short half-life, and lack of high-

quality antibodies.  

                                                           
30 CCAAT enhancer binding protein β 

Figure 19. The Integrated Stress Response involvement in muscle homeostasis. 

The red and green lines represent respectively the proved pro-atrophic and pro-maintenance signalling, 
and the questions marks the unsolved questions. 
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At present, the mechanisms by which ATF4 is transcriptionally and translationally activated in catabolic 

conditions are unclear but may involve different mechanisms or combinations of mechanisms. For 

example, contrarily to anabolic conditions, mTORC1 activity is increased in muscle during advanced 

ageing and is thought to contribute to the pathogenesis of age-related skeletal muscle atrophy 

[207,251,252]. In this context, mTORC1 may be a driver of the ATF4 pathway in skeletal muscle. In 

contrast, many acute stress conditions repress mTORC1 activity in muscle fibres while inducing eIF2α 

kinase signalling [237,239,241,253]. Thus, in some situations, such as starvation, eIF2α signalling may 

be the driver of the ATF4 pathway in skeletal muscle fibres (Figure 19). Whether the canonical ISR 

signalling is always implicated as an atrophic inducer seems unlikely. Further investigation of these 

issues might uncover new unrelated signalling.  

4.3.3.3 ATF4 target genes: the atrogenes GADD45A,CDKN1A and EIF4EBP1 

The mechanism by which ATF4 promotes muscle atrophy does not lead to an increase of 

FBXO32/Atrogin-1 nor TRIM63/MuRF1 gene expression [242]. Much remains to be discovered, but it 

is currently known that ATF4 contributes to muscle atrophy by modulating the transcription of three 

genes considered as atrogenes: GADD45A, cyclin-dependent kinase inhibitor 1 (CDKN1A) and 

eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1) [99] (Figure 19). 

GADD45A. GADD45A is a myonuclear protein that induces widespread transcriptional changes in 

muscles. It represses genes involved in anabolic signalling and energy production, and it induces pro-

atrophic genes [246]. GADD45A transcript is weakly expressed in non-catabolic conditions in skeletal 

muscle fibres but strongly induced during muscle atrophy (e.g. ageing, amyotrophic lateral sclerosis, 

critically ill patients, fasting, immobilisation) in pigs, humans and mice [242,246,248,254–257]. For 

example, GADD45A is increased by 22-fold in muscle biopsies from critically ill patients with severe 

generalized skeletal muscle atrophy compared to healthy controls [257]. Gadd45a is the earliest and 

most sustained gene shown to be increased in muscles after denervation in mice [258]. Forced 

expression of Gadd45a in mice muscles or cultured mice myotubes induces atrophy even in the 

absence of any catabolic stimuli.  Additionally, ATF4 is necessary and sufficient to induce Gadd45a 

expression during fasting- and immobilisation-induced muscle atrophy in mice [242,246,259,260]. 

HDAC4 is required for increasing muscle atrophy induced by Gadd45a overexpression during 

denervation, and forced expression of Hdac4 is sufficient to induce muscle atrophy in healthy mice 

muscles [260]. GADD45A by forming a complex with MEKK431 in muscles, increases MEKK4 protein 

kinase activity, which leads to GADD45A-MEKK4-mediated skeletal muscle atrophy in healthy mice 

muscles [259]. (Figure 19). Despite the strong evidence that GADD45A is an atrogene, a recent study 
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has shown that it is likely induced in the context of denervation for a protective effect because mice 

lacking Gadd45a show accelerated and exacerbated neurogenic muscle atrophy [258].   

CDKN1A. Another important ATF4-C/EBPβ target gene in muscles is CDKN1A (P21 protein). CDKN1A 

gene expression is strongly associated with muscle atrophy in pigs, rodents and humans 

[242,246,248,254–257,261,262].  Increased Cdkn1a expression in mice muscles is sufficient to induce 

muscle fibre atrophy and is required for ATF4-mediated muscle atrophy during immobilisation [248]. 

However, to date, the cellular mechanisms by which P21 induces muscle atrophy are not defined. 

Although P21 protein is a well-known cell cycle inhibitor, its mechanistic role in muscle fibres seems 

likely to be different, essentially because muscle fibres have exited from the cell cycle. Its role in the 

control of skeletal muscle mass might involve the repression of the spermine oxidase (SMOX) gene 

expression, a gene suggested as anti-atrophic, even if the mechanisms remain completely unknown 

[262,263] (Figure 19). 

EIF4EBP1. ATF4 heterodimers also induce the expression of the EIF4EBP1 gene, encoding for the well-

established inhibitor of global protein synthesis 4E-BP1 [247,250,262] (Figure 5). EIF4EBP1 gene 

expression rises up in numerous catabolic conditions being as well considered as an atrogene 

[99,248,249,261,264]. Accordingly, Eif4ebp1 is often induced alongside Gadd45a and Cdkn1a during 

skeletal muscle atrophy in mice [246,247]. However, it remains unclear which ATF4 heterodimers 

regulate EIF4EBP1 gene expression [264] (Figure 19). 

TRIB3.  Finally, another ATF4 target gene, the tribbles pseudokinase 3 (TRIB3), has been associated 

with muscle atrophy in numerous studies. Trib3 deficient mice show increased muscle mass and MPS 

rate while decreasing the expression of the atrogenes Trim63/MuRF1 and Fbxo32/Atrogin-1 in healthy 

muscles [265]. In addition, Trib3 deficient mice show attenuation of muscle fibre atrophy and fibrosis 

during ageing by increasing autophagy flux [266]. Finally, these mice are also partially protected from 

food deprivation-induced muscle atrophy [267] (Figure 19). 

 

TAKE HOME MESSAGE 

 

A major conceptual insight emerging from these studies is that the ISR pathway is 
involved (1) in the maintenance of muscle homeostasis likely through autophagy and 
mitochondrial quality control, but also (2) in the induction of muscle atrophy through 
ATF4 and its target genes. How such an interplay can occur with two different 
outcomes on skeletal muscle, remains to be elucidated. 
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4.4  A natural model of muscle atrophy resistance: the hibernating brown bear 

The first three chapters of this review show (1) the need to preserve muscle mass in order to remain 

healthy, but also (2) that, despite the huge amount of data acquired on the multiple signalling 

pathways involved in atrophy, there is still no approved treatment that can be used in the clinic. Most, 

if not all, of the mechanisms have been elucidated using classical laboratory models in rodents and 

humans. In this thesis project, we have chosen to combine classical and biomimetic approaches. 

4.4.1 Getting inspired by the oldest research laboratory: Nature  

As noted earlier, global health is being challenged by an ageing population and epidemics of lifestyle 

diseases such as type 2 diabetes, obesity, atherosclerosis, osteoporosis, or muscle wasting. Rather than 

destroying and exploiting living beings, we should learn from and emulate ingenious evolutionary 

adaptations to solve current human challenges. Nature is the oldest of research and development 

laboratories, where failure becomes fossil and our environment is a secret of survival. Biomimicry or 

bio-inspiration is an approach that (1) seeks sustainable solutions to human challenges by mimicking 

nature's patterns and strategies  and (2) has enabled significant human biomedical advances and 

progress [268]. For example, about one-third of the medicines we use today are derived from nature. 

In addition, marine organisms have inspired polymers for medical adhesives [269] and microscopically 

small mosquito needles have inspired the development of small, flexible microprobes to be implanted 

in the brain [270]. A particular species of Namibian desert beetle has a system for collecting water by 

condensing fog into water droplets in its exoskeleton, and gradually channelling them to its head to 

drink. Inspired by this ingenious strategy, researchers have replicated this structure with glass and 

plastic, intending to cover existing objects to turn them into fog collectors, potentially ending the 

world's water shortage [271] (https://www.youtube.com/watch?v=IoflT3Uvels). The examples are 

vast and endless given the great diversity of the millions of species on Earth, which live in all types of 

environments from extreme temperatures to total hypoxia, to the driest places on the planet [268]. 

Therefore, the development of future drugs, technologies, or biomedical advances depends on 

humans preserving the diversity of nature. Hibernation is a perfect example of seasonal variability that 

holds clues to diverse solutions for human pathologies. 

 

4.4.2 Hibernation: a bioinspired approach for human challenges 

Hibernation comes from the word hibernare "the action of overwintering" and may date back 250 

million years in the Antarctic Circle [272]. Hibernation is an adaptation used by some animals to cope 

with an episodic or seasonal lack of energy due to unfavourable environmental conditions (e.g., low 

food/water availability, high predation pressure) [273]. Torpor is at the heart of hibernation, it 
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represents a period of metabolic suppression that can last from a few hours to several weeks. 

Hibernation is a more elaborate behaviour, structured into several long periods of torpor often 

separated by brief periods of interbout arousals (IBA). IBA last approximately 24 hours and are present 

in nearly all small hibernators (i.e. <10kg)  but not in hibernating bears (see section 4.4.3) [273]. The 

most typical hibernation season is the cold season (i.e. fall to spring) but is also found in mammals 

inhabiting temperate and tropical climates [273]. 

During hibernation, along with the sharp reduction in metabolic rate (MR), there is a strong reduction 

in respiratory and heart rates, followed by a decrease in body temperature (Tb) [274]. The decrease in 

Tb can be either extreme, as in small hibernators (e.g. Arctic ground squirrels) where Tb can drop below 

zero [275], or mild, as in bears, where Tb rarely drops below 30 °C [276–280]. Despite the multiplicity 

of phenotypes and regulations of hibernation onset, there is likely a single underlying mechanism that 

reduces MR, although it is still unknown. However, hypotheses are emerging about the role of the 

hypothalamus, in particular the dorsomedial hypothalamus and a recently discovered set of neurons 

in the preoptic area [281–283]. A complete understanding of the molecular mechanisms triggering 

torpor would be of great value in developing a process to induce a hibernation/torpor state in humans, 

for example for a manned deep space expedition [284]. 

In the next sections, we will discuss hibernation in bears and how understanding its characteristic could 

provide insights into human health challenges, particularly muscle atrophy. 

 

4.4.3 Hibernation in bears  

4.4.3.1 Hundred years of myths and legends 

The English word "bear" reflects the long history between bears and humans. Around 500 BC, in 

Northern Europe, the brown bear was the undisputed predator. In Proto-Germanic, an ancient 

language spoken by the Nordic tribes, the bear was known by the harsh name of hrktos. Hunters were 

so scared of hrktos that they came to believe that the mere mention of the bear was a cause for 

trouble. Linguists believe that the word became so taboo that tribes began to use the euphemism bero 

"the brown one" instead. In other words, bears were the Voldemort of Northern Europe. As another 

example, among the Celtic islanders, the bear was more associated with power and sovereignty, as 

evidenced by the figure of King Arthur, the bear-king. The etymology of the name Arthur comes from 

the Celtic name of the bear, artos, which means both "bear" and "warrior". King Arthur's death occurs 

on All Saints' Day when the bears begin to hibernate. Like them, Arthur does not die, he goes into 

dormancy. According to the history books, it is at Candlemas that Arthur takes the sword Excalibur out 

of the rock, a symbolic day since it corresponds roughly to the end of the hibernation of bears.  
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Hundreds of myths and legends surround the bears. In recent decades, contemporaries have become 

interested in the bear for the characteristics of its hibernation characteristics and the opportunity that 

this represents for medicine. 

4.4.3.2 Features of bear hibernation 

Ursidae family. Bears are mammals in the diverse family Ursidae because (1) they comprise eight 

species in three subfamilies, (2) they are geographically widespread in North and South America, 

Europe and Asia and (3) they inhabit a wide range of ecological niches from Arctic ice to tropical 

rainforests [285]. Bears in warm climates, do not go into hibernation, nor do the giant panda or polar 

bears. In this manuscript, we will only discuss bears that hibernate, i.e. brown bears (Ursus arctos), 

American black bears (Ursus americanus) and Asiatic black bears (Ursus thibetanus). 

Winter in the dens. Bears enter dens in October-November and remain there until late April or early 

May (Figure 20); both periods are highly dependent on weather conditions (i.e. snow levels). 

Unfortunately, researchers have observed a decrease in hibernation duration due to global warming. 

They estimate that for every 1°C increase in winter temperatures, bears hibernate six days less [286]. 

As mentioned before, hibernating bears do not exhibit IBA, and not only do they remain physically 

inactive inside their dens, but they also do not eat, defecate, drink or urinate [276–279,287–289].  

 

MR and Tb. Hibernating bears show a 75-85% decline in MR and their Tb only decreases by a few 

degrees Celsius compared to the values of the active summer season, remaining around 32-33°C [276–

280] (Figure 21). Thermoregulatory mechanisms could explain the maintenance of a relatively high Tb, 

but also body insulation due to high fur coverage, accumulation of subcutaneous fat, and also den 

Figure 20. Pictures of hibernating brown bear dens in North Sweden. 
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isolation [279,290,291]. Furthermore, in hibernating bears, there is a significant decrease compared to 

active bears in average heart rate (i.e. from 50-80 to 10-30 beats per minute) [279,292,293] and 

respiratory rate (i.e. from 10-12 to 5-7 breaths per minute) [294] (Figure 21). At the renal level, the 

glomerular filtration rate decreases during bear hibernation compared to summer (i.e. from 117 ml to 

37 ml per minute) resulting in the production of very small amounts of urine that are reabsorbed by 

the urothelium of the bladder [295]. MR and Tb are clearly linked. However, bears decrease their 

activity, heart rate and MR before decreasing their Tb before entering the den (Figure 21). Furthermore, 

Tb is the first physiological parameter to change before den exit, whereas bears maintain a reduced 

MR up to 3 weeks after den exit (Figure 21). Therefore, the pronounced reduction and delayed recovery 

of MR in hibernating bears suggest that the majority of metabolic suppression during hibernation is 

independent of Tb decline [278,279]. 

Energy storage. Fat storage is increased before hibernation (i.e. hyperphagia). For example, Swedish 

brown bears achieve this by eating lots of carbohydrate-rich berries [296]. During the fall, bears more 

than double their daily energy intake reaching a total weight gain of 40% [297]. During this period of 

hyperphagia, lipogenesis-related genes are upregulated in white adipose tissue (WAT) to promote fat 

storage [298]. Energy requirements in winter rely primarily on the mobilisation and oxidation of lipid 

fuels, with bears experiencing a loss of approximately 22-25% of their body mass during the 

hibernation season [299,300] and only a moderate loss of muscle protein (see section 4.4.4) [301,302]. 

The respiratory quotient32 in bears decreases from 0.8 to nearly 0.7 in winter, reflecting pure fat 

burning [303,304]. In states of negative energy balance such as during hibernation or starvation, 

triglycerides (TG) stored in the WAT are converted to glycerol and FFA, which are used for 

gluconeogenesis33, ketogenesis34 and β-oxidation35 in the liver. Consistently, genes related to these 3 

biological processes are upregulated in the liver of hibernating bears [305–307]. This is also consistent 

with the maintenance of blood glucose levels via gluconeogenesis, and the increase in circulating TG, 

FFA and ketone bodies during hibernation. Of note, a decrease in circulating glycerol is observed in 

winter, probably due to greater uptake by the liver and its reaction with ammonia to form amino acids 

(see section 4.4.4) [298,303,308–312]. Altogether, these data highlight the amazing metabolic 

flexibility36 of hibernating bears [313,314]. 

                                                           
32 the ratio of the volume of carbon dioxide evolved to that of oxygen consumed by an organism or tissue in a 
given time 
33 glucose production from non-carbohydrate carbon substrates 
34 production of ketone bodies by fatty acid breakdown 
35 fatty acid catabolism 
36 capacity to switch among energy substrates to generate ATP depending on the physiological circumstances 
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Model for human pathologies. Hibernating bears appear to be insulin resistant compared to active 

bears. Insulin resistance is normally observed in hyperinsulinemic diabetic humans [312]. However and 

surprisingly, hibernating bears do not develop type 2 diabetes. Plasma cholesterol and TG levels are 

Figure 21. Main physiological characteristics of hibernating bears. 

Average of the daily mean values for ambient temperature (A), bear body temperature (B), heart rate 
(C) and activity level in accelerometery units (D) for 14 individual free-ranging brown bears in central 
Sweden collected over 3 years. The X-axis indicates the time of year. Green vertical bars indicate the den 
entry and exit periods (from Evans et al., 2016 [279]). 
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twice as high in hibernating bears as in healthy humans, but they show no signs of developing 

atherosclerosis or cardiovascular damage [315]. In brief, bears readily emerge from their dens in spring 

and show no signs of organ damage [316] (Figure 22). Under similar conditions, humans would develop 

cardiovascular disease, obesity, muscle loss, osteoporosis and other deleterious health consequences. 

Dozens of examples could be discussed regarding the extraordinary characteristics of bears during 

hibernation and the therapeutic possibilities it offers to treat human pathologies (Figure 22). The 

conservation of muscle mass during a long period of fasting and physical inactivity has attracted our 

attention and will be discussed in the next section. 

 

4.4.4 Skeletal muscle features in hibernating bears  

Over the six months of total physical inactivity and fasting, hibernating bears experience only a 

moderate loss of muscle protein content. Conversely, over a shorter period of time, this leads to a 

significant reduction in muscle mass and function in humans [87,90]. 

Figure 22. Overview of the spectacular characteristics of bears resistance to physiological damage 
during hibernation. 
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4.4.4.1 Histological and functional features  

Muscle protein content. The slight decrease in protein content in hibernating bears muscles may differ 

depending on the muscle considered: it (1) remains stable for the tibialis anterior muscle [317,318], 

(2) decreases by 4-10% in the gastrocnemius and biceps femoris muscles [302,319], or (3) it decreases 

by 15% in the vastus lateralis muscle [301]. Interestingly, in the latter study, they found that the 15% 

muscle loss after 1 month of denning remained the same 4 months later [301] (Figure 23). Furthermore, 

the nitrogen content of the vastus lateralis muscle remained unchanged in winter compared to 

summer, indicating a moderate loss of proteins [301]. The limited decrease in muscle protein content 

is consistent with the slight increase in 3-methylhistidine observed in the serum of hibernating bears 

[309]. Some researchers have speculated that the small amount of atrophy exhibited by bears may 

simply be due to muscle dehydration [317]. However, other studies have not observed any change in 

muscle water composition during winter [302]. 

 

Muscle CSA. Remarkably, the number of muscle fibres as well as their CSA remain unchanged in 

hibernating bears in most studies [302,319,320]. A recent paper showed a 26% decrease in CSA in the 

sartorius muscle after 5 months of hibernation, but the authors considered that was a minimal loss 

compared to what would happen in humans [321]. Indeed, under a similar period of disuse, a muscle 

loss of about 150% would be expected in humans [322,323]. 

Fibre type composition. It should be noted that the proportion of slow and fast muscle fibre types in 

active bears is roughly the same as in rodents or humans [320,324], and like humans, bears lack the 

type 2B fibre isoform [319,324]. Studies have reported conflicting changes in the proportion of fibre 

types between seasons with (1) an increase in type 1 fibre content and a decrease in type 2A fibre 

content [324,325], (2) a moderate shift towards more type 2 muscle fibres [302], or even (3) no change 

Figure 23. Protein content in bear muscles 
in summer, early denning and late 
denning (from Lohuis et al. – 2007 [301]). 
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[302,319,320]. These discrepancies can be explained by the biochemical techniques used and the 

timing of the muscle sampling during hibernation. 

Muscle strength and neuromuscular activity. The loss of muscle strength is about 29% after 110 days 

of anorexia and physical inactivity during hibernation in bears. This is about half of what is observed in 

humans confined to bed for 90 days, with a 54% loss in muscle strength while on a balanced diet 

[318,326]. Furthermore, hibernating bears show no or very limited changes in muscle contractile 

properties (e.g. contraction time, half relaxation time) [302,318,319,326]. Although bears do not 

exhibit as vigorous shivering thermogenesis as small hibernators, they do make occasional postural 

adjustments, wake up briefly and shiver. It has been suggested that this mild muscle activity may limit 

atrophy [278,318,327]. Finally, neural inputs cannot be considered as a mechanism to limit muscle 

atrophy. Indeed, the denervation-induced decrease in muscle mass in active bears is comparable to 

that observed in other mammals, whereas hibernating bears are partly resistant to denervation-

induced muscle atrophy [328]. 

4.4.4.2 Regulation of metabolism and signalling pathways  

Muscle protein sparing. Lohuis et al., showed that muscle protein synthesis and degradation were 

lower in bears during hibernation than during the active period [301]. Furthermore, they observed that 

both phenomena remained unchanged between the beginning and the end of hibernation, indicating 

that protein balance is maintained throughout the hibernation period (Figure 24). Furthermore, protein 

synthesis was greater than protein degradation in summer bear muscles, suggesting that they 

accumulate muscle protein during the season when food is available in abundance [301] (Figure 24). A 

comprehensive transcriptomic analysis in skeletal muscle also showed that bear hibernation results in 

(1) increased expression of genes involved in protein biosynthesis (translation) and ribosome 

biogenesis and (2) decreased expression of genes related to proteolysis in skeletal muscle 

[304,307,329] (Figure 25). Of note, whole-body protein sparing is also supported by transcriptional 

downregulation of genes related to amino acid catabolism in the liver of hibernating bears [305–307] 

(Figure 25). 

Unchanged or decreased levels of circulating urea37 and decreased aminotransferase activities reflect 

low muscle protein mobilisation in bears during winter [289,299,309,330,331]. This is consistent with 

the coordinated downregulation of genes involved in urea production in skeletal muscle, but also in 

the liver during hibernation in bears [304,307]. Furthermore, urea recycling is very efficient in 

hibernating bears, with 99.7% of the urea produced being recycled into protein, which probably limits 

muscle protein degradation [304,307]. The mechanisms remain to be clarified but urea recycling would 

                                                           
37 the main end product of protein catabolism 
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include a role for the gut microbiota in the hydrolysis of urea to ammonia, which would subsequently 

be used for the synthesis of amino acid, in particular glutamine [304,307] (Figure 25). Consistently, an 

increase in blood glutamine is observed in bears during hibernation [310]. 

Finally, hibernating bear muscles show an increase in a transcriptomic signalling mediated by MEF2A, 

contributing to a decrease of the expression of TRIM63/MuRF1 and FBXO32/Atrogin-1 [332] (Figure 

25).  

 

Muscle energy metabolism. Glycolysis is preserved in the skeletal muscle of hibernating bears, as 

suggested by (1) an overall increase in protein abundance of all glycolytic enzymes, (2) an increase in 

muscle lactate dehydrogenase activity and (3) maintenance or reduction of circulating lactate levels 

[303,310,331] (Figure 25). Bear muscles still oxidise glucose and produce lactate during hibernation. 

This could help maintain skeletal muscle functionality in unexpected situations, such as an emergency 

exit from the den that would require a rapid increase in ATP production [308,310]. Glycolysis could be 

fuelled by hepatic gluconeogenesis and mobilisation of muscle glycogen content, which is higher in 

bear muscles in winter compared to summer [310,320] (Figure 25). Together, these studies have led 

some authors to suggest that the Cori cycle38 may be active in bears during hibernation thus 

contributing to muscle protein sparing [298,310] (Figure 25). 

PDK439 is a switch that enables the use of lipid substrates and thus limits the entry of glycolytic 

intermediates into the tricarboxylic acid (TCA) cycle. PDK4 protein is increased in hibernating bears 

muscles [298,310,333], whereas proteins involved in the TCA cycle and β-oxidation are predominantly 

all downregulated in hibernating bear muscles [310,333] (Figure 25). Although lipids are the preferred 

                                                           
38 degradation of glucose into lactate in muscles, then transformation of lactate into glucose, and finally into 
glycogen in liver 
39 pyruvate dehydrogenase kinase isoenzyme 4 

Figure 24. Protein turnover in bear muscles 
in summer, early denning and late denning 
(from Lohuis et al. – 2007 [301]). 
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fuels in winter, bear muscles metabolism is mainly characterised by reduced ATP turnover, so that the 

reduced β-oxidation in muscles during hibernation is due to and/or contributes to the depression of 

metabolic rate [307,310]. 

 

Hormonal/growth factor changes. Cortisol is a glucocorticoid hormone that reduces glucose uptake 

in peripheral tissues and stimulates lipolysis in adipose tissue and skeletal muscle. Elevated cortisol 

levels are observed during hibernation and are associated with reduced (1) protein levels of 

phosphorylated and total AMPK and (2) expression of PGC-1α/PPAR-α40 in skeletal muscle and adipose 

tissue [308] (Figure 25). Low plasma levels of IGF-1 and IGF-2 are also recorded in hibernating bears, 

but the authors suggest that they would be present in a different spatial conformation than in summer 

and therefore more available to tissues such as skeletal muscle [334] (Figure 25). Serum from 

                                                           
40 peroxisome proliferator-activated receptor-gamma coactivator 1/ peroxisome proliferator-activator receptor 

Figure 25. A complex and non-exhaustive overview of the mechanisms identified in bears to save muscle protein 
content during hibernation. 

The words in green, red and black represent respectively the functions/metabolites that are down-regulated, 
up-regulated or unchanged in winter compared to summer. Two-coloured words (e.g. urea, lactate) represent 
discrepancies found in the literature. Words in bold represent metabolic processes (e.g. glycolysis). Words in 
italics represent biological processes regulated at the genetic level. Dashed lines delineate altered intracellular 
mechanisms and pathways in skeletal muscle in winter versus summer. 
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hibernating bears is also enriched in some specific n-3 polyunsaturated fatty acids, including 

docosahexaenoic acid (DHA) [310,335] (see Appendix 10.5). DHA has previously been associated with 

increased muscle glycogen stores and subsequent prevention of muscle atrophy in fasted mice [336]. 

Interestingly, a 3-fold increase in muscle glycogen content is recorded in hibernating bears muscles 

compared to active summer bear muscles, while muscle protein is preserved [310] (Figure 25). 

Antioxidant defences. Most subunits of mitochondrial complexes are downregulated in hibernating 

bear muscles [310,337]. This may be due to reduced mitochondrial content in winter compared to 

summer in bear muscles. In addition, protein levels for UCP341, which limits ROS production [338], are 

increased in bear muscles during hibernation [321,337]. Consistently, increased levels of proteins 

involved in cytosolic antioxidant systems, higher plasma antioxidant capacities and maintenance of the 

GSH/GSSG42 ratio are recorded in bear muscles during hibernation [337,339] (Figure 25). Overall, this 

suggests that bear muscles do not undergo significant oxidative damage in winter and/or that 

antioxidant defence systems remain effective [337]. 

Overall, metabolic adaptations in skeletal muscle (and other tissues such as liver and adipose tissue) 

promote (1) lipid catabolism during hibernation, (2) maintenance of glycolysis, and (3) regulation of 

intracellular pathways that contribute to the preservation of muscle proteins during this period of 

fasting and physical activity. 

 

4.4.5 Circulating antiproteolytic compounds in hibernating bear serum  

The preservation of vital functions of most organs in bears during hibernation, including skeletal 

muscle, has led researchers to speculate that active circulating factors may be responsible for these 

characteristics.  

Rats muscles incubated ex vivo in the presence of hibernating bear serum exhibited a 40% decrease in 

net proteolytic rate compared to the muscles incubated with active bear serum. This inhibition of 

proteolysis was accompanied by a decrease in gene expression of the lysosomal (e.g. cathepsin B) and 

ubiquitin-dependent (e.g. ubiquitin) proteolytic systems. These results showed for the first time that a 

compound present in bear serum during hibernation had an anti-proteolytic property on skeletal 

muscle [340]. Subsequently, our team showed that cultivating primary human myotubes with 

hibernating bear serum favoured an increase in myotubes area compared to summer bear serum [341] 

(Figure 26). This was the first proof of concept that an active compound in bear serum was transmissible 
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to human biological material. We showed that protein turnover in human myotubes was overall 

reduced when incubated with winter bear serum, with both a dramatic inhibition of proteolysis (i.e. 

UPS and ALS) and an average reduction in the rate of protein synthesis [341]. Therefore, winter bear 

serum was able to reproduce in human muscles cells the regulation of protein turnover already 

described in hibernating bears muscles (i.e. lower rate of protein synthesis and degradation). Recently, 

another team confirmed our results with an increase in total protein content in myotubes cultured 

with hibernating bear serum, although they did not observe any alteration in protein anabolism [342].  

Overall, these few studies showed similar results, with hibernating circulating compounds being able 

to induce potent cross-species effects on human or rat muscle cells. It is therefore highly likely that the 

maintenance of muscle mass during hibernation in bears involves one or more circulating factors. The 

identification of these factors will undoubtedly open up a new field of study that will lead to new 

solutions for preventing and/or reversing muscle atrophy in humans. 

 

4.4.6 The ISR and TGF-β superfamily signalling regulation in hibernating mammal 

muscles  

Very few papers have explored the regulation of ISR or TGF-β/BMP signalling in the skeletal muscle of 

hibernating mammals and only one in hibernating bears. 

TGF/BMP signalling. Studies have shown that (1) myostatin protein expression does not change during 

early or late torpor in muscles of thirteen-lined ground squirrels (Spermophilus tridecemlineatus), but 

(2) myostatin and phosphorylated SMAD2 protein levels increase as squirrels emerge from torpor 

[343]. In the latter study, they also observed an increase in phosphorylated SMAD1/5 levels at the 

beginning of hibernation, which returned to normal levels when the squirrels emerged from torpor 

[343]. In the muscles of hibernating little brown bats (Myotis lucifugus), a decrease in myostatin 

Figure 26. Winter bear serum promotes 
hypertrophy in human muscle cells. 

Illustrative immunodetection and corresponding 
quantifcation of myosin heavy chain in cultured 
myotubes winter bear serum (WBS) or summer 
bear serum (SBS) treatment (from Chanon et al., 
2018 [341]).  
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protein expression while an increase in the TGF-β inhibitor SMAD7 protein is observed compared to 

the active animal [344]. Similarly, a decrease in Mstn expression is also recorded in the muscles of 

hibernating ground squirrels (Spermophilus lateralis) [345]. To date, only one study has explored the 

regulation of Mstn expression in hibernating bear muscles and shown that it was lower in muscles at 

den exit compared to summer [321]. 

ATF4 signalling. In hibernating ground squirrels, ATF4 protein expression is strongly increased in 

skeletal muscle, and subcellular localisation studies have shown that ATF4 translocates into the 

nucleus during hibernation, as does its cofactor, the phosphorylated form of CREB-1 [346]. 

Furthermore, in the torpid muscles of the Daurian ground squirrels (Spermophilus dauricus), the levels 

of phosphorylated PERK and eIF2α, as well as ATF4 protein are increased during hibernation, and 

normalised during IBA and the active period [347].  

Overall, these few data suggest that upregulation of ATF4 and downregulation of TGF-β signalling may 

play a role in the coordination of muscle maintenance in small hibernating mammals. However, the 

ability of hibernating bears to preserve skeletal muscle biochemical and performance characteristics 

during prolonged hibernation still needs to be explored with respect to these two signalling pathways. 

 

 

TAKE HOME MESSAGE 

 

(1) Biomimicry is an approach that seeks sustainable solutions to human challenges by 
mimicking nature's patterns and strategies and has enabled significant human biomedical 
advances and progress. 
 
(2) Hibernation, particularly in bears, is of great interest for understanding the mechanisms 
that allow them to cope with prolonged fasting and physical inactivity without deleterious 
effects on the whole body. The hibernating bear, being resistant to muscle atrophy, is an 
interesting model for identifying new biomolecular actors that can possibly be translated to 
human pathophysiology where muscle atrophy is present.  
 
(3) The regulation of TGF-β/BMP and ISR signalling pathway is important for muscle 
homeostasis in rodents and humans, and interesting clues have been found during 
hibernation in the muscles of small hibernators. However no studies have yet explored these 
signalling in the muscles of hibernating bears.  
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5. Objectives and strategies 

 

The main objective of this thesis was to identify new molecular players and their mechanisms that 

could become therapeutic targets to combat muscle atrophy in humans. For this purpose, , we 

adopted a biomimetic approach using the brown bear, which is naturally resistant to muscle atrophy, 

and compared muscle adaptations to those observed in a classical model of sensitivity to atrophy. The 

project has been subdivided into three studies, as follows. 

 

Study 1 Concurrent BMP Signaling Maintenance and TGF-β Signaling Inhibition Is a Hallmark of 

Natural Resistance to Muscle Atrophy in the Hibernating Bear (published paper) 

 

The objectives were to (1) identify the underlying mechanisms implicated in the resistance of muscle 

atrophy although prolonged physical inactivity and (2) determine whether these mechanisms were 

oppositively regulated in a model of susceptibility to atrophy.  

We performed a comparative transcriptomic analysis of the atrophy-resistant muscles of the 

hibernating brown bear and the atrophy-sensitive muscles of the hindlimb-suspended mouse. 

Study 2 Induction of ATF4 atrogenes is uncoupled from disuse-induced muscle atrophy in 

halofuginone-treated mice and in hibernating brown bears (paper under review). 

 

The objectif was to further explore the role of ATF4 signalling in skeletal muscle during basal and 

catabolic conditions.  

KEY POINTS FROM THE LITERATURE: 

 

(1) Muscle atrophy affects millions of people worldwide and despite intensive efforts using 
laboratory rodents models, there is still no easily used therapeuthic or preventive 
treatments.  
 
(2) TGF-β signalling pathway have been extensively targeted for its pro-atrophic role. 
However, little is known about the BMP counterpart, which is promising for fighting muscle 
atrophy. 
 
(3) ISR signalling has a dual and complex role in skeletal muscle homeostasis and needs to be 
further investigated.  
 
(4) Hibernating bears resist muscle atrophy even when faced with long-term fasting and 
physical inactivity. Therefore, the hibernating bear is a promising model to find new avenues 
to fight muscle atrophy in humans. 
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We first developed an experimental protocol for inducing the ATF4 signalling with the pharmacological 

molecule halofuginone (HF) in mice. We then (1) investigated the effect of ATF4 induction on mice 

muscles during basal and hindlimb suspension-induced atrophy conditions and (2) deciphered the HF 

molecular mechanisms in mice muscles. We also investigated the regulation of this pathway in the 

atrophy-resistant muscles of the hibernating brown bear.  

Study 3  Winter bear serum induces similar characteristics in human muscle cells as those found 

naturally in hibernating bear muscles (preliminary results). 

 

Our objective was to determine whether the molecular characteristics of the atrophy-resistant 

muscles of hibernating bears can be reproduced in human muscle cells.  

We first analysed microarray data from human muscle cells cultivated with winter bear serum to assess 

whether there is a TGF-β/BMP signalling transcriptomic signature. We then measured TGF-β/BMP 

signalling transcriptional activity with luciferase reporter assay. 
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6. Study 1: Concurrent BMP Signaling Maintenance and TGF-β 

Signaling Inhibition Is a Hallmark of Natural Resistance to Muscle 

Atrophy in the Hibernating Bear 

6.1  Objective and strategy 

We sought to compare at the genetic level, the changes occurring in muscles between a natural 

model of muscle atrophy resistance, the hibernating brown bear, and a model of susceptibility to 

muscle atrophy, the unloaded mouse. We thus performed muscle RNA sequencing and analysed 

common and different features in these two models to uncover unexplored intracellular mechanisms 

(Figure 27). 

 

6.2 Experimental protocol 

Muscle atrophy-sensitive model. We studied disuse atrophy in the hindlimb-suspended (HS) mice 

model [348]. HS is a method developed in the 1970s, used to mimic space flight and prolonged bed 

rest in humans. The mouse tail is attached to a device that elevates the hindlimb into an unloaded 

position (Figure 28). Unlike cast immobilisation-induced muscle atrophy in rodents, the HS procedure 

does not cause inflammation or fibrosis in muscles [349,350], making it an interesting model to study 

the role of disuse in the induction of muscle atrophy independently of any other parameters.  

Figure 27. Schema of the experimental strategy of study 1. 
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Muscle atrophy-resistance model. The brown bear, remains resistant to muscle atrophy during 

hibernation, although confronted with two strong atrophy inducers (i.e. starvation and physical 

inactivity) (see section 4.4.4). Our laboratory belongs to an international consortium, the Scandinavian 

Brown Bear Research Project (http://bearproject.info/). Our team travels twice a year to Northern 

Sweden to collect biological samples (e.g. muscle, blood) from bears during the hibernation period 

(February) and the active period (June). A team of experienced veterinarians care for the bears under 

anaesthesia and monitor vital signs in the field (Figure 29). Bears are either male or female, from 2 to 3 

years old, just before sexual maturity. The same bears are sampled twice a year using GPS collars. One 

of the disadvantages of using a wild animal is the difficulty of collecting biological samples due to the 

lack of proximity to their living area. Therefore, some periods during the hibernation or the active 

seasons remain unexplored in our analysis. Moreover, commercialized biological reagents (e.g. 

antibodies) do not necessarily react with the cellular components of the bear, and hence, the study of 

some signalling pathways, for example, is challenging.  

 

 

 

 

 

Figure 28. Hindlimb suspension model in laboratory mice. 

In the cages, there are two rails with wheels connected to the tails of the mice allow them to move. This 

system leaves the hind legs free to move without being able to grip. The mice can move with their front 

legs. Their food is underneath the grid. 

http://bearproject.info/
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Figure 29. Pictures from the collection of free-ranging bears samples in the forest of Northern Sweden as part of the 
Brown Bear Research Project. 
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Abstract: Muscle atrophy arises from a multiplicity of physio-pathological situations and has very
detrimental consequences for the whole body. Although knowledge of muscle atrophy mechanisms
keeps growing, there is still no proven treatment to date. This study aimed at identifying new drivers
for muscle atrophy resistance. We selected an innovative approach that compares muscle transcrip-
tome between an original model of natural resistance to muscle atrophy, the hibernating brown bear,
and a classical model of induced atrophy, the unloaded mouse. Using RNA sequencing, we identified
4415 differentially expressed genes, including 1746 up- and 2369 down-regulated genes, in bear mus-
cles between the active versus hibernating period. We focused on the Transforming Growth Factor
(TGF)-β and the Bone Morphogenetic Protein (BMP) pathways, respectively, involved in muscle
mass loss and maintenance. TGF-β- and BMP-related genes were overall down- and up-regulated in
the non-atrophied muscles of the hibernating bear, respectively, and the opposite occurred for the
atrophied muscles of the unloaded mouse. This was further substantiated at the protein level. Our
data suggest TGF-β/BMP balance is crucial for muscle mass maintenance during long-term physical
inactivity in the hibernating bear. Thus, concurrent activation of the BMP pathway may potentiate
TGF-β inhibiting therapies already targeted to prevent muscle atrophy.

Keywords: brown bear hibernation; mouse unloading; muscle atrophy; physical inactivity; RNA
sequencing; TGF-β/BMP signaling
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1. Introduction

Muscle atrophy is defined as a loss of muscle mass and strength and is associated with
adverse health outcomes, such as an autonomy decline and an increase in morbidity and
mortality in many catabolic conditions (e.g., cancer cachexia, heart, and kidney failure, fast-
ing, sepsis, injury, aging, or physical inactivity, etc.) [1–5]. Given the increase in sedentary
behavior and improvement in life expectancy, and with to date still no proven therapeutic
or preventive treatment to date, muscle atrophy remains a major public health issue (World
Health Organization data) [6]. Skeletal muscle tissue represents an important reservoir of
amino acids, which are mobilized during catabolic situations to preserve vital functions,
resulting in an imbalance of contractile protein turnover (i.e., proteolysis exceeding protein
synthesis) [7,8]. Catabolic stimuli (e.g., oxidative stress, endoplasmic reticulum distur-
bances, nutrient shortage, mitochondrial disruptions, etc.) activate a complex network of
intracellular modulators, which in turn lead to the activation of the ubiquitin-proteasome
system (UPS) and autophagy [9,10]. These two main proteolytic systems in muscle tissue
involve a set of genes, i.e., atrogenes, whose expression at the mRNA levels is commonly
altered during atrophy [11]. Cascades of events and players of muscle atrophy are well
described and conserved in mammals [12,13] and include the transforming growth factor-β
(TGF-β) superfamily, with TGF-β signaling acting as a negative regulator, and Bone Mor-
phogenetic Proteins (BMP) signaling as a positive regulator of muscle mass [14]. The TGF-β
pathway mediates muscle atrophy through cytoplasmic and nuclear signaling molecules
SMAD2/3, mainly leading to the expression of the atrogenes TRIM63 (MuRF1) and FBXO32
(atrogin-1) [15]. Constitutive expression of SMAD3 triggers muscle wasting, and inhibition
of SMAD2 and SMAD3 is sufficient to induce muscle growth in vivo [16–19]. Conversely,
the BMP pathway mediates muscle mass maintenance through cytoplasmic and nuclear
signaling molecules SMAD1/5/9, promoting a negative transcriptional regulation for a
ubiquitin ligase required for muscle wasting, FBXO30 (MUSA1) [20], and increasing the
expression of BMP receptors activity in muscles induced hypertrophy through Smad1/5-
mediated activation of mTOR signaling [21].

Hibernating bears (Ursidae family) are naturally resistant to muscle atrophy when
facing the two major atrophic inducers, prolonged fasting and physical inactivity up to
5–7 months [22,23]. Conversely and during a shorter period, a loss of muscle mass and
volume prevails in rodent models [24–29] and humans [4,5]. As in rodent models, the mus-
cles of the active bear are sensitive to disuse after denervation, whereas the muscles of
the hibernating brown bear (Ursus arctos) are resistant [30]. The hibernating brown bear,
therefore, appears as a suitable model to study the underlying mechanisms of muscle mass
maintenance [31]. How it withstands muscle loss in conditions where muscle atrophy is
expected in non-hibernating mammals remains to be fully elucidated. However, several hy-
potheses can be raised; our recent analysis of muscle proteome in the hibernating brown
bear revealed the maintenance of glycolysis and a turning down of ATP turnover [32].
In addition, we reported (i) a myogenic microRNA signature prone to promoting muscle
regeneration and suppressing ubiquitin ligase expression in bear muscle during winter [33],
as well as (ii) limited levels of oxidative stress [34]. To unravel the molecular basis of muscle
maintenance at the mRNA level, the bear muscle transcriptome has already been explored
using cDNA microarrays [35] or RNA sequencing [36,37]. These two transcriptomic stud-
ies suggested an overall reduction in energy and protein metabolism, consistent with
metabolic suppression and lower energy demand in skeletal muscle during hibernation.
Although these studies focused on the changes in bear muscle transcriptome during the
hibernating versus active period, our study aimed to compare them with those that occur
in the muscle transcriptome of disuse-induced atrophy in a mouse model. The rationale for
such a comparative analysis of two contrasted situations of muscle atrophy or maintenance
lies in the identification of potential new candidates, beyond already reported metabolic
factors [35–37], that may help the hibernating bear resist atrophy, thereby providing new
targets for fighting muscle atrophy in humans. Among the transcription factors involved
in the regulation of the differentially expressed genes highlighted in bear muscle between
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the hibernation and active periods, eight were involved in the regulation of the TGF-β
superfamily. We therefore subsequently focused on an in-depth analysis of the TGF-β and
BMP intracellular pathways.

2. Materials and Methods
2.1. Animal Experiments
2.1.1. Bear Sample Collection

Biopsies from the vastus lateralis muscle were collected from 17 free-ranging brown
bears, 2–3 years old (Ursus arctos; 11 females and 6 males), from Dalarna and Gävleborg
counties, Sweden, from 2014 to 2019 (Table S6). The samples were immediately frozen
on dry ice until storage at −80 ◦C. In a given year, the same bears were captured during
winter hibernation (February) and recaptured during their active period (June). The study
was approved by the Swedish Ethical Committee on Animal Experiment (applications Dnr
C3/2016 and Dnr C18/2015), the Swedish Environmental Protection Agency (NV-0741-18),
and the Swedish Board of Agriculture (Dnr 5.2.18–3060/17). All procedures complied
with Swedish laws and regulations. Capture, anesthesia, and sampling were carried out
according to an established biomedical protocol [38].

2.1.2. Mouse Model of Hindlimb Unloading

Our objective was to compare the muscle transcriptome of the hibernating bear with
that in a rodent model of long-term physical inactivity. We chose the 10-day mouse
model of unloading as an established disuse-atrophy model, with atrophic pathways still
activated [28,39]. All experiments were conducted with the approval of the regional ethics
committee (agreement n◦ D6334515) following the European Directive 2010/63/EU on the
protection of vertebrate animals used for experimental and scientific purposes. This study
was performed with 12 C57BL6/J adult male mice purchased from Janvier Labs (Le Genest-
Saint-Isle, France). They were housed by pairs upon arrival in a polycarbonate cage in a
controlled room (22± 2 ◦C, 60%± 5% humidity, 12 h light/dark cycle, light period starting
at 8 h), fed ad libitum, and given free access to water.

After 10 days of acclimatization, the mice were either kept unsuspended (Control,
n = 6) or subjected to hindlimb unloading through tail suspension (Unloaded, n = 6)
for 10 days. Custom tail suspension cages were adapted from previous studies [40,41].
The cages (43 × 29 × 24 cm) have an overhead frame to which two suspension systems are
fixed in parallel on the width of the cage. These suspension systems are widely spaced
in a cage so that mice can always be housed in pairs without touching each other. Un-
loaded mice had a metal ring attached near the base of their tails using surgical adhesive
tape. This ring was then attached to a swivel that allowed a 360-degree rotation and was at-
tached on a rail that covered the upper width of the cage. The height of the swivel has been
adjusted to keep the mouse at an angle of about 30◦ from the head so that the hindlimbs
could not touch the ground or the walls. During the 10 days of unloading, mice showed
only a very small body weight loss (<7%) that occurred within the first 3 days, with no
change in food intake. At the end of the experiment, soleus muscles were rapidly dissected
out and immediately frozen in liquid nitrogen and stored at −80 ◦C until analyses. As for
the data used from the RNA sequencing of Zhang et al. [42], the soleus muscle atrophied
by 37% (from 7.24 ± 0.27 mg in control mice to 4.58 ± 0.31 mg in unloaded mice, p < 0.001
according to the unpaired Student’s t-test).

2.2. RNA Sequencing of Brown Bear Muscle
2.2.1. RNA Isolation

Total RNA from bear muscles was isolated as described [43]. Briefly, muscle RNA
from six bears (paired samples collected in summer and winter in a given year for the same
individual) was extracted using TRIzol reagent (Invitrogen, Courtaboeuf, France).
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2.2.2. Illumina RNA Sequencing, Data Assembly, Statistical Analysis

We constructed RNA-Seq libraries with the Truseq stranded mRNA sample prepa-
ration kit from Illumina and sequenced them in two lanes on an Illumina HiSeq2500
(single-end, 50 bp, six libraries per lane). Image analyses and base calling were per-
formed using the HiSeq Control Software (v2.2.70, Illumina, San Diego, CA, USA) and
Real-Time Analysis component (v1.18.66.4, Illumina, San Diego, CA, USA). Demultiplex-
ing was performed using Illumina’s conversion software (bcl2fastq 2.20). The quality of
the raw data were assessed using FastQC from the Babraham Institute and the Illumina
software SAV (Sequencing Analysis Viewer, Illumina, San Diego, CA, USA). A splice junc-
tion mapper, TopHat 2.1.1 [44] (using Bowtie 2.3.5.1 [45], Johns Hopkins University, MD,
USA), was used to align the RNA-Seq reads to the Ursus arctos genome (GCA_003584765.1
ASM358476v1 assembly downloaded from NCBI) with a set of gene model annotations
(GCF_003584765.1_ASM358476v1_genomic.gff downloaded on 17 June 2019, from NCBI).
Final read alignments having more than three mismatches were discarded. Samtools (v1.9)
(http://samtools.sourceforge.net) was used to sort the alignment files. Then, the gene quan-
tification was performed with Featurecounts 1.6.2 (http://subread.sourceforge.net/) [46].
As the data were from a strand-specific assay, the read had to be mapped to the opposite
strand of the gene (-s 2 option). Before statistical analysis, genes with less than 30 reads
(cumulating over all the analyzed samples) were filtered out. Differentially expressed
genes were identified using the Bioconductor(https://bioconductor.org/) [47] package
DESeq2 1.26.0 [48] (R version 3.6.1 https://www.r-project.org/). Data were normalized
using the DESeq2(https://bioconductor.org/packages/release/bioc/html/DESeq2.html,
accessed on 16 June 2021) normalization method. Genes with an adjusted p-value below
5% (according to the Benjamini–Hochberg procedure that controls the FDR) were declared
differentially expressed.

2.2.3. Functional and Pathway Enrichment Analysis

Hierarchical clustering of bear transcriptomic data (log-transformed) was performed
using Cluster v3.0 software (University of Tokyo, Tokyo, Japan) from the 13531 reads [49].
Parameters were set as follows: median centering and normalization of genes for ad-
justing data and centroid linkage clustering for both genes and arrays. Dendrograms
were generated and viewed using the Java Treeview v1.3.3 program (Alok Saldanha, Stan-
ford University, Stanford, CA, USA) [50]. To identify the differentially expressed genes
(DEGs), we selected a fold change (FC) Winter/Summer >|1.3| or <|0.77| and an adjusted
p-value < |0.01| as cut-off standards, for the up- and down-regulated genes, respectively.
Visualization of functional enrichment was performed using Metascape [51], a web-based
portal for visualizing the inference of enriched biological pathways among the DEGs.
For the given DEGs gene list, pathway and process enrichment analysis has been car-
ried out with the following ontology sources: KEGG Pathway, GO Biological Processes,
Reactome Gene Sets, Canonical Pathways, CORUM, TRRUST, DisGeNET, PaGenBase,
Transcription Factor Targets, WikiPathways, PANTHER Pathway, and COVID. All genes in
the genome have been used as the enrichment background. Terms with a p-value < 0.01,
a minimum count of 3, and an enrichment factor >1.5 (the enrichment factor is the ratio
between the observed counts and the counts expected by chance) are collected and grouped
into clusters based on their membership similarities. More specifically, p-values are calcu-
lated based on the accumulative hypergeometric distribution, and q-values are calculated
using the Benjamini–Hochberg procedure to account for multiple testings. Kappa scores
are used as the similarity metric when performing hierachical clustering on the enriched
terms, and sub-trees with a similarity of >0.3 are considered a cluster. The most statistically
significant term within a cluster is chosen to represent the cluster. The 10 top-score enrich-
ment terms from that analysis are shown in Figure 1b,c, and the 10 top-score enrichment
transcription factors regulating the DEGs are shown in Figure 1d. The heat map represent-
ing the expression changes of the TGF-β/BMP gene sets in bear versus mouse muscles was
made using the Pheatmap package (R 1.4.1106, University of Tartu, Tartu, Estonia). Briefly,
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the gene hierarchical clustering is based on Euclidean distance calculated from the log2FC
value (Winter/Summer and Unloaded/Control for bear and mouse muscles, respectively).

Figure 1. Deep changes in brown bear muscle transcriptome during hibernation. (a) Heatmap from brown bear muscle (vastus
lateralis) transcripts (n = 6 bears/season, the same individuals were sampled and analyzed in summer and winter); red indicates
high and green indicates low expression level of the 13531 genes. (b) Graph representing the 10 top-score of significantly enriched
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terms in winter compared to summer, from the 1746 up-regulated differentially expressed genes (DEGs) (FC W/S >|1.3|
and padj < |0.01|) or (c) from the 2369 down-regulated DEGs (FC W/S < |0.77| and padj < |0.01|; Table S1). The color
code for the functional cluster is indicated in the respective graphs, and the bold numbers in the different bars represent the
numbers of DEGs found in the enriched terms. (d) Graph representing the 10 top-score of transcription factors involved in
DEGs regulation from “Formation of a pool of free 40S subunits” and “Extracellular matrix organization” enriched terms.
The bold TFs are involved in TGF-β superfamily regulation.

2.3. Transcriptomic Data Assembly and Statistical Analysis of Mouse Muscle

We used transcriptomic data from an already published study [42]. Briefly, in this
study, C57BL6/J adult male mice were either kept unsuspended (Control, n = 4) or subjected
to hindlimb unloading through tail suspension (Unloaded, n = 4) for 10 days. The fastq files
of eight soleus muscles were downloaded from GEO (GSE102284). A splice junction map-
per, TopHat 2.1.1(Johns Hopkins University, MD, USA) [44], was used to align the RNA-Seq
reads to the mouse genome (UCSC mm10) with a set of gene model annotations (genes.gtf
downloaded from UCSC on 29 October 2019; GeneIDs come from the NCBI gene2refseq
file). Final read alignments having more than three mismatches were discarded. Samtools
(v1.9, http://www.htslib.org/) was used to sort the alignment files. Then, the gene quan-
tification was performed with Featurecounts 2.0.0 (http://subread.sourceforge.net/) [46].
As the data were from a strand-specific assay, the read had to be mapped to the opposite
strand of the gene (-s 2 option). Before statistical analysis, genes with less than 20 reads
(cumulating all the analyzed samples) were filtered out. Differentially expressed genes
were identified using the Bioconductor [47] package DESeq2 1.26.0 [48] as previously
described (cf. 2.2.2).

2.4. Western Blot

Vastus lateralis muscles from eleven bears (paired samples collected in summer and
winter in a given year for the same individual; Table S6) and soleus muscles from 10-days
control or unloaded mice (n = 6/group) (~30 mg) were used. Samples were homoge-
nized using a polytron in 1 mL of an ice-cold buffer (10 mM Tris pH 7.5, 150 mM NaCl,
1 mM EDTA, 1 mM EGTA, 1% Triton X-100, 0.5% Igepal CA630) containing inhibitors of
proteases (Protease Inhibitor Cocktail) and phosphatases (1 mM Na3VO3, 10 mM NaF)
(Sigma, Saint-Quentin-Fallavier, France). The homogenates were stirred for 1 h at 4 ◦C
and then centrifuged at 10,000 g for 15 min at 4 ◦C. The resulting supernatants were
then stored at −80 ◦C until use. The concentration of proteins was determined using
the Bradford Protein Assay Kit (Biorad, Marnes-la-Coquette, France). Proteins were then
diluted in Laemmli buffer and stored at −80 ◦C until use. Protein extracts were subjected
to SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) using TGX™
FastCast™ 10% Acrylamide gels (Biorad, Marnes-la-Coquette, France) and transferred onto
a PVDF membrane (Hybond P, Amersham, England). Blots were blocked for 1 h at room
temperature with 5% bovine serum albumin in TBS buffer with 0.1% Tween-20 (TBS-T,
pH = 7.8), then washed thrice in TBS-T and incubated (overnight, stirring, 4 ◦C) with
appropriated primary antibodies against SMAD1/5 (PA5-80036, Thermo Fisher, Illkirch,
France), SMAD2/3 (#8685, Cell Signaling Technology, Saint-Cyr-L’Ecole, France), SMAD4
(ab230815), CTGF (ab227180), and GDF5 (ab137698) (Abcam, Cambridge, United Kingdom).
Blots were then washed and incubated for 1 h with an appropriate secondary horseradish
peroxidase-conjugated antibody at room temperature. Signals were detected after incuba-
tion with Luminata Crescendo Western HRP substrate (Millipore, Burlington, MA, USA)
and visualized using G: BOX ChemiXT4 (XL1) imaging system (Syngene, Frederick, MD,
USA). Signals were then quantified using the GeneTools software (Syngene, Cambridge,
UK) and normalized against the total amount of proteins determined by TGX signals to
correct for uneven loading. Protein data were presented as individual values. The bilateral
ratio paired Student’s t-test was used to compare the muscles of bears during summer
and winter (S and W, respectively). For muscles of control and unloaded mice (C and U,
respectively), statistical significance was determined using the bilateral unpaired Student’s
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t-test. Statistical analysis was performed using Prism 8 (GraphPad Prism 9, San Diego,
CA, USA).

3. Results
3.1. Deep Changes in Brown Bear Muscle Transcriptome during Hibernation

The brown bear transcriptome data set revealed that, from 13531 transcripts com-
monly identified in all individuals, gene expression differed markedly between summer
and winter (Figure 1a). We identified 4115 differentially expressed genes (DEGs) between
muscles of the active and hibernating bear with mainly down-regulated genes (Table S1).
The 10 top-score obtained from an annotation enrichment analysis performed from the
down- and up-regulated DEGs highlighted several significant enriched terms regulated
differentially in bear muscles between the two seasons (Figure 1b,c). For instance, the
protein metabolism functional cluster was the most up-regulated in bear muscles in winter
compared to summer, with “Formation of a pool of free 40S subunits”, “Ribonucleoprotein
complex biogenesis”, or “Translation” enriched terms (Figure 1b). In addition, the tissue
structure remodeling functional cluster was the most down-regulated in muscles of the
hibernating versus active bear, with “Extracellular matrix organization”, “Cell-substrate
adhesion”, or “Supramolecular fiber organization” enriched terms (Figure 1c). We then
run a transcriptional regulatory network analysis to identify transcription factors (TFs)
involved in the DEGs regulation from the two most differentially enriched terms between
the two seasons (e.g., “Formation of a pool of free 40S subunits” and “Extracellular ma-
trix organization”) (Figure 1d). We found that SP1 was the TF the most involved in the
DEGs regulation, as well as others TFs such as SP3, NFKB1, JUN, RELA, TFAP2A, ETS1,
or SMAD4. Interestingly, these TFs cited above are all involved in the regulation or signal
transduction of the TGF-β superfamily [52–54]. We therefore decided to focus on that
superfamily, including (i) TGF-β signaling, which is a master regulator of the extracellu-
lar matrix organization and also involved in muscle mass loss, and (ii) BMP signaling,
which has recently been discovered to be involved in muscle mass maintenance [20].

3.2. Hibernation Induces a Transcriptional Shift from the TGF-β to the BMP Pathway

From a thorough analysis of the literature [55–57], we have drawn up a list of the
actors and regulators of the TGF-β superfamily. We then analyzed precisely how they were
regulated at the mRNA level in the muscles of the hibernating bear between the winter
and summer seasons.

The expression levels of two main TGF-β ligands, INHBA and MSTN, were dramat-
ically lower (Fold change (FC) = 0.28 and 0.52, respectively) in winter, whereas INHBB
expression was higher (FC = 1.85) (Figure 2, Tables S2 and S3). In BMP signaling, the main
ligand described in muscle mass maintenance, GDF5, showed higher levels (FC = 2.5) in
hibernating bear muscles compared to active muscles. Extracellular actors inhibiting (KCP,
DCN, MGP, NOV, or CHRD) or promoting (CCN2 or BMPER) TGF-β and/or BMP signals
were mainly down-regulated in winter compared to summer. Receptors from the TGF-β
signaling were differentially expressed during hibernation, with ACVR1C and TGBBR2
levels being considerably lower (FC = 0.28 and 0.80, respectively) in winter compared to
summer, whereas TGFBR1 and ACVR1B were higher (FC = 1.42 and 1.47, respectively).
The GDF5 receptor, BMPR1B, was higher in winter compared to summer (FC = 1.37).
The co-receptors that control intensity and specificity of the downstream TGF-β/BMP sig-
naling were mainly down-regulated or unchanged in winter for both pathways, except for
MUSK, an important BMP co-receptor in muscle cells, which was up-regulated (FC = 2.39).
Overall, actors involved in the initiation of the TGF-β signal were mainly repressed while
those driving the BMP signal were increased.
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Figure 2. Deep transcriptomic reprogramming of TGF-β and BMP pathways in muscle during brown bear hibernation.
Scheme showing brown bear vastus lateralis muscle transcripts involved in TGF-β and BMP signaling and depicting
(i) their relationships [55–57] and (ii) the difference in their expression levels between hibernation and activity periods.
Red and green boxes indicate, respectively up- and down-regulated genes during hibernation compared to the summer
season, and white boxes indicate unchanged genes. Target genes of the TGF and BMP pathways are indicated in italic
and are in green when down-regulated, in red when up-regulated, and in black when unchanged. Dashed lines show the
SMAD-independent pathway and full lines the canonical signaling pathway. Arrows indicate activation, and⊥ bars indicate
inhibition. (n = 6 bears/season, the same individuals were sampled and analyzed in summer and winter, padj < |0.05|;
Tables S2 and S3). ECAg: Extracellular Agonist, ECAn: Extracellular Antagonist, L: Ligand, Co-R: Co-Receptor, RII: Receptor
type II, RI: Receptor type I, TA: Transcriptional Activator, TR: Transcriptional Repressor, SBEs: SMAD Binding Element.
Created with BioRender.com.

For TGF-β signaling, intracellular inhibitors such as ERBIN, LDLRAD4, EIF3I, STK17B,
and PP2CA were up-regulated in winter bear muscles (FC = 1.26, 1.50, 1.37, 1.86, and 1.56,
respectively), whereas some of the actors promoting the signal were lower expressed,
i.e., DAB2 and TRAP1 (FC = 0.50 and 0.63, respectively). By contrast, for BMP signaling,
intracellular inhibitors were mainly lower expressed in muscles of the hibernating bear,
such as CTDNEP1, FKBP1A (FC = 0.70 and 0.67, respectively). Regarding the intracel-
lular actors triggering TGF-β/BMP signaling, SMAD3 (TGF-β signaling; FC = 0.76) was
less expressed, SMAD1 and SMAD5 (BMP signaling; FC = 1.99 and 1.30, respectively),
and SMAD4 (common to TGF-β and BMP signaling; FC = 1.34) were more expressed in
muscles of the hibernating bear compared to the active one. Thus, expression changes of
the intracellular actors again suggest repression of TGF-β signaling but maintenance of the
BMP signaling.

For nuclear components, transcriptional activators were either up- (FOXO3 and SP3,
FC = 1.68 and 1.70) or down-regulated (e.g., KAT2B, ATF3 and ETS1, FC = 0.55, 0.46,
and 0.54) for TGF-β, whereas mainly up-regulated in winter for BMP with YAP1, ZC-
CHC12, and HOXC8 (FC = 1.63, 2.21, and 2.46, respectively). Conversely, the transcrip-
tional repressors were mainly up-regulated for the TGF-β pathway, i.e., TRIM33, YAP1, and
SIRT1 (FC = 1.60, 1.63, and 1.82, respectively), whereas unchanged or lower expressed, i.e.,
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TOB1 (FC = 0.78) for BMP during hibernation. Considering TGF-β target genes, an overall
down-regulation was observed in winter compared to summer, as highlighted for the differ-
ent collagen isoforms or the multiple metalloproteinases COL1A1/2 (FC = 0.04 and 0.07),
COL3A1 (FC = 0.06), COL5A2 (FC = 0.28), COL6A1/3 (FC = 0.22 and 0.20), COL14A1
(FC = 0.14), and MMP2/14 (FC = 0.33 and 0.46) (Figure 2 and Table S2). For BMP target
genes, it was less contrasted, with either an unchanged (e.g., RUNX2 or ID4), down-
regulated (e.g., ID1 or ID2, FC = 0.31 and 0.65), or up-regulated expression (RGS4 or KLF10,
FC = 1.72 and 1.32) during hibernation, with RGS4 being a muscle-specific gene. Overall,
this supports a general down-regulation of the transcriptional activity that drives TGF-β
signaling, with possible maintenance of that for BMP signaling.

Finally, TGF-β and BMP signaling also use a shared SMAD-independent pathway,
involving a branch of the MAPK (Mitogen-Activated Protein Kinase) pathway [58]. In this
pathway, the expression of TRAF6 and its downstream actor MAP3K7 were higher in
muscles of the hibernating bear compared to the active one (FC = 1.78 and 1.60, respectively).
Some of the TRAF6 downstream actors, including MEF2A and MEF2C, which are key
muscle transcription factors, were as well up-regulated (FC = 1.89 and 2.23) in winter
compared to summer bear muscles (Figure 2).

TGF-β and BMP signaling pathways are tightly regulated by several UPS mem-
bers, such as E3 ubiquitin ligases (E3s) and deubiquitinating enzymes (DUB) [55,59].
TGF-β inhibitors localized from the receptors to the nucleus level were up-regulated in
winter, such as for CUL1 (FC = 1.85), NEDD4L (FC = 1.63), and TRIM33 (FC = 1.60), the lat-
ter being also a positive regulator of BMP signal transduction (Figure 3 and Table S4).
SMURF1, an E3 ligase inhibiting both TGF-β and BMP signaling, was also up-regulated
(FC = 1.64) in muscles of the hibernating bear. For UPS activators of the TGF-β signaling
pathway alone, several DUBs were up-regulated in winter, e.g., UCHL5, USP11, and USP4
(FC = 1.78, 1.77, and 1.37, respectively), the latter also promoting BMP signaling, and others
were down-regulated such as for USP15 and TRAF4 (FC = 0.52 and 0.47). The TGF-β and
BMP pathways regulate the transcription of some muscle-specific E3s (TRIM63, FBXO32,
and FBXO30). None of them were differentially expressed in winter compared to summer
(Figure 3 and Table S4).

Overall, this wide transcriptomic analysis highlighted a winter transcriptional pattern
in muscles of the brown bear that was prone to shutting down TGF-β signaling while
maintaining or even over-activating the BMP pathway.

3.3. Divergent Regulation of TGF-β and BMP Pathways in Atrophy-Resistant Muscles of the
Hibernating Brown Bear versus Atrophied Muscles of the Unloaded Mouse

We compared the above-described brown bear muscle transcriptome to published
transcriptomic data from a model of long-term physical inactivity in mice induced by
10 days of unloading, where the soleus muscle mass decreased by ~30% [42]. Comparing
the two models, the muscle transcriptomic profiles appeared very different for selected gene
expression related to TGF-β and BMP signaling pathways (Figure S1 and Tables S2–S4).
Of note, gene expressions of TGF-β and BMP ligands were mainly differently regulated,
as particularly evidenced for GDF5, which was up-regulated during bear hibernation,
but down-regulated during unloading in the mouse model (FC = 0.18), and as well with
MSTN strongly down-regulated during bear hibernation but unchanged in unloaded
mouse muscles (FC = 1.57) (Figure 4a and Tables S2 and S3). Regarding receptor expressions,
the two models responded quite similarly (Figure 4b and Tables S2 and S3), with three
notable exceptions. Firstly, the gene expression of ACRV1C did not change in muscles
of the unloaded mouse, unlike muscles of the hibernating bear, where a strong down-
regulation occurred (FC = 1.11 and 0.28, respectively), what we also observed with the gene
expression of TGFBR2 (FC = 1.08 and 0.80, respectively). Secondly, the gene expression
of BMPR1B, GDF5 receptor, was up-regulated in muscles of the hibernating bear but was
down-regulated in muscles of the unloaded mouse (FC = 0.66) (Figure 4b). The intracellular
actors SMAD3, SMAD4, and SMAD1 were regulated similarly by bear hibernation or
mouse unloading, although not to the same extent (FC = 0.73, 1.10, and 1.50, respectively).
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However, SMAD2 was up-regulated (FC = 1.24), and SMAD5 and SMAD9 remained
unchanged only in the muscles of the unloaded mouse (Figure 4c).

Figure 3. A transcriptomic reprogramming of UPS components involved in TGF-β and BMP regulation prevails in muscle
during brown bear hibernation. Scheme showing the E3s/DUBs enzymes regulation of brown bear vastus lateralis muscle
transcripts involved in TGF-β and BMP signaling pathways and depicting (i) their relationships [12,60] and (ii) the difference
in their expression levels between hibernation and activity periods. Red and green boxes indicate, respectively up- down-
regulated genes during hibernation compared to the summer season, and white boxes indicate unchanged genes. Dashed
lines show the SMAD-independent pathway and full lines the canonical signaling. Arrows indicate activation and bars
inhibition. (n = 6 bears/season, the same individuals were sampled and analyzed in summer and winter, padj < |0.05|;
Table S4). SBEs: SMAD Binding Elements. Created with BioRender.com.
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Figure 4. The gene expression pattern of TGF-β and BMP components is different in brown bear muscle resistant to atrophy
during hibernation compared to atrophied muscles of the unloaded mouse. Genes expression level in vastus lateralis muscle of
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active and hibernating brown bears (n = 6 bears/season, the same individuals were sampled and analyzed in summer
and winter, log2FC Winter/Summer, dotted white bars) and in soleus muscle of control and unloaded mice (n = 4
mice per condition, log2FC Unloaded/Control, gray bars). The depicted genes were categorized as TGF-β and BMP
(a) ligands, (b) receptors, and (c) intracellular actors. Data are expressed as log2FC ± lfcSE. Statistical significance is shown
(* padj < |0.05|; ** padj < |0.01|; *** padj < |0.001|).

Regarding the E3s and DUB enzymes involved in the BMP pathway alone (Figure 5
upper panel), NEDD4 was similarly up-regulated in both models (FC = 1.63 and 1.28,
respectively in bear and mouse), whereas FBXO30 (FC = 0.82) was down-regulated only
in muscles of the unloaded mouse (Figure 5 and Table S4). The enzymes involved in the
regulation of both TGF-β/BMP signaling were mainly up- or down-regulated in muscles
of the hibernating bear but were mainly unaffected in unloaded mouse muscles (Figure 5
middle panel, Table S4). Finally, the E3s/DUB involved only in TGF-β signaling regulation
were for half of them commonly unchanged or up-regulated, e.g., CUL1, UCHL5 or
NEDD4L (FC = 1.17, 1.30 or 2.38, respectively), and for the other half oppositely regulated,
e.g., SMURF2, CBLB, or TRIM62 (FC = 0.81, 1.50, and 1.97, respectively) in muscles of
the unloaded mouse compared to muscles of the hibernating bear (Figure 5 lower panel
and Table S4).

Overall, TGF-β and BMP signaling pathways were differentially regulated between
atrophy-resistant muscles of the hibernating bear and atrophy-sensitive muscles of the
unloaded mouse.

3.4. Hibernation Induces Changes in TGF-β and BMP Pathway Components at the Protein Level

To further compare these models of resistance and vulnerability to atrophy, we ex-
plored the protein levels of the SMAD intracellular actors. In the brown bear muscle,
we observed a tendency to decrease for SMAD2 protein levels (p = 0.09) in winter com-
pared to summer, whereas SMAD3 levels remained quite similar between the two seasons
(Figure 6a,c,d). Protein levels of SMAD4 were higher in muscles of the hibernating bear
compared to the active one (Figure 6a,e), but the converse was observed for SMAD1/5
(Figure 6a,f). As for mRNA, these SMAD proteins did not follow the same regulation
pattern in muscles of the unloaded mouse, where none changed at the protein level
(Figure 6b–f). The protein levels of CCN2, a TGF-β target gene that is also an extracellular
activator of the TGF-β pathway and an inhibitor of the BMP pathway, were strongly lower
in winter bear muscles but were unaffected in unloaded mouse muscles (Figure 6a,b,g).
Finally, the protein levels for GDF5, a BMP ligand, remained unchanged in both muscles
from the hibernating bear and the unloaded mouse (Figure 6a,b,h).
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Figure 5. The gene expression pattern of muscle E3s/DUB enzymes involved in TGF-β and BMP pathway regulation differed
in the atrophy-resistant brown bear muscle during hibernation compared to the atrophied muscle of the unloaded mouse.
Genes expression level (a) in vastus lateralis muscle of active and hibernating brown bears (n = 6 bears/season, the same
individuals were sampled and analyzed in summer and winter, log2FC Winter/Summer, dotted white bars), and (b) in soleus
muscle of control and unloaded mice (n = 4 mice per condition, log2FC Unloaded/Control, gray bars). Data are expressed as
log2FC± lfcSE. Statistical significance is shown (* padj < |0.05|; ** padj < |0.01|; *** padj < |0.001|).

Figure 6. Cont.
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Figure 6. Hibernation induces changes in TGF-β and BMP components at protein level. Protein levels for total SMAD2/3,
SMAD1/5, SMAD4, CCN2, and GDF5 were assessed by Western blots (a) in the vastus lateralis muscle of brown bears
during summer (S) and winter (W) and (b) in the soleus muscle of control (C) and unloaded mice (U). Representative
western blots are shown for three couples of bears and mice. (c–h). Data are presented as individuals’ values with mean
bars (n = 11 bears/season, the same individuals were sampled and analyzed in summer and winter, and n = 6 mice per
condition). Gray and black dots are for muscles of bears, in summer and winter, respectively, and gray and black triangles
are for control and unloaded muscle of mice, respectively.
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4. Discussion

Although basic knowledge regarding the underlying mechanisms of muscle atrophy
is continuously growing, essentially from rodent models and clinical studies in humans,
there are still no efficient therapeutic strategies for its prevention and treatment. To explore
new avenues, we compared a model of muscle atrophy resistance, the hibernating brown
bear [23], and a mouse model of disuse-induced muscle atrophy [42]. Therefore, we ana-
lyzed the bear muscle transcriptome and identified sweeping changes in gene expression
between the summer-active period and the winter-hibernating period, and we compared
them with transcriptomic data from muscles of the unloaded mouse.

Whereas the loss of muscle mass during inactivity is often associated with a decrease
in muscle protein synthesis [42,61–63], we reported here that genes implicated in protein
metabolism were mainly up-regulated in muscles of the hibernating bear. This is consis-
tent with previous studies that linked muscle atrophy resistance during hibernation to
induction of protein translation [35,36,64]. Under activation of FOXOs transcription factors,
atrogenes involved in both autophagy and UPS pathways are enhanced in rodents [65–67].
These atrogenes (e.g., MAP1LC3A, FBXO32, and ZFAND5) were indeed up-regulated or
maintained in the unloaded mouse model but down-regulated or unchanged in muscles of
the hibernating bear (Table S5). In agreement with previous studies, our data confirmed
that proteolytic actors were up-regulated in disuse-induced muscle atrophy in rodents [11]
but not in the bear model of muscle atrophy resistance [36]. Despite discrepancies between
bear and mouse models (e.g., fed status, torpor vs. hindlimb muscle disuse), both dis-
play similar pathways controlling skeletal muscle mass and protein balance. For instance,
the TGF-β signaling pathway has been reported to be evolutionarily conserved among
several species, from Caenorhabditis elegans and Drosophila melanogaster to Mus musculus [68].
In addition, both models are responsive to denervation-induced atrophy when in active
conditions [20,30]. We performed our analyses on the fast-twitch vastus lateralis muscle for
the brown bear and the slow-twitch soleus muscle for the mouse. Thus, we cannot exclude
the possibility that the differences recorded here between the models may partly have
resulted from the specific nature of these muscles concerning their metabolic and contractile
properties. However, it is noteworthy that, although fast-twitch muscles are not as sensitive
to physical inactivity as slow-twitch muscles, both types of muscles atrophied in classical
models of long-term physical inactivity in rodents [25,29,39,69,70] and humans [71–73].
Despite this difference in metabolic and contractile properties, a general down-regulation
of genes involved in extracellular matrix (ECM) structure organization was observed in
atrophied muscles from the unloaded mouse and atrophy-resistant muscles from the hiber-
nating brown bear (Figure 1 and Table S2). This ECM structure remodeling is a common
feature of other atrophic models reported during dystrophic diseases [74] or muscle disuse
in rodents or humans [26,69,75–77].

TGF-β is currently of major interest within the field of skeletal muscle biology. In-
deed, the gene disruption of two of its ligands Myostatin (MSTN) or Activin A (INHBA),
and the inhibition of their shared receptor ActRIIB (ACVR2B) promote a profound muscle
hypertrophy phenotype in various conditions and species [78–81]. On the contrary, over-
expression of MSTN or INHBA leads to the recruitment and phosphorylation of SMAD2-3,
triggering an atrophic transcriptional program [16,17,82–84]. Here, we reported that the
expression levels of both ligands MSTN and INHBA were lower only in muscles of the
hibernating bear. In addition, ACVR2B and SMAD2 mRNA levels were up-regulated in
muscles of the unloaded mouse whereas maintained in muscles of the hibernating bear.
At the protein level, SMAD2 was maintained in the muscles of the unloaded mouse and
showed a tendency to decrease in muscles of the hibernating bear. However, despite ex-
tensive efforts and numerous antibodies tested, we could not characterize the SMADs
phosphorylation status in bear muscles, which thus remains to be defined.

One TGF-β target gene, CCN2 (also known as CTGF), is an ECM protein associated
with fibrotic activity that is up-regulated in several muscle chronic disorders (i.e., Duchenne
muscular dystrophy or the amyotrophic lateral sclerosis) [85]. CCN2 is one of the main



Cells 2021, 10, 1873 16 of 22

pro-fibrotic cytokines acting downstream of TGF-β signaling and can amplify its effects
through enhancement of TGF-β ligand-receptor binding [85–90]. Inhibition of CCN2 gene
expression reduced fibrosis and improved muscle and locomotor performance in a rodent
model of amyotrophic lateral sclerosis [86]. During unloading, mRNA and protein levels
of CCN2 were unchanged in the muscles of the unloaded mouse but were strongly lower
in the muscles of the hibernating brown bear. Taken together, our data strongly suggest
that TGF-β signaling is overall inhibited only in muscles resistant to atrophy during
bear hibernation.

The BMP pathway is a potent inducer of bone and cartilage formation [91]. BMP sig-
naling was also recently discovered as a regulator of muscle mass, as its inhibition abolished
the hypertrophic phenotype of the MSTN-KO mouse [20], and an increase in its receptor
activity induced important muscle hypertrophy [21]. Regarding BMP ligands, GDF5 is
essential to muscle mass maintenance, binding preferentially to the type I receptor BMPR1B.
GDF5 expression was strongly induced in denervated mouse muscles, and its inhibition
worsened muscle atrophy, suggesting a role in counteracting denervation-induced atro-
phy [20]. We report here that the gene expression for both GDF5 and BMPR1B was strongly
down-regulated in mouse muscles during unloading, whereas up-regulated in muscles
of the hibernating bear. However, GDF5 protein levels were stable in the muscles of both
the unloaded mouse and the hibernating bear. We recently demonstrated that circulating
components of the hibernating bear serum were able to induce trans-species effects on
human myotubes, notably inhibition of protein degradation. Therefore, we hypothesized
that those components could be involved in the maintenance of muscle mass and strength
in the hibernating bear [92]. Along with muscle mass maintenance, bear hibernation is also
associated with bone mass maintenance [93], and thus GDF5 may constitute a possible
target toward muscle and bone protection during long periods of physical inactivity and/or
fasting. Unfortunately, the exploration of GDF5 concentration in bear serum was hampered
by species cross-reactivity concerns with commercially available Elisa kits and thus remains
to be addressed.

It has been proposed that the BMP and TGF-β common actor SMAD4 mainly engages
with the TGF-β pathway, but switches to the BMP pathway when TGF-β transduction is
reduced, and thus could be the limiting factor between these two signalings [20]. Moreover,
denervation-induced muscle atrophy was exacerbated in the SMAD4 deficient mouse [20],
and muscle mass was increased in humans with a mutation-associated gain of function
in the SMAD4 gene [94]. We observed here higher mRNA and protein levels for SMAD4
in muscles of the hibernating bear, but only at mRNA levels in muscles of the unloaded
mouse. This is concomitant with the overall down-regulation highlighted for the TGF-β
signaling in the hibernating bear, which was not observed for the unloaded mouse. Thus,
the inhibition of the TGF-β signaling in muscles of the hibernating bear may have released
SMAD4 from TGF-β to BMP pathway to maintain muscle mass in a long period of disuse
(Graphical abstract).

TGF-β and BMP share a SMAD-independent pathway that activates the E3 ubiquitin
ligase TRAF6 [58]. In addition to its pro-atrophic role [95], TRAF6 is also required for myo-
genic differentiation and muscle regeneration via the MEF2 axis [96]. MEF2 is a conserved
family of transcription factors involved in the control of muscle gene expression [97]. A re-
cent muscle transcriptome analysis highlighted an inhibition of MEF2 transcription factors
during human bed rest leading to skeletal muscle alterations [98]. Here, only MEF2A was
up-regulated during unloading in mouse muscles, whereas TRAF6, MEF2A, and MEF2C
were up-regulated in the hibernating bear muscles. We already observed a myogenic
microRNA signature mediated by MEF2A signaling in the muscles of the hibernating
bear, promoting mechanisms of muscle regeneration, suppression of ubiquitin ligases,
and resistance to muscle atrophy [33]. Further studies are required to address whether
this MEF2 signature could be under the control of the TGF-β and/or the BMP pathway
through TRAF6.
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5. Conclusions

Resistance to muscle atrophy in hibernating brown bears has so far been linked to
a reduction in protein and energy metabolism. Here, we show for the first time that the
TGF-β pathway is down-regulated whereas the BMP pathway is concomitantly sustained
or even up-regulated in atrophy-resistant muscles of the hibernating brown bear. Thus,
beyond strengthening the previous hypothesis of a hypometabolism enabling this natural
resistance to muscle atrophy, our study provides new insights regarding the underlying
mechanisms.

The originality of the current work lies in the choice to study the mechanisms involved
in resistance to atrophy, and not solely, as in many studies, the mechanisms involved in the
onset of atrophy. Our comparison of resistance and sensitivity to muscle atrophy animal
models suggested the balance between the TGF-β and the BMP pathways as critical for
preventing skeletal muscle atrophy over a long period of disuse. Many targeted therapies
to counteract muscle atrophy already focus on TGF-β inhibition [99]. Our data open the
way for further studies and clinical trials to test the effects of strategies to switch on (or
sustain) the BMP pathway in combination with TGF-β inhibition to prevent disuse-induced
muscle atrophy.
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Supplementary Figure 1

Supplementary Figure 1. The gene expression pattern of TGF-β and BMP
components is different in brown bear muscle resistant to atrophy during
hibernation compared to atrophied muscles of the unloaded mouse. Heatmap
from vastus lateralis muscle of active and hibernating brown bears (n=6
bears/season, the same individuals were sampled and analyzed in summer and
winter, log2FCWinter/Summer), and soleus muscle of control and unloaded
mice (n=4 mice per condition, log2FC Unloaded/Control) of 171 TGF-β/BMP
related genes. The green and red colours indicate that the gene expression
decreased or increased, respectively, and each line represents one gene.



Supplementary Table 6. Bears features   

     

ID_number  
Year of 

collection  
Age (year) Gender Experiments  

w1305 

2014 

2 F 

RNA 
sequencing 

w1316 2 M 

w1317 2 M 

w1509 

2016 

2 F 

w1511 2 F 

w1512 2 F 

w1509 
2017 

3 F 

Western Blot  

w1610 2 M 

w1709 
2018 

2 F 

w1710 2 F 

w1707 

2019 

3 F 

w1802 2 M 

w1803 2 F 

w1806 2 F 

w1812 2 M 

w1813 2 F 

w1814 2 M 

N = 17   2.117647059 
Sex ratio : 
11F/6M 
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6.4 Discussion and perspectives  

The main conclusion of our study is that the TGF-β/BMP balance appears to be crucial for the 

maintenance of muscle mass in hibernating brown bears (Figure 30). In addition to the points raised in 

the article, there are other issues worth discussing. First of all, we will discuss the transcriptomic 

regulation of genes related to protein synthesis in hibernating bears muscles. Second of all, we will 

address in 5 sub-sections the possible reasons why and how the TGF-β and BMP signalling pathways 

are differentially regulated in the hibernating bears muscles compared to summer. 

 

 

 

6.4.1 Hibernation induces a transcriptomic reprogramming in genes related to protein 

synthesis and RNA metabolism in bear muscles   

Induction of protein synthesis-related genes. As in other transcriptomic studies [304,307,329], we 

observed (1) an upregulation of genes involved in “protein biosynthesis” (translation) and “ribosome 

biogenesis” biological processes, and (2) a decrease in genes related to protein degradation pathways 

in the hibernating brown bear muscles (see Paper 6.3) [351]. Fedorov et al. suggested that the 

induction of protein translation-related genes provides evidence of an increase in protein synthesis in 

hibernating bear muscles compared to summer [304,329]. However, using a radioisotope tracer, 

Lohuis et al. observed a lower rate of protein synthesis in the hibernating bear muscles compare to 

summer [301] (Figure 24). This was associated with a lower protein degradation rate suggesting that 

Figure 30. Graphical abstract of the study 1. 
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overall muscle protein turnover was lowered in winter compared to summer in bears [301] (Figure 24). 

The decrease in the rate of protein degradation is consistent with the downregulation of genes related 

to protein degradation that we reported in the present transcriptomic study (see Paper 6.3) [351]. 

However, proteomic data from hibernating bears muscles revealed that proteins involved in the 

biological processes “protein biosynthesis” and “ribosome biogenesis” were not differentially 

regulated between winter and summer [310], whereas all were upregulated in winter bear muscles in 

our transcriptomic analysis (i.e. RPS243, RPS4X, RPS5, RPS7 and RPSA) (see Paper 6.3) [351]. 

Induction of RNA metabolism-related genes. We identified RNA binding motif protein 3 (RBM3) as a 

gene that is highly up-regulated in winter compared to summer in bear muscles (see Paper 6.3) [351]. 

This appears to be a common feature of many hibernators in almost all tissues (e.g. brain, heart, liver 

muscle) [304,306,337,352,353]. RBM3 has been described as (1) facilitating the processing of RNA 

molecules in the cold and protecting mRNA transcripts from degradation in hibernating ground 

squirrels organs [352,354,355] and (2) playing a role in RNA metabolism and mRNA-related post-

transcriptional processes (e.g. trafficking, stability, translation initiation) that ultimately affect protein 

synthesis [356]. This is consistent with other terms related to RNA metabolism that were found to be 

enriched in our transcriptomic study (e.g. mRNA 3’-end processing, mRNA splicing, regulation of mRNA 

stability) (Figure 31) (see Paper 6.3) [351].  

What does the muscle translatome of the hibernating bear look like?  In many cell types, transcript 

levels do not always predict protein levels [357], hence the emergence of the term translatome. For 

example, synaptic plasticity requires relatively rapid de novo protein synthesis and specific mRNAs can 

be stored in neurons waiting for the precise moment to be translated [358]. To identify the level and 

type of mRNAs translated in hibernating versus active brown bears muscles, we could combine total 

RNA sequencing and ribosome profiling (ribosome sequencing). For the time being, many questions 

remain open, including what factors determine when and in which tissues these mRNAs should be 

translated? It is possible that elevated mRNAs levels of genes related to protein translation and 

ribosome biogenesis in winter bear muscles are waiting to be translated when needed. The 

transcriptional increase in protein biosynthetic-related genes detected in torpid squirrels facilitates 

the induction of translation in muscle during short bouts of arousal [354,355]. Bears, in contrast, do 

not undergo periods of arousal but maintain an alertness state during hibernation to potential dangers 

outside the den [294]. In agreement, we recently reported that hibernating bears have higher plasma 

levels of the endocannabinoid-like compound N-oleoylethanolamide, which has been described to 

have wakefulness-promoting effects in rodents (see Appendix 10.5) [335]. Therefore, in hibernating 

                                                           
43 ribosomal protein of the small subunit 



 
 

99 
 

bear muscles, the increase in protein translation-related mRNAs could serve as a rescue in case of 

unexpected exit from the den and thus a rapid reactivation of general protein synthesis. 

 

 

6.4.2 Hibernation induces a transcriptomic reprogramming in TGF-β superfamily-

related genes in bear muscles  

The main message from our study is that the TGF-β pathway is down-regulated whereas the BMP 

pathway is concomitantly maintained or even up-regulated at the transcriptomic level in atrophy-

resistant muscles of the hibernating brown bear. Our data suggest that the balance between the TGF-

β and the BMP pathways is crucial for preventing skeletal muscle atrophy during a long period of disuse 

[351] (Figure 30). In the following subsections we will discuss (1) the expression of target genes of BMP 

Figure 31. Detailed enriched terms from the 
biological processes “Protein metabolism” and 
“RNA metabolism” from the differentially 
expressed genes in Cussonneau et al., 2021 
[351]. 

Terms written in the same colour represent 

closely related biological terms.  
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signalling in skeletal muscle, (2) the regulation of the intracellular actor SMAD4, (3) the regulation of 

the extracellular actor CCN2, (4) the relationship between TGF-β/BMP signalling and changes in lipid 

membrane composition, (5) the relationship between TGF-β/BMP signalling and neuromuscular 

junction integrity and (6) muscle-organ crosstalk and connection with TGF-β/BMP signalling. 

 

6.4.2.1 BMP target genes in skeletal muscle, an unresolved question   

BMP transcriptional activity in hibernating bear muscles. As mentioned in the state of the art, the 

involvement of BMP signalling in muscle homeostasis has been only scarcely and recently investigated 

[166–168]. The list of up-regulated (1746 genes) and down-regulated (2369 genes) genes in the 

muscles of hibernating bears compared to summer was analysed using BART (Binding Analysis for 

Regulation of Transcription), a web server for predicting transcription factors and chromatin 

regulators. 88% of the top 100 transcription factors involved in the regulation of the up-regulated 

genes were shared with down-regulated genes. One of the common transcription factors detected was 

SMAD5, which is also upregulated at the mRNA level in hibernating bear muscles (see Paper 6.3) [351]. 

This result suggests a transcriptional activity of BMP signalling in winter bear muscles. The BMP 

pathway is thought to suppress the HDAC4-Myogenin axis, and thus the subsequent transcription of 

the E3 ligase FBXO30/MUSA1 [166,167]. However, although our data indicate that the BMP signalling 

is maintained and even activated in bear muscles during hibernation, there is no change in FBXO30, 

Myogenin or HDAC4 expression (see Paper 6.3) [351]. 

Are IDs target genes for BMP signalling in skeletal muscle? The family of DNA binding inhibitor 

proteins (i.e. ID1-4) are specifically induced by BMP signalling in tissues such as bone and cartilage 

[359]. A 29 bp GC-rich element located in the 50-enhancer region of the promoter of ID1 and other 

BMP target genes has been identified as the BMP-responsive element (BRE), which is recognized by 

the SMAD1/5 and SMAD4 complex [360,361]. Furthermore, TGF-β signalling also causes an increase in 

IDs expression in certain cell types [362,363]. In skeletal muscle, IDs proteins are inhibitors of muscle 

differentiation [360,364]. ID1 gene expression increases during ageing in human muscles and is 

involved in denervation-induced muscle atrophy in mice. However, under these catabolic conditions 

the connection with the BMP signalling has not been established [365,366]. In our transcriptomic 

study, we showed that ID1-3 were downregulated whereas ID4 remained unchanged in winter bear 

muscles compared to its summer counterpart (see Paper 6.3) [351]. The repression of IDs expression 

involved in muscle atrophy is consistent with the resistance to muscle atrophy in hibernating brown 

bears. While IDs appear to be target genes for BMP signalling in some tissues, our data suggest that 
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the transcriptional activity of the BMP pathway in muscle during disuse does not necessarily involve 

the transcription of IDs. 

Identification of BMP target genes in skeletal muscle. To our knowledge, no study has explored the 

transcriptomic signature of BMP signalling in skeletal muscle. Therefore, one of the final objectives of 

this thesis project was to draw a list of genes induced upon activation of BMP signalling. We first looked 

for easy-to-use tools for the preliminary experiments and therefore chose the immortalised human 

muscle cell line CCL136 (rhabdomyosarcoma cell line) as they are undifferentiated cells, which saved 

time and made the genetic manipulation more efficient. CCL136 were transfected with a dominant 

negative BMP type 1 receptor (BMPR1A/ALK3) where the kinase is inactivated (K261R) blocking the 

signal to be transduced [367], and treated with GDF5 ligand to activate BMP signalling (see Appendix 

10.1). We observed a lower induction in total and phosphorylated SMAD1/5 and SMAD4 protein 

contents following GDF5 treatment in CCL136 expressing ALK3-KD compared to non-transfected cells 

(Figure 32).  

 

The slight decrease in SMADs protein content could be explained by compensatory mechanisms set up 

by cells with other BMP receptors. Unfortunately, the transfection conditions were not optimal when 

tested with C2C12 myotubes and human primary myotubes. For these cell lines, the use of viral 

particles (e.g. lentivirus) to transduce the inactive receptor could improve the transfection efficiency. 

In addition, other methods can be used to attenuate BMP signalling and overcome the compensatory 

mechanism of the receptors, for example, the use of siRNAs against SMAD1 and/or SMAD5 or 

treatment with the BMP inhibitor noggin. Once the optimisation is done, we will perform RNA and 

chromatin immunoprecipitation (ChIP) sequencing and obtain a list of BMP-dependent genes in 

muscle. Then, further analysis of the transcriptome of hibernating bear muscles will confirm whether 

the identified genes are indeed upregulated in this model of natural resistance to muscle atrophy.  

Figure 32. Western blots of total and phosphorylated 
SMAD1/5, and SMAD4 in CCL136 human muscle cells 
expressing an inactive BMP receptor. 

CCL136 human muscle cells were transfected with the 
plasmid ALK3-KD (kinase dead) receptor, followed by 6h 
treatment with GDF5 ligand. BMP intracellular actors 
SMAD1/5 and SMAD4 were measured by Western blotting 
(see Appendix 10.1). 

 



 
 

102 
 

6.4.2.2 Is SMAD4 stability the key to TGF-β/BMP balance in hibernating bear muscles? 

Is SMAD4 recruited more by TGF-β or BMP signalling? SMAD4 is a shared component between TGF-β 

and BMP signalling and its recruitment to SMAD2/3 or SMAD1/5 could be a key element that 

determines the TGF-β/BMP balance and thus muscle homeostasis [166]. In this study, we showed that 

SMAD4 mRNA and protein levels increased in hibernating bear muscles, and only increased at the 

mRNA level in the unloaded mice muscles (see Paper 6.3) [351]. We wondered to what extent SMAD4 

was recruited to TGF-β versus BMP signalling in hibernating bear muscles. Therefore, we performed 

co-immunoprecipitation (co-IP) of SMAD4 with SMAD1/5 or SMAD2/3 (see Appendix 10.1). 

Immunoprecipitation protocols were optimised for SMAD4, SMAD1/5 and SMAD2/3. However, our 

conditions, unfortunately, did not enable the co-immunodetection of SMAD4 with either SMAD1/5 or 

SMAD2/3 (Figure 33). 

  

Co-IP is highly dependent on protein-protein interactions. As bear muscles samples are necessarily 

frozen when sampling in the field, protein-protein interactions may have been disrupted by a freeze-

thaw cycle, which may explain the lack of co-immunodetection.  Another antibody against SMAD4 may 

be used to avoid a possible overlap of the epitope of the SMAD4 antibody with the protein-protein 

interaction site. Cross-linking the binding partners could also help to stabilize physiological interactions 

throughout extraction procedures involving mechanical and chemical stresses and thus enhance 

protein-protein interactions. However, for now, whether the proportion of SMAD4 recruited to TGF-β 

versus BMP signalling may change in winter versus summer in bear muscles remains unsolved.  

SMAD4 stability could be different in bears vs. other mammals. The analysis of the SMAD4 protein 

sequence revealed two highly conserved domains separated by a proline-rich linker, which is a 

substrate for kinases and phosphatases. This linker serves as a binding platform for cofactors and 

ubiquitin ligases, which tag SMAD4 protein for activation or degradation [368,369]. The SMAD4 protein 

sequence is highly conserved in metazoans. In mammals, the bear or mouse share 98% sequence 

Figure 33. Co-immunoprecipitation of SMAD4 with 
SMAD1/5 or SMAD2/3 in bear muscles. 

SMAD4 immunoprecipitation (IP) in vastus lateralis 
muscle from hibernating versus active brown bears 
was followed by immunodetection of SMAD1/5, 
SMAD4 and SMAD2/3 by Western blotting (IB). IgGs 
have been used as negative control. W: Winter; S: 
Summer (see Appendix 10.1). 
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homology with the human SMAD4 protein. In the SMAD4 linker region, a Threonine is found at position 

272 (Thr272) and is well conserved from drosophila to human (Figure 34). However, in all members of 

the Ursidae family (red box), this Threonine is replaced by a Serine (Figure 34). This characteristic is not 

shared by other small hibernators (black box) (Figure 34). 

 

An in vitro study revealed a putative regulatory site consisting of four threonines in the linker region 

of SMAD4, including Thr272 [370,371]. The authors showed that activation of the MAPK pathway 

induces phosphorylation of Thr276, which initiates three sequential phosphorylations by GSK344 on 

Thr272, 268 and 264. This generated the recognition of SMAD4 by the E3 ubiquitin ligase β-TrCP 

leading to its proteasome-dependent degradation [370,371] (Figure 35). 

                                                           
44 glycogen synthase kinase-3 

Figure 34. SMAD4 linker protein sequences in different species. 

The T bold in black represents the Threonine 272, while the S 
bold in blue represents the Serine replaced at position 272. The 
red box represents the Ursidae family members, while the 
black box represents examples of small hibernators. 
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This sequential phosphorylation of SMAD4 may not be possible in the Ursidae due to the replacement 

of this Threonine by a Serine. This could thus stabilise SMAD4, explaining the slight increase in its 

protein content in hibernating bear muscles [351]. This change in sequence could also allow SMAD4 to 

interact differently with its partners. Whether this stabilisation and/or interaction with other proteins 

play a role in regulating the TGF-β/BMP balance in muscles remains to be explored. Myotube culture 

experiments could be performed by mutating Thr272 within SMAD4 to explore the consequences on 

TGF-β or BMP transcriptional activities. In addition, using Surface Plasmon Resonance, the real-time 

association and dissociation rates between wild-type or mutated SMAD4 and SMAD1/5 or SMAD2/3 

could be accurately determined. 

 

 

6.4.2.3 CCN2 is strongly reduced in hibernating bear muscles  

We showed that the cellular communication network factor 2 (CCN2) mRNA and protein levels were 

strongly reduced in hibernating bear muscles compared to the summer counterpart (see Paper 6.3) 

[351]. CCN2 is a secreted matricellular protein predominantly expressed during development in almost 

all tissues, during numerous pathological conditions that involve enhanced fibrogenesis, and during 

several cancers [372].  

CCN2 and TGF-β signalling. CCN2 expression is regulated by growth factors, cytokines and hormones, 

including TGF-β1 [372]. TGF-β1 induces CCN2 gene expression and plays an important role in fibrosis, 

especially during dystrophies [372–375]. In turn, once secreted, CCN2 directly interacts with TGF-β 

ligands and thereby facilitates the signal to transduce [373,376]. Interestingly, CCN2 gene expression 

Figure 35. SMAD4 degradation 
involving MAPK, GSK3 and β-TrCP 
proteins. 
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has been reported to be induced by mechanical stretch in vitro in a TGF-β signalling-dependent manner 

[377]. The strong reduction in CCN2 mRNA and protein expression in winter bear muscles is consistent 

with the very limited mechanical demand in hibernating bear muscles, and the general downregulation 

of the TGF-β signalling [351]. CCN2 and TGF-β1 proteins are significantly overexpressed in muscles 

from Duchenne muscular dystrophy patients and both are positively correlated with the degree of 

pathology and clinical severity [378]. Furthermore, TGF-β signalling also induces the gene expression 

of other CCN family members with common biological actions, such as CCN4 (also known as WISP1) 

[379], which is strongly downregulated in hibernating bear muscles compared to summer in our study 

(see Paper 6.3) [351]. It remains to be determined whether the downregulation of CCN2 at the 

transcriptomic and proteomic level in the hibernating bear muscles is a cause and/or a consequence 

of the TGF-β signalling inhibition. However, CCN2 inhibition is likely to be a consequence of reduced 

TGF-β signalling given the large number of downregulated TGF-β target genes in winter bear muscles 

(see Paper 6.3) [351]. 

CCN2 and BMP signalling. In addition, CCN2 can antagonize the activity of BMP4 and BMP7 ligands by 

preventing their binding to BMP receptors in Xenopus embryos and mice kidneys respectively, 

resulting in reduced SMAD1/5 signal transduction [376,380]. Moreover, surface plasmon resonance 

spectroscopy shows that CCN2 and GDF5 protein interacts [381]. Whether CCN2 inhibits the 

transduction of BMP signalling in muscles remains an open question. However, our data show that 

CCN2 downregulation is correlated with the maintenance of BMP signalling in winter bear muscles.  

From a clinical perspective. CCN2 is considered a therapeutic target in combating fibrosis and related 

disorders in a variety of organs and tissues. Muscle function is improved by anti-CCN2 antibody in a 

mouse model of Duchenne muscular dystrophy [382]. In addition, clinical trials in phase 2 and phase 3 

are currently testing another fully human monoclonal antibody that interferes with the action of CCN2 

during Duchenne muscular dystrophy (ClinicalTrials.gov Identifier: NCT02606136 and NCT04632940). 

Hibernating bear muscles do not experience fibrosis as shown by the downregulation of most of the 

extracellular matrix organisation-related genes (see Paper 6.3) [351]. Therefore, our data suggest that 

in addition to targeting CCN2 to reduce fibrosis in muscular dystrophies, this strategy could also be of 

interest in other muscle-related diseases without fibrosis likewise the hibernating bear muscles.  

 

6.4.2.4 Is the regulation of TGF-β/BMP balance linked to the modification of the lipid 

membrane composition?   

In hibernating bear serum, we and others published an increase in free circulating fatty acids and 

triglycerides arising from the lipolysis of the adipose tissue [298,303,309,310,331,335]. These 



 
 

106 
 

profound changes in circulating lipids may have altered the composition of membrane lipids and 

therefore the membrane fluidity of organs, including muscle. The plasma membrane is a critical hub 

for signalling proteins. Membrane lipids are organised into different microdomains rich in specific lipid 

species, which attract different types of proteins [383,384]. A change in membrane lipid composition 

may have altered the heterodimerisation of TGF-β superfamily receptors known to be a dynamic 

process [107]. TGF-β receptors are distributed in both lipid rafts/caveolae and non-raft membrane 

microdomains (i.e. clathrin-coated pits). The internalisation of TGF-β receptors via clathrin-coated pits 

enhances TGF-β signalling, whereas lipid rafts-mediated endocytosis of TGF-β receptors facilitates 

receptor degradation and thus the turnoff of signalling [385–387]. Cholesterol has been suggested to 

inhibit SMAD2 activation, promote TGF-β receptor degradation, and therefore inhibit TGF-β signalling. 

This effect may result from the shifted localisation of TGF-β receptors from non-raft to lipid-raft 

microdomains in the plasma membrane [386–388]. On the contrary, BMP receptors have been 

suggested to be distributed in lipid rafts-mediated endocytosis, and a decrease in cholesterol level 

specifically blocks the BMP receptors-mediated intracellular signalling [389]. To test the dynamics of 

TGF-β superfamily receptors, we could treat myotubes with winter or summer bear serum and analyse 

the localisation of the receptors by confocal microscopy. We could also perform lipidomic analysis of 

membrane phospholipids in myotubes or biopsied bear muscles by functional two-photon microscopy. 

 

6.4.2.5 Is the resistance to denervation-induced muscle atrophy in hibernating bears related 

to BMP signalling?  

BMP signalling in NMJ organisation. BMP signalling is important for the conservation of muscle mass 

when the neuromuscular junction (NMJ) is compromised, as reported in a model of denervation-

induced muscle atrophy in mice [166–168]. In addition, disruption of presynaptic architecture and NMJ 

degeneration concomitantly to BMP signalling perturbation are observed in muscles of tumour-

bearing mice before muscle loss occurred [168]. The same feature was also observed in muscles from 

pre-cachectic cancer patients [168]. Promoting BMP signalling using genetic or drug-based 

interventions (tilorone) preserves NMJ function during the development of cachexia and therefore 

counteract muscle atrophy [168]. On the contrary, overexpression of the BMP inhibitor noggin in 

muscles of healthy mice induced muscle atrophy, mimicked the loss of presynaptic motor neuron 

terminals and increased the presence of denervation markers [168]. The BMP pathway regulates 

peripheral synaptic development and plasticity in Drosophila [390,391] and is essential for proper axon 

elongation in motor neurons during development in mice [392]. However, the role of BMP in 

controlling postnatal NMJ remodelling in adult mammals, particularly in pathological contexts, remains 

largely unexplored. TAK1 is involved in non-SMAD TGF-β/BMP signalling (see section 4.2.4.2) and the 
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Figure 36. Hypothetical schema to explain 
the denervation-induced muscle atrophy 
resistance in the hibernating brown bears 
muscles. 

receptor tyrosine kinase MuSK (muscle-specific kinase) is a co-receptor of BMP signalling promoting 

its signalling in muscle cells [393]. Both are up-regulated in muscle of the hibernating brown bears in 

our study (see Paper 6.3) [351]. Interestingly, (1) activation of  TAK1 promotes skeletal muscle growth 

and mitigates neurogenic atrophy through a SMAD1-dependent mechanism [184] and (2) MuSK is 

critical for neuromuscular junction formation and maintenance [394]. 

NMJ in hibernating bear muscles. Amazingly, hibernating bears are partially resistant to denervation-

induced muscle atrophy, whereas summer-active bears are susceptible to it like other mammals [328]. 

Whether the maintenance of BMP signalling in muscles is responsible for this resistance remains to be 

elucidated (Figure 36). No study has yet explored in detail the structure and characteristics of the NMJ 

in active versus hibernating bears. For that purpose, histological studies of NMJ markers will be soon 

initiated in our laboratory.  

 

 

 

 

 

 

 

 

 

 

6.4.2.6 The muscle-organ crosstalk and connection with TGF-β/BMP signalling.  

Is GDF5 synthesised and released by adipose tissue? GDF5 and its receptor BMPR1B are strongly 

upregulated in the hibernating bear muscles relative to its summer counterpart, whereas significantly 

downregulated in the unloaded mice muscles (see Paper 6.3) [351]. We wondered whether the GDF5 

ligand was increased in winter bear serum and could explain the induction of BMP-related gene 

transcription. Unfortunately, serum GDF5 concentration could not be measured because the only 

commercially available ELISA45 kit did not work in bears (see Appendix 10.1). GDF5 is primarily 
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synthesised and secreted by the salivary glands, which is probably not a dynamic tissue during 

hibernation since bears do not drink or eat for 6 months. GDF5 is also present in adipose tissue (Human 

Protein Atlas data https://www.proteinatlas.org/ENSG00000125965-GDF5/tissue). In mice, GDF5 

promotes thermogenesis in subcutaneous white adipose tissue (sWAT) after cold exposure via non-

SMAD p38 signalling [395]. In addition, GDF5 facilitates the development of brown fat-like cells in 

sWAT tissue via SMAD1/5 signalling in mice [396]. However, brown fat in hibernating brown bears has 

only been described in one study [397], which was subsequently refuted [398]. Shivering plays a role 

in active thermogenesis in muscles, but there is also non-shivering thermogenesis that occurs primarily 

through the metabolism of brown fat and, to a lesser degree, white fat [399]. If GDF5 is increased in 

winter bear serum, it would not only contribute to the maintenance of muscle mass induced by BMP 

signalling but could also play a role in non-shivering thermogenesis in white adipose tissue (Figure 37). 

The concentration of GDF5 in bear serum could be assessed by mass spectrometry. Moreover, 

exploring the gene/protein expression of GDF5 and BMP-related components in adipose tissue could 

provide valuable information on whether GDF5 is synthesised and released from adipose tissue into 

the bloodstream during hibernation. 

TGF-β signalling and muscle-bone communication. A new concept has emerged that bone also acts as 

an endocrine tissue targeting other organs such as muscle. Therefore, muscle and bone communicate 

via soluble factors [400]. Both bone and muscle volumes are sensitive to mechanical loading, which 

regulates many of their secreted factors. Therefore, muscle and bone mass are both reduced during 

immobilisation [401]. Bone resorption releases TGF-β1 into the bloodstream in pediatric burn patients 

and tumour-bearing mice [402,403]. The use of antiresorptive drugs protects bone and muscle mass, 

demonstrating that a factor released by bones contributes to muscle wasting in these conditions. TGF-

β1 released from bone suppresses activation of the AKT/mTOR anabolic pathway and promotes 

expression of UPS players in myoblasts in vitro [403]. TGF-β ligands are produced by osteoblasts, stored 

in the extracellular matrix of bone and released by osteoclastic proteolysis during bone resorption 

[404,405].  

Figure 37. Hypothetical schema of the origin of 
muscle transcriptomic changes of TGF-β 
superfamily. 

In green and red, the genes down- and 
upregulated respectively in hibernating bear 
muscles in Cussonneau et al., 2021 [351]. 

 

https://www.proteinatlas.org/ENSG00000125965-GDF5/tissue
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In addition, myostatin, produced in muscle, stimulates the production and the differentiation of 

osteoclasts responsible for bone resorption through SMAD-dependent signalling [406–409]. Inhibition 

of myostatin in muscles can result in either increased bone formation under physiological conditions 

or decreased bone resorption under pathological conditions [410–412]. Interestingly, TGFB1 and 

MSTN are downregulated in hibernating bear muscles in our study (see Paper 6.3) [351] and previous 

studies have clearly shown that bears do not suffer from osteoporosis despite long-term inactivity, lack 

of food, and cold exposure during hibernation [413]. Furthermore, peripheral blood mononuclear cells 

collected from hibernating Japanese black bears and cultured with hibernating bear serum do not 

differentiate into osteoclasts, unlike cells cultured with active bear serum [414]. This study implies the 

presence of circulating compounds during hibernation that protect bone from resorption. Altogether, 

these observations raise questions about whether or not soluble bone and muscle factors are secreted 

during hibernation in bears. Because TGF-β/BMP pathways are ubiquitous throughout the body, their 

regulation in one place is likely to imply consequences in another place. Is it because bone resorption 

does not occur in bears during winter that muscle atrophy does not occur either, or is it the other way 

around (Figure 37)? 

 

 

 

 

 

 

 

 

 

 

 



 
 

110 
 

7. Study 2: Induction of ATF4 atrogenes is uncoupled from disuse-

induced muscle atrophy in halofuginone-treated mice and in 

hibernating brown bear 

7.1 Objective and strategy 

In this study, we aimed to explore the impacts of a controlled induction of ATF4 signalling on skeletal 

muscle. We selected the molecule halofuginone (HF), which (1) induces eIF2α-ATF4 signalling and (2) 

is already used and well tolerated in mouse dystrophic models. We designed an experimental protocol, 

choosing (1) the dose of HF,  (2) the mode and frequency of administration, and (3) the duration of 

treatment (data not shown). Once the protocol was validated,  it was tested in mice either in basal 

conditions or when they were subsequently subjected to muscle atrophy induced by hindlimb 

suspension (HS) (Figure 38). We also took advantage of a model of muscle atrophy resistance that we 

previously explored (see Paper 6.3) [351] and studied the regulation of the ATF4 atrogenes in the 

hibernating brown bear muscles. We showed that induction of ATF4 signalling was not associated with 

atrophy in muscles from HF-treated mice or hibernating brown bears. We also investigated the 

molecular mechanisms of HF in skeletal muscle.  

 

 

 

 

Figure 38. Schema of the 
experimental strategy of study 2. 
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Abstract: Activating transcription factor 4 (ATF4) is involved in muscle atrophy through the overex-
pression of some atrogenes. However, it also controls the transcription of genes involved in muscle
homeostasis maintenance. Here, we explored the effect of ATF4 activation by the pharmacologi-
cal molecule halofuginone during hindlimb suspension (HS)-induced muscle atrophy. Firstly, we
reported that periodic activation of ATF4-regulated atrogenes (Gadd45a, Cdkn1a, and Eif4ebp1) by
halofuginone was not associated with muscle atrophy in healthy mice. Secondly, halofuginone-treated
mice even showed reduced atrophy during HS, although the induction of the ATF4 pathway was
identical to that in untreated HS mice. We further showed that halofuginone inhibited transforming
growth factor-β (TGF-β) signalling, while promoting bone morphogenetic protein (BMP) signalling
in healthy mice and slightly preserved protein synthesis during HS. Finally, ATF4-regulated atro-
genes were also induced in the atrophy-resistant muscles of hibernating brown bears, in which we
previously also reported concurrent TGF-β inhibition and BMP activation. Overall, we show that
ATF4-induced atrogenes can be uncoupled from muscle atrophy. In addition, our data also indicate
that halofuginone can control the TGF-β/BMP balance towards muscle mass maintenance. Whether
halofuginone-induced BMP signalling can counteract the effect of ATF4-induced atrogenes needs
to be further investigated and may open a new avenue to fight muscle atrophy. Finally, our study
opens the way for further studies to identify well-tolerated chemical compounds in humans that
are able to fine-tune the TGF-β/BMP balance and could be used to preserve muscle mass during
catabolic situations.

Keywords: skeletal muscle; unloading; hindlimb suspension; halofuginone; ATF4; TGF-β/BMP
signalling; hibernating bear; atrogenes; muscle atrophy

1. Introduction

Many unloading conditions (e.g., microgravity, bed rest, or physical inactivity) lead to
a loss of muscle mass and strength. This muscle atrophy is associated with adverse health
effects such as autonomy decline and increased morbidity and mortality [1–3]. Considering
the lack of proven, easy-to-use therapeutic or preventive treatment, muscle atrophy remains
a major public health issue (World Health Organisation data) [4].

The underlying molecular mechanisms of muscle atrophy involve the dysregula-
tion of a complex network of intracellular pathways leading to an imbalance in protein
turnover [5–9]. Activating transcription factor 4 (ATF4) is overexpressed in many condi-
tions of muscle atrophy [10–14] and is, therefore, considered as an atrogene, i.e., one of the
genes with expression at the mRNA level that is commonly altered during atrophy [14].
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ATF4 belongs to the integrated stress response (ISR) pathway, a conserved intracellular
network activated in response to various intrinsic and extrinsic stresses (e.g., amino acid
(AA) depletion and endoplasmic reticulum (ER) stress) to restore cellular homeostasis [15].
Activation of the ISR involves phosphorylation of eukaryotic translation initiation fac-
tor 2 (eIF2α) by several kinases (i.e., general control nonderepressible 2 (GCN2), protein
kinase RNA-like ER kinase (PERK), protein kinase R (PKR), heme-regulated inhibitor
(HRI), and microtubule affinity-regulating kinase 2 (MARK2)), resulting in the global in-
hibition of protein synthesis but the increased translation of certain mRNAs, including
ATF4 [15,16]. Inhibition of ATF4 in skeletal muscle limits starvation-, immobilisation-, and
ageing-induced atrophy, whereas ATF4 induction results in muscle wasting [11–13,17].
ATF4 target genes include some atrogenes, such as GADD45A and CDKN1A, that are
required for ATF4-mediated muscle atrophy [11–13,18], and TRIB3, which is involved in
fasting- and ageing-induced muscle atrophy [19,20]. However, ATF4 targets also include
genes that may be involved in the maintenance of muscle homeostasis. Indeed, ATF4
contributes to the transcription of autophagy-related genes [21–24] and is activated during
mitochondrial perturbations (e.g., oxidative stress) to restore mitochondrial homeosta-
sis [25,26]. In fact, activation of the eIF2α-ATF4 pathway by the pharmacological molecule
halofuginone (HF), prior to stressful events (i.e., ischemia-reperfusion injury models) has
shown positive effects on the preservation of kidney and liver function [27]. Moreover, the
maintenance of autophagy and mitochondria homeostasis are essential for maintaining
muscle mass [28–30]. Altogether, this led to the hypothesis that the ATF4 pathway may
have a dual role in skeletal muscle.

Interestingly, halofuginone also improved muscle performance during dystrophies,
mainly through its antifibrotic properties [31–34]. Whether these beneficial effects involve
a regulation of the ATF4 pathway has never been investigated. However, they mainly
involved the inhibition of the transforming growth factor-β (TGF-β) pathway [35–37]. The
TGF-β signalling pathway acts as a negative regulator of muscle mass, notably through
the transcriptional induction of the atrogenes TRIM63/MuRF1 and FBXO32/Atrogin-
1 [38–40]. When inhibited, it promotes a profound muscle hypertrophy phenotype in
various conditions and species [41,42]. Members of TGF-β signalling belong to the TGF-β
superfamily [38,39], as do the bone morphogenetic protein (BMP) signalling members.
The BMP signalling pathway [39,43] instead acts as a positive regulator of muscle mass
through the transcriptional repression of the atrogene FBXO30/Musa1, which is required
for denervation-induced muscle loss [44,45]. When inhibited, it profoundly exacerbates
denervation-induced muscle atrophy [44,45].

This study aimed to explore the impacts of HF-induced ATF4 signalling on skeletal
muscle under basal conditions and hindlimb suspension-induced atrophy in mice. We
further deciphered the molecular mechanisms of HF by focusing on protein metabolism and
TGF-β/BMP signalling. We also took advantage of a model of muscle atrophy resistance
that we previously explored [46], and studied the regulation of the ATF4-induced atrogenes
in hibernating brown bear muscle.

2. Results
2.1. Induction of ATF4-Regulated Atrogenes Does Not Affect Muscle Mass in Mice

We used halofuginone (HF) to induce ATF4 transcriptional activity in mouse muscles,
and we investigated the effect on skeletal muscle mass. For that purpose, mice were treated
with HF three times a week for up to 4 weeks. Six hours after the last HF administration at
the end of each week, we measured the mRNA levels for some ATF4 target genes, involved
in muscle atrophy, i.e., Trib3, Cdkn1a, Gadd45a, and Eif4ebp1 (Figure 1A–F). Except for Atf4,
for which mRNA levels were elevated during the first 2 weeks of HF treatment, Trib3,
Cdkn1a, and Gadd45a were all overexpressed in muscles after 2 weeks of HF treatment
compared to H2O-treated mice. Of note, Eif4ebp1 mRNA levels increased in mouse muscles
after 4 weeks of HF-treatment compared to H2O, with a noticeable trend after 3 weeks of
treatment (Figure 1F). We also investigated the regulation of other ATF4 target genes and
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showed the overexpression of Asns over the 4 weeks of HF treatment as well as a trend for
Ddit3 and Ppp1r15a (Supplementary Figure S1).
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Figure 1. Halofuginone activates the expression of ATF4-regulated atrogenes in muscle without
leading to atrophy. (A) Schematic representation of the experimental protocol, where mice received
H2O (white bars) or HF (0.25 µg/g, grey bars) 3 times a week for up to 4 weeks (WK). Muscles were
collected 6 h after the last HF administration at the end of each week (dotted arrows). (B–F) Relative
mRNA levels in gastrocnemius for Atf4, Trib3, Cdkn1a, Gadd45a, and Eif4ebp1 were measured by
RT-qPCR. Data were normalised using Tbp. Data are expressed as fold change vs. H2O within each
week and are presented as individual values with mean bars ± SEM. (G) Gastrocnemius muscle
mass per gram of body weight (BW). Data are expressed as a percentage from H2O within each
week and presented as individual values with mean bars ± SEM. Statistics are described in Section 4.
* padj < 0.05; ** padj < 0.01; *** padj < 0.001; **** padj < 0.0001.
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These data underline an activation of the ATF4 transcriptional activity. However,
despite the overexpression of the ATF4-regulated atrogenes, the mass of the gastrocnemius,
soleus, tibialis anterior, and extensor digitorum longus (EDL) muscles remained unchanged
during the 4 weeks of HF treatment (Figure 1G, Supplementary Figure S1). Altogether,
these data suggest that a long-term halofuginone administration induced ATF4-regulated
atrogenes without leading to muscle atrophy.

2.2. Overexpression of ATF4-Regulated Atrogenes during Hindlimb Suspension Is Uncoupled from
Muscle Atrophy in HF-Treated Mice

We then investigated the effect of the induction of the ATF4 pathway by HF treatment
during the muscle atrophy induced by hindlimb suspension (HS). Briefly, mice received
HF three times a week for 3 weeks and were then, 3 days after the last HF administra-
tion, hindlimb-suspended or not for 3 or 7 days (Figure 2A). Measurements were thus
performed at least 6 days after the last HF administration. HF induces ATF4 activation
through the phosphorylation of eIF2α [47]. We observed that HF treatment resulted in
overall higher phosphorylated and total eIF2α protein levels compared to H2O-treated
mice (Figure 2B–D). In addition, HS led to an overall decrease in phosphorylated eIF2α
protein levels compared to the controls (Ctrls) (Figure 2B,C). In addition, levels of the
mRNA encoding the phosphatase GADD34 (Ppp1r15a) were higher at 3 days of hindlimb
suspension (HS3) compared to the Ctrls in both H2O- and HF-treated mice (Supplementary
Figure S2). The expression of ATF4-regulated genes was not different between Ctrl-HF and
Ctrl-H2O groups (Figure 2 and Supplementary Figure S2). The mRNA levels of Atf4 and
its target genes involved in muscle atrophy, i.e., Trib3, Cdkn1a, and Eif4ebp1, were higher
during HS in both H2O- and HF-treated mice (Figure 2E–H), while the mRNA levels of
the ATF4-regulated atrogene Gadd45a remained unchanged (Figure 2I). Of note, mRNA
expression of other ATF4 target genes remained unchanged for Asns or slightly decreased
upon HS for Ddit3. (Supplementary Figure S2). Altogether, Figures 1 and 2 shows that
(i) HF administration induced ATF4-regulated atrogenes after 6 h, but no more after 6 days,
indicating that this effect was rapid and transient, and (ii) HS induced overexpression of
these atrogenes.

We next investigated the outcomes on skeletal muscle. Gastrocnemius muscle had
atrophied only in H2O-treated mice after 3 days of HS (H2O-HS3) and in both H2O- and
HF-treated mice after 7 days of HS. Surprisingly, the average of the fibre cross-sectional
area (CSA) did not change in H2O-HS3 mice compared to the Ctrls but was lower after
HS7 regardless of the treatment (Figure 3B). We further analysed the distribution of gas-
trocnemius fibre CSA (Supplementary Figure S3A,B). We reported (i) a lower proportion
of small fibres and (ii) a higher proportion of large fibres in HF-treated mice compared to
the H2O group (Supplementary Figure S3A). This observation was restricted to fast-twitch
fibres (i.e., 2X/2B) (Supplementary Figure S3B). Taken together, our data suggest that
induction of ATF4-regulated atrogenes is not associated with muscle atrophy after 3 days
of hindlimb suspension in HF-treated mice and, thus, that HF slightly preserves muscle
mass during HS.
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Figure 2. Hindlimb suspension induces ATF4 pathway. (A) Schematic representation of the exper-
imental protocol, where mice received H2O or halofuginone (HF) oral administration (0.25 µg/g)
3 times a week for 3 weeks (WK) (black arrows) and were then subjected to hindlimb suspension
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for 3 (HS3, light grey bars) or 7 (HS7, white bars) days or kept unsuspended (Ctrl, dark grey). The
dotted arrows represent the time when the muscles were collected. (B–D) Relative protein levels in
gastrocnemius for phosphorylated and total eIF2α were measured by Western blotting, quantified,
and normalised to the total protein content. Representative Western blots are shown. (E–I) Relative
mRNA levels in gastrocnemius for Atf4, Trib3, Cdkn1a, Eif4ebp1, and Gadd45a were measured by
RT-qPCR and were normalised using Tbp. Data are expressed as fold change vs. H2O-Ctrl and are
presented as individual values normalised mean bars ± SEM. Statistics are described in Section 4.
* padj < 0.05; ** padj < 0.01; *** padj < 0.001; **** padj < 0.0001.
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Figure 3. Halofuginone treatment prior to hindlimb suspension mitigates atrophy in gastrocnemius
muscle. Mice were treated with H2O or halofuginone (HF, 0.25 µg/g) 3 times a week for 3 weeks and
were then subjected to hindlimb suspension for 3 (HS3, light grey bars) or 7 (HS7, white bars) days or
kept unsuspended (Ctrl, dark grey bars), as described in Figure 2A. (A) Gastrocnemius muscle mass
per gram of body weight (BW). Data are expressed as a percentage from H2O-Ctrl and presented
as individual values with mean bars ± SEM. (B) Mean fibre cross-sectional area in gastrocnemius
muscle. Data are presented as individual values with mean bars ± SEM. Statistics are described in
Section 4. ** padj < 0.01; *** padj < 0.001; **** padj < 0.0001; ns = non-significant.

2.3. Halofuginone Treatment Inhibits TGF-β While Promoting BMP Signalling in
Gastrocnemius Muscle

HF inhibits the TGF-β pathway [36,48]. We and others have recently reported that
inhibition of the TGF-β signalling is associated with the concomitant activation of BMP
signalling [45,46]. Therefore, we investigated how HF treatment and subsequent HS
treatment affected these pathways in skeletal muscle. The nuclear localisation of SMADs
mirrors the upstream activation of the TGF-β or BMP pathway [49]. We, thus, measured
protein levels for the transcription factors SMAD2/3 (TGF-β signalling), SMAD1/5 (BMP
signalling), and SMAD4 (TGF-β and BMP signalling) in nuclear and cytosolic fractions
(Figure 4A–D and Supplementary Figure S4A–F). The ratio of nuclear SMAD2/3 to total
SMAD2/3 was very low in HF-treated mice compared to H2O-treated mice and decreased
upon HS only in H2O-treated mice (Figure 4A,B). Consistently, the overall mRNA levels
of several collagens, which are well-known target genes of TGF-β signalling, decreased
upon HS (Supplementary Figure S5). Moreover, the ratio of nuclear SMAD1/5 to total
SMAD1/5 was higher in HF-Ctrl mice than in H2O-Ctrl mice. This ratio was reduced at
HS7 compared to the Ctrl in HF-treated mice, while it was increased in H2O-treated mice
(Figure 4A,C). Finally, the ratio of nuclear SMAD4 to total SMAD4 was overall lower in HF-
vs. H2O-treated mice (Figure 4A–D), with a decrease in HF-treated mice at HS7 compared
to the Ctrl.

TGF-β catabolic action involves the inhibition of protein synthesis [40,50,51], whereas
the anabolic action of BMP involves its promotion [44]. The overall protein-synthesis
rates measured by puromycin incorporation were reduced during hindlimb suspension.
However, this decrease was only significant in H2O-HS7 compared to H2O-Ctrl mice
(Figure 5A,B). TGF-β signalling acts also as a negative regulator of muscle mass through
the induction of the atrogenes TRIM63/MurF1 and FBXO32/Atrogin-1 [38,39], while BMP
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signalling acts as a positive regulator with the transcriptional repression of the atrogene
FBXO30/Musa1 [44,45]. Trim63 and Fbxo32 mRNA levels were upregulated only at HS3
in both H2O and HF-treated mice, while mRNA levels for the atrogene Fbxo30 remained
unchanged (Figure 5C–E). Our data suggest that while HF inhibits TGF-β signalling, it also
promotes BMP signalling in the control gastrocnemius muscles. We also showed that HF
partially attenuates the drop in protein synthesis during hindlimb suspension.
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Figure 4. Halofuginone treatment inhibits TGF-β while promoting BMP signalling in gastrocnemius
muscle. Mice were treated with H2O or halofuginone (HF, 0.25 µg/g) 3 times a week for 3 weeks and
were then subjected to hindlimb suspension for 3 (HS3, light grey bars) or 7 (HS7, white bars) days
or kept unsuspended (Ctrl, dark grey bars), as described in Figure 2A. (A–D) The ratio of protein
levels in gastrocnemius for the transcription factors SMAD2/3 (TGF-β signalling), SMAD1/5 (BMP
signalling), and SMAD4 (TGF-β and BMP signalling) have been assessed in the nuclear and cytosolic
subcellular fractions, quantified, and normalised to the total protein content. Representative Western
blots are shown. The ratio of nuclear SMAD contents on the total (cytosolic and nuclear) SMAD
content was calculated. Data are expressed as fold change vs. H2O-Ctrl and presented as individual
values with mean bars ± SEM. Statistics are described in Section 4. * padj < 0.05; **** padj < 0.0001.
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2.4. ATF4‐Regulated Atrogenes Are Overexpressed in Atrophy‐Resistant Hibernating Brown 

Bear Muscle 

Figure 5. Halofuginone treatment prior to hindlimb suspension partially prevents the decrease
in protein synthesis in gastrocnemius muscle. Mice were treated with H2O or halofuginone (HF,
0.25 µg/g) 3 times a week for 3 weeks and were then subjected to hindlimb suspension for 3 (HS3,
light grey bars) or 7 (HS7, white bars) days or kept unsuspended (Ctrl, dark grey bars), as described
in Figure 2A. (A,B) Relative puromycin incorporation into gastrocnemius muscle was assessed by
Western blotting, quantified, and normalised to the total protein content. A representative Western
blot is shown. (C–E) Relative mRNA levels in gastrocnemius for Trim63, Fbxo32, and Fbxo30 were
measured by RT-qPCR. Data were normalised using Tbp. Data are expressed as fold change vs.
H2O-Ctrl and presented as individual values with mean bars ± SEM. Statistics are described in
Section 4. * padj < 0.05; **** padj < 0.0001, or ns = non-significant.
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2.4. ATF4-Regulated Atrogenes Are Overexpressed in Atrophy-Resistant Hibernating Brown
Bear Muscle

Our data strongly suggest that the induction of ATF4 signalling is not always asso-
ciated with muscle atrophy, either in basal conditions or in HS-induced muscle atrophy.
We took advantage of a natural model, i.e., the hibernating brown bear, which experiences
only a moderate loss of muscle protein content while remaining completely inactive for
up to 6 months [52–54]. As with HF treatment, we recently reported a concomitant TGF-β
pathway inhibition and BMP pathway activation in hibernating brown bear muscle [46].
We, thus, explored whether ATF4-regulated atrogenes may also be induced in this model.
Interestingly, as shown in Figure 6, Atf4 was upregulated in hibernating brown bear muscle
compared to the active counterpart. In addition, the two main ATF4-regulated atrogenes
(Gadd45a and Cdkn1a) and Trib3 were also induced in hibernating brown bear muscle. Other
ATF4 target genes were either down- (Eif4ebp1, Ppp1r15a, and Asns) or upregulated (Ddit3).
These data show that ATF4-regulated atrogenes are induced in hibernating brown bear
muscle, even if they are resistant to atrophy.
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Figure 6. ATF4-regulated atrogenes are induced in atrophy-resistant hibernating brown bear muscles.
Gene expression levels for ATF4, GADD45A, CDKN1A, TRIB3, EIF4EBP1, PPP1R15A, ASNS, and
DDIT3 in vastus lateralis muscle of active and hibernating brown bears (n = 6 bears/season, the same
individuals were sampled and analysed in summer and winter, log2FC winter/summer). Data are
presented as individual values as log2FC with mean bars ± lfcSE (log2 fold change standard error).
Statistics are described in [46]. * padj < 0.05; ** padj < 0.01; **** padj < 0.0001. FC: fold change; W: winter
(hibernating season); S: summer (active season).

3. Discussion

Several muscle-wasting conditions, including fasting or physical inactivity, are as-
sociated with eIF2α phosphorylation [55,56] and/or ATF4 overexpression, which trigger
muscle atrophy [10–13,18,57]. Moreover, muscle atrophy is hampered during fasting or
ageing in mice with reduced ATF4 expression or expressing a phosphorylation-resistant
form of eIF2α [11–13]. Both CDKN1A and GADD45A are referred to as atrogenes and are
required for ATF4-mediated muscle atrophy [11–13,18], and TRIB3 is another ATF4 target
gene involved in fasting- and ageing-induced muscle atrophy [19,20]. We showed here
that overexpression of ATF4-regulated atrogenes was dissociated from muscle wasting
(1) in a basal condition, (2) during hindlimb suspension, and (3) in a natural model of
muscle-atrophy resistance (Figure 7).
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Figure 7. Graphical abstract. The red and green lines represent catabolic and anabolic effects,
respectively. Dotted lines represent hypothetical connections. The arrows/T bars above the ATF4
atrogenes, SMAD2/3, and SMAD1/5 boxes represent the induction/inhibition by halofuginone or by
an as-yet-unknown mechanism in mouse or bear muscle, respectively. Created with BioRender.com.

We first observed that the overexpression of the ATF4-regulated atrogenes Trib3,
Cdkn1a Gadd45a, and Eif4ebp1, as well as Atf4 itself, induced by halofuginone treatment
for up to 4 weeks, did not coincide with atrophy in all hindlimb muscles, including
gastrocnemius. Subsequently, we then reported that pre-treatment with halofuginone
mitigated the atrophy of the gastrocnemius muscle during hindlimb suspension. These
positive effects of halofuginone treatment are consistent with reports showing that this
dose (i.e., 0.25 µg/g) and frequency of administration (i) were very well-tolerated in mice
for up to 3 months and (ii) improved muscle-cell survival, promoted membrane repair, and
improved muscle performances in models of muscular dystrophies [31,33,58–60]. However,
none of these studies explored whether the potential effect of HF would involve the ATF4
pathway. Here, we showed that induction of ATF4-regulated atrogenes was uncoupled from
muscle atrophy during hindlimb suspension. Indeed, although ATF4-regulated atrogenes
were overexpressed during hindlimb suspension, halofuginone-treated mice displayed a
partial preservation of gastrocnemius muscle mass and CSA. In addition, we took advantage
of a natural model of resistance to muscle atrophy to examine the expression of ATF4-
regulated atrogenes. The brown bear remains completely inactive during hibernation
for up to 6 months but, surprisingly, is not sensitive to muscle atrophy [52–54], which
provides an interesting model for finding new molecular mechanisms to fight muscle
atrophy in humans. We showed that the atrogenes CDKN1A, GADD45A, ATF4 itself, and
TRIB3 were upregulated in atrophy-resistant hibernating brown bear muscle compared
to active bear muscle. Of note, ATF4 is mainly regulated at the translational level [15].
However, in most of the previous studies on the topic, the authors only measured Atf4
mRNA expression and expression of its target genes as evidence of its activity in skeletal
muscle. Indeed, endogenous ATF4 protein cannot be reliably detected in skeletal muscle,
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presumably due to its low abundance, very short half-life, and lack of a high quality
antibody [11–13,17,18,61]. Altogether, these data strongly suggest that the induction of
the ATF4 pathway can be dissociated from muscle atrophy. ATF4 target genes are highly
dependent on the type and duration of stress stimuli [21,62], and the ability to restore
homeostasis may be overwhelmed when the stress is too severe or sustained, resulting in
cell death through the transcription of pro-apoptotic genes [63–66]. Therefore, to avoid
chronic and acute activation, halofuginone was administrated periodically to activate
the eIF2α-ATF4 pathway in mice. In our conditions, the ATF4 transcriptional program
may, thus, (i) differ from the transcriptional program induced by a severe and sustained
activation and (ii) include genes that might counteract the effect of ATF4-induced atrogenes.

Halofuginone is well-described to also target the TGF-β pathway [35,36]. The nu-
clear translocation of the TGF-β transcription factors SMAD2/3 requires the formation
of a complex with SMAD4 [43]. Halofuginone-induced eIF2α phosphorylation has been
reported to inhibit the nuclear translocation of this complex in intestinal porcine enterocyte
cells in vitro [67]. Consistently, we reported here a concomitant overall (i) increase in
phosphorylated eIF2α protein levels and (ii) reduction in SMAD2/3 and SMAD4 nuclear
protein levels in HF-treated mice. Thus, this highlights in skeletal muscle, for the first time,
the possible role of HF-induced eIF2α phosphorylation in TGF-β inhibition. Although, the
concomitant collagen downregulation and decrease in SMAD2/3 nuclear protein levels
during hindlimb suspension in H2O-treated mice suggest a decrease in TGF-β signalling,
we cannot exclude that these events are disconnected. Indeed, the SMAD2/3 nuclear pro-
tein levels are consistently low in HF-treated mice and, thus, cannot explain the decreased
collagen expression during hindlimb suspension. Much remains to be clarified about the
mechanisms of action of HF. Indeed, HF is used for its antifibrotic properties mediated
by TGF-β inhibition in situations already characterised by fibrosis [48]. This is, however,
not the case in our study. In addition, the inhibition of TGF-β signalling in muscles of
HF-treated mice could have led to transcriptional changes that remain to be explored. It
is possible that TGF-β signalling is induced later during hindlimb suspension. In fact,
the TGF-β signalling pathway has previously been reported to be either unchanged in
skeletal muscle after 1–3 days or induced after 7–10 days of unloading [46,68,69]. We also
reported an upregulation of Trim63 and Fbxo32 during hindlimb suspension. Although
these atrogenes are targets of the TGF-β signalling activation, they are also regulated by
other signalling pathways [5].

We and others reported that the balance between TGF-β and BMP signalling seems
crucial for muscle-mass maintenance during catabolic situations [39,44–46,70]. Indeed,
using the hibernating bear model, we recently reported that TGF-β signalling, i.e., a
negative regulator of muscle mass, was downregulated at the transcriptomic level in
muscles that are resistant to atrophy, while BMP signalling, i.e., a positive regulator of
muscle mass, was maintained [46]. Previous data suggested that TGF-β inhibition would
release SMAD4, i.e., the common actor in TGF-β and BMP signalling, which could, thus,
be recruited to BMP signalling and promote hypertrophy and/or counteract atrophy [45].
Here, we reported an increase in the SMAD1/5 nuclear protein levels in the halofuginone-
treated control mice, suggesting there was concomitant BMP signalling activation and
TGF-β inhibition. In addition, BMP activation was reported to increase during denervation,
intensive care disuse, and amyotrophic lateral sclerosis and was described as essential
to counteract excessive muscle wasting [44,45]. In agreement, we reported here that
BMP transcription factors SMAD1/5 accumulated in the nucleus in H2O-treated mice but,
surprisingly, declined in HF-treated mice after 7 days of hindlimb suspension. Whether the
higher basal pools of nuclear SMAD1/5 and their maintenance after 3 days of hindlimb
suspension in HF-treated mice contributed to attenuating skeletal muscle atrophy during
hindlimb suspension remains to be explored. Of note, BMP signalling has been reported to
promote protein synthesis in muscle [44]. Maintenance of the BMP pathway after 3 days of
hindlimb suspension may have contributed to the partial preservation of protein synthesis
and muscle mass in HF-treated mice. Nuclear translocation of SMAD1/5 represses the



Int. J. Mol. Sci. 2023, 24, 621 12 of 18

transcription of FBXO30/Musa1 [44,45]. However, we did not observe any change in
Fbxo30 expression. Mechanisms by which BMP signalling controls muscle mass are still
very poorly understood and will require further studies, particularly with a comprehensive
characterisation of the BMP target genes in skeletal muscle. We can also speculate that
HF-induced BMP activation has helped to limit muscle atrophy induced by ATF4-regulated
atrogenes (Figure 7).

In conclusion, halofuginone treatment reproduced the muscle features of hibernating
bears in gastrocnemius mice muscles with (i) the activation of ATF4-regulated atrogenes
and (ii) the concurrent inhibition of TGF-β signalling and promotion of BMP signalling,
without resulting in muscle atrophy (Figure 7). These characteristics were associated
with mitigated muscle atrophy during physical inactivity. To date, clinical trials have all
attempted to inhibit the TGF-β pathway, mostly with side effects or minimal efficiency [71].
Our study suggests halofuginone, as a well-tolerated chemical compound, already used
in human clinical trials [36], was able to tune the TGF-β/BMP balance in vivo and likely
sustained muscle mass. Moreover, our data open new ways to further decipher by which
precise mechanisms ATF4 induces atrophy and how BMP activation can interfere.

4. Materials and Methods

Ethics, animals housing, and experimental design. All experiments were conducted
with the approval of the regional ethics committee (agreement no. D6334515) following the
European Directive 2010/63/EU on the protection of vertebrate animals used for exper-
imental and scientific purposes. This study was performed with 12-week-old C57BL6/J
male mice (25–30 g), purchased from Janvier Labs (Le Genest-Saint-Isle, France). They
were housed individually upon arrival for 10 days of acclimatisation in a controlled room
(22 ± 2 ◦C, 60 ± 5% humidity, 12 h light/dark cycle, and light period starting at 8 h), fed ad
libitum a standard rodent diet (pellets A03 from Safe, Augy, France), and given free access
to water. Two distinct animal experiments were performed. To evaluate the effects of a
periodic halofuginone (HF) (#32481, Sigma, Saint-Quentin-Fallavier, France) administration,
we performed a first protocol where mice received either HF (0.25 µg/g) or water (H2O) by
gavage 3 times a week for 1 to 4 weeks (n = 6 animals per group). This dose was reported
as well tolerated over longer periods [31,33,60]. Gastrocnemius muscle was sampled 6 h
after the last HF/H2O administration at the end of each week. Subsequently, we performed
a second protocol to test whether HF administration before hindlimb unloading had a
positive effect on muscle mass and function. For that purpose, we performed two separate
animal experiments. In each experiment, mice received either HF (0.25 µg/g) or H2O
by gavage 3 times a week for 3 weeks and were afterwards subjected either to hindlimb
unloading through tail suspension (HS) or kept unsuspended (Ctrl) for 3 or 7 days, as
previously described [46] (n = 8–19 animals per group). We did not record any difference
between Ctrl mice at 3 or 7 days for all the measurements reported in this manuscript. We,
therefore, pooled the two groups of Ctrl mice for further analysis and data representation.
Food intake and body weight were recorded throughout the different protocols. Unloading
in control mice resulted in only a small body weight loss (<10%) that occurred within the
first 3 days concomitantly with a decrease in food intake, whereas HF treatment did not
modify food intake or body weight ( see Supplementary Figures S1 and S2).

Tissue collection. At the end of the experiments, mice were euthanised by cervical
dislocation. The soleus, gastrocnemius, tibialis anterior, and extensor digitorum longus
(EDL) muscles were carefully collected and weighed prior to immediate freezing in liquid
nitrogen and storage at −80 ◦C until analyses.

Measurement of protein synthesis in gastrocnemius. At the end of protocol 2, mice
received an intraperitoneal injection of 0.040 µmol/g puromycin (#P8833, Sigma, Saint-
Quentin-Fallavier, France) dissolved in 100 µL of a saline solution before euthanasia, as
described previously [72]. At exactly 30 min post-puromycin injection, gastrocnemius
muscle was dissected and frozen in liquid nitrogen for Western blot analysis, as follows.
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Histology and morphometric measurements. A part of the gastrocnemius muscle
was collected at the end of protocol 2 and frozen in isopentane chilled with liquid nitrogen
and stored at −80 ◦C until use. Serial muscle cross-sections (10 µm thick) were obtained us-
ing a cryostat (HM500M Microm International, Fisher Scientific, Illkirch, France) at −20 ◦C.
Cross-sections were labelled with anti-laminin-α1 (L9393 Sigma, Saint-Quentin-Fallavier,
France) to outline the fibre cross-sectional area (CSA) and BFF3 antibody (#AB_2266724,
DSHB, Iowa City, IA, USA) to determine myosin heavy chain type 2B fibre. Both were
subsequently hybridised with a corresponding secondary antibody conjugated to Alexa-
Fluor (Invitrogen, Cergy-Pontoise, France). Image acquisitions were performed with a
high-resolution ORCA-Flash4.0 LT+ Digital CMOS camera coupled to a IX-73 microscope
(Olympus, Münster, Germany) and Cell-Sens dimension software (Olympus Soft Imaging
Solutions, Münster, Germany). The CSA was determined for 1000–1500 fibres per animal,
using ImageJ software 1.53f51 (http://rsb.info.nih.gov/ij/, accessed on 3 April 2018).

Protein isolation. Gastrocnemius muscles were pulverised in liquid nitrogen. (1) For
all targets, ~30 mg of the resulting powders were homogenised using a polytron in 1 mL
of an ice-cold buffer (10 mM Tris pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1%
Triton X-100, and 0.5% Igepal CA630) containing inhibitors of proteases (Protease Inhibitor
Cocktail) and phosphatases (1 mM Na3VO3 and 10 mM NaF) (Sigma, Saint-Quentin-
Fallavier, France). The homogenates were stirred for 1h at 4 ◦C and then centrifuged at
10,000× g for 15 min at 4 ◦C. The resulting supernatants containing total soluble proteins
were then stored at −80 ◦C until use. (2) For SMADs protein level analysis, subcellular
fractionation was performed. For that purpose, ~50 mg of gastrocnemius powder samples
were homogenised for 1 min on ice using a polytron in 500 µL of ice-cold extraction buffer
(10 mM HEPES, pH 7.5, 10 mM MgCl2, 5 mM KCl, 0.1 mM EDTA, pH 8.0, and 0.1% Triton
X-100) [73]. The resulting homogenates were subjected to sequential fractionation steps
to separate soluble cytosolic and nuclear proteins as described [74]. Pellets containing
nuclear proteins were solubilised in nuclear extraction buffer (20 mM HEPES, pH 7.9,
25% glycerol, 500 mM NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, and pH 8.0) [73]. For all
protein extracts, protein concentration was determined using the Bradford Protein Assay
Kit (Biorad, Marnes-la-Coquette, France). Proteins were then diluted in Laemmli buffer
and stored at −80 ◦C until use.

Western blots. Protein contents for (i) SMAD family members (anti-SMAD1-5, PA5-
80036, Thermofisher, Illkirch, France; anti-SMAD2-3, #8685, Cell Signalling Technology,
Saint-Cyr-L’Ecole, France; anti-SMAD4, ab230815, Abcam, Cambridge, UK), (ii) total and
phosphorylated eukaryotic initiation factor 2 alpha (anti-eIF2α, #9722, Cell Signalling Tech-
nology; anti-p-Ser51eIF2α, ab32157, and Abcam), and (iii) incorporation of puromycin
(anti-puromycin clone 12D10, MABE343, Millipore, Burlington, MA, USA) were assessed by
immunoblotting. Briefly, 20–40 µg of protein extracts were subjected to SDS-PAGE (sodium
dodecyl sulfate-polyacrylamide gel electrophoresis) using TGX™ FastCast™ 10% Acry-
lamide gels (Biorad, Marnes-la-Coquette, France) and transferred onto a PVDF membrane
(Hybond P, Amersham, England) using Trans-Blot® Turbo™ Transfer System standard
protocol (Biorad, Marnes-la-Coquette, France). Western blots were blocked for 1 h at room
temperature in TBS (Tris-Buffered Saline) buffer with 0.1% Tween-20 (TBS-T, pH = 7.8) with
5% bovine serum albumin (BSA) for all the targets, in accordance with the instructions of the
manufacturer. They were then washed thrice in TBS-T and incubated (overnight, stirring,
4 ◦C) with appropriate primary antibodies diluted at 1:1000, except for anti-puromycin
diluted at 1:5000. Western blots were then washed and incubated for 1 h with an appropri-
ate secondary antibody (HRP-conjugated anti-rabbit (#7074) or anti-mouse (#7076) IgGs)
(Cell Signalling Technology, Saint-Cyr-L’Ecole, France). For anti-puromycin antibody, an
anti-mouse IgG2Ak (115-035-206, Jackson ImmunoResearch Laboratories, West Grove, PA,
USA) was used. Signals were detected after incubation with Luminata Crescendo Western
HRP substrate (Millipore, Burlington, MA, USA) and visualised using G: BOX ChemiXT4
(XL1) imaging system (Syngene, Frederick, MD, USA). Signals were then quantified using
ImageJ 1.53f51 software. Two samples from each group were loaded on each gel. The signal
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recorded within each lane of one Western blot was normalised to the overall signal of that
blot, and then signals were normalised to the total amount of proteins determined by the
Biorad’s stain-free system or ponceau S to correct for uneven loading. The normalised
values were then averaged by group and expressed as the fold change from the mean of all
H2O-ctrl samples.

RT-qPCR. Total RNA from gastrocnemius muscle samples was extracted with Macherey-
Nagel™ NucleoSpin™ 96 RNA Kit and KingFisher™ Duo Prime Purification System, in
accordance with the instructions of the manufacturer (Macherey-Nagel, Hoerdt Cedex,
France). RNA was quantified by measuring the absorbance at 260 nm on a NanoDrop
ND-1000 spectrophotometer (Thermo Scientific, Wilmington, DE, USA). Then, 500 ng
of RNA were treated with DNase I (Invitrogen, Cergy-Pontoise, France) prior to reverse
transcription using random primers and SuperScript II (Invitrogen, Cergy-Pontoise, France),
in accordance with the instructions of the manufacturer. Real-time PCR was carried out
using the CFX96 Real-Time PCR detection system (Biorad, Marnes-la-Coquette, France).
Primer sequences are provided in Supplementary Table S1. PCR reactions were performed
using the IQ SYBR Green Supermix (Biorad, Marnes-la-Coquette, France), in accordance
with the instructions of the manufacturer. The comparative threshold cycle (2∆∆CT)
method was used to compare the relative mRNA expression between each group, using
TBP (TATA binding protein) as a reference gene for muscle. The relative mRNA abundance
was arbitrarily set to 1 for the H2O-Ctrl group.

Statistics. All data are means ± SEM and were analysed for normality of residuals
using the Shapiro-Wilk test. No set of data was transformed for non-normality distribution.
For protocol 1 (n = 6/group), we performed a multiple Welch t-test within each week. For
protocol 2 (n = 8–19/group), we performed a two-way ANOVA with the factors “Hindlimb
suspension” and “Halofuginone” and corrected the data for multiple comparisons using
Tukey’s test. These analyses were performed using Prism 9 (GraphPad Prism 9, San Diego,
CA, USA).

Transcriptomic Data. We used transcriptomic data from already published stud-
ies [46]. The transcriptomic bear data supporting Figure 6 of this study are openly available
in the GEO repository database (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi, refer-
ence no. GSE144856, accessed on 1 September 2021). To identify the differentially expressed
genes (DEGs) from this list, we selected a winter/summer (FC) > 1.0 with an adjusted
p-value < 0.05 as cut-off for the up-regulated genes.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms24010621/s1.
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Supplementary Figure S1 



Supplementary Figure S1. Effect of halofuginone treatment on muscle mass. Mice were treated 

with H2O (white bars) or HF (0.25 µg/g, grey bars) 3 times a week up to 4 weeks (WK) as described in 

Figure 1A. Muscles were collected 6h after the last HF administration at the end of each week. (A-C) 

Relative mRNA levels in gastrocnemius for Asns, Ppp1r15a and Ddit3 were measured by RT-qPCR. 

Data were normalized using Tbp. Data are expressed as fold change vs. H2O within each week and 

presented as individual values with mean bars ± SEM. (D-F) Soleus, Tibialis anterior and Extensor 

digitorum longus (EDL) mass per gram of body weight (BW). Data are expressed as a percentage 

from H2O0 within each week and presented as individual values with mean bars ± SEM. (G) Body 

mass in grams (g) of H2O (white circles) or HF (grey circles) treated mice. Data are presented as 

means ± SEM. Statistics are described in Methods. * padj <0.05; ** padj <0.01; **** padj < 0.0001. 



Supplementary Figure S2 



Supplementary Figure S2. ATF4-regulated alternative target genes expression in muscle 

during hindlimb suspension. Mice were treated with H2O or halofuginone (HF) oral administration 

(0.25µg/g) 3 times a week for 3 weeks and were then subjected to hindlimb suspension for 3 or 7 

days (HS3 and HS7, light grey and white bars, respectively) or kept unsuspended (Ctrl, dark grey bars). 

(A-C) Relative mRNA levels in gastrocnemius for Asns, Ppp1r15a and Ddit3 were measured by RT-

qPCR. Data were normalized using Tbp. Data are expressed as fold change vs. H2O-Ctrl and 

presented as individual values with mean bars ± SEM. Statistics are described in Methods. *** padj 

<0.001; **** padj <0.0001. (D) Body mass in grams (g) of H2O (circles) or HF (triangles) treated mice 

unsuspended (Ctrl, dark grey) or suspended for 3 or 7 days (HS3 and HS7, light grey and white, 

respectively). Data are presented as mean ± SEM. 



Supplementary Figure S3 



Supplementary Figure S3. Effects of halofuginone treatment prior to hindlimb suspension on 

skeletal muscle. Mice were treated with H2O or halofuginone (HF, 0.25µg/g) 3 times a week for 3 

weeks and were then subjected to hindlimb suspension for 3 or 7 days (HS3 and HS7, 

respectively) or kept unsuspended (Ctrl) as described in Figure 2A. (A-B) Frequency distribution 

proportion of fibres cross-sectional area (CSA) in Ctrl (blue circle), HS3 (pink square) or HS7 (red 

triangle) of mice treated with H2O (filled forms and lines) or HF (empty forms and dotted lines), for 

all fibres type (A) or 2X/2B fast twitch fibres (B). Data are means ± SEM. 



Supplementary Figure S4 



Supplementary Figure S4. Effect of halofuginone treatment prior to hindlimb suspension on 

SMADs protein content in gastrocnemius muscle. Mice were treated with H2O or halofuginone (HF, 

0.25µg/g) 3 times a week for 3 weeks and were then subjected for 3 or 7 days (HS3 and HS7, light 

grey and white bars, respectively) or kept unsuspended (Ctrl, dark grey bars) as described in Figure 

2A. (A-F) Relative SMAD2/3, SMAD1/5 and SMAD4 protein levels in gastrocnemius muscle were 

assessed by Western blotting in the nuclear (A-C) and the cytosolic (D-F) protein fractions;. They 

were then quantified and normalized to the total protein content. Data are expressed as fold change 

vs. H2O-Ctrl and presented as individual values with mean bars ± SEM. Statistics are described in 

Methods. * padj <0.05; ** padj <0.01; **** padj <0.0001. 



Supplementary Figure S5. Effect of halofuginone treatment prior to hindlimb suspension on 

collagens expression in gastrocnemius muscle. Mice were treated with H2O or halofuginone 

(HF) oral administration (0.25µg/g) 3 times a week for 3 weeks and were then subjected to hindlimb 

suspension for 3 or 7 days (HS3 and HS7, light grey and white bars, respectively) or kept 

unsuspended (Ctrl, dark grey bars). (A-D) Relative mRNA levels in gastrocnemius for Col1a1, Col3a1, 

Col5a2 and Col6a1 were measured by RT-qPCR. Data were normalized using Tbp. Data are 

expressed as fold change vs. H2O-Ctrl and presented as individual values with mean bars ± SEM. 

Statistics are described in Methods. * padj <0.05; ** padj <0.01;  *** padj <0.001; **** padj <0.0001. 

Supplementary Figure S5 



Supplementary Table S1: Primers

Gene Forward Reverse

Atf4 TCGATGCTCTGTTTCGAATG AGAATGTAAAGGGGGCAACC

Asns TACAACCACAAGGCGCTACA AAGGGCCTGACTCCATAGGT

Cdkn1a GTCTTGCACTCTGGTGTC CTTGGAGTGATAGAAATCTG

Col1a1 CGTGGTGACAAGGGTGAGAC AACCAGGAGAACCAGGAGGA

Col3a1 CTGCTGGTCCTTCTGGTGCT AGCCACGTTCACCAGTTTCA

Col5a2 CCTGGTCCAAATGGTGAACA CCAGGGTTTCCTTCCTTTCC

Col6a1 CCACAACCAGATGCAAGAGC CACCAGCCATCCATTGTAGC

Ddit3 GCATGAAGGAGAAGGAGCAG CTTCCGGAGAGACAGACAGG

Eif4ebp1 CAGGCGGTGAAGAGTCACAA CCTTGGGGGACATAGAAGCA

Fbxo30 GTTGGGATTGCGTAGTGACC CCCTCATTAGCCGGGATACA

Fbxo32 AGTGAGGACCGGCTACTGTG GATCAAACGCTTGCGAATCT

Gadd45a AGTCAACTTATTTGTTTTTGC GCAATTTGGTTCAGTTATTT

Ppp1r15a GACTCAAGCCAGAGTCCCTG TAGAGGAATCTCGGGGTCCT

Tbp TGGTGTGCACAGGAGCCAAG TTCACATCACAGCTCCCCAC

Trib3 CCAGAGATACTCAGCTCCCG GAGGAGACAGCGGATCAGAC

Trim63 ATGGAGAACCTGGAGAAGCA AACGACCTCCAGACATGGAC

Atf4: activating transcription factor 4; Asns: asparagine synthetase; Cdkn1a: cyclin dependent kinase 

inhibitor 1a; Col1a1: collagen type I alpha 1; Col3a1: collagen type III alpha 1; Col5a2: collagen type V 

alpha 2; Col6a1: collagen type VI alpha 1; Ddit3: DNA damage inducible transcript 3; Eif4ebp1: eukaryotic 

translation initiation factor 4E binding protein 1; Fbxo 30/32: F-Box protein 30/32; Gadd45a: growth 

arrest and DNA damage inducible alpha; Ppp1r15a: protein phosphatase 1 regulatory subunit 15a; Tbp: 

tata binding protein; Trib3: tribbles pseudokinase 3; Trim63: tripartite motif containing 63
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7.3 Discussion and perspectives  

In our study, we found that the induction of ATF4 atrogenes in skeletal muscle was not associated with 

atrophy (1) in healthy and (2) catabolic conditions in halofuginone-treated mice, and also (3) in 

hibernating brown bears. Even more, we found benefits on gastrocnemius muscle mass in 

halofuginone-treated mice when subjected to hindlimb suspension (HS) compared to the untreated 

mice. Furthermore, we demonstrated that the molecular mechanisms of halofuginone involve the 

inhibition of TGF-β signalling while concomitantly promoting BMP signalling (Figure 39). In addition to 

the points discussed in the article, other points deserve to be discussed. First, we will discuss the 

halofuginone mechanisms of actions, its biological effects on muscle mass, and finally the dual role of 

ATF4 signalling in skeletal muscle. 

 

7.3.1 Halofuginone mechanism of action in skeletal muscle  

Halofuginone (HF) is a synthetic derivative of febrifugine that has been isolated from the roots and 

leaves of Dichroa febrifuga and also from Hydrangea [415] (Figure 40). Febrifugine, and subsequently 

HF, have been used in traditional Chinese medicine for many years for their therapeutic benefit against 

malaria, cancer, fibrosis and inflammatory diseases [416]. Currently, two modes of action of HF have 

Figure 39. Graphical abstract of the study 2. 
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been described: (1) inhibition of the prolyl-tRNA synthetase (ProRS) activity leading to ISR activation 

and (2) inhibition of type 1 collagen production via SMAD3 inhibition [416]. In addition, expression 

profiling of HF targets in epithelial cells revealed that this molecule can induce the expression of ATF4 

target genes, including TRIB3, GADD45A and ATF4 itself [417]. Consistently, in our study, we found that 

Atf4 and its target genes were upregulated following HF treatment in mice muscles. 

 

 

 

 

 

 

 

 

7.3.1.1 Does halofuginone induce GCN2 phosphorylation in skeletal muscle ?   

HF binds and inhibits the activity of prolyl-tRNA synthetase (ProRS) [418]. This mimics the response to 

amino acid starvation by increasing GCN2 and subsequently eIF2α phosphorylation, and thus ATF4 

translation [418]. Unfortunately, examining GCN2 phosphorylation in skeletal muscle is impossible 

given the commercially available antibodies. Therefore, it is unclear in our study whether the increased 

transcriptional activity of ATF4 following HF treatment was mediated by HF canonical activation of 

GCN2. ATF4 binds to specific CCAAT/enhancer binding protein (C/EBP)-ATF response elements (CAREs) 

located in the promoters of its target genes. Our team has developed a CARE-driven luciferase mouse 

model (CARE-LUC) that enables the study of the activity of the eIF2α-ATF4 pathway in the whole 

organism, and at tissue and cellular levels, by combining imaging, luciferase assays and 

immunochemistry [419]. We could use wild-type CARE-LUC mice and CARE-LUC Gcn2 KO mice available 

in our laboratory to compare the intensity of luciferase in muscles during HF treatment and subsequent 

hindlimb suspension. This will enable determination of whether ATF4 transcriptional activity induced 

by HF treatment is GCN2 dependent. 

Figure 40. Chemical structures of febrifugine and 
halofuginone (from Pines et Spector 2015 [416]). 
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7.3.1.2 Halofuginone inhibits TGF-β signalling while concomitantly promoting 

BMP signalling  in skeletal muscle 

HF, which binds to receptor tyrosine kinases and/or enters the cell directly, activates the PI3K and 

MAPK signalling pathways thereby inhibiting SMAD3 phosphorylation in muscle cells [420]. In addition, 

phosphorylation of eIF2α by HF would prevent SMAD2/3 from translocating to the nucleus in intestinal 

cells [421]. TGF-β is a major cytokine that drives tissue fibrosis [146]. Through inhibition of the TGF-β 

pathway, HF reduces collagen production and then improves the histopathology and function of 

fibrotic tissues, including dystrophic muscles [146,422]. In our study, we confirmed that HF inhibited 

TGF-β signalling (see Paper 7.2) [423]. However, muscles from mice subjected to HS, whether treated 

with H2O or HF, did not show fibrotic features with, instead, a decrease in collagen expression (Figure 

41) (see Appendix 10.2). This indicates that the beneficial effect of HF pre-treatment on muscle mass 

and CSA did not involve its anti-fibrotic properties.  

Figure 41. Effect of halofuginone treatment prior to hindlimb suspension on extracellular matrix components 
expression in gastrocnemius muscle in mice. 

Mice were treated with H2O or halofuginone (HF, 0.25µg/g) 3 times a week for 3 weeks and were then 
subjected to hindlimb suspension for 3 (HS3) or 7 (HS7) days or kept unsuspended (Ctrl). (A-D) 
Gastrocnemius relative mRNA levels for Col1a1, Col3a1, Col5a2 and Col6a1 by RT-qPCR (see Appendix 10.2). 
Data were normalised using Tbp gene. Data are means ± SEM (expressed as fold change vs. H2O-Ctrl). Two-
way ANOVA: * padj < 0.05; ** padj <0.01; *** padj <0.001; **** padj < 0.0001. 
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Furthermore, we showed for the first time that TGF-β inhibition by HF was concomitant with a 

promotion of BMP signalling with nuclear translocation of SMAD1/5 (see Paper 7.2) [423]. We 

suggested that this promotion and the resulting transcriptional program, might be in favour of 

neutralising the atrophic actions of ATF4 in muscles subjected to HS but also in muscles of the 

hibernating bears. A study showed that BMP2 treatment induced an increase in ATF4 protein levels 

and its phosphorylation in chondrocyte cells [424]. Several post-translational modifications of ATF4, 

including phosphorylation, regulate its stability or enhance its transcriptional activity [194]. Whether 

BMP signalling in muscles can induce ATF4 phosphorylation and whether this post-translational 

modification can alter its stability and/or transcriptional activity has never been studied. As it is not 

possible to analyse ATF4 at the protein level in muscles in vivo, in vitro experiments will be needed to 

explore this hypothesis.  

 

7.3.2 Biological effects of halofuginone on skeletal muscle  

Duration of HF pre-treatment. In this study, we reported that 3-weeks of HF pre-treatment slightly 

preserved the mass and CSA of the gastrocnemius muscle during hindlimb suspension in mice (HS) (see 

Paper 7.2) [423]. We also recorded slight preservation of muscle mass during HS in mice that were pre-

treated with HF for a shorter period (i.e. 2 weeks) (Figure 42). This slight preservation of muscle mass 

occurred even if ATF4 atrogenes were overexpressed during HS both in mice pre-treated for 2 or 3 

weeks with HF (see Paper 7.2 and data not shown) [423].  

 

 

 

The effect of HF may depend on the nature of the muscle. The slight preservation of gastrocnemius 

CSA observed in HF-treated mice subjected to HS was mainly observed in glycolytic fibres (i.e. type 

2X/2B) (see Paper 7.2) [423]. Oxidative fibres (i.e. type 1/2A) are well-documented to be more 

susceptible to disuse-induced atrophy than glycolytic fibres [425]. Unlike the glycolytic gastrocnemius 

muscle, the mass of the oxidative soleus muscle was not protected after 3 days of HS when mice were 

Figure 42. Halofuginone treatment for 2 weeks prior to 
hindlimb suspension mitigates atrophy in 
gastrocnemius muscle in mice. 

Mice were treated with H2O or halofuginone (HF, 
0.25µg/g) 3 times a week for 2 weeks and were then 
subjected to hindlimb suspension for 3 (HS3) days or 
kept unsuspended (Ctrl). Gastrocnemius muscle mass 
(mg) represented with means ± SEM. Two-way ANOVA 
* padj <0.05; ns= non-significant. 
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pre-treated with HF for 2 (Figure 43) or 3 weeks (data not shown). Consistently, the average CSA of 

soleus muscle fibres was similarly reduced in both untreated and HF-treated mice (Figure 43). We then 

analysed the distribution of fibre CSA in the soleus and compared it to the gastrocnemius muscle (Figure 

43). Overall, HF reduced the proportion of small fibres and increase the proportion of large fibres in 

both the soleus and the gastrocnemius muscle in control mice (see Paper 7.2 and Figure 43) [423]. 

However, contrarily to the gastrocnemius muscle (see Paper 7.2) [423], this difference in CSA fibre 

distribution was not maintained during hindlimb suspension in the soleus muscle (Figure 43). This 

suggests that muscle fibre type may influence the effect of HF on skeletal muscle and could be specific 

to the pathophysiological condition and/or the nature of the muscle. It is therefore conceivable that 

HF treatment is even more successful in preserving muscle mass in glycolytic muscles under catabolic 

conditions where glycolytic fibres are more likely to atrophy, such as ageing, cancer or glucocorticoid 

treatment. 

 

A. B. 

C. Figure 43. Effect of halofuginone 
treatment prior to hindlimb suspension 
in soleus muscle. 

Mice were treated with H2O or 
halofuginone (HF, 0.25µg/g) 3 times a 
week for 3 weeks and were then 
subjected to hindlimb suspension for 3 
(HS3) or 7 (HS7) days or kept 
unsuspended (Ctrl). (A) Soleus muscle 
mass (mg) represented with means ± 
SEM. (B) Mean fibre cross-sectional area 
(CSA) of soleus muscle in Ctrl, HS3 and 
HS7. Data are means ± SEM. Two-way 
ANOVA. * padj<0.05; ** padj <0.01; 
**** padj <0.0001. (C) Frequency 
distribution proportion of fibres CSA of 
soleus muscle in Ctrl, HS3 or HS7 of mice 
treated with H2O or HF, for all fibres 
type. Data are means ± SEM. 
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Finally, to examine whether this slight preservation of gastrocnemius mass and CSA might have had 

functional muscle benefits, we performed locomotor experiments using the Rotarod and Catwalk 

devices. The Rotarod test is widely used to assess the effects of drugs on motor coordination and 

balance, while the Catwalk is used for the quantitative assessment of stepping and motor performance 

in rodents. These functional measures did not show much difference between control and HS mice 

with or without HF treatment. Other functional measures could be considered, such as 

electromyography.  

 

7.3.3 The dual role of ATF4 signalling in skeletal muscle 

As mentioned in the state of the art (see section 4.3.2), ATF4 target genes comprise atrogenes, but 

also genes that may be involved in muscle homeostasis including autophagy. In our study, we showed 

that the induction of ATF4 atrogenes was not associated with muscle atrophy during disuse in 

halofuginone-treated mice and in hibernating bears. For these reasons, we hypothesised that ATF4 

may play a dual role in skeletal muscle, either pro-atrophic or pro-homeostatic, and that this may 

depend on the frequency and duration of its activation. 

 

7.3.3.1 Does halofuginone-induced ATF4 signalling lead to the expression of 

autophagy-related genes?  

ATF4 is a transcription factor involved in the transcription of autophagy-related genes in response to 

various stresses (e.g. amino acid starvation, ER stress) [197,211–214,216,217]. We thus examined the 

expression of some autophagy-related genes known to be targets of ATF4 [217]. We observed no 

change in the muscle expression of Atg5, Atg12 nor Atg16, whether the mice were treated with HF or 

hindlimb suspended (Figure 44) (see Appendix 10.2). However, mRNA and/or protein levels for 

microtubule associated protein 1 light chain 3 alpha (LC3) and BCL2-interacting protein 3 (BNIP3), 

involved in autophagosome formation were increased during HS in both H2O-and HF-treated mice 

[426,427] (Figure 44). Therefore, the uncoupling of ATF4 from atrophy observed in our study in 

halofuginone-treated mice does not seem to be dependent on autophagy induction. Interestingly, 

BNIP3, with the help of LC3, can sequester ATF4 into mitophagosomes leading to ATF4 degradation by 

mitophagy in response to nutrient deprivation in cancer cells [428]. It would therefore be very 

interesting to study the cellular localisation of ATF4 upon HF treatment. In addition, RNA sequencing 

analysis of muscles from HF-treated mice would provide insight into the signalling pathways that may 

explain the uncoupling between ATF4 atrogenes induction and muscle atrophy. 
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E. 

A. B. 

C. D. 

F. 

G. 

TGX 

Figure 44. Effect of halofuginone treatment prior to hindlimb suspension on autophagy-lysosomal system in 
gastrocnemius muscle. 

Mice were treated with H2O or halofuginone (HF, 0.25µg/g) 3 times a week for 3 weeks and were then 
subjected to hindlimb suspension for 3 (HS3) or 7 (HS7) days or kept unsuspended (Ctrl). (A-D) and (G) 
Gastrocnemius relative mRNA levels for Atg5, Atg12, Atg16, Map1lc3a and Bnip3 were assessed by RT-qPCR. 
Data were normalised using Tbp. (E-F) Gastrocnemius relative protein levels for LC3II were assessed by 
Western blotting quantified and normalised using TGX signal for uneven loading, and a representative 
western blot is shown (see Appendix 10.2). Data are means ± SEM (expressed as fold change vs. H2O-Ctrl). 
Two-way ANOVA: *padj<0.05; ** padj <0.01; *** padj <0.001; **** padj < 0.0001. 
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7.3.3.2 ATF4 signalling in hibernating bear muscles 

Induction of ATF4 atrogenes is associated with moderate muscle atrophy in hindlimb suspended mice 

when treated with HF or in hibernating brown bears muscles (see Paper 7.2) [423]. We further explored 

the transcriptome of the muscle of the hibernating brown bear from study 1 [351] to analyse the ATF4 

gene signature. Based on an extensive literature review and the use of databases (i.e. GeneCards), we 

have established a list of ATF4-related genes (see Appendix 10.2). Using the same strategy as in study 

1, we performed an enrichment analysis from the down-(161) and up-regulated (105) ATF4-related 

genes.  

S W S 

TGX 

eIF2α 

p-eIF2α-S51 

W S W W S 

A. 

B. C. 

Figure 45. ATF4 signalling regulation in atrophy-resistant muscle of the hibernating bear. 

(A) A list of 614 ATF4-related genes has been drawn up from the Genecards web-based portal. Their expression 
has been analysed in a model of atrophy resistance (the hibernating brown bear) as described before 
(Cussonneau et al., 2021 [351]). Biological processes represents the protein-protein enrichment analysis 
performed on Metascape from the respective down-(green) or up-(red) regulated genes. (B-C) Vastus lateralis 
relative protein levels were assessed by Western blotting and the ratio phosphorylated/total form for eIF2α 
was calculated after quantification and normalisation using TGX signal for uneven loading. A representative 
western blot is shown (see Appendix 10.2). Data are presented as individuals values with mean bars (n=12 
bears/season, the same individuals were sampled and analysed in summer and winter). S: summer; W: winter.  
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Enrichment analysis revealed that ATF4-related genes in the biological processes such as heme 

deficiency response, oxidative stress, endoplasmic reticulum stress and amino acid deficiency were 

upregulated in atrophy-resistant muscles of the hibernating bear (Figure 45). In contrast, ATF4-related 

genes in the biological processes of the aerobic electron transport chain and amino acid biosynthesis 

were predominantly downregulated (Figure 45). These data suggest that the ATF4 transcription factor 

is transcriptionally active in hibernating bear muscles. We also observed that the ratio of 

phosphorylated eIF2α to total eIF2α remains unchanged between hibernating and active bear muscles 

(Figure 45) (see Appendix 10.2). ATF4 target genes are highly dependent on the intensity and duration 

of the stress [197,204,429]. When the stress is too severe and sustained, eIF2α is phosphorylated 

leading to the induction by ATF4 of a pro-apoptotic transcriptional program [202–204]. The 

maintenance of a low level of phosphorylated eIF2α may avoid any death-like transcriptional response 

in bear muscles during hibernation, but also suggest an uncoupling between eIF2α phosphorylation 

and ATF4 transcriptional activity. This is consistent with the decrease in phosphorylated eIF2α protein 

levels that occurs alongside an increase in the expression of ATF4 target genes during HS in mice (see 

Paper 7.2) [423]. Therefore, the transcriptional activity of ATF4 may be independent of the level of 

phosphorylated eIF2 and may depend on other signals in certain situations such as disuse. 

 

7.3.4 Halofuginone-like compound enriched in bear food  

As mentioned above, HF is a synthetic derivative of febrifugine that has been isolated from the roots 

and leaves of Dichroa febrifuga and also from Hydrangea [415]. Dichroa febrifuga is mainly found in 

Asia. However, a certain type of Hydrangea, named Hydrangea macrophylla occurs in northern and 

southern Europe, as well as in southern China. Thus, the geographical distribution of this plant overlaps 

with some of the brown bear habitat areas (Figure 46). Interestingly, the fruiting of this plant occurs 

from April to September, and hyperphagia of the brown bear occurs before den entry in late October 

[296]. Regarding the biological similarity between the muscles of HF-treated mice and hibernating 

bears (i.e. ATF4 and BMP signalling induction and TGF-β inhibition), it could be envisaged that a 

halofuginone-like molecule is present in the brown bear food before it enters hibernation. This 

molecule/compound could be stored in the adipose tissue and released into the bloodstream during 

the hibernation period. This hypothesis is part of a larger hypothesis that active circulating compounds 

may be present in the serum of the hibernating bear, which could explain the general hypometabolism 

present during hibernation and the consequent preservation of organ functions such as skeletal 

muscle. 
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Altogether, the various points discussed above have enabled us to draw an hypothetical schema of the 

molecular mechanisms of halofuginone and halofuginone-like compound in skeletal muscle  (Figure 47). 

A. B. 

Figure 46. Worldwide geographic repartition of (A) Hydrangea macrophylla and (B) brown bear living area (Ursus arctos). 

(A) Map of Hydrangea macrophylla geographic repartition found on https://identify.plantnet.org/fr/the-plant-list/species.(B) 
Map of brown bear living area repartition found on https://databayou.com/bear/habitat.html. 

 

Figure 47. Hypothetical 
halofuginone and halofuginone-
like molecular mechanisms in 
skeletal muscle. 

The dotted lines correspond to 
the unknown/hypothetic 
mechanisms in our study. 

 

https://identify.plantnet.org/fr/the-plant-list/species
https://databayou.com/bear/habitat.html
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8. Study 3: Winter bear serum induces similar characteristics in human 

muscle cells as those found naturally in hibernating bear muscle 

8.1 Objective and strategy 

This last part contains preliminary results. We sought to replicate the molecular characteristics of 

atrophy-resistant muscles of hibernating bears in human muscle cells. Our team previously reported 

an increase in total protein content in human myotubes (HM) cultured with hibernating bear serum. 

This result proved for the first time that a circulating compound in bear serum could transfer biological 

properties to human muscle cells [341]. In this thesis project, we showed concurrent TGF-β inhibition 

and BMP activation in atrophy-resistant muscles of the hibernating brown bear (see Paper 6.3) [351] 

that we replicated in muscles of hindlimb-suspended mice treated with HF (see Paper 7.2) [423]. We 

aimed at determining whether a compound in bear serum during hibernation could reproduce these 

changes in TGF-β/BMP balance in human muscle cells. Our strategy was first to analyse microarray 

data from human muscle cells cultivated with winter bear serum (WBS) or summer bear serum (SBS) 

to assess whether there is a transcriptomic signature of TGF-β/BMP signalling. Subsequently, we 

optimised tools to measure TGF-β/BMP signalling transcriptional activity through their canonical or 

non-canonical signalling, using luciferase reporter assays in human muscle cells cultivated with SBS or 

WBS (Figure 48). 

 

 

8.2 Results, discussion and perspectives 

8.2.1 Analysis of microarrays in human muscle cells cultivated with WBS  

Prior to the start of this thesis project, human primary myotubes (HM) were cultured with SBS or WBS 

and a microarray sequencing experiment was performed. We analysed these data focusing on the TGF-

β/BMP-related genes. Interestingly, we observed common features with hibernating bear muscles, 

with down-regulation of CCN2, ID1,3 and 4, and up-regulation of MEF2A expression when HM were 

treated with WBS compared to SBS (Figure 49). Furthermore, we found that NOG (noggin protein), a 

Figure 48. Schema of the 
experimental strategy of study 3. 
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well-known antagonist of BMP signalling, was also downregulated in HM after WBS treatment (Figure 

49), although this was not the case in the hibernating bear muscles (see Paper 6.3) [351]. The 

downregulation of NOG and CCN2 are key features of TGF-β inhibition and promotion of BMP 

signalling. These data indicate that WBS can induce transcriptional changes in the TGF-β/BMP balance 

in HM similar to those occurring in hibernating bear muscles, supporting the existence of circulating 

active compounds in the winter bear serum.  

 

8.2.2 Optimisation of tools for the screening active compounds in WBS  

We used luciferase reporters to visualise the induction/inhibition of BMP or TGF-β transcriptional 

activity in muscle cells cultivated with bear serum (see Appendix 10.3). To minimise the need for bear 

serum, we miniaturised the protocol using the immortalised CCL136 human muscle cell line 

(rhabdomyosarcoma cell line). 

BMP signalling. We first used a BMP response element (BRE) luciferase reporter containing the mouse 

ID1 promoter responsive region for BMP [430]. We first validated that this pathway is active and that 

the machinery to transduce the BMP signal from the ligand to the target genes is operational in CCL136 

cells (data not shown). Thereafter, we observed a decrease in luciferase intensity when CCL136 were 

treated with WBS for 6 to 24h compared to SBS (Figure 50). This was confirmed on HM after 24h WBS 

treatment (Figure 50). These data suggest that the downregulation of ID1 observed in hibernating bear 

muscles in vivo is the result of a compound present in WBS. Furthermore, this effect of WBS could be 

direct since it occurred after only 6h of treatment (Figure 50). 

TGF-β signalling. We also used a SMAD binding element (SBE) luciferase reporter containing four 

copies of the SMAD binding site GTCTAGAC corresponding to the main TGF-β responsive element 

Figure 49. Human myotubes cultivated with winter 
bear serum induces similar transcriptional changes 
than those occurring in hibernating bears muscles. 

Human myotubes cultured upon winter bear serum 
(W) or summer bear serum (S) treatment for 48 hours. 
Gene expression assessed by DNA microarrays was 
analysed focusing on TGF-β and BMP signalling 
components. Data are expressed as log2FoldChange 
(FC) W/S ± lfcSE of 3 independent experiments 
(different cell preparations and bear serum mixes). 
Statistical significance is shown * padj < 0.05.  
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[431]. We did not observe any change in luciferase intensity in CCL136 cultivated with WBS or SBS after 

24h treatment (Figure 50). This experiment will be (1) complemented by a kinetic study of bear serum 

treatment, with notably shorter time points of treatment, and (2) performed on HM.  

MEF2 non-canonical signalling. Finally, we used luciferase reporter for MEF2 transcription factors. As 

mentioned in the state of the art (see section 4.2.4.2) MEF2 transcription factors may be linked to the 

BMP pathway through the non-canonical signalling TRAF6-TAK1-p38, although no studies have ever 

explored this connection in muscle.  

Moreover, our team has previously shown a MEF2A signature in hibernating bear muscles compared 

to its active counterpart [332], and we observed that MEF2A and MEF2C were also upregulated in 

hibernating bear muscles compared to active bear muscles in study 1 (see Paper 6.3) [351]. We 

observed that CCL136 cells cultivated for 24h with WBS increased the luciferase intensity compared to 

A. 
6H 12H 24H 

ID1-Luc 

CCL136 

CCL136 

B. 
ID1-Luc HM SBE-Luc CCL136 C. MEF2-Luc CCL136 D. 

Figure 50. Winter bear serum mimics in human muscle cells what occurs naturally in the muscles of hibernating bears. 

CCL136 cells were transfected with (A) ID1-Luc, (C) SBE-Luc and (D) MEF2-Luc and cultivated with summer bear serum 
(SBS) or winter bear serum (WBS) for (A) 6, 12 or 24 hours or (B and C) 24 hours. Cells were then lysed and luciferase 
activity was measured. Data are presented as individuals values with mean bars (n = 8-12 bear serum/season the 
same individuals were sampled and analysed in summer and winter). (B) Human primary myotubes (HM) were 
transfected with ID1-Luc, cultivated with SBS or WBS for 24 hours, and then lysed before measuring luciferase activity 
(see Appendix 10.3). Data are presented as individuals values with mean bars (n= 4 bear serum/season). Statistical 
significance is shown (Ratio paired t test) * pvalue<0.05; ** pvalue<0.01; ns: non-significant.  
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the cells treated with SBS (Figure 50). This preliminary result is very promising as this is the second proof 

of concept that a compound in the WBS can mimic what happens naturally in winter bear muscles in 

vivo. Further studies are needed to determine whether this MEF2 signature observed in hibernating 

bear muscle, in vivo and in human muscle cells cultured with WBS, could be under the control of the 

TGF-β and/or BMP pathway via a circulating compound.  

8.2.3 Perspective on identifying the circulating active compound in WBS  

The identification of compounds in hibernating bear serum that have the potential to control the TGF-

β/BMP balance is the core of a project recently granted by the ANR46 with a PhD student just starting. 

The prospects are promising. They will include confirmation of the results with the MEF2-Luc reporter 

in HM, and repetition with more individuals for the ID1-Luc reporter.  

Is ID1 disconnected from BMP signalling in skeletal muscle? The decrease in the luminescence of ID1-

Luc reporter observed in HM cultivated with WBS is coherent with what we showed in hibernating 

bear muscles (see Paper 6.3) [351]. However, ID1 is a well-known BMP target gene in bone and 

cartilage (see Discussion 6.4.2.1), therefore its reduction raises questions about the disconnection of 

ID1 transcription and BMP transcriptional acitivity in skeletal muscle. Moreover, ID1 expression is 

under the control of other signalling pathways, including TGF-β [362,363]. Whether the decrease in 

ID1 expression in hibernating bear muscles or HM cultivated with WBS reflects inhibition of TGF-β 

signalling remains to be explored. Therefore, we will examine the SMADs nuclear translocation, as 

performed in study 2, in HM cultivated with either WBS or SBS. Then, once the genetic signature of 

BMP signalling in muscle cells will be identified (see Discussion 6.4.2.1), we will design a BMP-Luc 

reporter with a BMP-dependent gene in muscle to address whether a circulating compound can 

activate the transcriptional activity of BMP signalling when HM are cultivated with WBS. 

Is BMP canonical signalling involved?  Subsequently, we will decipher the molecular mechanisms 

capable of inducing BMP signalling when human muscle cells are exposed to winter bear serum. For 

example, we can examine whether BMP inhibition with silencing RNAs (e.g. siSMAD1) or 

pharmacological treatments (e.g. noggin) abolish/limit ID1 down-regulation or MEF2A up-regulation 

in cells treated with SBS or WBS. This will allow us to find out whether the biological effect observed 

on muscle cells treated with WBS is mediated by BMP canonical signalling.  

What is the nature of the active compound in WBS?  The project also includes serum fractionation 

processes (e.g. delipidation, dealbumination, heat denaturation) to determine the nature of the 

compounds that may be involved in the regulation of the TGF-β/BMP balance in muscle cells. Serum 
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fractionation is already performed by one of our collaborators, Dr Bertile Fabrice at the IPHC in 

Strasbourg. This is also why we have miniaturised the reporter assay experiments in 96-well plates 

using CCL136 cells to test the different fractions and easily read the luminescence of the TGF-β/BMP 

reporters. Therefore, we will be able to investigate the nature of the compound (e.g. lipid, protein, …) 

leading to transcriptional modifications of the TGF- β /BMP signalling in vitro.  

Finally, the aim is also to reproduce in vitro and then in vivo the atrophy resistance phenotype of 

hibernating bear muscles, using active fractions and/or compounds of bear serum to prevent or 

reverse atrophy under catabolic conditions (e.g. dexamethasone-induced atrophy on myotubes in 

vitro). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

156 
 

9. General conclusion 

Some therapies to combat muscle wasting have been developed, including exercise, nutritional 

interventions and certain medications. However, no effective treatment has been found to completely 

and safely prevent muscle wasting. Furthermore, despite all its preclinical success, modulation of TGF-

β signalling has not translated into the desired effects in humans. The promotion of BMP signalling has 

received very little attention to date, and the concept that simultaneous fine-tuning of the BMP and 

TGF-β pathways might be of interest against the development of muscle atrophy has been mentioned 

in very few papers. The use of a model of natural resistance to muscle atrophy, the hibernating brown 

bear, has great potential for the discovery of new therapeutic targets for the human clinic. In addition, 

our comparative physiology strategy between an induced atrophy model and an atrophy-resistant 

model unveiled new and promising avenues for new future treatments. In this thesis project, we (1) 

performed a transcriptomic analysis comparing hibernating versus active bear muscles to unloaded 

versus control mouse muscles, (2) studied the impact of controlled ATF4 induction by halofuginone in 

mice subjected to hind limb suspension and (3) explored the effect of winter bear serum on human 

muscle cells. This work (1) demonstrated that the BMP/TGF-β balance is important in the muscle 

atrophy resistance phenotype and (2) suggested that it could be replicated in human muscle cells by 

the presence of circulating compounds in hibernating bear serum. The identification of new relevant 

targets within the BMP and TGF-β pathways that could be modulated by compounds in the hibernating 

bear serum and the identification of these compounds would therefore allow the development of 

innovative strategies against muscle atrophy. The continuation of this project is therefore the first step 

in the future development of new therapeutic solutions to confer resistance to muscle atrophy in 

humans. 
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10. Appendix  

10.1 Materials and Methods discussion 1 

10.1.1 Identification of BMP target genes in skeletal muscle    

Cell culture. The CCL136 human rhabdomyosarcoma cell line (ATCC, USA) was maintained in dulbecco's 

modified eagle medium (DMEM) 4,5g/L glucose medium (Gibco, USA) containing 1% penicillin-

streptomycin (Gibco, USA) and 10% fetal bovine serum (FBS) (Gibco, USA). The cells were seeded in 

12-wells plates at a density of 1.5 × 105 cells/well, cultured at 37 °C under 5% CO2, and transfected the 

day after. 

Plasmid. Plasmid cloning (pc)DNA3-ALK3 K261R was a gift from Aristidis Moustakas (Addgene plasmid 

# 80875; http://n2t.net/addgene:80875; RRID: Addgene_80875) [367]. This pcDNA3 back bone 

contains the DNA sequence of the BMP receptor BMPR1A/ALK3 carrying a K261R mutation leading to 

an inactive kinase. 

Transfection. CCL136 cells were transfected using the ViaFect Transfection Reagent (Promega, E4981). 

The ratio of ViaFect™ Transfection Reagent volume (µL) to DNA amount (µg) was optimised with green 

fluorescent protein (GFP) transfection assays prior to the actual experiments. We chose the 3:1 ratio 

(3 µl reagent: 1 µg DNA) as increasing the quantity of DNA or reagent did not increase the efficacy of 

the transfection. On the day of transfection, DNA and Viafect transfection reagent were mixed at the 

1:3 ratio described above in a serum-free medium and incubated for 15 minutes at room temperature 

to form the ViaFect™ Transfection Reagent:DNA complex. Cells were transfected with 1 µg of DNA/well 

by adding 100 µl of the transfection mixture to the wells. 

GDF5 treatment. After one night of transfection, the media have been replaced by fresh media. Half 

of the wells were treated with recombinant human GDF5 protein (Accession # P43026, BioLegend) at 

0.1 µg /mL for 6 hours. Cells were then washed with phosphate-buffered saline (PBS), harvested for 

protein extraction in the same protein extraction buffer as described in study 2 (see Paper 7.2) [423], 

and then stored at -80 until use. Western blots experiments have been performed as described in study 

2 (see Paper 7.2) [423] with the same SMAD4 and SMAD1/5 antibodies, and Phospho-SMAD1/5 

(Ser463/465) (#9516, Cell Signalling Technology, Saint-Cyr-L’Ecole, France) diluted 1:1000 in 5% bovine 

serum albumin (BSA).  
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10.1.2 Is SMAD4 recruited more by TGF-β or BMP signalling: Co-

immunoprecipitation  

Protein extraction. 5 mg of bear muscle powder were lysed on ice using a polytron with  500 µL NP-40 

buffer (10mM Tris pH 7.5, 150 mM NaCl, 1 mM EDTA, 1.0% Nonidet P-40, 20mM beta-

glycerophosphate) containing inhibitors of proteases (Protease Inhibitor Cocktail) and phosphatases 

(1 mM Na3VO3, 10 mM NaF) (Sigma, Saint-Quentin-Fallavier, France). The homogenates were then 

centrifuged at 10,000 g for 10min at 4°C and the concentration was determined using the Bradford 

Protein Assay Kit (Biorad, Marnes-la-Coquette, France). An aliquot was taken for protein expression 

analyses. 

Immunoprecipitation. The remaining lysates, containing equivalent amounts of 1 mg of total protein, 

were pre-cleaned for 1 h with 40 µL of Protein A-Agarose beads (sc-2001, Santa Cruz Biotechnology) 

and 1 µg of IgG isotype control antibody (sc-2027, Santa Cruz Biotechnology, Nanterra, France) with 

gentle rotation at 4°C. The samples were then centrifuged at 3200g for 30 seconds at 4°C, and the 

supernatants were stored. Immunoprecipitation was performed by the addition of 1.8 µg of SMAD4 

antibody (ab230815, Abcam, Cambridge, UK) and protein A-Agarose, followed by incubation at 4°C 

overnight with gentle rotation. The immune complex was isolated by centrifugation at 3500g for 5 

minutes. The resulting pellet was then washed with 350 µl of wash buffer (PBS pH 7.4, 5mM EDTA, 

10mM NaF) and centrifuged at 3500g for 5 minutes without vortexing. This last step was repeated 

twice. 

Immunodetection. The resulting pellet was eluted in 80 µL Laemmli 1X. Proteins were then denatured 

at 95°C for 5min, and 25 µL of the eluate was separated by sodium dodecyl sulfate–polyacrylamide gel 

electrophoresis (SDS-PAGE) using tris-glycine eXtended (TGX)™ FastCast™ 7,5% Acrylamide gels 

(Biorad, Marnes-la-Coquette, France) and transferred onto a polyvinylidene difluoride (PVDF) 

membrane (Hybond P, Amersham, England) using Trans-Blot® Turbo™ Transfer System standard 

protocol (Biorad, Marnes-la-Coquette, France). Blots were blocked for 1 h at room temperature in Tris-

Buffered Saline (TBS) buffer with 0.1% Tween-20 (TBS-T, pH = 7.8) and 5% BSA for all the targets 

according to the manufacturer’s instructions. They were then washed thrice in TBS-T and incubated 

(overnight, stirring, 4°C) with appropriate primary antibodies: (1) for validating the 

immunoprecipitation, SMAD4 (ab230815, Abcam, Cambridge, United Kingdom) antibody was used 

diluted 1:1000 in 5% BSA and (2) for checking the protein partners, membranes were hybridised with 

either SMAD1/5 (PA5-80036, Thermo Fisher, Illkirch, France) or SMAD2/3 (#8685, Cell Signalling 

Technology, Saint-Cyr-L’Ecole, France) both diluted 1:1000 in 5% BSA overnight at 4°C. Blots were then 

washed and incubated for 1 h at room temperature with VeriBlot for IP Detection Reagent (HRP) 

(ab131366, Abcam) diluted 1:2000 in 5% non-fat dried milk. Signals were detected after incubation 
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with Luminata Crescendo Western HRP substrate (Millipore, Burlington, MA, USA) and visualized using 

G: BOX ChemiXT4 (XL1) imaging system (Syngene, Frederick, MD, USA).  

 

10.1.3 Is GDF5 synthesised and released by adipose tissue: GDF5 ELISA  

We used the only commercially available GDF5 ELISA kit (Catalog Number: DY853-05 and DuoSet 

Ancillary Reagent Kit2 Catalog number: DY008; R&D Systems Europe) and performed GDF5 

immunodetection in serum from hibernating and active bears following the supplier protocol.  

 

10.2 Materials and Methods discussion 2 

10.2.1 Complementary RT-qPCR and Western blots of study 2  

RT-qPCR. Reverse transcription and quantitative polymerase chain reaction (RT-qPCR) of 

gastrocnemius muscle have been performed as previously described in study 2 (see Paper 7.2) [423] 

and the primers used are described in the following table : 

Gene Forward Reverse 

Atg5 TCAACCGGAAACTCATGGAA CGGAACAGCTTCTGGATGAA 

Atg12 TAAACTGGTGGCCTCGGAAC CCATCACTGCCAAAACACTCA 

Atg16 TCCCGTGATGACCTGCTAAA CAGTCAGAGCCGCATTTGAA 

Map1lc3a GAGCGAGTTGGTCAAGATCA GGAGGCGTAGACCATGTAG 

Bnip3 TCACTGTGACAGCCCACCTC GCTGTTTTTCTCGCCAAAGC 

Col1a1 CGTGGTGACAAGGGTGAGAC AACCAGGAGAACCAGGAGGA 

Col3a1 CTGCTGGTCCTTCTGGTGCT AGCCACGTTCACCAGTTTCA 

Col5a2 CCTGGTCCAAATGGTGAACA CCAGGGTTTCCTTCCTTTCC 

Col6a1 CCACAACCAGATGCAAGAGC CACCAGCCATCCATTGTAGC 

 

Immunodetection of LC3 protein. The lipidation of the LC3 protein has been assessed by Western blots 

in gastrocnemius muscle, as previously described in study 2 (see Paper 7.2) [423]. As LC3 protein has a 

pHi > 8.0, a CAPS (3-(cyclohexylamino)-1-propanesulfonic acid)-ethanol buffer (10 mM CAPS, 10% 

ethanol, pH = 11) was used to optimise protein transfer. Blots were blocked for 1 h at room 

temperature in TBS buffer with 0.1% Tween-20 (TBS-T, pH = 7.8) with 5% non-fat dried milk according 

to the manufacturer’s instructions. They were then washed thrice in TBS-T and incubated (overnight, 

stirring, 4°C) with LC3 antibody (#ab48394, Abcam) diluted 1:1000 with 5% non-fat dried milk.  
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10.2.2 ATF4 signalling in hibernating bear muscles 

Transcriptomic Data and Functional Pathway Enrichment Analysis for ATF4 pathway. Transcriptomic 

data from the already published study 1 (see Paper 6.3) [351] are openly available in the GEO 

repository databases (bear: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi, reference number 

(GSE144856)). Genecards web-based portal was used to draw up an ATF4 gene set list, selecting genes 

with a score > 1.3. To identify the differentially expressed genes (DEGs) from this list, we selected a 

Winter/Summer fold change (FC) >|1.0| or <|1.0| with an adjusted p-value < |0.05| as cut-off 

standards, for the up- and down-regulated genes, respectively. Visualization of functional enrichment 

was performed using Metascape [432], a web-based portal for visualizing the inference of enriched 

biological pathways and protein-protein interaction among the DEGs as described in study 1 (see Paper 

6.3) [351]. 

Immunodetection of total and phosphorylated eIF2α protein. The total and phosphorylated eIF2α 

protein content has been assessed by Western blots in vastus lateralis muscle of bears, as previously 

described in study 1 (see Paper 6.3) [351] using eIF2α (#9722S, Cell Signalling) and p-Ser51eIF2α 

(#ab32157) antibodies diluted 1:1000 in 5% BSA. 

 

10.3 Materials and Methods discussion 3 

10.3.1 Optimisation of tools for screening active compounds in WBS 

Cell culture. CCL136 cells were cultured as described in Materials and Methods discussion 1, and 

seeded in 96-wells plates at a density of 2.0 × 104 cells/well.  

Human myotubes (HM) were derived from vastus lateralis muscle biopsies obtained from healthy 

control donors (Diomede experimental protocol). All procedures were approved by the French Ethical 

Committee SUD EST IV (Agreement #12/111A 13-02) and performed according to French legislation 

(Huriet’s law). All patients gave their written consent after being informed of the nature, purpose, and 

possible risks of the study. The myoblasts were thawed from liquid nitrogen, directly platted into 6-

well plates coated with collagen (Corning® BioCoat® Collagen I 6-well Clear Flat Bottom TC-treated 

Multiwell Plate, Product Number 356400), and maintained in medium Ham’s F10 (1g/L glucose, 

Dutscher) containing 1% penicillin-streptomycin (Gibco, USA) and 10% FBS (Gibco, USA). The cells were 

seeded in 12-wells plates at a density of 4 × 104 cells/well and cultured at 37 °C under 5% CO2. After 

reaching 80% confluence, differentiation was triggered by replacing the previous medium with DMEM 

1g/L glucose containing 2% FBS for 5 days. The differentiation media were changed every other day. 
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Plasmid. pGL3 BRE Luciferase was a gift from Martine Roussel & Peter ten Dijke (Addgene plasmid # 

45126; http://n2t.net/addgene:45126; RRID: Addgene_45126) [430]. Two copies of the SMAD binding 

element present in the ID1 promoter are cloned into pGL3-MLP-luc minimal promoter vector. 

SBE4-Luc was a gift from Bert Vogelstein (Addgene plasmid # 16495; http://n2t.net/addgene:16495; 

RRID: Addgene_16495) [431]. This vector contains four copies of the SMAD binding site (GTCTAGAC) 

which are cloned into pBV-Luc. 

3XMEF2-luc was a gift from Ron Prywes (Addgene plasmid # 32967 ; http://n2t.net/addgene:32967 ; 

RRID:Addgene_32967). This plasmid was cloned from pFOS WT-GL3 (Addgene #11983), where the 

human c-fos promoter was removed and replaced with 4 MEF2 sites.  

Transfection. CCL136 were transfected with 50 ng of DNA/well the day after seeding and HM cells with 

1 µg of DNA/well at the end of the differentiation process, by adding respectively 5 or 100 µl of the 

transfection mixture described above (see Appendix 10.1). We added a renilla luciferase plasmid (i.e. 

0,25 ng for CCL136 and 5 ng for HM) in the transfection mixture for intra-well luminescence 

normalisation  

Bear serum treatment. After one night of transfection, the media have been replaced by fresh media 

containing 5% winter or summer bear serum instead of 5% FBS for 6, 12 or 24 hours. CCL136 cells were 

treated with the serum of 12 individuals bears for each season. HM cells were treated with 3 mixes of 

bear serum for each season. Bears characteristics for individuals sera or for pools of sera are described 

in the table below. Cells were then washed with PBS and lysed with the passive lysis buffer from Dual-

Luciferase® Reporter Assay System 100 assays E1910 (Promega, Charbonnières-les-Bains, France) by 

adding 20 µl for CCL136 or 250 µl for HM cells. 

 

 

 

 

 

 

 

 

Bear 

ID_number  

Year of 

collection  
Age (year) Gender Experiments  

w1601 
2017 

2 M 

CCL136 cell line, BRE, SBE 

or MEF2 plasmid 

transfection 

w1610 2 M 

w1604 
2018 

3 F 

w1701 2 F 

w1707 

2019 

3 F 

w1709 3 F 

w1803 2 F 

w1806 2 F 

w1812 2 M 

w1814 2 M 

w1813 
2020 

3 F 

w1909 2 F 
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Pools 
Bear 

ID_number  

Year of 

collection  
Age (year) Gender Experiments  

P1 

1813 2020 3 F 

HM cell line, 

BRE plasmid 

transfection 

1509 2017 2 F 

1701 2018 2 F 

1814 2019 2 M 

P2 

1604 2018 3 F 

1610 2017 2 M 

1710 2018 2 F 

1803 2019 2 F 

P4 

1707 2019 3 F 

1608 2017 2 F 

1806 2019 2 F 

1812 2019 2 M 

 

Luminescence reading. In the Dual-Luciferase® Reporter (DLR™) Assay System, the activities of firefly 

(from BRE-Luc, SBE-Luc or MEF2-Luc plasmids) and renilla luciferases are measured sequentially from 

a single sample. 10 µl of the lysed cells were added in each well of a 96-well flat-white plate. Thereafter, 

the plate was placed into the plate-reading Synergy™ 2 luminometer (Biotek, Colmar, France) 

equipped with two reagent injectors. The firefly luciferase reporter was measured first by adding 50 µl 

of Luciferase Assay Reagent II (LAR II) in each well. After quantifying the firefly luminescence for 12 

seconds, this reaction was quenched, and the renilla luciferase reaction was simultaneously initiated 

by adding 50 µl of Stop & Glo® Reagent to the same well. The Stop & Glo® Reagent also produces a 

stabilized signal from the renilla luciferase, which decays slowly over the course of the measurement. 

The signal was measured for 12 seconds. The firefly values were then normalised by the renilla 

luciferase values. 
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Abstract: Skeletal muscle loss is a detrimental side-effect of numerous chronic diseases that dramati-
cally increases mortality and morbidity. The alteration of protein homeostasis is generally due to
increased protein breakdown while, protein synthesis may also be down-regulated. The ubiquitin
proteasome system (UPS) is a master regulator of skeletal muscle that impacts muscle contractile
properties and metabolism through multiple levers like signaling pathways, contractile apparatus
degradation, etc. Among the different actors of the UPS, the E3 ubiquitin ligases specifically target
key proteins for either degradation or activity modulation, thus controlling both pro-anabolic or
pro-catabolic factors. The atrogenes MuRF1/TRIM63 and MAFbx/Atrogin-1 encode for key E3
ligases that target contractile proteins and key actors of protein synthesis respectively. However,
several other E3 ligases are involved upstream in the atrophy program, from signal transduction
control to modulation of energy balance. Controlling E3 ligases activity is thus a tempting approach
for preserving muscle mass. While indirect modulation of E3 ligases may prove beneficial in some
situations of muscle atrophy, some drugs directly inhibiting their activity have started to appear.
This review summarizes the main signaling pathways involved in muscle atrophy and the E3 ligases
implicated, but also the molecules potentially usable for future therapies.

Keywords: skeletal muscle atrophy; hypertrophy; E3 ubiquitin ligase; MuRF1; MAFbx; anabolism;
catabolism; signaling; therapy; treatment

1. Introduction

Cachexia is a multifactorial syndrome leading to serious clinical complications with
high mortality rates and is present in almost all chronic diseases [1]. Besides inflammation
and metabolic modifications, skeletal muscle loss is an important factor of cachexia and
limiting muscle wasting is a major challenge for maintaining well-being of patients, the
capacity of the organism to fight against diseases and the tolerance of the patients towards
challenging therapies like cancer chemotherapies [2].

Muscle homeostasis is mainly driven by the ubiquitin-proteasome system (UPS) that
controls signaling pathways, contractile structure, cellular architecture, energy metabolism,
protein translation, etc., thus allowing a fine-tuning of skeletal muscle metabolism [3–6].
The UPS is composed by hundreds of proteins and controls protein fate by ubiquitination,
a post-translational modification carried out by the E1, E2, E3 enzymatic cascade (see [7]
for a review). Ubiquitin (Ub) is covalently attached to the target proteins thanks to the
interactions between Ub conjugating E2 enzymes (35–40 members according to species)
and E3 Ub ligases (>600 in human). Another complexity of the UPS resides in the multitude
of Ub signals that can be synthesized on the target proteins, from mono-Ub, multiple mono-
Ub, or poly-Ub chains with at least eight different topologies. Each type of Ub modification
is dedicated to a specific fate for the target protein, the role of some Ub linkages being
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still obscure. This Ub code can send the target protein for either proteasome or autophagy
degradation or for non-proteolytic purposes (addressing, stabilization, activation, etc.) [7].
Furthermore, the multiple possible combinations between a given E3 and several E2s (and
vice versa) further increase the potential of the UPS for controlling cellular metabolism.

E3 ligases can be either monomeric or multi-protein complexes and are classified into
three families according to their structure and mode of action (recently reviewed [8]). The
first class contains 28 members that contain a C-terminal Homologous to E6-Associated
Protein C Terminus (HECT) domain that is necessary and sufficient to accept Ub from an
E2 enzyme and to transfer it to the substrate, HECT E3 ligases having their own catalytic
activity. Their N-terminal domain is involved in the recognition of the substrate. The
second class comprises≈90% of the E3 Ub ligases and are known as Really Interesting New
Gene-finger (RING) type. RING domains are defined by eight cysteine and/or histidine
residues coordinating four zinc atoms that allow interaction with E2 enzymes. RING-type
E3s do not bind Ub, but they serve as a platform for the E2 and the substrate and promote
the Ub transfer from the E2 to the substrate. Within multi-protein RING-E3 complexes,
also named cullin-containing RING Ligase E3s (CRLs), several families of proteins with
motifs involved in protein-protein interactions (e.g., F-box pattern) are responsible for
substrate recognition [9]. The third class of E3 ubiquitin ligases are the RING-in-Between-
RING (RBR)-type that combine properties of RING- and HECT-type E3s. They utilize
an E2-binding RING domain and a second domain (called RING2) that binds Ub before
transferring it to substrate [10,11].

Within muscle atrophy, numerous ubiquitinating enzymes are now identified for their
involvement in the regulation of both anabolic and catabolic pathways during the atrophy
process, notably by being responsible for the degradation of the contractile proteins [12].
The E3 Ub ligases appear to be at the heart of these regulations and some of them may prove
to be efficient therapeutic drug strategies with roughly two main approaches: (i) indirect
modulation of an E3 ligase by targeting the signals involved in its regulation [13–16]
or (ii) direct inhibition of the E3 ligase [17–19]. However, the intertwinement between
anabolic and catabolic processes (including the signaling pathways) often renders difficult
an indirect modulation of E3 ligases, while direct inhibition strategies is limited by the
somehow limited data available on E3 ligases.

This review summarizes the signaling pathways implicated in muscle homeostasis,
and highlights the E3 ligases playing a role in the regulation of skeletal muscle mass and
function, excluding the muscle regeneration process where numerous E3 Ub ligases are
also involved. We more specifically focus on the strategies that have already been used for
modulating E3 ligase activity, including pharmaceutical drugs or natural compound-based
approaches.

2. Signaling Pathways Regulating Skeletal Muscle Mass and Function

Skeletal muscle homeostasis is controlled by numerous signaling pathways (Figure 1)
that act either as anabolic or catabolic factors. Depicting in detail their regulation is
beyond the scope of this review and we just briefly summarize their implication in muscle
mass control.
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signaling pathways controlling skeletal muscle mass and function during atrophy conditions. Ligands and arrows (both
with head or perpendicular line) in green denote those signaling pathways and interactions with an anabolic effect whereas
the red ones represent catabolic signaling. Orange ligands and arrows stand for pathways with a dual role (context-
dependent). ß2-AR: ß-2 Adrenergic Receptor; γ-sec: γ-secretase; Ang: Angiotensin; AT1R: Angiotensin II Type 1 Receptor;
AT2R: Angiotensin II Type 2 Receptor; BCAAs: Branched-chain amino acids; BMP R: Bone Morphogenetic Receptor; Calp:
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Tumor Necrosis Factor Receptor; Transl. Fact.: Translational Factors.
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2.1. Anabolic Pathways
2.1.1. PI3K/AKT Signaling Pathway

Skeletal muscle hypertrophy via the PI3K/AKT (phosphatidylinositol 3-kinase/protein
kinase B) pathway can be induced by nutrients (amino acids, glucose and fatty acids) [20],
hormones (insulin) [20,21] growth factors (Insulin Growth Factor-1 (IGF-1)) [22,23], and
mechanical stimuli (e.g., exercise) [24]. Upon ligand binding, the PI3K/AKT pathway
activates mTORC1 that phosphorylates numerous substrates [25,26], which regulate the
activation of translation, transcription, ribosome biogenesis, and autophagy [27,28]. AKT
also phosphorylates and inactivates GSK3β (a negative regulator of protein translation) [29]
and the pro-catabolic FOXOs transcription factors (TF), the latter being crucial inducers
of muscle loss upon catabolic situations via the expression of numerous atrophy-related
genes [30–33]. Moreover, mTORC1 also inhibits the autophagy induction complex [34].
Intriguingly, mTORC1 can also exhibit adverse effects on skeletal muscle homeostasis
upon denervation [35] or ageing [36,37]. In these situations, a negative feedback loop
from mTORC1 to AKT was involved, thus favoring FOXOs activation and the subsequent
expression of proteolytic genes like the atrophy-related E3 ligases MuRF1/TRIM63 and
MAFbx/Atrogin-1.

2.1.2. G Protein-Coupled Receptors (GPCRs) and cAMP Signaling

1. ß2-Adrenergic Receptors Signaling Pathway

Upon stimulation by endogenous catecholamines or synthetic agonists, ß2-Adrenergic
Receptors (ß2-ARs) lead to skeletal muscle hypertrophy (Figure 1) through: (i) PKA-
mediated expression of genes containing cAMP response elements (follistatin, NR4A3,
calpastatin) via CREB [38] (ii) PKA-mediated inhibition of FOXO activity in vivo [39] or
(iii) the activation of PI3K/AKT/mTORC1 [40,41], or both AKT and CaMKII/HDAC4
signaling [42].

2. WNT/FZD Signaling Pathway

The Wingless-type mouse mammary tumor virus integration site (Wnt) family of pro-
teins induce hypertrophy via Wnt/ß-catenin and PI3K/AKT/mTORC1 cascades [43,44]
(Figure 1). The former one controls the transcriptional regulation of growth-related
genes (e.g., C-myc and Cyclin 1) via ß-catenin and T-cell factor/lymphoid enhancer factor
(TCF/LEF) transcription factors [45,46] whereas the latter regulates the protein synthe-
sis process. The PI3K/AKT/mTORC1 pathway is induced via the specific interaction of
WNT7a (ligand) and FZD7 (receptor) proteins [47–50]. Under mechanical stimulation,
WNT is the only pathway able to stabilize ß-catenin and therefore to promote growth-
related gene expression [51,52]. Accordingly, therapeutic stimulation of WNT7a/FZD7
by injection of recombinant Wnt7a resulted in a significant increase in muscle strength
and a reduce contractile damages in mdx mice (Duchenne Muscular Dystrophy (DMD)
model) [49]. By contrast, in dystrophic muscles WNT7a increased fibrosis by inducing
transforming growth factor–β2 (TGFβ2) [53], and Wnt activation enhanced the fibrotic
response in aged mice [54]. These data suggest WNT7a to have a context-dependent effect
in skeletal muscle, thus complicating future therapeutic strategies.

2.1.3. Calcineurin Signaling Pathway

Different downstream effectors have been proposed for calcineurin (Cn) during skele-
tal muscle hypertrophy, such as NFAT [55], GAT-2 [55] and MEF-2 [56], which seem to
be activated during skeletal muscle hypertrophy in a fiber-specific manner [57]. Cn can
modulate these TFs and downstream effectors (including the E3 ligases MuRF1/TRIM63
and MAFbx/atrogin-1) upon several conditions (dexamethasone [58], diabetes [56], exer-
cise [59] or starvation [60] (Figure 1).
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2.1.4. Hippo Signaling Pathway

The Hippo signaling pathway consists of a cascade of kinases that inhibits the tran-
scriptional co-activators YAP and TAZ (Figure 1) (for a review, see [61]). Upon exercise and
myostatin/activin inhibition in mdx mice [62], mechanical overloading [63] and following
injury or degeneration of motor nerves [64], the expression and phosphorylation of YAP in-
creased [62,63] along with those of other pro-hypertrophy proteins [40]. Furthermore, YAP
negatively regulated the myostatin/activins signaling pathway by inhibiting SMAD2/3
transduction and consequently blunted the SMAD-mediated MuRF1/TRIM63 E3-ligase
expression [63].

2.2. Transforming Growth Factor (TGFs), Pro-Anabolic and Pro-Catabolic Pathways

The transforming growth factor (TGF) multifunctional cytokine family is divided in
two subfamilies with opposite outcomes on muscle mass: myostatin/activin/TGF-β are
negative regulators of muscle mass and BMPs (Bone Morphogenic Proteins)/GDF (Growth
and Differentiation Factors) are positive regulators [65]. Myostatin/activin/TGF-β activate
the pro-catabolic SMADs 2–3 whereas BMP ligands recruit pro-anabolic Smads 1-5-8 and
elicit an anabolic transcriptional program (Figure 1). SMAD4 is shared by both pro-anabolic
and pro-catabolic SMADs and can be a limiting factor for SMADs downstream effects [45].

Upon myostatin binding, Mafbx/Atrogin-1 and genes involved in the degradation of
several anabolic factors (ribosomal proteins, translation initiation factors, MyoD, desmin
and vimentin) are up-regulated [49,66] and the AKT/mTORC1 pathway is inhibited [67].
TGF-ß signaling also regulates MuRF1/Trim63 expression through the synergistic action
of FOXO3a and SMAD3 [68,69] (see [12] for a recent review). Similarly, Activin A ligand
negatively regulates muscle mass by binding to the same receptor than myostatin and by
activating the same intracellular pathway [70–72]. Interestingly, the non-canonical TGF-ß
pathway involving TAK1-p38 MAP kinase can also be activated under Activin A treatment
in cellulo and in vivo, with MAFbx-mediated myotube atrophy [73]. Moreover, TGF-ß
induces skeletal muscle atrophy through a mechanism dependent on NOX-derived ROS
production, in vivo [69]. The TGF-ß pathway is also known for its master role in fibrosis,
which promotes muscle mechanical constraints and injuries [74,75]. Recent reports showed
that the canonical NF-κB and angiotensin pathways mediate the TGF-ß effects in cellulo
and in vivo [76].

Conversely, the BMP pathway regulates hypertrophy by repressing the E3 ligases
MUSA1/Fbxo30 [77] MAFbx/Atrogin-1, MuRF1/Trim63 [78,79] and through the positive
modulation of mTORC1 and consequently protein synthesis [80]. Additionally, the long
non-coding RNAs Myoparr and Chronos negatively modulate the BMP pathway (and
muscle mass) by repressing Gdf5 [81] and Bmp7 [82] respectively. Altogether, a major
conceptual idea is that a net balance between TGF-ß/BMP pathways plays a major role in
determining skeletal muscle mass.

2.3. Catabolic Pathways
2.3.1. AMPK Signaling Pathway

The adenosine 5′-monophosphate-activated (AMP)-activated protein kinase (AMPK)
is an energy sensor that preserves energy by turning on catabolic pathways and turning
off ATP-consuming anabolic pathways [83–85]. In skeletal muscle, AMPK inhibits protein
synthesis through the reduction of the mTORC1 signaling and favors contractile protein
breakdown via the activation of FOXO1 and FOXO3a TFs (Figure 1) [86]. Consequently,
MuRF1/TRIM63 and MAFbx/Atrogin-1 E3 ligases target different proteins involved in
muscle contraction and protein synthesis initiation for UPS-dependent degradation [86,87].
Additionally, AMPK also promotes skeletal muscle autophagy [88].

2.3.2. The NF-κB Signaling Pathway

NF-κB, a major pro-inflammatory transcription factor, is considered one of the main
effectors of muscle atrophy via the regulation of UPS-related proteins expression [89–96].
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Indeed, the NF-κB pathway is consistently upregulated upon catabolic conditions in both
mouse models [89,97,98] and patients suffering from chronic obstructive pulmonary disease
(COPD) [99] or chronic heart failure (CHF) [100] patients. A hypertrophic response is also
observed in myotubes when blunting NF-κB activation upon catabolic TNFα exposure [93].
In addition to TNFα induction of NF-κB signaling, other proinflammatory cytokines
(such as IL6 and TWEAK), bacterial products, growth factors, ROS, genotoxic stress,
and viruses can activate this pathway [101]. Interestingly, for controlling the proper
signaling, the NF-κB pathway comprizes several E3 ubiquitin ligases, TRAF6 [95,102,103],
cIAP1 [19,104], LUBAC [95,105], SCFβ-TRCP [105,106] that represent several opportunities
for future potential therapies (Figure 2).
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2.3.3. Glucocorticoid Receptor Signaling Pathway

Glucocorticoids (GCs) are endogenous stress hormones involved in modulating in-
flammation [107]. GCs are well known for their catabolic effects on skeletal muscle [108]
and can exert their action via different mechanisms (Figure 1). In skeletal muscles, GCs
mainly operate through the glucocorticoid receptor (GR), that interacts with specific DNA
sequences, DNA-bound TFs as well as transcriptional co-regulatory proteins, which modu-
late the transcription of numerous genes [108–110] like MuRF1/Trim63, MAFbx/Atrogin-1,
Foxo transcription factors, the myokine Gdf8, Klf15, Redd1 and Sesn1 [110]. Intriguingly,
the effect of GCs on muscle mass is dependent on the type of GC, fiber type composition,
muscle type, sex and dose, but also on the type of catabolic situation (e.g., starvation,
diabetes, sepsis, cancer cachexia, etc.) (for details, refer to [110,111]). Recent works at
least partly explained these differential effects by the capacity of GCs to use different
signaling pathways, such as IGF-1/PI3K/AKT, MEK/ERK, Myostatin [112], NF-κB [113],
NOTCH [114] or to depend on co-factors such as connexin-based hemichannels [115],
high-fat diet [116], oxidative stress [111] or mechanical load [51,52,117].

2.3.4. Angiotensin Signaling Pathway

Angiotensin (Ang) is a peptide hormone that upon enzymatic processing [118] ren-
ders different variants like Ang-II and Ang-(1–7) (Figure 1) that can either be linked to
catabolic conditions (Ang-II) [118–123] or counteract muscle atrophy (Ang-(1–7)) [124–128].
However, Ang-II can also exhibit anticatabolic properties, but only in some circum-
stances [127,129]). High levels of Ang-II have been associated with skeletal muscle atrophy
in CHF, CKD, and SARS-CoV-2 pathologies [120,130]. Ang-II induced atrophy was also
linked to increased proteasome activity [131], elevated polyubiquitinated protein conju-
gates [132], and early and transient accumulation of MuRF1/Trim63 and MAFbx/Atrogin-1
mRNA [119,123]. Therefore, the differential modulation of the enzymes processing Ang
may be a promising approach for improving skeletal muscle atrophy.
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2.3.5. JAK/STAT Signaling Pathway

In skeletal muscle, the Janus Kinase/Signal Transducers and Activators of Transcrip-
tion (JAK/STAT) pathway has been reported to be essential for transducing signals from
growth factors and IL-6 among others (For a recent review, see [133,134]). STAT3, one of
its effectors (Figure 1), is particularly implicated in skeletal muscle atrophy upon disease
[recently reviewed elsewhere [135], notably through the development of skeletal muscle
insulin resistance in Type 2 diabetes mellitus [136,137], the induction of myostatin [138],
caspase-3 [139] and UPS [14], and increased mitochondrial ROS [140].

2.3.6. Kinin Signaling Pathway

Kinins are a group of peptides that act via inducible (B1) or constitutive (B2) re-
ceptors [141]. Using B1 receptors, kinins participate to muscle atrophy by blunting the
PI3K/AKT/mTORC1 axis and by stimulating the IKK/NF-κB pathway (Figure 1) [142].
Both genetic or pharmacologic ablation of B1 receptor protect skeletal muscles from atrophy
in androgen-sensitive mice, mainly by blunting MuRF1/Trim63 expression [142]. The role of
kinin B2 receptors is more controversial as they may either be pro-catabolic via activation
of myostatin signaling [143] or pro-anabolic [144]. Therefore, kinin receptors may regulate
muscle mass but more studies are clearly needed before they become potential targets to
modulate muscle atrophy.

2.3.7. Sphingolipids Signaling Pathway

The sphingomyelin pathway plays a role in skeletal muscle mass through the hydroly-
sis of plasma membrane sphingomyelin (SM) and the subsequent formation of ceramide
and sphingosine-1-phosphate (S1P) (Figure 1). Ceramide, is linked to muscle atrophy
through (i) the reduction of protein synthesis [145–148] and (ii) the activation of NF-
κB [149–151]. Oppositely, S1P can promote skeletal muscle mass in denervated mice [152]
although the downstream signaling depends on the context and the S1P-receptor type [153].

2.3.8. NOTCH Signaling Pathway

Hyperactivation of NOTCH leads to atrophy during cancer cachexia [154], dener-
vation [155–157], chronic alcohol consumption [158], hypovitaminosis D [159], and glu-
cocorticoid treatment [114]. Upon cleavage of the NOTCH receptor by secretases [160],
the Notch Intracellular Domain (NICD) translocates to the nucleus (Figure 1) and binds
directly to the MuRF1/Trim63 promoter to activate its transcription, thereby establishing
NOTCH signaling as a proteolysis inducer [161].

2.3.9. Oxidative Stress Is an Inducer of Skeletal Muscle Atrophy

Oxidative stress is characterized by increased levels of reactive oxygen species (ROS)
and/or reactive nitrogen species (RNS) and is a well-known mechanism of atrophy induc-
tion in skeletal muscle under several conditions and proteolytic mechanisms (reviewed
elsewhere [162,163]) (Figure 1). Both ROS and RNS negatively impact muscle mass during
COPD [164,165]. ROS induce a FOXO1-dependent MuRF1/Trim63 and MAFbx/Atrogin-1
overexpression in COPD peripheral muscle cells in cellulo [166]. NOS activation was
suggested to occur through inflammation and hypoxia in COPD patients with low body
weight via an activation of NF-κB and iNOS-generated RNS [99]. Besides increased protein
breakdown, a decrease in protein synthesis via AKT/mTORC1 also contributes to muscle
mass loss by ROS [162]. Importantly, depending on the type, duration and intensity of the
imposed stress, specific signaling mechanisms are activated [162,163,166–169] indicating
that the underlying mechanisms by which oxidative stress contributes to muscle wasting is
context-dependent.
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3. E3 Ligases Involved in the Regulation of Muscle Atrophy
3.1. E3 Ligases Involved in the Regulation of Anabolic Pathways
3.1.1. The CBL-B and FBXO40 E3 Ubiquitin Ligases Target IRS1 to Degradation in
Skeletal Muscle

One strategy to fight against atrophy may be to stimulate the anabolic pathways leading
to skeletal muscle hypertrophy. Insulin-like growth factor 1 (IGF1) induces skeletal muscle
hypertrophy by activating the IGF1R/PI3K/AKT pathway, a critical mediator and checkpoint
being IRS1. Indeed, the effect of IGF1 is time-limited by the phosphorylation of IRS1 by
IGF1R and its subsequent ubiquitination and proteasome-mediated degradation.

Different E3 ligases can target IRS1 in different tissues. For example, in embryonic
fibroblasts, the CUL7 E3 ligase, containing FBXW8, has been shown to target IRS1 for
ubiquitin-dependent degradation [170]. In skeletal muscle, Casitas B-lineage lymphoma-b
(CBL-B), a RING E3 ligase, targets IRS1 for degradation and thus impairs muscular trophic
signals in response to unloading conditions [171–173], which inhibits downstream IGF1
signaling [173] (Figure 2 and Table 1). Accordingly, mice deficient for CBL-B were partly
resistant to unloading-induced skeletal muscle atrophy and dysfunction [173]. These results
highlight the importance of CBL-B in the process of muscle atrophy in response to unloading.

FBXO40 is a muscle-specific F-box protein [174], component of an SCF (Skp1-Cullin1-
F-box protein) E3 ligase complex. Following IRS1 activation, IGF1R phosphorylates IRS1
leading to its ubiquitination by FBXO40 and its degradation by the 26S proteasome, in
cultured myotube and in mice [22,175]. FBXO40 expression is decreased in muscles from
Limb-girdle muscular dystrophy (LGMD) patients, and up-regulated in mice skeletal muscle
following denervation and in chronic kidney disease (CKD) mice model, but not during
starvation [174,175]. Accordingly, the knock-down of Fbxo40 resulted in thicker myotubes
(20% to 50% increase in diameter) [22] and its deletion in mice also induced muscle hypertro-
phy during the growth phase, a phase associated with high IGF1 levels [22] (Figure 2 and
Table 1).

Table 1. Phenotypes of transgenic mice for genes encoding ubiquitin ligases involved in the control of muscle mass
and function.

Gene Product E3 Family Mouse Model Phenotype References

E3 ligases regulating the anabolic pathways

CBL-B RING KO Protection from unloading-induced muscle atrophy and dysfunction [171]

FBXO40 RING
KD Myofibers hypertrophy

[22]KO Muscle hypertrophy
NEDD4-1 HECT OX Myocardial activation of AKT during I/R [176,177]

KO Partially resistant to denervation-induced skeletal muscle atrophy [178]

E3 ligases regulating the catabolic pathways

TRAF6 RING
m.KO Resistance to starvation induced muscle atrophy [179]
m.KO Resistance to denervation-induced loss of muscle mass and function [180]

cIAP1 RING KO Limitation of denervation-induced muscle atrophy [19]
OX Myotube atrophy

WWP1 HECT KD Muscle fiber atrophy [181]

TRIM32 RING
KO Muscular dystrophy [182]
DN Muscular dystrophy [183]

Other E3 ligases involved in the control of muscle mass and function

MuRF1 RING KO Resistance to catabolic-induced muscle atrophy [4]
MAFbx RING KO Resistance to catabolic-induced muscle atrophy [4]

PARKIN RBR KO Impaired mitochondrial function and muscle atrophy [184]
OX Increased muscle mass and function in young and old mice [185]
OX Prevention of sepsis-induced muscle atrophy [186]

SMART/FBXO21 RING KD Resistance to denervation-induced muscle atrophy [187]
MUSA1/FBXO30 RING KD Resistance to denervation-induced muscle atrophy [77]

FBXL21 RING HM Impaired muscle functions [188]
UBR4 HECT KD Muscle hypertrophy [189]
UBR5 HECT KD Muscle atrophy [190]

DN, Dominant Negative mutation; HM, Hypomorphic Mutation; I/R, Ischemia/Reperfusion; KD, knock-down mutant; KO, Knock-out
mutant; m.KO, skeletal muscle–specific KO mice; OX, overexpressing mutant; PTEN, Phosphatase and tensin homologue.
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IRS1 is thus an important checkpoint of the IGF1/PI3K/AKT pathway controlled
by at least 2 E3 ligases (CBL-B and FBXO40). Although being an attractive target for
fighting against muscle atrophy, the multiple ways for degrading IRS1 may complicate the
development of drugs.

3.1.2. NEDD4-1 E3 Ubiquitin Ligase, Friend or Foe?

In muscles undergoing atrophy, NEDD4-1 mRNA levels are elevated upon severe sep-
sis [191], denervation or unloading [178,192,193]. On the one hand, NEDD4-1 E3 Ub ligase
targets phosphatase and tensin homologue (PTEN). PTEN is a redox sensitive phosphatase
that negatively regulates the PI3K-AKT signaling pathway, thereby affecting metabolic and
cell survival processes. The deletion of PTEN improves muscle mass and function in a
mouse model of Duchenne muscular dystrophy [194]. PTEN inhibition may thus also repre-
sent a potential therapeutic strategy to maintain muscle function during catabolic situations.
The over-expression of NEDD4-1 is sufficient for activating the PI3K/AKT signaling in
cardiac muscle, following myocardial ischemia/reperfusion (I/R) [176]. However, the nega-
tive regulation of PTEN by NEDD4-1 remains to be confirmed in skeletal muscle, especially
since NEDD4-1 has also been shown to promote skeletal muscle atrophy in a denervation
model. Indeed, NEDD4-1-KO mice exhibited increased weights and type II muscle fiber
cross-sectional areas in denervated gastrocnemius muscle [178]. Moreover, NEDD4-1 also
negatively regulates the hypertrophic BMP signaling (Figures 1 and 2). Indeed, NEDD4-1
ubiquitinates phosphorylated-SMAD1 leading to its proteasomal degradation, thereby
silencing BMP signaling in C2C12 myoblasts, and conversely the knock-down of Nedd4-1
potentiates BMP signal through upregulation of phospho-SMAD1 [195]. Altogether, the
exact function of NEDD4-1 in skeletal muscle is still obscure and needs more work.

3.2. E3 Ubiquitin Ligases Involved in the Regulation of Catabolic Pathways
3.2.1. Regulating the Canonical NF-κB Pathway via the Manipulation of cIAP and TRAF6
E3 Ligases

Among the E3s involved in the regulation of the NF-κB pathway, two promising candi-
dates may be manipulated to limit muscle atrophy, namely cIAP and TRAF6 (Figures 1 and 2).
cIAP1 is up-regulated in denervated gastrocnemius muscle, paralleling the upregulation
of MAFbx/atrogin-1 and MuRF1/Trim63 mRNA [19]. Mice with genetic ablation of cIAP1
(cIAP1-KO mice) displayed limited denervation-induced atrophy in TA, gastrocnemius
and EDL muscles. This was correlated with the blunting of the denervation-induced
upregulation of MAFbx/Atrogin-1 and MuRF1/Trim63 [19]. The authors further demon-
strated that cIAP1 induced atrophy through the up-regulation of the canonical NF-κB
signaling. Conversely, cIAP1 overexpression in myotubes induced atrophy and the strong
up-regulation of MAFbx/Atrogin-1 and MuRF1/Trim63 protein expression [19]. The E3 Ub
ligase cIAP1 represents thus a potential therapeutic target at least for fighting against
denervation-induced muscle atrophy.

TRAF6 is a RING-type Ub ligase that plays an important role during skeletal muscle
atrophy. TRAF6 expression is enhanced during starvation or within aged-induced muscle
atrophy [179,196,197]. Traf6-KO mice are resistant to skeletal muscle loss (rescue of myofib-
ril degradation, preservation of myofiber size and strength) induced by denervation, cancer
cachexia, starvation or Dex and a concomitant suppression of the expression of key regula-
tors of muscle atrophy was observed, including MAFBx/Atrogin-1, MuRF1/TRIM63, p62,
Lc3b, Beclin1, Atg12, and Fn14 [179,180,196–198]. Moreover, inhibition of Traf6 expression
through miR-351 administration in C2C12 myotubes or in denervated mice attenuated Dex-
induced muscle atrophy and concomitantly decreased the expression of MAFBx/Atrogin-1
and MuRF1/Trim63 [199,200]. Overexpression of miR-125b targeted Traf6 for degradation
and protected skeletal muscle samples from atrophy in starved myotubes or in denervated
rat tibialis muscle [201]. The implicated mechanisms involved both direct and indirect
effects of TRAF6 on protein breakdown with TRAF6-mediated ubiquitination being re-
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quired for the optimal activation of JNK, AMPK, FOXO3, and NF-κB catabolic pathway in
muscle [202].

In human, gastric cancer patients suffering from cachexia exhibited an upregulation
of TRAF6 associated with an upregulation of ubiquitination in the rectus abdominis mus-
cle [203]. Altogether, this highlights the importance for targeting TRAF6 inhibition to
counteract muscle atrophy.

3.2.2. WWP1 in the Regulation of Muscle Atrophy

WWP1 is a HECT E3 ligase that is involved in chicken muscular dystrophy. Indeed,
a missense mutation in the gene coding WWP1 was identified as the most promising
candidate responsible for chicken muscular dystrophy (MD), potentially affecting the
E3 function of WWP1 protein [204]. WWP1 was also shown to target the transcription
factor KLF15 [181]. In response to glucocorticoids, KLF15 is up-regulated at the mRNA
levels [205]. This induction leads to the up-regulation of the E3 ligases MAFbx/Atrogin-1 and
MuRF1/Trim63 expression, likely in cooperation with a FOXO transcription factor, while
inhibiting the anabolic mTORC1 [205]. Likewise, exogenous KLF15 expression in myotubes
and in TA muscle leads to myofiber atrophy [205]. It has recently been shown that KLF15
protein expression was upregulated in skeletal muscle of diabetic mice, without any change
in its mRNA expression [181]. This increase correlated with an increase in MAFbx/Atrogin-1,
Murf1/Trim63 and Foxo3 genes expression and accordingly, the muscle-specific deletion of
Klf15 in this model prevented from diabetes-induced muscle atrophy [181]. The authors
identified WWP1 as an E3 ligase targeting KLF15 and showed that knocking-down WWP1
in both C2C12 myotubes and in tibialis anterior muscles increased MuRF1/Trim63 and
MAFbx/Atrogin-1 expression and induced atrophy [181] (Figure 2). WWP1 E3 ligase is
indeed induced by high glucose conditions in myotubes [206]. Conversely, in high glucose
conditions, WWP1 has also been implicated in the down-regulation of AMPKα2 protein
levels [206]. The authors have shown that WWP1 interacted with AMPKα2 leading to a
proteasome-dependent decrease of AMPKα2 in myotubes; however, direct ubiquitination
was not addressed [206]. WWP1 may thus control muscle mass through a direct action on
AMPK, a known modulator of FOXO3a, MuRF1/TRIM63 and MAFbx/Atrogin-1 [88].

3.2.3. TRIM32 in the Regulation of Autophagy

TRIM32 is a RING E3 Ub ligase whose mutation is responsible for the development
of limb girdle dystrophy 2H (LGMD2H) [207]. Several substrates have been identified for
TRIM32 in non-muscle cells, including cell cycle regulators (c-Myc, MYCN, p53), the cell
growth and transformation factor ABI2 and PIASY (a SUMO E3 ligase). TRIM32 is also
involved in the targeting of factors influencing myogenesis (NDRG2 and TRIM72) that
regulate muscle satellite cells renewal and differentiation [208]. While initially postulated
to promote muscle atrophy, TRIM32 is in fact a master regulator of myogenesis during
recovery situations [208]. Indeed, the dystrophic phenotype of TRIM32 mutations appeared
to be largely due to impaired myogenesis [208–210].

More recently, TRIM32 was implicated in the early events leading to autophagy.
Indeed, TRIM32 targets ULK1, a Ser/Thr protein kinase (Figures 1 and 2). ULK1 is an
upstream regulator of autophagy rapidly activated to ensure a rapid response to stress
conditions [211]. The authors showed that TRIM32 deficiency was directly responsible for
autophagy defects both in cultured cells and in mice treated with Dex. The mechanisms by
which TRIM32 controls the activation of autophagy through ULK1 involves its binding to
AMBRA1, a positive regulator of autophagy [211]. AMBRA1 is a pivotal factor able to bind
several E3 ligases during the course of the autophagy process. In presence of AMBRA1,
TRIM32 binds to ULK1, synthesizes unanchored K63 Ub chains that activate ULK1 kinase
activity, thus promoting autophagy. The role of TRIM32 during the autophagy process
is not limited to ULK1 as p62, an important autophagy receptor [212], is also a TRIM32
substrate. p62 activity is modulated by multi mono-Ub catalyzed by TRIM32 and loss of
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function of TRIM32 largely abolished autophagy [213]. Altogether, TRIM32 appears as a
master regulator of muscle renewal through the initiation of autophagy.

3.2.4. FOXO Transcription Factors Are Regulated by MDM2 and SKP2 E3
Ubiquitin Ligases

Alternatively to phosphorylation, FOXO can be regulated by acetylation/deacetylation,
methylation and ubiquitination to modulate its activity, localization as well as degrada-
tion [214–216].

Ubiquitination modulate FOXO activity by either mono- or polyubiquitination through
MDM2 and SKP2 E3 Ub ligases (Figures 1 and 2). MDM2 is the enzyme responsible of
a single addition of an ubiquitin moiety to FOXOs, specifically to FOXO4, thus allowing
its nuclear localization and transcriptional activation [217,218]. Mono-Ub of FOXO4 is
observed under oxidative stress conditions and can be counteracted by deubiquitinating
enzymes such as ubiquitin-specific protease (USP7). Importantly, ubiquitination mediated
by MDM2 is context specific and upon growth factor stimulation can induce FOXO1 and
3 degradation [217]. In addition, interaction between FOXOs and SKP2, a subunit of the
SKP/cullin 1/F-box protein E3 ligase leads to proteasomal degradation of FOXO1 in the
cytosol [218].

Combined with the other posttranslational modifications, ubiquitination allows FOXOs
to integrate information arising from insulin, growth factors, cytokines, and oxidative stress
and to control downstream signaling. Interestingly, FOXO TFs have systematically been
envisioned as crucial drivers of catabolic pathways during muscle wasting. Nonetheless,
recent work showed that FOXO1 and 3a participate to skeletal muscle adaptation upon
exercise thus adding a new of FOXOs in the control of muscle cell homeostasis [219–222].

3.3. E3 Ubiquitin Ligases Involved in the Regulation of Muscle Mass and Function
3.3.1. MuRF1/TRIM63

Muscle-specific RING finger protein 1 (MuRF1), also named TRIM63, is a RING-type
E3 ligase and a founding member of the so-called “atrogenes” (see [6] for a recent review).
MuRF1/TRIM63 is a master regulator of skeletal muscle atrophy development occurring in
numerous catabolic conditions and MuRF1/Trim63 mRNA appeared to be upregulated in
more than 25 atrophying situations [6] (Figures 1 and 2). Mice deleted for MuRF1/TRIM63
(MuRF1-KO mice) were partially resistant (preservation of muscle mass and structure) to
skeletal muscle atrophy induced by denervation [4], hindlimb suspension [4,223], glucocor-
ticoid [224], amino acid deprivation [225], and acute lung injury [226]. MuRF1/TRIM63
is responsible for the coordinated breakdown of both thick and thin filaments occurring
during catabolic states in skeletal muscle, targeting to degradation the main proteins of
the contractile apparatus: myosin heavy chains (MHC) [227], alpha-actin [228], troponin
I [229], TCAP/telethonin [230]. During denervation and starvation, MuRF1/TRIM63
has also been involved in the degradation of acetylcholine receptor (CHRN), the major
postsynaptic ion channel of the neuromuscular junction. This degradation is mediated
by the activation of selective autophagy and degradation of CHRN, likely via the degra-
dation of BIF-1 (Bax interacting factor 1)/EndoB1 (EndophilinB1) and/or SQTM1/p62
(sequestosome-1) [231,232].

While numerous studies have promoted a major role of MuRF1/TRIM63 in the de-
velopment of skeletal muscle atrophy during catabolic states, in the heart, the analyses of
MuRF1 mutants have highlighted a beneficial cardioprotective role [233]. These opposites
roles in both kind of muscles imply the development of skeletal muscle-specific drugs to
inhibit MuRF1/TRIM63. Moreover, one should also take into account that MuRF1/TRIM63
has two homologs, MuRF2 and MuRF3 that share some redundant functions and could
replace its role [12].
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3.3.2. MAFbx/Atrogin-1/FBXO32

The multimeric E3 ligase MAFbx/atrogin-1/FBXO32 is another founding member
of the atrogene family ([6] for a recent review) crucial for the development of mus-
cle atrophy. Interestingly, nearly all catabolic situations induce an overexpression of
both MAFbx/Atrogin-1 and MuRF1/TRIM63, which are controlled by the same TFs
(FOXO1/FOXO3a, NF-κB, C/EBP β, Smad 3, etc.) and the same signaling pathways [234]
(Figures 1 and 2).

In contrast with MuRF1/TRIM63 that targets directly the contractile proteins for their
degradation (α-actin, MHC, etc. [227–230], MAFbx appeared to target pro-anabolic factors
like MyoD, myogenin or eIF3f [235–237]. MyoD is a muscle-specific transcription factor
that plays crucial roles during cell cycle and muscle differentiation [238]. The eukaryotic
initiation factor 3 subunit f (eIF3f) is a pivotal element of protein synthesis and its control
by MAFbx allows the latter to master the anabolic processes [235]. While a putative role of
MAFbx/Atrogin-1 on sarcomeric proteins was hypothesized using an indirect approach,
this has never been confirmed [239]. By contrast, the authors found that desmin, a main
component of the intermediate filaments, physically interacted with MAFbx and was
degraded in myostatin-treated cultured C2C12 myotubes.

As MAFbx/Atrogin-1 and MuRF1/TRIM63 are controlled by similar signaling path-
ways, the strategies for the upstream control of MuRF1/Trim63 expression are generally also
valid for MAFbx/Atrogin-1 (Table 2). By contrast with MuRF1/TRIM63, no direct inhibitor
of MAFbx/Atrogin-1 has been described so far but general strategies, like targeting the
interface responsible for substrate recognition or impeding the assembly of the F-box (i.e.,
the subunit recognizing the substrates) into the SCF complex, may prove to be efficient.

Altogether, controlling concomitantly MAFbx/Atrogin-1 and MuRF1/TRIM63 E3
ligases allows skeletal muscle cells to both increase the degradation of the contractile
apparatus and to depress the protein synthesis machinery, which allows a tight regulation
of protein homeostasis.

3.3.3. PARKIN Controls Muscle Mass through the Maintenance of
Mitochondrial Homeostasis

PARKIN is an E3 ubiquitin ligase implicated in the regulation of mitophagy, a quality
control process in which defective mitochondria are degraded. Mitochondrial quality con-
trol through both mitochondria turnover and dynamic plays an essential role in the main-
tenance of muscle mass (see [240] for a review). During mitophagy, PARKIN ubiquitinates
several outer mitochondrial membrane proteins leading to subsequent autophagosomal
engulfment and lysosomal degradation (Figures 1 and 2).

This role of PARKIN has been emphasized in rodent models or in humans where
a deregulation of PARKIN mRNA and/or protein expression prevailed in response to
catabolic or anabolic situations. An accumulation of PARKIN protein prevailed during:
(i) muscle wasting situations such as chronic kidney disease [241], chronic obstructive
pulmonary disease (COPD) [242], physical inactivity [243,244] and (ii) upon exercise train-
ing [245,246]. Conversely, PARKIN mRNA or protein levels decreases in skeletal muscles
from some elderly populations, perhaps related to the loss of muscle mass and poor physi-
cal function, e.g., physically inactive frail older women [247,248] or gastric cancer patients
with cachexia [249].

In the last two years many studies using loss/gain of function models have provided
insight on the role of PARKIN in skeletal muscle. Loss of function mouse models pointed
out the essential role of PARKIN in basal conditions for the maintenance of (i) mitochondrial
function [250,251] and (ii) skeletal muscle mass and normal contractile function [184,251].
Such studies also reported that PARKIN helps to resist to some drug-induced muscle dam-
ages [252] and is required for exercise-induced mitophagy flux and for the accumulation of
functional mitochondria following muscle adaptations to training [250]. In addition, these
loss-of-function studies also highlighted that PARKIN-mediated mitochondrial clearance
contributes to proteasome activation during denervation in atrophied slow-twitch mus-
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cles [253]. On the flip side, gain-of-function studies showed that PARKIN overexpression
in mice: (i) attenuates the ageing-related and the sepsis-induced muscle wasting and causes
hypertrophy in adult skeletal muscle, (ii) increases mitochondrial content and enzymatic
activities and (iii) protects from ageing-related increases of oxidative stress markers, fibrosis
and apoptosis [185,186]. It is very likely that this role of PARKIN in controlling muscle
mass has been evolutionary conserved. Indeed, similar observations were also reported in
the fruit fly model: Parkin deficiency in Drosophila leads to severe degeneration of the flight
muscles with accumulation of swollen mitochondria [254] whereas Parkin overexpression
promotes mitophagy in older muscles and extend lifespan.

Together, these studies clearly indicate that PARKIN is an important player in the
control of muscle mass through its role in the maintenance of mitochondrial homeosta-
sis. This makes it a potential therapeutic target of interest for preserving muscle mass or
fighting against atrophy. Nevertheless, the regulation of PARKIN can be very different
according to the physiological or pathological situation or during ageing. Further investi-
gations should enable defining how this actor could be a target of interest according to the
population considered.

3.3.4. MUSA1/FBXO30

FBXO30, also called muscle ubiquitin ligase of the SCF complex in atrophy-1 (MUSA1),
is a FBOX protein forming an SCF complex with SKP1, Cullin1 and ROC1 [77]. Proteins
targeted by MUSA1 remain undefined, but its inhibition in denervated muscles reduces
remarkably muscle atrophy, and reverts almost completely the strong atrophic phenotype
of Smad4-KO mice [77] (Figures 1 and 2). In muscle, Musa1 expression is upregulated in
atrophic mice muscle undergoing CKD [255] or sepsis [256].

3.3.5. FBXL21

Very recently, a new E3 ubiquitin ligase involved in muscle function control has
emerged, FBXL21 [188]. FBXL21 forms an SCF E3 ligase complex and was first identified as
clock-controlled E3 ligase modulating circadian periodicity via subcellular cryptochrome
degradation [257]. Accordingly, in mice, the Psttm mutation, corresponding to a hypomor-
phic mutation of FBXL21 with reduced FBXL21 activity, caused circadian period shorten-
ing [257]. Further studies of these mice revealed that they also displayed skeletal muscle
deficiencies with a decrease in fiber CSA (gastrocnemius) and impaired exercise tolerance
and grip strength for both forelimbs and hindlimbs [188]. The authors nicely demonstrated
the circadian degradation of the cytosolic TCAP/Telethonin by FBXL21 (Figure 2), under
the control of GSK-3β. They reported that GSK-3β phosphorylated both FBXL21 and
TCAP leading to FBXL21-CULLIN1 complex formation and phosphodegron-dependent
TCAP turnover.

3.3.6. Ubiquitin Ring-Type E3 Ligases (UBR)

Ubiquitin Ring-type (UBR, also referred to as E3α) proteins are RING finger E3 ligases
that compose a 7-member family and that mainly recognize their substrate through the
N-end rule pathway [258]. A first member, UBR2/E3alpha-II, has been shown to be
significantly induced in skeletal muscle, in two different animal models of cancer cachexia,
at the onset and during the progression of muscle wasting [259]. However, its exact function
and importance in skeletal muscle maintain during catabolic states have not been further
studied. UBR4 is overexpressed in the skeletal from fasted mice and genetic ablation
of UBR4 preserves muscle mass in tumor-bearing mice [189] (Table 1). Intriguingly, the
protection of UBR4 knockout against tumor-induced atrophy was limited to type IIA fibers.
In contrast, UBR5 has been implicated in muscle hypertrophy [260] and reported to be at
least partially associated to the proteasome [261]. Recently several members of the UPS
have been described as UBR5 substrates, which included an E2 (UBE2B, an abundant
muscle E2), several E3 ligases, proteins involved in chromatin remodeling, etc. [189]. As
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the main UBR4 targets are positive regulators of muscle growth, the authors concluded
that UBR4 acts as a negative regulator of muscle hypertrophy.

3.3.7. FBXO21/SMART

FBXO21/SMART forms an SCF complex with Skp1, Cullin1 and Roc1, in skeletal
muscle and has been shown to promote atrophy during denervation [187]. Indeed, the
authors showed that FBXO21/SMART upregulation was required for atrophy while, knock-
down in TA muscle protected denervated muscles from atrophy (Table 1), probably due to
a global reduction of protein ubiquitination [187]. FBXO21/SMART might therefore be a
new critical E3 to target to limit skeletal muscle atrophy. Further work should determine
whether this E3 is crucial for the development of atrophy in other catabolic conditions and
what are the mechanisms involved.

3.4. Promising E3 Ubiquitin Ligases Regulating Muscle Mass and Function

Other E3 ubiquitin ligases are also promising putative targets for maintaining muscle
mass and function, if we rely on what has been published in other organs or organisms.
For example, the SIAH-1 RING E3 ligase has been identified in the same RNAi screen that
UBR4, performed to identify ubiquitin-related enzymes that regulate myofiber size, using
the fruit fly Drosophila [189]. In Drosophila, SIAH1 knock-down led to muscular hypertrophy
while its overexpression led to atrophy [189]. It is noteworthy that, in space flown rats,
SIAH1 mRNA expression has been shown upregulated suggesting also a putative role
during this process in mammals [172]. However, in mammals two isoforms, SIAH1 and
SIAH2, are expressed in muscle and could share redundant functions [189].

SMURF1, an HECT ubiquitin ligase interacts with SMAD1 and SMAD5 (BMP path-
way) and SMAD4 in a certain context, leading them all to proteasomal degradation
in vitro [262]. Moreover, it can degrade the main TGF-β receptor through an indirect
recruitment to the receptor by SMAD7, leading to the receptor degradation [263]. In,
COPD leading to muscle atrophy, TGF-β signaling is abnormally up-regulated and this, is
negatively correlated to SMURF1 expression. This highlights that the inhibitory effect of
SMURF1 over TGF-β is needed for muscle homeostasis [264].

The C terminus of Hsc70-interacting protein (STUB1/CHIP) serves as an E3 ubiquitin
ligase. This E3 plays a dual role in BMP/TGF signaling. Overexpression of CHIP inhibits
TGF-β luciferase reporter through the ubiquitination and degradation of SMAD3, and
conversely silencing it leads to increase the signal transduction in HEK293T cells [265]. In
cellulo experiments showed that CHIP mediates as well SMAD1-5 poly-ubiquitination,
and subsequent degradation to terminate BMP signaling [266]. In muscle, CHIP is highly
expressed. For instance, Chip−/−mice at 6 months shows muscle morphological changes
consistent with increased sarcoplasmic reticulum compartments in quadriceps muscle and
gastrocnemius, resulting in damages and fiber switch composition [267]. From our knowl-
edge, no studies have shown the implication of CHIP in TGF/BMP signaling-mediated
muscle atrophy.

TRIM62 belongs to the TRIM/RBCC family. This enzyme acts as a negative regu-
lator of TGF-β signaling by binding to SMAD3 and promoting its ubiquitination and
degradation, resulting in a decrease of TGF-β/SMAD3 target genes in HEK and human
mammary epithelial cells [268]. TRIM62 is increased in the skeletal muscle of ICUAW
patients (Intensive care unit-acquired weakness), a devastating illness characterized by
loss of muscle mass [269]. In this context, the authors proposed TRIM62 contribution in
inflammation-induced muscle atrophy through IL-6 pathway. Indeed, Trim62-KD inhibited
LPS-induced IL-6 expression in C2C12 cells [269].

TRIM72/MG53 is a muscle-specific E3 ligase, also called mitsugumin 53, specifically
expressed in the plasma membrane of skeletal muscle, and has a critical role in mem-
brane repair. Membrane repair deficiency causes muscle cell death, injury, and dystrophy.
Accordingly, the overexpression of human TRIM72 in a hamster model of genetic mus-
cular dystrophy protects skeletal muscle damage through enhancement of membrane
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repair [270]. Similarly, short-term TRIM72 injection ameliorates the underlying defects
in dysferlin-deficient muscle by increasing sarcolemma membrane integrity [271] while
Trim72−/− mice develop significant skeletal muscle myopathy and cardiovascular defects
due to defective sarcolemma repair [272].

4. Current Treatments/Potential Modes of Action

The importance of maintaining muscle mass together with the discovery of several E3
ligases implicated in muscle homeostasis has rapidly end up with multiple approaches to
chemically alter the expression of these enzymes. This includes chemical drugs but also
several natural molecules that have been tested for their ability to modulate the UPS and
more particularly the E3 ligases (Table 2).

4.1. Indirect Action on E3 Ligases
4.1.1. PI3K-AKT-mTORC1

As E3 ligases are controlled by several signaling pathways, one possibility that was
first addressed was to block these signals. The PI3K-AKT-mTORC1 axis is known to control
muscle mass by directly acting on FOXO transcription factors, the latter being master
regulators of several E3 ligases, like MAFbx/Atrogin-1, MuRF1/TRIM63, MUSA1, SMART
and FBXO31, during several atrophy situations [187]. As such, clenbuterol (Table 2 and
Figure 2), an activator of the AKT-mTORC1 pathway, is able to decrease MuRF1/Trim63
and MAFbx/Atrogin-1 expression in denervated or hindlimb suspend rats and to partially
preserve muscle mass [273].

4.1.2. Glucocorticoids

Glucocorticoids are potent manipulators of muscle mass and the glucocorticoid re-
ceptor antagonist RU486 proved to be efficient in rats for blocking dexamethasone (Dex)-
induced induction of MuRF1/Trim63 of MAFbx/Atrogin-1, the main regulators of muscle
mass [13] (Table 2 and Figure 2). Similarly, the authors demonstrated that blocking TNFα
by the TNF-binding protein (TNFBP) was efficient for blunting LPS-induced expression of
MuRF1/Trim63 and MAFbx/Atrogin-1. However, when sepsis was induced by cecal ligation
and puncture, neither RU486 nor TNFBP were able to counteract the overexpression of
MuRF1/Trim63 and MAFbx/Atrogin-1, indicating that multiple signals were activated by
sepsis. This points out the difficulty of treating complex catabolic signals in vivo. Inflix-
imab is an anti- TNF-α agent able to lower the downstream NF-κB signaling. In patient’s
suffering from Crohn disease, treatment with infliximab was able to ameliorate muscle
atrophy but, although hypothesized by the authors, the expression of MuRF1/Trim63 or
any other E3 ligase was not addressed [274].

4.1.3. Il-6

Il-6 is another inflammatory cytokine that can be implicated during muscle wasting
conditions like muscle disuse [275]. Increased IL-6 in tail-suspended mice paralleled
skeletal muscle atrophy and was accompanied by increased levels of MuRF1/Trim63 and
MAFbx/Atrogin-1. The inhibition of the IL-6 receptor by hydroxymethyl butyrate (HMB,
a metabolite of leucine) or vitamin D tended to decrease IL-6 levels and when combined,
HMB and vitamin D exhibited better efficiency for blunting IL-6 production [275] (Table 2
and Figure 2). By contrast, each molecule was sufficient for decreasing MuRF1/TRIM63
and MAFbx/atrogin-1 levels and to attenuate muscle atrophy. While the authors attributed
the beneficial effects of HMB and vitamin D on IL-6 receptor, using a monoclonal antibody
directed against IL-6 receptor (MR16-1) proved to be inefficient as only MuRF1/Trim63
expression was decreased with no amelioration on muscle mass. As for the TNF-α, this
work underscores the multiplicity of signaling during atrophy situations and the difficulty
of blunting efficiently receptor-linked signaling. STAT-3 is a downstream effector of IL-6
signaling and a specific inhibitor of STAT-3 (C188-9) was investigated for its capacity to
block muscle atrophy in a model of mice deficient for the vitamin D receptor (VDR) [14].
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In these conditions, VDR−/− mice exhibited exacerbated MuRF1/Trim63 expression and
increased muscle atrophy. While C188-9 was able to partially preserve muscle mass, its
efficacy against MuRF1/TRIM63 was not addressed.

4.1.4. NF-κB

Inhibition of the NF-κB signaling pathway was also efficiently performed using high
doses of salicylate (Table 2 and Figure 2), which allowed the reversion of MuRF1-induced
muscle atrophy in tumor bearing or denervated mice [89]. However, the high doses used
for achieving a potent inhibitor would be toxic when administered to humans.

4.1.5. ß2 Adrenergic Receptor (β2-AR)

β2-AR agonists can exert both anabolic and anti-catabolic effects on skeletal mus-
cles either by decreasing catabolic signals or by promoting anabolic ones or both. For-
moterol (Table 2 and Figure 2), a β2-AR agonist, was shown to reverse MuRF1/Trim63
and MAFbx/Atrogin-1 overexpression with a concomitant muscle sparing in tumor-bearing
mice [276]. Intriguingly, neither a repression of FOXO1 and FOXO3a transcription factors
nor an activation of AKT-mTORC1 pathway explained the positive effect of formoterol.
By contrast, formoterol was able to blunt MuRF1/Trim63 and MAFbx/Atrogin-1 expression
in LPS-induced muscle atrophy through restoration of the AKT-mTORC1 pathway and
reversal of P-FOXO/FOXO1 ratio [277].

Table 2. Treatments influencing E3 ligases expression and/or activity.

E3 Ligases
Inhibited Molecule Mode of

Inhibition
Signal inhib-

ited/Activated
Efficiency on E3

Ligases
Efficiency on
Muscle Mass References

Indirect inhibition of E3 ligases

MuRF1/MAFbx
Expression

4-aminopyridine
(4-AP)

K+-channels
blockade

K+-channels
blocking Yes Yes [278]

MuRF1 Expression AGT251
Notch1, Notch3

expression
inhibition

NOTCH Yes Yes [161]

MuRF1/MAFbx/
MuSA1 Expression Anti-TLR2 IKK2 (NF-κB) TLRs Serum

Amyloib A1 Yes Yes [256]

MuRF1 Expression Anti-TLR4 IKK2 (NF-κB) TLRs Serum
Amyloib A1 Yes Yes [256]

MuRF1/MAFbx/
MuSA1 Expression BMS-345541 IKK2 (NF-κB) TLRs Serum

Amyloib A1 Yes Yes [256]

MuRF1 expression C188-9 STAT3 inhibition STAT3 signaling ND Partially [14]

MuRF1/MAFbx
Expression Clenbuterol AKT-FOXO axis Activation of

PI3K-AKT Yes Yes [15]

MuRF1 not MAFbx Dehydroepiandros-
terone (DHEA) ND ND Yes Yes [168]

MuRF1 Expression Epigallocatechin-3-
gallate/EGCG ND NF-κB Yes Yes [279]

MuRF1 Expression Espindolol ND Myostatin and
NF-κB Yes Yes [280]

MuRF1/MAFbx
Expression Formoterol ND ND Yes Yes [276]

MuRF1/MAFbx
Expression Formoterol AKT/mTORC1/

FOXO1
ß2 Adrenergic

receptor? Yes Yes [277]

MuRF1/MAFbx
Expression Formoterol ND AKT and NF-κB Yes Yes [281]

MuRF1/MAFbx
Expression HMB IL-6 receptor

inhibition NF-κB Yes Partially [275]

MuRF1 expression HMB or Leucine FOXO1 nuclear
translocation Glucocorticoid Yes No [282]
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Table 2. Cont.

E3 Ligases
Inhibited Molecule Mode of

Inhibition
Signal inhib-

ited/Activated
Efficiency on E3

Ligases
Efficiency on
Muscle Mass References

Cbl-b activity IRS1 peptide mimetic Cbl-b targeting Activation of
PI3K-AKT Yes Yes [171]

MuRF1/MAFbx
Expression Leucine ND

FOXO3a and
VPS34 nuclear
translocation

Yes Yes, myotube
diameter [283]

MuRF1/MAFbx
Expression Matrine AKT/mTORC1/

FOXO3α

FOXO3a and
VPS34 nuclear
translocation

Yes Yes [284]

MuRF1 expression MR16-1 Anti-IL-6 receptor NF-κB Mitigated No [275]

MuRF1 expression N-acetyl cysteine ROS TGF-ß Yes Yes [69]

MuRF1/MAFbx
Expression

Pyrroloquinoline
quinone (PQQ) ROS ND Yes Yes [285]

MuRF1/MAFbx
Expression RU486 GR Glucocorticoid Yes ND [13]

MuRF1 Expression Sabinene ROS ERK, p38 MAPK Yes Yes [286]

MuRF1/MAFbx
Expression sActRIIB ActRIIB

antagonist SMADs Yes Yes [16]

MuRF1/MAFbx/
MuSA1 Expression Salicylate IKK2 (NF-κB) NF-κB Yes Yes but toxic [89]

MuRF1/MAFbx
Expression SS-31 ROS No Yes Yes [287]

MuRF1/MAFbx
Expression Teaghrelin ND Myogenin Yes Moderate [288–290]

MuRF1/MAFbx
Expression TNF-BP TNF binding TNF Yes ND [13]

MuRF1/MAFbx/
MuSA1 Expression Ursolic acid ND

Myostatin and
inflammatory

cytokines
Yes Moderate [255]

MuRF1/MAFbx
Expression Vitamin E ND but seems

ROS independent Unknown Yes Moderate [291]

MuRF1/MAFbx
Expression Vitamin-D IL-6 receptor

inhibition NF-κB Yes Partially [275]

MuRF1 expression VX-
745/Neflamapimod p38α MAPK p38α MAPK Partially Moderate [292]

Direct inhibition of E3 ligases

MuRF1 expression ID#704946/MyoMed-
946 ND MuRF1

Expression Yes Partially [293]

MuRF1 Expression ID#704946/MyoMed-
946 ND

MuRF1 and
MuRF2

Expression
Yes Partially [17,18]

MuRF1 and MuRF2
Expression MyoMed-205 ND MuRF1

expression [17]

MuRF1 activity P013222 MuRF1 targeting – Yes ND [294]

cIAP1 (activity??) LCL161 cIAP1 NF-κB Yes Very moderate [19]

β2-AR reversion of E3 ligases expression and muscle sparing was also observed in
a rat rheumatoid arthritis model and was attributed to modulation of both the AKT and
the NF-κB pathways [293]. Other 2-AR agonists like espindolol have also been shown
to ameliorate muscle loss and to blunt E3 ligase expression in aged rats. The authors
found that both NF-κB and myostatin expression was reduced with no effect on AKT and
FOXO3a [292]. Altogether, this strongly suggests that the positive effects of 2-AR agonists
on muscle mass are mediated through the modulation of different signaling pathways
depending on the catabolic stimuli, which complicates future therapeutical strategies.
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4.1.6. p38α Mitogen-Activated Protein Kinase (p38α MAPK)

p38α MAPK is known to play an important role in the development of muscle atro-
phy [295]. Inhibition of the p38α MAPK receptor by the selective inhibitor VX-745 (Table 2
and Figure 2) partially improved muscle weight in hindlimb suspended rats with a modest
inhibition of MuRF1 expression but no modification of MAFbx [292].

4.1.7. NOTCH

The NOTCH pathway is mainly known for its implication in muscle development and
regeneration upon injury. However, it has been also implicated in muscle atrophy linked to
either cancer or amyotrophic lateral sclerosis (ALS) mice models [161]. Using a tocopherol
derivative (AGT251) (Table 2 and Figure 2), the authors found that this antioxidant molecule
was protective against muscle atrophy and MuRF1/Trim63 expression, and that the effects
may be mediated through NOTCH1 and 3 expression.

4.1.8. Ion Channels

Electrical stimulation is an important signal that controls muscle mass and ion ex-
change through specific channels, e.g., K+-channels, [296]. Following nerve injury, im-
provement of muscle mass was observed by blocking K+ channels with 4-aminopyridine
(4-AP) [278]. 4-AP (Table 2) was able to partially restore muscle fiber diameter with a
concomitant decrease of MuRF1/Trim63 expression accompanied by decreased Foxo1 and
Foxo3a expression.

4.1.9. Acute-Phase Protein Serum Amyloid A1 (SAA1)

Skeletal muscle loss in intensive care unit patients has been at least partially attributed
to the acute-phase protein serum amyloid A1 (SAA1) [256] (Table 2). Recent work per-
formed in cultured C2C12 myotubes and septic mice showed that SAA1 effects were
mediated through TLR-dependent IL-6 expression and recruitment of the NF-κB pathway.
This leads with muscle atrophy and an overactivation of MuRF1/TRIM63, MAFbx/Atrogin-
1 and MUSA1 E3 ligases. Using BMS-345541, an inhibitor of the IκB kinase, the authors
found that the expression of the E3 ligases returned to basal levels and muscle sparing
was observed, indicating that blocking the NF-κB pathway may be an efficient way for
indirectly modulating E3 ligases [266].

4.1.10. TGF-β

TGF-β family ligands, including myostatin and activin, are potential effectors of
muscle atrophy in several situations of muscle atrophy like cancer [16]. The injection of
a truncated form (aa 7-100) of the TGF-β ligands ActRIIB (Table 2 and Figure 2) in mice
subjected to several models of cancer cachexia was sufficient for blocking MuRF1/Trim63
and MAFbx/Atrogin-1 expression together with complete sparing of both skeletal muscle
and heart mass [16].

4.1.11. Reactive oxygen species (ROS)

ROS are downstream modulators of muscle wasting and may be also potential levers
for preserving muscle mass [162]. Several molecules have been tested for their potency to
modulate E3 ligase expression and thus to preserve muscle mass. Dehydroepiandrosterone
(DHEA) (Table 2 and Figure 2), a multifunctional steroid with antioxidant properties was
shown to decrease MuRF1/Trim63 expression (but not MAFbx/Atrogin-1) in tumor-bearing
rats, which helped moderately preserving muscle mass [168]. Transforming growth factor
type beta 1 (TGF-β1) regulates the function and pathological status of skeletal muscle
and was found to modulate muscle mass by increasing the activity of NADPH oxidase
(NOX), a major ROS producer [69]. This was accompanied by an increased expression of
MuRF1. Interestingly, N-acetylcysteine (NAC, a clinically used anti-oxidant) and apoc-
ynin (NOX inhibitor) were able to reverse both MuRF1 overexpression and muscle mass
loss in cultured myotubes treated with TGF-β1. Similarly, NAC or pyrroloquinoline
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quinone (PQQ, a naturally occurring antioxidant) were able to decrease MuRF1/Trim63 and
MAFbx/Atrogin-1 expression and to preserve muscle mass in denervated mice or in starved
cultured myotubes [285]. SS-31 is a cell-permeable mitochondria-targeted antioxidant
tetrapeptide undergoing clinical trials [297]. This peptide is efficient for lowering ROS
production, improving muscle atrophy and decreasing MuRF1/Trim63 and MAFbx/Atrogin-
1 expression [287]. While ROS modulation seems to be efficient for protecting muscle
mass, the mechanisms involved in the decrease of E3 ligases expression is far from being
understood. Vitamin E is another antioxidant that has been used in a rat model of mus-
cle disuse (hindlimb suspension) [291]. Vitamin E supplementation was able to largely
prevent the overexpression of several proteolytic enzymes including MuRF1/TRIM63
and MAFbx/atrogin-1 but the impact on muscle mass fiber cross section was moderate.
Interestingly, the authors attributed the protective role of vitamin E to a direct action on
gene expression and not to its antioxidant properties [291].

4.1.12. Leucine and Its Derivative ß-Hydroxy-ß-Methylbutyrate (HMB)

The essential amino acid leucine and its derivative HMB were described as modulators
of protein synthesis through an action on the mTORC1 pathway [298,299]. The efficiency
of HMB and Leucine on MuRF1/Trim63 expression was addressed in Dex-treated rats [282]
(Table 2). However, while HMB and leucine ameliorated muscle function and decreased
MuRF1 expression, no effect of both HMB and leucine was observed on muscle weight. This
might be due to partial effect of the treatment on muscles. Interestingly, the modulation
of FOXO1 nuclear translocation was the putative mechanism for MuRF1/Trim63 down-
regulation. Leucine was also implicated in the modulation of both MuRF1/TRIM63 and
MAFbx/atrogin-1 with an improvement of myotube diameter in Dex-treated primary mus-
cle cells [283,300]. The authors found that the effect of leucine on E3 ligase expression was
mediated by FOXO3a cytoplasmic sequestration and concomitant vacuolar protein sorting
34 (VPS34) nuclear accumulation. Alternatively, a supplementation with Vital01 (composed
by high levels of BCAAs, increased ratio of whey and casein proteins, vitamin D, and urso-
lic acid) in calorically restricted mouse model of muscle atrophy preserved muscle mass
both during and after the atrophic conditions were stablished. The catabolic phenotype was
ameliorated by Vital01, notably through the modulation of the UPS (decreased expression
of MuRF1/Trim63 and MAFbx/Atrogin-1) and the autophagy-lysosome pathways, [301].
However, Leu and HMB exhibit no effect on E3 ligase expression (MuRF1/Trim63 and
MAFbx/Atrogin-1) in human during fasting [210] and the beneficial muscle sparing was
attributed to a stimulation of the mTORC1 pathway [298]. On the whole, the potential
beneficial effect of Leu and HMB is still controversial for both its action on E3 ligases and
for muscle preservation effect.

4.1.13. Plant Derivatives

Plant derivatives were also tested for their potency to protect skeletal muscle atrophy.
Ursolic acid (Table 2), was able to partially decrease muscle atrophy in mice subjected to
chronic kidney disease and a moderate effect on MuRF1/TRIM63, MAFbx/Atrogin-1 and
MUSA1 expression was observed, that was attributed to decreased expression of myostatin
and inflammatory cytokines [255]. However, ursolic acid was unable to modify E3 ligases
expression in cultured myotubes treated with Dex, and ursolic acid was able to directly
induce the expression of MuRF1/Trim63 and MAFbx/Atrogin-1 in C2C12 myotubes. More
investigation is clearly needed before concluding of any potential therapy using ursolic
acid. A polyphenol from green tea, epigallocatechin-3-gallate (EGCG), was also used as a
countermeasure for fighting against cancer cachexia [279]. EGCG was able to reduce NF-κB
expression and the downstream E3 ligases MuRF1/TRIM63 and MAFbx/Atrogin-1 (only a
trend for MuRF1/TRIM63). However, the decrease of the tumor volume renders difficult
the interpretation of the effect of ECGC as its protective role on muscles might be indirect.
Teaghrelin, an analog of the human ghrelin, was efficient for decreasing the catabolic effect
of Dex in cultured C2C12 myotubes, with depressed expression of MuRF1/Trim63 and
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MAFbx/Atrogin-1 [289]. The authors suggested that increased myogenin expression might
be implicated in the beneficial effect of teaghrelin. In rats submitted to thermal injury,
ghrelin blunted the expression of MuRF1/Trim63 and MAFbx/Atrogin-1 [302]. While the
exact mechanism was not addressed, the authors found that TNFα and IL-6 mRNA levels
were normalized upon ghrelin infusion. Interestingly, mice knocked out for ghrelin exhibit
an increased expression of MuRF1/Trim63 and are less protected from fasting atrophy [290].
Sabinene is a terpene present in plant essential oil and was found to decrease muscle
atrophy in starved rats through reversal of the increased MuRF1/Trim63 overexpression
that is commonly observed upon fasting [286]. The mechanism proposed by the authors
was the repression of ROS-mediated activation of ERK and p38 MAKP.

Matrine (Table 2 and Figure 2) is a natural compound used in traditional medicine and
approved for cancer therapy in China [284]. The authors demonstrated that this compound
was able to partially reverse muscle atrophy in mice subjected to Colon 26 adenocarcinoma
with a concomitant decrease of MuRF1/Trim63 and MAFbx/Atrogin-1 expression. Using
cultured C2C12 myotubes, the authors found that the effect of matrine was mainly driven
by the AKT/mTORC1/FOXO3a signaling pathway with both a repression of the catalytic
axis and an up regulation of the anabolic one.

4.2. E3 Ligases Inhibitors

The main E3 ligase that has been investigated so far for the design of inhibitors is
MuRF1/TRIM63. This can be explained by the fact it is also the only E3 ligase known to
target contractile proteins from both the thin and the thick filament [227,228,230,303].

In a first attempt, the screening of a small molecule library for finding MuRF1/TRIM63
inhibitors identified a compound (P013222) (Table 2 and Figure 2) that was able to decrease
MuRF1/TRIM63 autoubiquitylation [294]. The selectivity was within the µM range with a
10 times preference for MuRF1/TRIM63 compared to other E3 ligases and P013222 was
able to inhibit the degradation of MHC in Dex-treated C2C12 myotubes.

More recently, the screening of a library identified another small molecule compound
(ID#704946/MyoMed-946) able to alter MuRF1-titin interaction (IC50 around 25 µM), thus
targeting the coiled-coil region of MuRF1/TRIM63 [293]. Compound ID#704946/MyoMed-
946 was able to decrease in vitro MuRF1/TRIM63 self-ubiquitination and surprisingly was
also able to decrease the mRNA levels of MuRF1/Trim63 in catabolic C2C12 myotubes [293].
This suggests that this compound may be interfering on several mechanisms modulating
MuRF1/TRIM63 action. This compound was at least partially effective for preserving
muscle mass in catabolic mice. The mechanism by which compound ID#704946/MyoMed-
946 preserve muscle function needs further investigations as the same laboratory found
that it was also able to modulate MuRF2 expression [17,18].

The cellular inhibitor of apoptosis 1 (cIAP1) E3 ligase is a negative regulator of
muscle mass by acting on TNFα-mediated NF-κB signaling. cIAP1 is in fact an E3 ligase
whose role is to blunt the non-canonical NF-κB signaling and its genetical ablation was
reported to improve muscle mass in mdx mice [91]. Recently, an inhibitor of cIAP1 (LCL161)
was addressed for its capacity to improve skeletal muscle mass in denervated mice [19].
While genetic ablation of cIAP1 was able to preserve muscle mass in denervated mice, its
inhibition by LC161 was only moderately efficient as only the EDL muscle was preserved,
indicating either a poor inhibition efficiency of LCL161 or a compensation by other E3
ligases and/or signaling pathways.

CBL-B is an E3 ligase involved in the targeting of the Insulin Receptor Substrate 1
(IRS1) that mediates IGF1 signaling, notably by activating the AKT-mTORC1 pathway.
CBL-B is involved in spaceflight-induced muscle atrophy and genetic ablation of CBL-B
protects skeletal muscle from disuse atrophy [171]. CBL-B can be inhibited by a small
pentapeptide mimetic of tyrosine608-phosphorylated IRS-1 that restores IGF1 signaling
and protects from atrophy. Interestingly, IGF1 signaling restoration induced a concomitant
decrease of MAFbx expression while no variation on MuRF1/Trim63 mRNA levels was
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observed [171]. Another peptide, called cblin, was also reported to exhibit some protective
action on skeletal muscle through the inhibition of Cbl-b [304].

5. Conclusions and Future Directions

The discovery of molecules able to lower muscle loss during catabolic situations is a
promising field of investigation and numerous possibilities can be envisaged, from directly
blunting the signals arriving at the cellular membrane levels to more specifically inhibiting
the E3 ligase(s) involved in the degradation of the muscle contractile apparatus. Each
strategy has advantages and disadvantages. The first approaches are not specific and alter
numerous metabolic pathways, which may end up with side effects both at the short- and
long-term levels. For example, suppressing the general protein breakdown by acting on the
PI3K/AKT/FOXO pathway might be deleterious by accumulating misfolded proteins. On
the other side, receptor or metabolic pathways have been studied for decades and several
inhibitors have been well characterized, which allows more straightforward investigations
dedicated to muscle atrophy.

The drugs targeting directly the E3 ligases, so far mostly focused on MuRF1/TRIM63,
have the advantage of being more selective and should prove to be better tolerated by the
muscle cells and the whole organism. Indeed, MuRF1/TRIM63 (and some other ligases)
is muscle-specific, which means that drugs will only affect muscles. This is an important
advantage over metabolic pathways that are shared by several organs. More investigations
are clearly needed for ameliorating the first generation of molecules or for finding new
ones, which includes new strategies for modulating E3 ligases activity.
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Abbreviations

AMPK Adenosine 5′-monophosphate-activated (AMP)-activated protein kinase
ATG9 Autophagy related gene 9
BMP Bone Morphogenic Protein
CaMKKß Ca2+/calmodulin-dependent protein kinase kinase ß
cAMP cyclic Adenosine Monophosphate
CHF Congestive Heart Failure
CKD Chronic Kidney Disease
Cn Calcineurin
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CSL CBF1, Suppressor of Hairless, Lag-1
DMD Duchenne Muscle Dystrophy
Dsh Dishevelled
EDL Extensor digitorum longus
ERK Extracellular signal-regulated kinases
Fd Frizzled
FOXO Forkhead box protein O
GC Glucocorticoids
GR Glucocorticoids Receptor
GDF Growth Differentiation Factor
GPCR G-protein coupled receptors
HBM ß-hydroxy-ß-methylbutyrate
HDAC4 Histone deacetylase 4
HECT Homologous to E6-Associated Protein C Terminus
IGF1 Insulin-like growth factor 1
IKK IκB Kinase
KD Knock Down
KO Knock-Out
LKB1 Liver kinase B1
MAFbx/Atrogin-1 Muscle atrophy F-box
MAPK Mitogen Activated Protein Kinase
Mdx The mdx mouse has a point mutation in its DMD gene (coding for Dystrophin)
MSTN Myostatin
mTORC Mechanistic (or mammalian) target of rapamycin complex
MuRF1 Muscle Ring-Finger 1 Protein
MyoD Myogenic regulatory factor
NAC N-acetyl cysteine
NFAT Nuclear factor of activated T-cells
NICD Notch Intracellular Domain
NOX NADPH oxidase
PTEN Phosphatase and tensin homologue
PDK1 3-phosphoinositide-dependent protein kinase 1
PGC-1a Peroxisome proliferator-activated receptor gamma coactivator 1-alpha
PI3K Phosphoinositide 3-kinase
PKA cAMP-dependent protein kinase
PQQ pyrroloquinoline quinone
RBR RING-in-Between-RING
RING Really Interesting New Gene-finger
RNS Reactive Nitrogen Species
ROS Reactive Oxygen Species
SDEN Surgical sympathetic denervation
SMAD Small Mothers Against Decapentaplegic
TA Tibialis Anterior
TAK-1 transforming growth factor ß-activated kinase 1
TAZ/WWTR1 WW domain containing protein 1
TFs Transcription factors
TGF Transforming Growth Factor
TRADD TNF receptor associated via death domain
TRAF6 TNF receptor-associated factor 6
TSC Tuberous Sclerosis Complex
ULK1 uncoordinated 51-like kinase 1
UPS Ubiquitin-Proteasome System
Wnt Wingless-type mouse mammary tumor virus integration site
YAP Yes-Associated Protein
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Abstract

In small hibernators, global downregulation of the endocannabinoid system (ECS), which is involved in modulating
neuronal signaling, feeding behavior, energy metabolism, and circannual rhythms, has been reported to possibly
drive physiological adaptation to the hibernating state. In hibernating brown bears (Ursus arctos), we hypothesized
that beyond an overall suppression of the ECS, seasonal shift in endocannabinoids compounds could be linked to
bear’s peculiar features that include hibernation without arousal episodes and capacity to react to external
disturbance. We explored circulating lipids in serum and the ECS in plasma and metabolically active tissues in free-
ranging subadult Scandinavian brown bears when both active and hibernating. In winter bear serum, in addition to
a 2-fold increase in total fatty acid concentration, we found significant changes in relative proportions of circulating
fatty acids, such as a 2-fold increase in docosahexaenoic acid C22:6 n-3 and a decrease in arachidonic acid C20:4 n-
6. In adipose and muscle tissues of hibernating bears, we found significant lower concentrations of 2-
arachidonoylglycerol (2-AG), a major ligand of cannabinoid receptors 1 (CB1) and 2 (CB2). Lower mRNA level for
genes encoding CB1 and CB2 were also found in winter muscle and adipose tissue, respectively. The observed
reduction in ECS tone may promote fatty acid mobilization from body fat stores, and favor carbohydrate
metabolism in skeletal muscle of hibernating bears. Additionally, high circulating level of the endocannabinoid-like
compound N-oleoylethanolamide (OEA) in winter could favor lipolysis and fatty acid oxidation in peripheral tissues.
We also speculated on a role of OEA in the conservation of an anorexigenic signal and in the maintenance of
torpor during hibernation, while sustaining the capacity of bears to sense stimuli from the environment.

Keywords: Hibernation, Brown bear, Metabolism, Lipidomic, Docosahexaenoic acid, Endocannabinoid system,
Cannabinoid receptor 1, Cannabinoid receptor 2, 2-arachidonoylglycerol, Anandamide, N-oleoylethanolamide

Background
To deal with seasonal cold and food shortage during win-
ter, hibernating mammals show a combination of behav-
ioral and physiological changes. To save energy during
hibernation, hibernating animals use periods of torpor
characterized by decreased metabolic rate and body

temperature, reduction in respiratory and heart rates, and
physical inactivity [1, 2]. Brown bears (Ursus arctos)
exhibit unique features, as they hibernate at mild
hypothermia (32–35 °C) and can stay inside their dens for
up to 7months, without drinking, eating, defecating or
urinating, and with no arousal episodes [3–6]. While den-
ning, they reduce their metabolic rate by about 75% [7],
and rely primarily on mobilization of fat stores, which is
reflected by increased circulating fatty acid concentration
and body fat store depletion during winter [8–10].
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Beyond energy substrates, lipids also have pleiotropic ac-
tions in the regulation of metabolism, and changes in mem-
brane fatty acid composition have already been described in
hibernating animals [11–14], including the brown bear [9].
Membrane phospholipids can also provide long-chain fatty
acids for the synthesis of bioactive lipid mediators, such as
endocannabinoids [15–17]. The endocannabinoid system
(ECS) was originally described as being composed of G-
protein coupled receptors (CB1 and CB2) and their
endogenous ligands, of which the main ones are derived
from arachidonic acid 20:4n-6 (AA) esterified into phos-
pholipids, and called 2-arachidonoyl glycerol (2-AG) and
anandamide (AEA) [15–20]. These two well-characterized
compounds clearly show varying affinity for CB1 and CB2
receptors. Indeed, AEA is considered as a high affinity
CB1-partial agonist (and weak CB2 agonist), whereas 2-AG
is described as a low-to-moderate affinity CB1 and CB2 full
agonist [21, 22]. 2-AG and AEA belong to the large family
of 2-acylglycerols (2-AcGs) and N-acylethanolamines
(NAEs), respectively [17, 19]. N-acyl-
phosphatidylethanolamine-hydrolyzing phospholipase D
(NAPEPLD) and sn-1-specific diacylglycerol lipase-α and β
(DAGLA and DAGLB) are the main enzymes involved in
the biosynthesis of NAEs and 2-AcGs, respectively [17, 19].
Fatty acid amide hydrolase (FAAH) is responsible for NAEs
catabolism (and to a lesser extend for 2-AG) [23], and
monoacylglycerol lipase (MGLL) specifically catabolizes 2-
AcGs [17, 19]. eCBs can also be metabolized by lipoxy-
genases (LOXs) and by cyclooxygenase-2 (COX-2), an al-
ternative pathway for eCBs catabolism [17].
The ECS includes structurally related compounds like N-

oleoylethanolamine (OEA), called «endocannabinoids-like
compounds» (eCBs-like). The latter are metabolized by the
same biosynthetic and catabolic enzymes as eCBs [17].
Although eCBs-like compounds are not able to bind to
CB1 and CB2 receptors, they can bind to other G-protein
coupled receptors (e.g. GPR119 and GPR55) or nuclear
receptors, like peroxisome proliferator-activated receptor α
(PPARA) [17].
Endogenous cannabinoids are involved in the regulation

of many physiological processes, including neuronal signal-
ing [24], stress response [25], metabolism [25–27], feeding
behavior and energy storage [25, 28]. Evidences support
the fact that the ECS could be involved in sleep cycles [29],
circadian and potentially circannual rhythms [30]. At the
central level (e.g. hypothalamus), CB1 is able to promote
food intake and reduce energy expenditure [25, 31]. In
addition, CB1 activation in adipose tissue leads to fatty acid
and glucose uptake, and to upregulation of lipogenesis [25].
In liver, CB1 signaling leads to increased expression of
genes involved in the synthesis of fatty acids [32], and in
skeletal muscle tissue, CB1 activation triggers a decrease in
glucose uptake and insulin sensitivity [25]. The CB2 recep-
tor is well known to be widespread over immune cells and

to have numerous immunomodulatory roles [33]. CB2 has
also been detected in metabolic tissues, like adipose tissue
and skeletal muscle [34, 35] and CB2 pharmacological or
genetic inactivation in murine obesity models promote
insulin-mediated glucose uptake in skeletal muscles, reduce
adipose tissue inflammation, and thus improves insulin
sensitivity [36, 37]. Finally, the eCB-like OEA promotes lip-
olysis, fatty acid oxidation in skeletal muscle and liver, and
triggers an anorexigenic signal, notably through the nuclear
receptor PPARA [38, 39]. Considering the pleiotropic roles
of ECS in neuronal signaling, regulation of feeding behav-
ior, energy metabolism and circannual rhythms, important
changes are expected during hibernation. Several ECS cir-
culating compounds have been quantified in hibernating
black bears, during and around the torpor phase [40],with
no major changes observed except a slight increase in 2-
AG in the period of metabolic drop before torpor. Al-
though a decrease in ECS tone has been observed in hiber-
nating marmots (Marmota monax and flaviventris) and
ground squirrels (Spermophilus richardsonii) [30, 41, 42],
we hypothesize that a similar decrease should occur in hi-
bernating bears, not excluding specific changes due to their
unique features during hibernation (mild hypothermia, no
periodic arousal, and maintenance of alertness). Therefore,
we explored here seasonal variations in fatty acid compos-
ition and ECS tone, in both circulating compartment and
in muscle and adipose tissues, in winter-hibernating and
summer-active brown bears.

Results
Seasonal differences in serum lipids
We explored the fatty acid (FA) composition of winter-
hibernating (WBS) and summer-active (SBS) bear serum
(see supplementary Table S1). From the lipidomic data,
we compared both the summer and winter concentrations
and proportions of fatty acids (see supplementary Table
S2 and S3 for detailed lipidomic results). As shown in
Fig. 1a, the total concentration of FAs was about twofold
higher in WBS relative to SBS (28.82 ± 1.71 vs. 15.99 ±
1.09mmol/L). All but two quantified lipid species were
higher in concentration in hibernating bears, i.e. saturated
fatty acids (SFAs), monounsaturated fatty acids (MUFAs),
and n-6 polyunsaturated fatty acids (PUFAs) (Supplemen-
tary Table S2). Only concentrations of alpha-linolenic acid
C18:3 n-3 (ALA) (0.49 -fold, non-significant) and eicosa-
pentaenoic acid C20:5 n-3 (EPA) (0.26-fold) were lower in
WBS (Supplementary Table S2).
Meanwhile, the molar percent of total n-6 species were

found to be lower in WBS compared to SBS (Fig. 1b). Lipid
species with the highest molar percent are presented in Fig.
1c (see Supplementary Table S3). Among SFAs, palmitic
acid C16:0 (PA) was found in higher proportion, whereas
stearic acid C18:0 (SA) was in lower proportion in winter
serum. Similar proportions of oleic acid 18:1n-9 (OA),
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belonging to the n-9 MUFAs, were found in winter and
summer bear serum. Concerning n-6 PUFAs, the proportion
of arachidonic acid C20:4 n-6 (AA) was lower during winter,
whereas proportion of linoleic acid C18:2 n-6 (LA) remained
unchanged (Fig. 1c). For individual species of the n-3 family
(Fig. 1d and Supplementary Table S3), docosapentaenoic acid
C22:5 n-3 (DPA, 1.5-fold) and docosahexaenoic acid C22:6
n-3 (DHA, 2.2-fold) were found in higher proportions.
The proportion of C20:5 n-3 (EPA) was found much

lower (0.15-fold) in winter serum, as well as the alpha-
linolenic acid C18:3 n-3 (ALA, 0.27-fold), a precursor of
the EPA, DPA and DHA species.
From molar percent values, the DHA/AA ratio was

3.2-fold higher in winter (Fig. 1e).

Changes in plasma endocannabinoids and
endocannabinoids-like compounds
We next assessed circulating eCBs and eCBs-like in bear
plasma. Paired samples were collected in winter and in
summer from eight bears (Supplementary Table S1) and
quantification of AEA, 2-AG and OEA are presented in
Fig. 2 and supplementary Table S5. Lower concentra-
tions were observed for AEA (0.63-fold) in winter com-
pared to summer, whereas the reverse was observed for
OEA (3.3-fold). No difference was found for 2-AG
plasma concentration.

Changes in endocannabinoid concentrations in muscle
and adipose tissues
Quantification of endocannabinoids was then performed
in bear muscle and adipose tissues. Paired tissues sam-
ples were collected from bears in winter and in summer
(Supplementary Table S1) and quantification of AEA, 2-
AG and OEA are presented in Fig. 3 and supplementary
Table S5. AEA concentration was lower in both muscle
and adipose tissues during winter versus summer, close
to the statistical threshold (p = 0.064 and p = 0.069, re-
spectively). 2-AG concentration was significantly lower
in muscle and adipose tissues samples during winter, by
about 1.6- and 9-fold, respectively. By contrast, no sea-
sonal changes were found in OEA concentrations in
both muscle and adipose tissues.

Changes in endocannabinoid pathway-related gene
expressions in muscle and adipose tissues
To explore tissue metabolism of endocannabinoids, we
quantified gene expression in muscle and adipose tissue
of the eCBs membrane receptors CB1 and CB2, and sev-
eral enzymes involed in the synthesis and catabolism of
eCBs. For muscle tissue, paired samples were from 8
bears at the two time points, while for adipose tissue,
data are coming from 5 bears in summer and 13 bears

(See figure on previous page.)
Fig. 1 Lipidomic from summer and winter brown bear serum. The winter and summer bear serum mixes were prepared as described (Supplementary
Table S1). a: Total fatty acid (FA) concentration. b: Total n-6 and n-3 FA relative proportions of total lipids. c: Highest molar percent lipid species D:
Molar percent of the n-3 family lipid species. e: Molar ratios of DHA/AA in summer and winter serum. Detailed lipidomic results are presented in
Supplementary Tables S2 and S3. Data are expressed in mmol/L for total FAs concentration, or molar percentage of total lipids and are represented as
mean ± SEM of separate extractions and quantifications from the twelve mixes (six summer and six winter serum mixes, except for EPA with data from
only three summer and three winter mixes). Paired Student t-test were used to compare wummer and winter data and Benjamini-Hochberg
correction was applied for multiple comparisons. * indicates BH adjusted p value < 0.05 when comparing seasons, ** for p < 0.01, *** for p < 0.001, NS:
non significant. AA:arachidonic acid, ALA: alpha-linolenic acid, DHA: docosahexaenoic acid, DPA: docosapentaenoic acid, EPA: eicosapentaenoic acid,
LA: linoleic acid, OA: oleic acid, PA: palmitic acid, SA: stearic acid, SBS: summer bear serum, WBS: winter bear serum

Fig. 2 Circulating endocannabinoids concentration in brown bear plasma. Concentration of three major endocannabinoids compounds in bear
plasma. Plasma were collected from bears at both winter-hibernating and summer-active time points (Supplementary Table S1). Data are
expressed in ng/mL and are represented as mean ± SEM of separate extractions and quantifications (n = 8). Paired Student t-test were used to
compare wummer and winter data. * indicates p value < 0.05 when comparing seasons, *** for p < 0.001, NS: non significant. AEA: anandamide,
2-AG: 2-arachidonoylglycérol, eCBs: endocannabinoids, OEA: N-oleoylethanolamine, SBP: summer bear plasma, WBP: winter bear plasma
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in winter (Supplementary Table S1). Data are presented
in Fig. 4 and Supplementary Table S5.
For genes that encode the membrane receptors CB1 and

CB2 in muscle tissue, CNR1 mRNA level, but not CNR2,
was decreased (0.63-fold) in winter (Fig. 4). Concerning en-
zymes that catabolize AEA and 2-AG, mRNA level of
FAAH was induced (2.3-fold) in winter, but MGLL gene ex-
pression did not change. For genes encoding enzymes of the
biosynthetic pathway, DAGLA mRNA level was strongly re-
duced in muscle tissue during winter (0.40-fold), whereas
DAGLB mRNA level was increased (1.53-fold). Finally, gene
expression of NAPEPLD did not change in muscle (Fig. 4).
Conversely, in adipose tissue (Fig. 5), no significant

changes in CNR1 gene expression were reported whereas
CNR2 expression was strongly decreased in winter (0.42-
fold). For gene expression of catabolic enzymes (FAAH
and MGLL), did not change in adipose tissue between sea-
sons. Finally, for genes encoding biosynthetic enzymes,
mRNA levels of DAGLB and NAPELD were respectively
found higher (1.44-fold) and lower (0.75-fold) in winter.

Discussion
Thanks to repeated capture sessions, we were able to gather
samples of serum, plasma and tissues from high number of

free-living brown bears (Ursus arctos). From the 28 bears
included in this study, samples were collected both in Feb-
ruary during winter hibernation and in June during summer
active period. Due to limited amount of available biological
material, the analyses were performed on samples coming
from different subsets of the 28 bears. In all but adipose tis-
sue, analyses were performed on winter and summer paired
samples (Supplementary Table S1). We examined circulat-
ing lipid and ECS compounds in both summer-active and
winter-hibernating brown bears to explore the extent to
which regulation of the ECS reflects bear hibernation pecu-
liarities, including survival due to lipid oxidation, mainten-
ance of muscle glycolysis, and maintained alertness during
dormancy. The seasonal shift we highlighted in serum FAs
composition, together with a decrease in tissue AEA and 2-
AG, and a three-fold increase in circulating OEA during
winter, could contribute to the behavioral and metabolic
changes that occur in hibernating bears.
Hibernators experience extended periods of food short-

age during hibernation and primarily rely on mobilization
of fat stores from white adipose tissue [1]. Accordingly, we
found that the concentration of total circulating fatty acids
was elevated in hibernating bears, a finding in line with
previous studies [5, 43]. Considering both the amount and

Fig. 3 Endocannabinoids concentration in brown bear muscle and adipose tissue. Concentration of three major endocannabinoids compounds in bear
muscle and adipose tissue. Tissues were collected from bears at both winter-hibernating and summer-active time points (Supplementary Table S1). Data
are expressed in pg/mg and are represented as mean ± SEM of separate extractions and quantifications (n = 5 for muscle tissue and n = 6 for adipose
tissue). Paired Student t-test were used to compare wummer and winter data. *** indicates p value < 0.0001 when comparing seasons, NS: non significant.
AEA: anandamide, 2-AG: 2-arachidonoylglycérol, OEA: N-oleoylethanolamine, SBA: summer bear adipose tissue, SBM: summer bear muscle, WBA: winter
bear adipose tissue, WBM: winter bear muscle
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relative proportions of circulating lipids, our results are
consistent with changes in serum and plasma lipid pro-
files during hibernation that have been previously pub-
lished [5, 9, 10], notably an enrichment in DHA C22:6
n-3 and depletions in ALA C18:3 n-3 and EPA C20:5
n-3, during winter compared to summer. Whether the
depletion in the ALA and EPA precursor species could
be directly linked to the observed DHA increase re-
mains to be elucidated.
Here, the DHA serum enrichment that we observed in

hibernating bears is actually not coming from dietary FAs
intake but rather due to lipid stores mobilization. The
health benefits that have been attributed to n-3 PUFAs (e.g.
DHA), essentially triggered by DHA dietary intervention
studies, could potentially be transposed in the context of
hibernation. Indeed, it has already been hypothesized that
DHA could be involved in the bear’s resistance to muscle
atrophy during hibernation [10]. DHA appears to prevent
muscle atrophy in fasting mice, and increases muscle glyco-
gen stores [44]. Strikingly, in parallel to DHA serum en-
richment, hibernating bears have more than a 3-fold higher
glycogen muscle content compared to summer-active ani-
mals [10]. In addition to its anti-inflammatory effects, DHA

is also known to exert a positive effect on protein balance
by decreasing expression of factors involved in protein
breakdown [45] and enhancing protein synthesis, notably
by promoting mammalian Target Of Rapamycin (mTOR)
activation [46].
Concomitantly to serum DHA enrichment, we observed

a drop in AA proportion, thus leading to a sharp increase
in the DHA/AA ratio. Omega-3/omega-6 ratio is known
to have an impact on global health [47], and the balance
of this ratio could also impact the endocannabinoid sys-
tem [48], notably because AA is a precursor of the two
main eCBs 2-AG and AEA. Indeed, n-6 PUFAs-enriched
diets have been shown to increase the level of 2-AG or
AEA in the brain, plasma, and peripheral tissues in non-
hibernating animal models [49–52]. It is noteworthy to
mention that, in response to DHA supplementation, an
enrichment of this fatty acid in phospholipids of cell
membranes occurs in parallel with a decrease in AA con-
tent [38, 49, 53, 54]. By remodeling the amount of AA-
containing phospholipids, DHA is able to reduce the syn-
thesis of AEA and 2-AG [49, 54]. Further studies on bears,
focusing on fatty acid membrane composition in tissues at
different time points, will be helpful to characterize the

Fig. 4 Fold change in gene expression of target genes involved in endocannabinoids biosynthesis and catabolism in brown bear muscle tissue.
Muscle tissues were collected from bears at both winter-hibernating and summer-active time points (Supplementary Table S1), total RNA was
extracted and expression levels were measured by RT-qPCR. Data are normalized against TBP mRNA levels and expressed as a fold change
relative to the summer condition, represented as mean ± SEM of separate extractions and quantifications (n = 8). Paired Student t-test were used
to compare wummer and winter data. * indicates p value < 0.05 when comparing seasons, NS: non significant. CNR1: cannabinoid receptor 1,
CNR2: cannabinoid receptor 2, DAGLA: diacylglycerol lipase alpha, DAGLB: diacylglycerol lipase beta, FAAH: fatty acid amide hydrolase, MGLL:
monoacylglycerol lipase, NAPEPLD: N-acyl phosphatidylethanolamine phospholipase D, SBM: summer bear muscle, WBM: winter bear muscle
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remodeling of membrane lipids that could affect the avail-
ability of FAs precursors for eCBs biosynthesis. Data on
eCBs compounds from experimental short fasting in non-
hibernating mammals are very divergent, depending on
the tissue considered (e.g. brain or peripheral tissues) and
the duration of food deprivation, but tissue levels of eCBs
are mainly regulated by the availability of their membrane
phospholipid precursors and by the activity of biosynthetic
and catabolic enzymes [28, 49, 55, 56].
We hypothesized that drastic reduction in metabolic

activity, lack of intake of dietary PUFAs, significant in-
crease in the serum DHA/AA ratio, and perhaps reduc-
tion in tissue AA-phospholipids concentration, could
lead to a global reduction in ECS tone during the hiber-
nation period. The reduction in ECS tone has already
been documented in hibernating marmots [30, 41], but
not confirmed in large-bodied hibernators.
Comparing active and hibernation states in brown

bears, we reported here a decrease in plasma concentra-
tion of AEA, and an unexpected 3-fold increase in OEA
circulating levels in hibernating bears. In both muscle
and adipose tissues, 2-AG and AEA (close to statistical
threshold) were found lower in winter, while OEA did
not change. Quantification of winter serum eCBs was

previously reported in black bears during and around
the topor phase, but summer active bears were not in-
vestigated [40]. Nutritional status of the captured ani-
mals and diet were not specified. These elements
strongly limit comparison between the two studies.
Taken together, our data allowed us to make several hy-

potheses about possible mechanisms by which ECS could
contribute to the metabolic and behavioral changes that
occur in bears during hibernation. First, considering that
AEA and 2-AG CB1 agonists favor food intake and stimu-
late lipogenesis [25], CB1 signaling is expected to be upreg-
ulated during the active summer period in order to
promote energy storage, and downregulated during winter
hibernation to stimulate lipolysis and FAs oxidation. The
tissue concentration drops in 2-AG and AEA observed
during winter could be due to a decrease in tissue AA-
phospholipids concentration, as we hypothesized above.
The degradation of AEA could also be increased in muscle
tissue during hibernation, as reflected in the higher mRNA
levels of FAAH, the main hydrolase that degrades AEA [19,
23]. In adipose tissue, lower NAPEPLD mRNA level con-
tent during hibernation may support a decrease in AEA
synthesis, and ultimately content. The tissue content in 2-
AG is decreased in winter with no changes in mRNA levels

Fig. 5 Fold change in gene expression of target genes involved in endocannabinoids biosynthesis and catabolism in brown bear adipose tissue.
Adipose tissues were collected from bears at both winter-hibernating and summer-active time points (Supplementary Table S1), total RNA was extracted
and expression levels were measured by RT-qPCR. Data are normalized against TBP mRNA levels and expressed as a fold change relative to the summer
condition, represented as mean ± SEM of separate extractions and quantifications (n = 5 for summer and n = 13 for winter samples). Unpaired Student t-
test were used to compare wummer and winter data.* indicates p value < 0.05 when comparing seasons. CNR1: cannabinoid receptor 1, CNR2:
cannabinoid receptor 2, DAGLA: diacylglycerol lipase alpha, DAGLB: diacylglycerol lipase beta, FAAH: fatty acid amide hydrolase, MGLL: monoacylglycerol
lipase, NAPEPLD: N-acyl phosphatidylethanolamine phospholipase D, SBA: summer bear adipose tissue, WBA: winter bear adipose tissue
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of the catabolic enzyme MGLL. Furthermore, opposite
changes in DAGLA and DAGLB gene expression do not
allow to speculate on the biosynthetic/degradation balance.
One limitation of our study is that gene expression could
not reflect biological activity. Moreover, we only focused
on main biosynthetic and catabolic enzymes involved in
eCBs metabolism, and investigation on alternative degrad-
ation route as endocannabinoid oxygenation by cyclooxy-
genases and lipoxygenases would bring new insights.
During hibernation, lower 2-AG (and AEA close to stat-

istical threshold) tissue content and the reduction of
CNR1 and CNR2 mRNA levels in muscle and adipose tis-
sue, respectively, strongly support reduced ECS tone in
both tissues. In non-hibernating mammals, pharmaco-
logical inhibition of CB1 leads to a decrease in PDK4 ex-
pression [25, 57]. PDK4 is a major negative regulator of
PDH activity, that in turn regulates the whole body oxida-
tive carbohydrate metabolism. In hibernating bear muscle,
recent studies have shown that PDK4 is upregulated com-
pared to summer active state [10, 58] and expression of
PDK4 during hibernation appear thus to be disconnected
from direct regulation by CB1. CB1 receptor antagonism
also leads to an increased uptake of glucose in muscle via
PI3K signaling [59], and glycolysis appears preserved in
bear skeletal muscle during hibernation, as suggested by
an overall increase in the protein abundance of all glyco-
lytic enzymes [10]. As proposed by Chazarin et al. and
Vella et al., bears still oxidize glucose and produce lactate
in skeletal muscle during hibernation [10, 60].
Overactivation of the ECS is a hallmark of obesity [61,

62], and 2-AG is predominantly found in higher concen-
tration in tissues of obese people [61, 63]. Interestingly, in
murine models of obesity, gain of adipose tissue often
leads to increased fat inflammation [36, 37]. Genetic or
pharmacological inactivation of CB2 receptor contribute
to reduce adipose tissue inflammation, increase insulin
sensitivity and skeletal muscle glucose uptake [36, 37].
Strikingly, insulin resistance has been described in hiber-
nating bears adipocytes [64]. As bears don’t experience
health consequences of circannual high body fat storage
[65], a reduced CB2 signaling in adipose tissue could
dampen adipose tissue inflammation. Lower amounts of
2-AG and AEA could also reduced CB1 signaling in adi-
pose tissue, thus limiting lipogenesis and promoting lip-
olysis during hibernation in bears, as also suggested for
hibernating marmots [30].
OEA is a high-affinity agonist for peroxisome

proliferator-activated receptor α (PPARA), regulating food
intake and stimulating fat catabolism [38, 39, 53, 66, 67].
The eCB-like OEA is generally synthesized in response to
dietary oleic acid intake by enterocytes of the small intes-
tine [49, 54], and inhibits food intake. It has already been
shown in rodents that food deprivation inhibits OEA syn-
thesis in the small intestine, but stimulates its synthesis in

liver [38, 53, 68, 69]. Therefore, during bear hibernation,
circulating OEA could originate from tissue synthesis
(probably hepatic) and be released in the blood flow. The
high OEA level that we found in hibernating bears, not trig-
gered by food intake, could participate in a sustained an-
orexigenic signal during the hibernation state.
Consequences of high levels of circulating OEA have

been studied in non-hibernating rodents. Intraperitoneal
OEA administration in rats notably impairs locomotor ac-
tivity, which is supported by a decrease in ambulation, an
increase of the time spent in inactivity, and the presence of
signs of catalepsy [66, 70]. We thus can hypothesize that a
higher amount of plasma OEA during bear hibernation can
participate in the maintenance of prolonged physical in-
activity. It has also been shown that intracerebroventricular
injections of OEA promote alertness, with the observation
of enhanced dopamine and c-Fos expressions in wake-
related brain areas [71]. Bears are known to stay sensitive
to disturbance during hibernation [72–74]. High circulating
amounts of OEA might thus participate in alertness to
external stimuli from the environment in hibernating bears.
OEA during winter possibly also favors body fat
mobilization for energy needs, with stimulation of FA and
glycerol release from adipocytes [38, 39]. Finally, a potential
role for OEA in the promotion of fasting-induced ketogen-
esis during hibernation could also be considered, as OEA
has been demonstrated to increase 3-hydroxybutyrate pro-
duction in in vivo rodent models [38, 39].

Conclusions
In conclusion, our results show a reduction in ECS tone
in hibernating bears and suggest a coordinated downreg-
ulation of CB1 and CB2 signaling in skeletal muscle and
adipose tissue. As summarized in Fig. 6, these features
could favor energy mobilization through lipolysis, and
optimization of glucose uptake by skeletal muscles.
Despite high fat stores in winter, bears do not exhibit
features of ECS overactivation, and decrease in CB2 sig-
naling could dampen adipose tissue inflammation. The
observed increase in circulating OEA level may partici-
pate in the behavioral and physiological adaptations dur-
ing bear hibernation state, like maintenance of an
anorexigenic signaling pathway, and promotion of lipoly-
sis and fatty acid β-oxidation. We also speculated about
OEA involvement in torpor maintenance and in motor
activity reduction, as well as a role in conservation of
alertness at the level of central nervous system.

Methods
Bear sample collection
A total of 28 free ranging subadult brown bears (Ursus
arctos) from Dalarna and Gävleborg counties, Sweden,
were included in this study, including 4 bears captured
two consecutive years. All samples and data were collected
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under protocols approved by the Swedish Ethical Com-
mittee on Animal Experiment (applications Dnr C3/2016
and Dnr C18/2015), the Swedish Environmental Protec-
tion Agency (NV-00741-18), and the Swedish Board of
Agriculture (Dnr 5.2.18–3060/17). All procedures com-
plied with Swedish laws and regulations.
As described previously [10, 75], blood, subcutaneous

adipose tissue, and muscle tissue (vastus lateralis) samples
were collected at two time points, in February during win-
ter hibernation (W) and in June during summer-active
period (S). Blood samples were collected from the jugular
vein into 8ml dry tubes for serum (Vacuette® Z serum Sep
Clot Activator, Greiner Bio-One GmbH, Kremsmünster,
Austria) or into 10ml EDTA-coated tubes (BD Vacutai-
ner®, FisherScientific, Illkirch, France) for plasma.
The analyses were performed on samples coming from

different subsets of bears as described in Supplementary
Table S1.

Lipid extraction and analysis
To perform serum lipidomic analysis, serum mixes were
prepared as followed: for a given year, 50 μl of summer
serum from each bear of the year was pooled to obtain the
summer mix. In parallel, 50 μl of winter serum from the
same bears was pooled to obtain the winter mix. A total of
6 summer and winter paired mixes were obtained (Sup-
plementary Table S1). Lipids were extracted and analyzed

as previously described [76]. After addition of an internal
standard (tri-17:0 triacylglycerol), total lipids were ex-
tracted twice from bear serum mixes with ethanol/chloro-
form (1:2, v/v). The organic phases were dried under
nitrogen and lipids were transmethylated. Briefly, samples
were treated with toluene-methanol (1:1, v/v) and boron
trifluoride in methanol (14%). Transmethylation was car-
ried out at 100 °C for 90min in screw-capped tubes. Then
1.5 mL K2CO3 in 10% water was added and the resulting
fatty acid methyl esters were extracted by 2mL of isooc-
tane and analyzed by gas chromatography (GC) with a
HP6890 instrument equipped with a fused silica capillary
BPX70 SGE column (60 × 0.25mm). The vector gas was
hydrogen. Temperatures of the Ross injector and the
flame ionization detector were set to 230 °C and 250 °C,
respectively. Data were expressed in mmol/L for total or
individual fatty acids (FAs) concentration or molar per-
centage of total lipids for individual FAs. Detailed lipido-
mic results are presented in supplementary Table S2
(serum fatty acid concentrations) and S3 (serum fatty acid
relative proportions).

Endocannabinoid quantification
For quantification of circulating endocannabinoids, ana-
lysis was performed on 500 μl of plasma collected at the
two time points (S and W) from 8 individual animals (see
supplementary Table S1). Standard endocannabinoids

Fig. 6 Hypothetical consequences of changes in circulating lipids and endocannabinoid system tone during hibernation in brown bear. Black
arrows represent possible behavior and metabolic outcomes
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(eCBs), i.e.- PEA, PEA-d5, OEA, OEA-d4, AEA, AEA-d4,
2AG, and 2AG-d5, were purchased from Cayman (Bertin
BioReagent, Saint-Quentin en Yvelines, France). Mass spec-
trometry quality grade solvents were purchased from Fi-
scher Scientific (Illkirch, France). Tissue samples (adipose
and muscle tissues); c.a 100mg) were crushed in an Omni
Bead Ruptor 24 apparatus (Omni International, Kennesaw,
USA) with circa twenty 1.4mm OD zirconium oxide beads
(S = 6.95m/s, T = 30s, C = 3; D = 10s) and 900 μl of metha-
nol/Tris-buffer (50mM, pH = 8) 1/1 containing 20 ng of
PEA-d5, 2 ng OEA-d4, 10 ng AEA-d4, and 20 ng 2AG-d5.
Then, each homogenate was added with 2mL of CHCl3/
MeOH (1:1, v/v) and 500 μL of Tris (50mM, pH= 8), vor-
texed and centrifuged 10min at 3000 g. The organic layer
was recovered and the upper aqueous phase was extracted
twice with chloroform (1mL). Finally, organic phases were
pooled and evaporated under vacuum.
Plasma (500 μL) were mixed with 500 μL cold methanol

containing 11 ng AEA. After protein precipitation at −
20 °C for 2 h, endocannabinoids were extracted with metha-
nol/chloroform (1:1, v/v) (5ml) and saline (1.25mL). The
organic phase was recovered and the aqueous phase was
extracted twice with chloroform (3mL). Organic phases
were finally pooled and evaporated under vacuum.
Dried extracts were solubilized with methanol (200 μL)

and centrifuged for 5min at 20,000 g. Four microliters of
the supernatant were injected into a 1200 LC system
coupled to a 6460-QqQ MS/MS system equipped with an
ESI source (Agilent technologies). Separation was achieved
on Zorbax SB-C18 2.1 × 50 mm, 1.8 μm column (Agilent
technologies) at a flow rate of 0.4 mL/min, 40 °C, with a
linear gradient of (solvent A) water containing 0.1% formic
acid and (solvent B) methanol containing 0,1% formic acid
as follows: 10% of B for 1 min, up to 85% of B in 8min,
and then 100% B for 4.5 min. Acquisition was performed
in positive Selected Reaction Monitoring (SRM) mode
(source temperature: 350 °C, nebulizer gas flow rate: 10 L/
min, 40 psi, sheath gas flow 10 L/min, sheath gas
temperature 350 °C, capillary 4000 V, nozzle 1000 V).
Transitions used were: 2AG-d5 384.3→ 91.1 (frag 120

V, CE 62 V), 2AG 379.1→ 91 (frag 120 V, CE 62 V), AEA-
d4 352.2→ 66.1 (frag 115 V, CE 14 V), AEA 348.2→ 62
(frag 120 V, CE 14 V), OEA-d4 330.2→ 66.1 (frag 120 V,
CE 14 V), OEA 326.2→ 62 (frag 115 V, CE 14 V), PEA-d5
305.2→ 62 (frag 124 V, CE 14 V), and PEA 300.2→ 62
(frag 124 V, CE 14 V).
Endocannabinoids quantification in tissues was per-

formed on tissue samples collected at the two time points
(S and W) from 5 (muscle tissue) and 6 (adipose tissue)
bears (Supplementary Table S1). eCBs from tissues were
quantitated according to the isotope dilution method. Re-
sults are expressed as pg per mg of wet weight of tissue.
eCBs from plasma were quantitated using calibration
curves obtained with authentic standards extracted by the

same method used for plasma samples. Linear regression
was applied for calculations. Results are expressed as ng of
endocannabinoid per mL of plasma.

Quantification of mRNAs by real-time RT-PCR
For mRNA quantification using RT-qPCR, total RNAs were
obtained from muscle and adipose tissues collected at the
two time points (S and W). For the muscle tissue, RNAs
were extracted from 8 bears in summer and winter, while
for adipose tissue, RNAs were extracted from 5 bears in
summer and 13 bears in winter (Supplementary Table S1).
Muscle and adipose tissue total RNA was isolated using

the TRIzol reagent (Invitrogen, Courtaboeuf, France) ac-
cording to the manufacturer’s instructions. First-strand
cDNAs were synthesized from 1 μg of total RNA using
the PrimeScript RT kit (Ozyme, saint quentin en Yveline,
France) with a mixture of random hexamers and oligo(dT)
primers, and treated with 60 units of RnaseH (Ozyme).
Real-time PCR assays were performed with Rotor-Gene
6000 (Qiagen, Courtaboeuf, France). The primers and
real-time PCR assay conditions are listed in supplemen-
tary Table S4. The results were normalized by using TBP
(TATA box binding protein) mRNA concentration, mea-
sured as reference gene in each sample.

Statistical analysis
Statistical analysis was performed using the R software
environment v3.0.2 [77]. For each set of values, distribution
of the data was tested using the Shapiro-Wilk normality
test, and using the p = 0.01 threshold normal distribution
was considered in all cases. Differences between summer
and winter data were tested using paired Student t-test for
lipidomic, endocannabinoid quantification in plasma and
tissues, and mRNA level in muscle tissue. For mRNA level
in adipose tissue, differences between summer and winter
data were tested using unpaired Student t-test. For multiple
comparison (lipidomic data), the Benjamini-Hochberg cor-
rection using the p.adjust function (Package stats version
4.0.0 of R studio) was applied. Data are presented as means
± SEM and individual values are plotted as grey and black
dots for respectively summer and winter values. Means,
SEM, fold change and associated p-values are reported
in supplementary Tables S2 to S5. Statistical signifi-
cance was considered with p values or adjusted p values
lower than 0.05.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12983-020-00380-y.

Additional file 1 Table S1. Characteristics of brown bears included in
the study. Table S2. Serum fatty acid concentrations (mmol/L) in winter
hibernating (WBS) and summer active (SBS) bears. Table S3. Serum fatty
acid relative proportions (mol %) in winter hibernating (WBS) and
summer active (SBS) bears. Table S4. List of primers used for RT-qPCR.
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Table S5: Endocannabinoids (eCBs) and mRNA quantification in plasma
and tissues in winter hibernating (W) and summer active (S) bears.
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10.6 Résumé de la thèse en français  

10.6.1 Introduction bibliographique 

10.6.1.1 Le muscle squelettique 

Physiologie. Il existe 3 différents types de muscle, et dans ce projet de thèse nous nous sommes 

intéressés au muscle squelettique. Les muscles squelettiques recouvrent notre squelette et son 

essentiellement responsables des mouvements volontaires et de la posture. Il s’agit également d’un 

tissu très dynamique et plastique qui agit comme principal tissu du métabolisme énergétique avec la 

production de chaleur, l'absorption, l'utilisation et le stockage de substrats énergétiques tels que le 

glucose et les acides aminés (AA). Le muscle est essentiellement composé d'eau (75%) et de protéines 

(20%) [1]. C’est un tissu hautement organisé contenant plusieurs faisceaux de myofibres dont chaque 

couche est successivement encapsulée par la matrice extracellulaire. Les myofibres sont des cellules 

multinucléées et post-mitotiques. Chaque myofibre contient des milliers de myofibrilles qui sont 

composées de l'unité cellulaire de base du muscle, le sarcomère. Le sarcomère lui-même est composé 

de milliards de myofilaments, à la fois épais (myosine) et fins (actine) qui sont essentiels à la 

contraction musculaire nécessitant une forte consommation d'ATP. Les myofilaments représentent le 

principal contenu protéique du muscle (c'est-à-dire 70-80% du contenu protéique total d'une seule 

fibre) [1]. 

Mitochondries. Les muscles sont hautement vascularisés et innervés. Les besoins énergétiques 

pendant une contraction multiplient par 100 la consommation normale d'ATP dans le muscle. Pour 

répondre à cette demande énergétique élevée, le muscle dépend en partie de la phosphorylation 

oxydative mitochondriale (OXPHOS) pour la production d'ATP. Deux populations distinctes de 

mitochondries sont présentes dans les myofibres, subsarcolemmales et les intermyofibrillaires [10]. Le 

maintien d'un réseau mitochondrial fonctionnel dans le muscle est fondamental pour soutenir les 

demandes métaboliques imposées par la contraction. L'intégrité et la fonction mitochondriale sont 

hautement régulées par des systèmes de contrôle qualité (la biogenèse, la dynamique et la 

dégradation mitochondriales) afin de maintenir l'homéostasie. Cependant, un dysfonctionnement 

mitochondrial peut résulter en plusieurs maladies musculaires humaines appelées myopathies 

mitochondriales [19]. 

Réservoir d’acide aminés. Un des rôles majeurs du muscle squelettique est d'être le principal réservoir 

d'acides aminés (AA) du corps. Les AA musculaires peuvent être mobilisés en l'absence d'un apport 

nutritionnel adéquat pour assurer de nombreuses fonctions au niveau corps entier [30]. Par exemple, 

les AA libérés par les muscles servent de précurseurs pour le maintien du niveau de glucose sanguin 

grâce à la gluconéogenèse hépatique pendant le jeûne. Cependant, la réduction de la masse 
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musculaire compromet la capacité de l'organisme à répondre à différents stresses en raison d'une 

altération des interactions entre les muscles et les organes.  

Balance protéique musculaire. Chez les organismes adultes, la régulation de la masse musculaire 

résulte de la croissance des myofibres existantes par le biais de signalisations intracellulaires qui 

contrôlent la balance protéique [38]. L'équilibre entre les taux de synthèse des protéines musculaires 

(SPM) et de dégradation des protéines musculaires (DPM) détermine le contenu en protéines et donc 

l'homéostasie musculaire. La SPM et la DPM sont sensibles à de nombreux facteurs, notamment l'état 

nutritionnel, l'équilibre hormonal, l'activité physique ou les maladies. La diminution de la taille des 

muscles chez l’adulte, c'est-à-dire l'atrophie musculaire, résulte d'une balance protéique négative, 

tandis que l’augmentation de la taille des muscles, c'est-à-dire l'hypertrophie, résulte d'une balance 

positive. 

Les AA apportés par une alimentation adaptée agissent comme des substrats et des signaux et sont 

essentiels pour induire la SPM. L'un des acteurs les plus reconnus de la SPM est le complexe mTORC1 

qui joue un rôle central dans la régulation de la synthèse des protéines et de la biogenèse ribosomale 

[48]. Par exemple, la délétion spécifique de mTOR (la kinase du complexe) dans les muscles de souris 

induit une myopathie sévère entraînant une mort prématurée.  

Concernant la DPM, les principaux systèmes qui y contribuent sont les systèmes autophagie-lysosome 

(ALS) et ubiquitine-protéasome (UPS). L’ALS implique la formation du phagophore, qui englobe des 

composés intracellulaires environnants, tels que des protéines endommagées, et qui fusionne avec les 

lysosomes pour entraîner la dégradation du contenu protéique et le recyclage des AA [55]. Dans des 

conditions normales, l’ALS empêche principalement l'accumulation d'organites endommagés et de 

protéines mal repliées. En réponse au stress, comme le jeûne, l’ALS agit principalement comme un 

mécanisme pro-survie dans le muscle, fournissant des substrats métaboliques [55]. Alors qu’un flux 

d'autophagie trop important contribue à l'atrophie musculaire, l'inhibition de l’ALS entraîne également 

une atrophie musculaire [62]. Dans les muscles sains, les mitochondries endommagées et dépolarisées 

sont sélectivement éliminées par le processus de mitophagie, une forme spécifique d'autophagie. Des 

études ont démontré que la mitophagie est essentielle au maintien de l'homéostasie du muscle 

squelettique [10]. Il existe de nombreuses preuves que des altérations de la mitophagie sont présentes 

dans le muscle au cours de nombreuses conditions cataboliques conduisant à l’atrophie musculaire 

[10]. Le système UPS joue également un rôle fondamental dans la physiologie du muscle, notamment 

en dégradant les protéines myofibrillaires [70]. La plupart des protéines subissent une dégradation en 

étant ciblées par le protéasome 26S grâce à la fixation covalente d'une chaîne d'ubiquitine. Ces 

protéines marquées sont ensuite reconnues par le protéasome 26S, qui initie un processus de 
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dégradation dépendant de l'ATP. Grâce à ce mécanisme, l’UPS dégrade spécifiquement le substrat. 

L'inhibition de l'activité du protéasome dans le muscle est associée à un défaut de croissance 

musculaire et à une diminution de la durée de vie chez les rongeurs [70].  

10.6.1.2 L’atrophie musculaire 

Causes. La perte de masse et de force musculaire est appelée atrophie musculaire. Les causes peuvent 

être diverses, par exemple congénitales ou génétiques, ou acquises suite à certaines conditions 

physiopathologiques [75] (Figure 51). Les conditions pathologiques qui conduisent à l'atrophie 

musculaire comprennent la cachexie cancéreuse, les troubles pulmonaires obstructifs chroniques, le 

diabète et l'obésité, ou encore des conditions associées à l'anorexie ou à la malnutrition [75] (Figure 

51). L'inactivité physique entraîne également une fonte musculaire, comme dans le cas de fractures, 

d’immobilisation et d'alitement prolongé et même chez les personnes ayant un mode de vie 

sédentaire, comme observé lors du confinement de la COVID-19 [75] (Figure 51). L'atrophie musculaire 

résulte d'un déséquilibre entre la SPM et la DPM, en faveur de la DPM [75] (Figure 51). Au cours de ma 

thèse, je me suis principalement intéressée à l'atrophie musculaire induite par l’inactivité physique. 

Conséquences. Le muscle est un organe majeur du métabolisme du glucose, de fait l’atrophie 

musculaire est étroitement liée à la résistance à l'insuline et au syndrome métabolique. De plus, 

l'atrophie musculaire limite les activités quotidiennes, réduit la qualité de vie et prolonge les temps de 

convalescence après une maladie tout en augmentant la morbidité et la mortalité (Figure 51). Compte 

tenu de ses conséquences néfastes, de l'augmentation de la sédentarité et de l'allongement de 

l'espérance de vie dans le monde, la fonte musculaire touche des millions de personnes et reste un 

fardeau social et économique majeur. Actuellement, les stratégies thérapeutiques pour limiter 

l'atrophie musculaire comprennent essentiellement l'exercice physique et des stratégies 

nutritionnelles, qui ne sont cependant pas applicables à tous (par exemple aux patients immobilisés 

ou en unité de soins intensifs) [75]. A ce jour, aucun médicament n'a été approuvé pour un usage 

clinique et aucun remède efficace contre l'atrophie musculaire n'a été découvert. Il est donc nécessaire 

de mieux comprendre les mécanismes sous-jacents et de découvrir de nouvelles cibles thérapeutiques 

potentielles. Notre compréhension s'est considérablement améliorée au cours des dernières 

décennies, principalement grâce à l'utilisation de modèles de rongeurs de laboratoire.  
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Les acteurs moléculaires. La SPM et la DPM sont influencés par un large éventail d'acteurs moléculaires 

extra et intracellulaires. Les stimuli extracellulaires comprennent des facteurs inflammatoires tels que 

des cytokines ou des facteurs endocriniens tels que des facteurs de croissance, qui activent diverses 

voies intracellulaires. Ces acteurs intracellulaires interconnectés contribuent à la régulation de 

l'équilibre protéique musculaire en travaillant en synergie ou en opposition, favorisant soit 

l'anabolisme, soit le catabolisme [38]. Dans le contexte de l'atrophie musculaire, le dérèglement d'un 

ou de plusieurs de ces acteurs entraîne une atténuation de la signalisation anabolique en faveur du 

catabolisme, ce qui conduit soit à l'inhibition de la SPM, soit à la suractivation des systèmes UPS et 

ALS, soit aux deux [38]. Les atrogènes sont désignés comme un ensemble de gènes dont l'expression 

Figure 51. Déséquilibre dans la balance protéique dans des conditions physiopathologiques conduisant à 
l'atrophie musculaire. 

AA : acides aminé  



 
 

220 
 

au niveau transcriptomique est modifiée de manière quasi systématique dans de nombreuses 

situations cataboliques associées à une atrophie musculaire [99]. Les atrogènes appartiennent à 

différentes voies cellulaires, principalement aux systèmes protéolytiques UPS et ALS, et incluent 

notamment les ligases E3-ubiquitine TRIM6347/MuRF148 et FBXO3249/Atrogin-1 [99]. Par exemple, 

TRIM63/MuRF1 cible les protéines myofibrillaires et FBXO32/Atrogin-1 est impliqué dans la 

dégradation des protéines ribosomales et des facteurs d'initiation de la traduction.  

Plusieurs acteurs de ce réseau interconnecté se sont avérés efficaces lorsqu'ils ont été ciblés pour 

limiter ou contrecarrer l'atrophie des muscles dans des modèles expérimentaux. Pourtant, jusqu'à 

présent, aucun médicament efficace n'a été utilisé dans la pratique clinique.  

Dans mon projet de thèse, je me suis concentrée sur le rôle central de la superfamille du TGF-β et de 

la signalisation d’ATF4 dans l'homéostasie musculaire.  

10.6.1.3 La superfamille du TGF-β et son implication dans l’homéostasie 

musculaire 

Généralités. La superfamille du TGF-β50, est une famille ubiquitaire qui régule une multiplicité d'actions 

biologiques dont la prolifération, la différenciation et l'apoptose. Cette superfamille est divisée en deux 

signalisations, nommées TGF-β et BMP51 [105]. Plus de 30 ligands appartiennent à cette famille, par 

exemple les activines A et B et la myostatine pour la signalisation du TGF-β, et BMP7 et GDF5 pour la 

signalisation du BMP (Figure 52). Les ligands se lient à un complexe hétéromérique de récepteurs qui 

recrutent et phosphorylent les R-SMAD52s, c'est-à-dire SMAD2 et 3 pour la signalisation du TGF-β et 

SMAD1,5 et 8 pour la signalisation du BMP [105] (Figure 52). Les R-SMADs phosphorylés sont reconnus 

par le médiateur commun des signalisations TGF-β et BMP, SMAD4. SMAD4 forme un complexe 

hétéromérique avec SMAD1/5/8 ou SMAD2/3 puis transloque dans le noyau et déclenche un 

programme transcriptionnel spécifique à la cellule, à l'environnement et au ligand [105] (Figure 52). 
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La superfamille du TGF-β est un des régulateurs principaux de l’homéostasie musculaire avec (1) la 

signalisation TGF-β, étant un régulateur négatif de la masse musculaire et (2) la signalisation BMP étant 

un régulateur positif de la masse musculaire [110]. 

La signalisation pro-atrophique du TGF-β. L'intérêt initial est venu de la découverte que la 

perturbation de la myostatine, l'un de ses ligands, et l'inhibition du récepteur à la myostatine, 

produisaient une hyper-musculature chez les souris, les bovins, les moutons ou encore les chiens [110]. 

Par la suite, il a été constaté que les niveaux protéiques de la myostatine étaient élevés dans le muscle 

ou dans le sang lors de nombreuses situations cataboliques caractérisées par une atrophie musculaire, 

comme chez les sujets vieillissants, suite à un alitement prolongé ou lors d'insuffisance cardiaque. Les 

taux sériques d'autres ligands du TGF-β, comme l'activine A, augmentent également en réponse à la 

cachexie cancéreuse, à l'insuffisance rénale ou encore à l'insuffisance cardiaque associée à la fonte 

musculaire.  

Figure 52.  Organisation et transduction du signal de la superfamille du TGF-β. 
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La mécanistique de la signalisation TGF-β. La surexpression de la signalisation du TGF-β dans les 

muscles de souris induit la transcription des atrogènes Fbxo32/Atrogin-1 et Trim63/MuRF1 via un 

mécanisme SMAD2/3-dépendant et donc à la protéolyse musculaire [110] (Figure 53). Inversement, les 

muscles de souris déficients pour Smad3 sont résistants à l'atrophie musculaire induite par la 

dénervation [110]. En parallèle, l'action catabolique du TGF-β implique également l'inhibition de la 

protéosynthèse [110] (Figure 53). L'administration de myostatine ou d'activine A est suffisante pour 

inhiber la synthèse protéique dans les muscles de souris par l'inhibition de la signalisation mTORC1 et 

le même phénotype est observé en surexprimant Smad3. De plus, l'inhibition de la signalisation du 

TGF-β induit une hypertrophie musculaire chez la souris en augmentant la signalisation mTORC1, et 

l'inhibition génétique ou pharmacologique de mTORC1 réduit cet effet hypertrophique [110]. De plus, 

la signalisation du TGF-β chez la souris réprime la biogenèse mitochondriale. Enfin, la signalisation du 

TGF-β est également connue pour son rôle majeur dans la fibrose, favorisant les changements 

mécaniques et donc les lésions musculaires dans de nombreuses dystrophies musculaires chez la souris 

et l'Homme.  

Les essais pré-cliniques et cliniques anti-TGF-β. De nombreuses études pré-cliniques ont ainsi montré 

qu’inhiber la voie du TGF-β, de manière génétique ou pharmacologique, limitait ou prévenait la 

survenue de l’atrophie musculaire dans de nombreuses situations cataboliques [119]. Cependant, sur 

les nombreux agents pharmacologiques testés dans des essais cliniques chez l'humain, un très grand 

nombre n'a montré qu'un effet minime ou a démontré des effets secondaires importants. En effet, la 

plupart des inhibiteurs de la myostatine répriment également les activités d'autres membres de la 

famille du TGF-β, notamment la voie du BMP. Par conséquent, une distinction entre les cibles est 

nécessaire pour évaluer l'utilisation de ces médicaments dans la pratique clinique humaine  [119]. 

La signalisation hypertrophique du BMP. Le rôle de la voie BMP dans la régulation de la masse 

musculaire n'a été découverte qu'en 2013 et par conséquent beaucoup moins de choses sont connues 

sur sa mécanistique sous-jacente dans l'homéostasie musculaire [119]. La signalisation BMP contrôle 

la masse des muscles adultes dans des conditions physiologiques puisque (1) l'augmentation de 

l’expression de son ligand Bmp7 entraîne une hypertrophie dépendante de SMAD1/5 et (2) l’inhibition 

pharmacologique ou génétique de la voie BMP conduit à une atrophie musculaire dans les muscles 

adultes sains. De même, chez la souris adulte, l'augmentation profonde de la masse musculaire 

observée dans les souris déficientes pour la myostatine (Mstn) est médiée par l'activation de la 

signalisation BMP via SMAD1/5 [110]. De façon surprenante, (1) la phosphorylation de SMAD1/5 est 

augmentée dans les muscles de rongeurs présentant une atrophie suite à une dénervation et (2) 

l’inhibition génétique de la signalisation BMP exacerbe l'atrophie musculaire pendant la dénervation 

et le jeûne. Par ailleurs, une aggravation sévère de l'atrophie musculaire induite par la dénervation est 
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observée chez les souris déficientes pour Gdf5, un autre ligand de la signalisation BMP. Pour finir, les 

souris déficientes pour le gène Mstn, qui sont habituellement résistantes à l'atrophie musculaire 

induite par la dénervation, perdent cette capacité lorsque la signalisation BMP est inhibée. Dans 

l'ensemble, ces données suggèrent fortement que (1) l'activation de la voie BMP dans le muscle lors 

de conditions cataboliques est une réponse adaptative pour contrer l'atrophie, et (2) une déficience 

de cette signalisation joue un rôle critique dans l'aggravation de la fonte musculaire [110]. 

L'hypertrophie induite par la signalisation BMP est associée à une induction de la signalisation 

mTORC1, et cette hypertrophie est atténuée par un traitement à la rapamycine [110] (Figure 53). De 

plus, la signalisation BMP agit comme un régulateur positif de la masse musculaire en réprimant la 

transcription de l’atrogène Fbxo30/MUSA1, dont l'induction est requise pour l’induction de l'atrophie 

par la dénervation [110] (Figure 53). 

SMAD4 le facteur contrôlant la balance protéique. SMAD4 est l'acteur commun entre la signalisation 

du TGF-β et du BMP (Figure 53). Les muscles des souris déficients pour Smad4 s'atrophient fortement 

et présentent une protéolyse excessive après un mois de dénervation chez la souris. Les souris 

déficientes pour la Mstn présentent un recrutement plus important de SMAD4 sur le promoteur des 

gènes cibles de la signalisation BMP. Au contraire, les souris déficientes pour Gdf5 présentent une 

augmentation de la liaison du complexe SMAD4-SMAD2/3 sur le promoteur des gènes cibles du TGF- 

β. De ces résultats a émergé le concept d'une compétition entre SMAD2/3 et SMAD 1/5/8 pour le 

recrutement de SMAD4. L'inhibition du signal TGF-β libérerait SMAD4 de SMAD2/3 pour être plus 

disponible pour SMAD1/5/8. Ainsi, la suractivation du TGF-β lors de situations cataboliques est 

considérée comme un facteur qui réduit la disponibilité de SMAD4 pour la signalisation BMP. Il y a 

donc une vraie nécessité d'un équilibre finement régulé de la balance BMP/TGF-β afin de maintenir 

l'homéostasie musculaire [110] (Figure 53). 
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10.6.1.4 La signalisation de l’ISR et son implication dans l’homéostasis musculaire 

Généralités. L’ISR53 est une autre voie de signalisation impliquée dans l'homéostasie musculaire. L’ISR 

est une signalisation bien conservée présente dans toutes les cellules eucaryotes et qui est activée en 

réponse à une série de stress physiologiques [193]. Ces stress incluent des facteurs extracellulaires tels 

que l'hypoxie, une déplétion en AA ou glucose, ou des stress intracellulaires tels que le stress du 

réticulum endoplasmique (RE). L'événement central de l'activation de l’ISR est la phosphorylation de 

la sous-unité alpha du facteur d'initiation de la traduction eucaryote 2 (eIF2α) sur sa sérine 51 (p-eIF2α) 

[193] (Figure 54). A ce jour, quatre kinases sont connues pour phosphoryler eIF2α, à savoir PERK54, 

                                                           
53 integrated stress response  
54 PKR-like ER kinase 

 

B. A. 

Figure 53. Compétition pour le recrutement de SMAD4 en conditions physiologiques (A) ou cataboliques (B). 

DPM : dégradation protéique musculaire ; SPM : synthèse protéique musculaire. 
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PKR55, HRI56, et GCN257 [193] (Figure 54). P-eIF2α conduit à deux conséquences : (1) une inhibition 

générale de la machinerie traductionnelle et (2) la traduction d'ARNm spécifiques dont ATF458 [193] 

(Figure 54). ATF4 est un facteur de transcription qui agit principalement comme un activateur 

transcriptionnel d'une cohorte de gènes impliqués dans l'adaptation au stress cellulaire en réponse à 

l'activation de l'ISR [193] (Figure 54). ATF4 produit des réponses distinctes en fonction du stress 

cellulaire.  Par exemple, lors d'un stress nutritionnel, ATF4 stimule l'expression de gènes impliqués 

dans le transport et la biosynthèse des AA, et l'autophagie pour fournir de nouveaux AA pour la 

synthèse de novo des protéines. De plus, ATF4 induit la transcription de PPP1R15A59 (la protéine 

GADD34), la principale phosphatase d’eIF2α, agissant comme une importante boucle de rétrocontrôle 

négatif pour restaurer la synthèse protéique une fois le stress résolu [193] (Figure 54). Il a été proposé 

que la durée et l'intensité de la signalisation de l’ISR dicteraient la résultante biologique cellulaire. Par 

conséquent, ATF4 peut également faciliter l'exécution d'un programme transcriptionnel de mort 

cellulaire par apoptose lorsque l'homéostasie cellulaire ne peut être restaurée, en induisant la 

transcription de gènes apoptotiques [193] (Figure 54). 

                                                           
55 double-stranded RNA-dependent protein kinase 
56 heme-regulated inhibitor 
57 general control nonderepressible 2 
58 activating transcription factor 4  
59 protein phosphatase 1 regulatory subunit 15A 

Figure 54.  Organisation et transduction du signal de la signalisation de l’ISR. 
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La manière dont ATF4 facilite des adaptations cellulaires aussi diverses, allant de l'anabolisme à l'arrêt 

de la croissance, est une question importante et non résolue. Une des possibilités pourrait venir des 

différents hétérodimères d'ATF4 ou différentes combinaisons d'hétérodimères qui médieraient les 

différents effets de la signalisation.  

Le role de l’ISR dans l’autophagie et l’homéostasie mitochondriale. Comme indiqué plus haut, 

l'autophagie et le contrôle de la qualité mitochondriale sont des processus cellulaires essentiels à 

l'homéostasie musculaire, et une déficience de l'un ou l'autre est associée à la l’atrophie musculaire 

[13]. L’ISR est impliquée dans ces deux processus dans un large éventail de tissus et de cellules. Lors 

de divers stress, ATF4 se lie au promoteur spécifique de gènes impliqués dans l'autophagie pour 

promouvoir une réponse pro-survie ou une réponse pro-létale, de manière PERK- ou GCN2- 

dépendante (Figure 55). La signalisation de l’ISR est également essentielle au contrôle de la qualité des 

mitochondries, par le biais de UPRmt60. L'UPRmt est une réponse à divers stress mitochondriaux. Il 

active un programme transcriptionnel codé par l'ADN nucléaire pour favoriser le retour à une 

homéostasie mitochondriale [226]. Néanmoins, si l'UPRmt est incapable de réparer les dommages 

mitochondriaux, l'élimination de la mitochondrie entière par mitophagie est favorisée. Il existe trois 

protéines régulatrices clés de l'UPRmt, dont la protéine ATF4 qui est souvent surexprimée suite à des 

dommages mitochondriaux. Une analyse transcriptomique globale a validé la présence de motifs de 

liaison d’ATF4 dans de nombreux gènes UPRmt [226] (Figure 55). Dans les muscles de souris, des stress 

mitochondriaux causés par une mauvaise fusion mitochondriale ou mitophagie, augmentent p-eIF2α 

et les niveaux protéiques d’ATF4. Cependant, des preuves montrent que l'activation de l'UPRmt-ATF4 

suite à des perturbations mitochondriales dans les muscles peuvent avoir à la fois des effets 

protecteurs ou néfastes pour le muscle [226]. Ainsi, ces études mettent en évidence l'implication 

complexe de l'ISR dans l'autophagie et dans le contrôle de la qualité mitochondriale. En outre, il reste 

beaucoup à explorer pour comprendre l'implication de l’ISR-ATF4 dans l'autophagie et le contrôle de 

la qualité mitochondriale dans l'homéostasie musculaire. 
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Le role de l’ISR dans l’atrophie musculaire.  Certains membres de l’ISR ont été associés de près ou de 

loin à l'atrophie musculaire dans différentes conditions cataboliques. Pour la kinase PERK et p-eIF2α, 

certaines études les associent à l’atrophie musculaire, pendant que d’autres leurs confèrent une action 

anti-atrophique. Pour les kinases GCN2 et PKR, il semblerait que leurs activations soient associées à 

l’atrophie musculaire, bien qu’aucune connection avec ATF4 n’ait été faite. Le gène ATF4 est quant à 

lui considéré comme un atrogène car ses niveaux d’ARNm augmentent dans de nombreuses conditions 

cataboliques induisant l’atrophie musculaire [99,207]. Les souris déficientes pour Atf4 dans les fibres 

musculaires se développent normalement et présentent une masse et une fonction musculaire 

normale jusqu'à un âge avancé. Par la suite, elles commencent à présenter une protection contre 

l'atrophie musculaire liée à l'âge [207]. Une délétion d’Atf4 dans les muscles de souris limite l'atrophie 

musculaire induite par le jeûne, l'immobilisation ou encore le vieillissement [207]. Le rôle catabolique 

d’ATF4 passe par la transcription des atrogènes Gadd45a61, Cdkn1a62 and Eif4ebp163 dans les muscles 

                                                           
61 growth arrest and DNA damage inducible alpha 
62 cyclin-dependent kinase inhibitor 1 
63 eukaryotic translation initiation factor 4E binding protein 1 

Figure 55.  Le rôle double de l'ISR dans l'homéostasie musculaire. 

Les flèches vertes représentent des conséquences cellulaires anaboliques, les flèches 

rouges des effets cataboliques, et noires des conséquences encore mal comprises. 
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de souris [99,207] (Figure 55). GADD45A est une protéine myonucléaire qui réprime des gènes 

impliqués dans l’anabolisme et induit des gènes impliqués dans le catabolisme (Figure 55). ATF4 est 

nécessaire et suffisante pour induire l'expression de Gadd45a en condition d'atrophie musculaire 

induite par le jeûne et l'immobilisation [207]. L'augmentation de Cdkn1a (protéine P21) dans les 

muscles de souris, est nécessaire et suffisante pour induire une atrophie par immobilisation médiée 

par ATF4 [207]. ATF4 induit également l'expression du gène Eif4ebp1, codant pour l'inhibiteur de la 

synthèse protéique 4E-BP1 [207] (Figure 55). Enfin, un autre gène cible d'ATF4, TRIB364, a été associé à 

l'atrophie musculaire dans de nombreuses études. Par exemple, les souris déficientes pour Trib3 sont 

en partie résistante à l’induction de l’atrophie par le jeûne. 

À l'heure actuelle, les mécanismes par lesquels ATF4 est activé sur le plan transcriptionnel et 

traductionnel dans des conditions cataboliques ne sont pas clairs, mais peuvent impliquer différents 

mécanismes ou combinaisons de mécanismes.  

 

10.6.1.5 Le modèle de résistance naturelle à l’atrophie musculaire de l’ours brun 

hibernant 

Le biomimétisme est une approche qui cherche des solutions durables aux défis humains en imitant 

les modèles et les stratégies de la nature, ce qui a déjà permis des avancées et des progrès biomédicaux 

humains significatifs. L'hibernation est un parfait exemple de variabilité saisonnière pouvant receler 

des indices et solutions diverses pour les pathologies humaines. 

Généralités de l’hibernation chez les ours. L'hibernation est une adaptation utilisée par certains 

animaux pour faire face à un manque épisodique ou saisonnier d'énergie dû à des conditions 

environnementales défavorables (par exemple, faible disponibilité de nourriture/eau, forte pression 

de prédation) [273]. La torpeur est au cœur de l'hibernation, elle représente une période de 

suppression métabolique qui peut durer de quelques heures à plusieurs semaines. L'hibernation est 

un comportement plus élaboré, structuré en plusieurs longues périodes de torpeur souvent séparées 

par de brèves périodes d'éveil (IBA65). Les IBA durent environ 24 heures et sont présents chez presque 

tous les petits hibernants (c'est-à-dire <10kg) mais pas chez les ours hibernants [273].  

Les ours sont des mammifères de la famille des Ursidae. Les ours des climats chauds n'entrent pas en 

hibernation, pas plus que le panda géant ou l'ours polaire. Dans ce projet de thèse, nous nous sommes 

concentrés sur les ours hibernants, c'est-à-dire les ours bruns (Ursus arctos), les ours noirs américains 
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(Ursus americanus) et les ours noirs asiatiques (Ursus thibetanus). Les ours entrent dans leur tanière 

en octobre-novembre et y restent jusqu'à la fin avril-début mai. Les ours hibernants restent 

physiquement inactifs à l'intérieur de leur tanière, ne mangent pas, ne défèquent pas, ne boivent pas 

et n'urinent pas pendant 5 à 7 mois [279]. Les ours hibernants montrent une baisse de 75-85% de leur 

taux métabolique (MR), une réduction du rythme respiratoire et cardiaque, suivie d'une diminution 

modérée de la température corporelle (Tb), qui descend rarement en dessous des 30 °C [279]. Le 

stockage des graisses est augmenté avant l'hibernation, notamment par un comportement 

hyperphagique, où les ours font plus que doubler leur apport énergétique quotidien. Les besoins 

énergétiques en hiver reposent principalement sur la mobilisation et l'oxydation des lipides, les ours 

subissant une perte d'environ 22-25% de leur masse corporelle pendant la saison d'hibernation et 

seulement une perte modérée de protéines musculaires [301]. Malgré le stockage important de 

graisses, les ours hibernants ne montrent aucun signe de développement d'athérosclérose ou de 

dommages cardiovasculaires. De plus, malgré leur inactivité physique prolongée, ils ne subissent pas 

l’ostéoporose ni l’atrophie musculaire. En bref, les ours sortent de leur tanière au printemps et ne 

montrent aucun signe de dommages physiologiques [316] (Figure 56). Dans des conditions similaires, 

les humains développeraient des maladies cardiovasculaires, de l'obésité, de la perte musculaire, de 

l'ostéoporose et d'autres conséquences délétères sur la santé. La conservation de la masse musculaire 

pendant une longue période de jeûne et d'inactivité physique a attiré notre attention et a été centrale 

dans ce projet de thèse.  

La résistance à l’atrophie musculaire de l’ours brun hibernant. Au cours des six mois d'inactivité 

physique totale, les ours hibernants ne subissent qu'une perte modérée de la teneur en protéines 

musculaires, entre 5 à 15% en fonction des études. Il est intéressant de noter que la perte musculaire 

constatée après 1 mois d’hibernation reste la même 4 mois plus tard [301]. De plus, la teneur en azote 

du muscle reste inchangée en hiver par rapport à l'été, indiquant une perte modérée de protéines 

[301]. La perte de force musculaire est d'environ 29 % après 110 jours d’inactivité physique pendant 

l'hibernation chez l'ours. C'est environ la moitié de ce qui est observé chez les humains confinés au lit 

pendant 90 jours. En outre, les ours en hibernation ne montrent aucun changement ou des 

changements très limités dans les propriétés contractiles des muscles [301]. Bien que les ours ne 

présentent pas une thermogenèse par frissonnements, ils effectuent tout de même des ajustements 

posturaux occasionnels, se réveillent brièvement et frissonnent. Il a été suggéré que cette activité 

musculaire pourrait limiter l'atrophie. Enfin, les influx nerveux ne peuvent pas être considérés comme 

un mécanisme permettant de limiter l'atrophie musculaire. En effet, la diminution de la masse 

musculaire induite par la dénervation chez les ours actifs est comparable à celle observée chez d'autres 
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mammifères, alors que les ours hibernants résistent en partie à l'atrophie musculaire induite par la 

dénervation.  

 

Épargne des protéines musculaires. Lohuis et al. ont montré que la synthèse et la dégradation des 

protéines musculaires étaient plus faibles chez les ours pendant l'hibernation par rapport à la période 

active. De plus, ils ont observé que ces deux phénomènes restaient inchangés entre le début et la fin 

de l'hibernation, ce qui indique que l'équilibre protéique est maintenu tout au long de la période 

d'hibernation [301]. Une analyse transcriptomique a également montré que pendant l'hibernation des 

ours, il y a une induction de l'expression de gènes impliqués dans la biosynthèse des protéines et la 

biogenèse des ribosomes, et une diminution des gènes liés à la protéolyse dans les muscles 

squelettiques [307]. De plus, le recyclage de l'urée est très efficace chez l'ours hibernant, 99,7% de 

l'urée produite étant recyclée en protéines, ce qui limite probablement la dégradation des protéines 

musculaires.  

Métabolisme énergétique musculaire. La glycolyse est préservée dans les muscles des ours hibernants 

[310]. Cela pourrait aider à maintenir la fonctionnalité des muscles dans des situations inattendues, 

comme une sortie urgente de la tanière qui nécessiterait une augmentation rapide de la production 

Figure 56. Caractéristiques physiologiques fascinantes de l'ours brun hibernant. 



 
 

231 
 

d'ATP. La glycolyse pourrait être alimentée par la néoglucogenèse hépatique et la mobilisation du 

contenu en glycogène musculaire, qui est plus important dans les muscles de l'ours en hiver par 

rapport à l'été [310].   

Composés circulants anti-protéolytiques dans le sérum des ours en hibernation. Des chercheurs ont 

émis l'hypothèse que des facteurs circulants pendant l’hibernation pourrait expliquer le phénotype de 

résistance à l’atrophie musculaire de l’ours. Notre équipe a montré que la culture primaire de 

myotubes humains avec du sérum d'ours hibernant entraînait une augmentation du contenu 

protéique par rapport au sérum d'ours d’été [341]. Il s'agit de la première preuve de concept qu'un 

composé actif du sérum d'ours est transmissible à du matériel biologique humain. De plus, la régulation 

de renouvellement des protéines observé dans le muscle de l’ours en hibernation (c'est-à-dire un taux 

de synthèse et de dégradation plus faible) a été reproduite dans des myotubes humains traités par le 

sérum d’ours hibernant [341].  

Il est donc fort probable que le maintien de la masse musculaire pendant l'hibernation des ours fasse 

intervenir un ou plusieurs facteurs circulants. L'identification de ces facteurs ouvrira sans aucun doute 

un nouveau champ d'étude qui conduira à de nouvelles solutions pour prévenir et/ou inverser 

l'atrophie musculaire chez l'homme. 
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10.6.2 Objectifs et stratégies 

 

L'objectif principal de cette thèse était d'identifier de nouveaux acteurs moléculaires et leurs 

mécanismes qui pourraient devenir des cibles thérapeutiques pour combattre l'atrophie musculaire 

chez l'homme. Pour cela, nous avons adopté une approche biomimétique en utilisant l'ours brun, qui 

est naturellement résistant à l'atrophie musculaire, et nous avons comparé les adaptations 

musculaires à celles observées dans un modèle classique de sensibilité à l'atrophie. Le projet a été 

subdivisé en trois études, comme suit. 

Etude 1 Le maintien concomitant de la signalisation BMP et l'inhibition de la signalisation TGF-β est 

une caractéristique de la résistance naturelle à l'atrophie musculaire chez l'ours hibernant 

(article publié).  

 

Les objectifs étaient (1) d'identifier les mécanismes sous-jacents impliqués dans la résistance de 

l'atrophie musculaire lors d’une inactivité physique prolongée et (2) de déterminer si ces mécanismes 

étaient régulés de manière opposée dans un modèle de susceptibilité à l'atrophie. Nous avons réalisé 

une analyse transcriptomique comparative des muscles résistants à l'atrophie de l'ours brun en 

hibernation et des muscles sensibles à l'atrophie de la souris suspendue par les membres postérieurs 

(Figure 57). 

 

 

Figure 57. Schéma expérimental de l'étude 1. 
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Etude 2 L’induction d’ATF4 est découplée de l’atrophie musculaire lors de l’inactivité physique chez 

les souris traitées à l’halofuginone et chez les ours bruns hibernants (article en révision). 

 

L'objectif était d'explorer le rôle de la signalisation d’ATF4 dans le muscle squelettique dans des 

conditions basales et cataboliques. Nous avons d'abord développé un protocole expérimental pour 

induire la signalisation ATF4 avec la molécule pharmacologique halofuginone (HF) chez la souris. Nous 

avons ensuite (1) étudié l'effet de l'induction d'ATF4 sur les muscles de souris dans des conditions 

basales et d'atrophie induite par la suspension du train arrière et (2) décrypté les mécanismes 

moléculaires de l'HF dans les muscles de souris (Figure 58). Nous avons également étudié la régulation 

de cette voie dans les muscles résistants à l'atrophie de l'ours brun hibernant.  

 

 

 

 

Figure 58. Schéma expérimental de l'étude 2. 
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Etude 3 Le sérum d'ours d'hiver induit dans les cellules musculaires humaines des caractéristiques 

similaires à celles que l'on trouve naturellement dans les muscles d'ours en hibernation 

(résultats préliminaires). 

 

Notre objectif était de déterminer si les caractéristiques moléculaires des muscles résistants à 

l'atrophie des ours hibernants pouvaient être reproduites dans les cellules musculaires humaines. 

Nous avons d'abord analysé les données de microarray de cellules musculaires humaines cultivées avec 

du sérum d'ours d'hiver pour évaluer s'il existait une signature transcriptomique des signalisations TGF-

β/BMP. Nous avons ensuite mesuré l'activité transcriptionnelle de la signalisation TGF-β/BMP à l'aide 

de plasmides rapporteurs luciférase (Figure 59). 

 

 

 

 

 

 

 

Figure 59. Schéma expérimental de l’étude 3. 

Les cellules musculaires humaines sont transfectées avec un plasmide rapporteur luciférase pour le gène ID1 
avant d’être traitées par du sérum d’ours d’été (SBS) ou d’hiver (WBS), avant de lire la luminescence.  
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10.6.3 Résultats  

10.6.3.1 Étude 1 

 

Cette étude visait à identifier de nouveaux facteurs de résistance à l'atrophie musculaire. Nous avons 

choisi une approche innovante qui compare le transcriptome musculaire entre un modèle original de 

résistance naturelle à l'atrophie musculaire, l'ours brun hibernant, et un modèle classique d'atrophie 

induite, la souris suspendue par le train arrière. En utilisant le séquençage de l'ARN, nous avons 

identifié 4415 gènes différentiellement exprimés, dont 1746 gènes régulés à la hausse et 2369 gènes 

régulés à la baisse, dans les muscles de l'ours entre la période active et la période d'hibernation [351]. 

Nous nous sommes concentrés sur les signalisations du TGF-β et du BMP, respectivement impliquées 

dans la perte et le maintien de la masse musculaire. Les gènes liés à la signalisation du TGF-β et du 

BMP étaient respectivement, globalement régulés à la baisse et à la hausse dans les muscles non 

atrophiés de l'ours en hibernation, et le contraire était observable pour les muscles atrophiés de la 

souris immobilisée [351] (Figure 61). Ces résultats ont été confirmés au niveau protéique. Nos données 

suggèrent que l'équilibre TGF-β/BMP est crucial pour le maintien de la masse musculaire pendant une 

longue période d’inactivité physique. Cet équilibre pourrait venir d’un meilleur recrutement de 

SMAD4, l’acteur commun aux deux voies, du côté de la signalisation BMP, qui voit à la fois ses niveaux 

d’ARN messager et de protéine augmentés pendant la période d’hibernation par rapport à la période 

active [351]  (Figure 60). Nous avons également trouvé que la séquence protéique de SMAD4 était 

différente dans la famille des Ursidae par rapport aux autres mammifères ce qui pourrait induire une 

meilleure stabilité. De nombreuses interrogations restent en suspens quant à la mécanistique 

d’activation/inhibition de la balance TGF-β/BMP. Une première hypothèse serait qu’un des ligands de 

la signalisation BMP, GDF5, proviendrait du tissu adipeux qui subit une forte lipolyse pendant la 

période d’hibernation. En parallèle, les ligands de la signalsiation TGF-β, qui proviennent 

habituellement de la résorption osseuse avec un impact direct sur la protéolyse musculaire, ne seraient 

pas présents en hiver considérant que l’ours hibernant résiste également à l’ostéoporose. Cette étude 

suggère que l'activation simultanée de la signalisation BMP pourrait potentialiser les thérapies 

inhibant la signalisation du TGF-β qui est déjà ciblée dans certains essais cliniques pour prévenir 

l'atrophie musculaire chez l’humain.  
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Figure 61. Expression des gènes associés aux signalisations TGF-β (à gauche) et BMP (à droite) dans les muscles de l'ours 
hibernants. 

Figure simplifiée extraite de la publication Cussonneau et al., 2021 [351]. Schéma montrant les transcriptions des gènes 
impliqués dans les signalisations TGF-β et BMP du muscle vastus lateralis de l'ours brun et décrivant (1) leurs relations et (2) la 
différence de leurs niveaux d'expression entre les périodes d'hibernation et d'activité. Les cases rouges et vertes indiquent, 
respectivement, les gènes régulés à la hausse et à la baisse pendant l'hibernation par rapport à la saison d’été, et les cases 
blanches indiquent les gènes inchangés. Les gènes cibles des signalisations TGF-β et BMP sont indiqués en italique et sont en 
vert lorsqu'ils sont régulés à la baisse, en rouge lorsqu'ils sont régulés à la hausse, et en noir lorsqu'ils sont inchangés. Les 
flèches indiquent l'activation, et les barres ⊥ l'inhibition (n = 6 ours/saison, les mêmes individus ont été échantillonnés et 
analysés en été et en hiver). SBEs : SMAD Binding Element. Créé avec BioRender.com. 

 

Figure 60. Les niveaux protéiques de SMAD4 sont 
augmentés dans le muscle de l'ours brun 
hibernant. 

Les niveaux de la protéine SMAD4 ont été 
évalués par Western blots dans le muscle vastus 
latéralis des ours bruns pendant l’été (S) et 
l’hiver (W), et des Westerns blots représentatifs 
sont présentés pour trois couples d’ours. Les 
données sont représentées sous forme de 
valeurs individuelles avec des barres moyennes 
(n=11 ours/saison, les mêmes individus ont été 
échantillonnés et analysés en été et en hiver). 
Les points gris et bleus représentent les muscles 
des ours en été et en hiver respectivement.  
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10.6.3.2 Étude 2 

 

Dans cette étude, nous avons exploré les conséquences musculaires de l'activation de la signalisation 

d’ATF4 par la molécule pharmacologique halofuginone au cours de l'atrophie musculaire induite par la 

suspension du train arrière chez la souris (HS). Premièrement, nous avons rapporté que l'activation 

des atrogènes d’ATF4 (Gadd45a, Cdkn1a) par l'halofuginone n'était pas associée à l'atrophie 

musculaire chez les souris en condition basale. De plus, les souris traitées à l'halofuginone ont montré 

une atrophie réduite par rapport aux souris non traitées au cours de l'HS, bien que l'induction de la 

signalisation d’ATF4 ait été identique à celle des souris HS non traitées (Figure 62). Nous avons 

également montré que l'halofuginone inhibait la signalisation du TGF-β tout en favorisant la 

signalisation du BMP chez les souris saines et préservait légèrement la synthèse protéique pendant 

l'HS (Figure 63).  Enfin, nous avons montré que les atrogènes d’ATF4 étaient induits dans les muscles 

résistants à l'atrophie de l'ours brun hibernant, où nous avions précédemment également montré une 

inhibition de la signalisation du TGF-β simultanément à une activation de la signalisation BMP 

simultanées (étude 1). Globalement, nous avons montré dans cette étude que l'induction des 

atrogènes d’ATF4 pouvait être dissociée de l'atrophie musculaire. En outre, nos données indiquent 

également que l'halofuginone peut contrôler l'équilibre TGF-β/BMP vers le maintien de la masse 

musculaire. Une des questions qui reste en suspens est de savoir si la signalisation hypertrophique de 

BMP induite par l'halofuginone a pu contrecarrer les conséquences délétères supposées de l’induction 

des atrogènes d’ATF4. De plus, nous hypothésons que le programme transcriptionnel induit par ATF4 

est également composé de gènes bénéfiques pour le maintien de l’homéostasie musculaire. Nous 

allons réaliser un séquençage d’ARN des muscles et des foies des souris traitées afin d’analyser plus en 

profondeur la signature transcriptomique du traitement à l’halofuginone.  
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Figure 63. Le traitement à l'halofuginone 
inhibe la signalisation du TGF-β tout en 
favorisant la signalisation du BMP dans le 
muscle gastrocnémien chez les souris.  

Le même protocole expérimental qu’expliqué 
dans la légende de la figure 63 a été réalisé. 
Les niveaux protéiques relatifs du 
gastrocnémien pour les facteurs de 
transcription (B) SMAD2-3 (TGF-β), (A) 
SMAD1-5 (BMP) et (C) SMAD4 (TGF-/BMP) ont 
été évalués dans la fraction subcellulaire 
nucléaire, quantifiés et normalisés en utilisant 
le signal TGX. Des Western blots représentatifs 
pour les fractions subcellulaires nucléaires et 
cytosoliques sont présentés. Les données sont 
des moyennes ± SEM (exprimées par rapport 
aux souris H2O-Ctrl). Test statistique d’ANOVA 
à deux facteurs : ** padj <0,01 ; **** padj 
<0,0001. # padj (effet de l’HF) <0,05. 

Figure 62. Le traitement à l'halofuginone avant la suspension par le 
train arrière atténu l'atrophie du muscle gastrocnémien chez les souris. 

Les souris ont été traitées avec de l’H2O ou de l’halofuginone (HF, 
0.25µg/g) 3 fois par semaine pendant 3 semaines et ont ensuite été 
soumises à une suspension du train arrière pendant 3 (HS3, barres 
hachurées) ou 7 (HS7, barres noires pointillées) jours ou non suspendues 
(Ctrl, barres grises). Masse du muscle gastrocnémien par gramme de 
poids corporel, les données sont des moyennes ± SEM (exprimées par 
rapport aux souris H2O-Ctrl). Test statistique d’ANOVA à deux facteurs : 
** padj <0.01; **** padj <0.0001; ns= non-significatif ; # padj (effet de 

l’HF) <0.05. 



 
 

239 
 

10.6.3.3 Étude 3  

 

Cette dernière partie contient des résultats préliminaires. Nous avons cherché à reproduire les 

caractéristiques moléculaires du muscle résistant à l'atrophie des ours hibernants dans des cellules 

musculaires humaines. Notre équipe a précédemment publié des données montrant une 

augmentation de la teneur en protéines totales dans des cellules humaines musculaires cultivés avec 

du sérum d'ours hibernant (WBS), prouvant pour la première fois qu'un composé circulant était 

transmissible au matériel biologique humain et que ce composé avait un effet biologique sur les 

cellules [341]. En outre, dans l'étude 2, nous avons reproduit certaines des caractéristiques 

biomoléculaires des muscles d'ours bruns en hibernation dans des muscles de souris en utilisant la 

molécule halofuginone. Nous avons d'abord décidé d'examiner si le traitement au WBS pouvait 

reproduire, dans les cellules musculaires humaines in vitro, les modifications de l'équilibre TGF-β/BMP 

que nous avons observé dans les muscles d'ours hibernants in vivo. De 6h à 24h de traitement au WBS, 

nous avons observé une réduction de la luminescence du rapporteur ID1 dans les cellules musculaires 

humaines (Figure 64). La transcription de ce gène est également réprimée dans les muscles d’ours 

hibernants [351]. Ce résultat a été une autre preuve de concept qu’un ou plusieurs composés présents 

dans le sérum de l’ours hibernant avaient la faculté d’induire les mêmes modifications 

transcriptomiques observées in vivo en hiver.  

 

 

Figure 64. Le sérum d'ours d'hiver réprime la transcription du gène ID1 dans les cellules musculaires humaines.  

Des cellules CCL136 ont été transfectées avec le plasmide ID1-Luc et cultivées avec du sérum d'ours d'été (SBS, 
points gris) ou du sérum d'ours d'hiver (WBS, points noirs) pendant 6, 12 ou 24 heures, puis les cellules ont été 
lysées et l'activité de la luciférase a été mesurée. Les données sont présentées sous forme de valeurs 
individuelles avec des barres moyennes (n = 12 sérum d'ours/saison, les mêmes individus ont été échantillonnés 
et analysés en été et en hiver). La signification statistique est indiquée (test t apparié de ratio) * pvalue<0,05 ; 
** pvalue<0,01 ; ns : non significatif. 
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10.6.4 Conclusion générale 

 

Certaines thérapies pour combattre l’atrophie musculaire ont été développées, notamment l'exercice 

physique, les interventions nutritionnelles et certains médicaments. Cependant, aucun traitement 

efficace n'a été trouvé pour prévenir complètement et en toute sécurité la fonte musculaire. En outre, 

malgré tous ses succès précliniques, la modulation de la signalisation du TGF-β ne s'est pas traduite 

par les effets souhaités chez l'Homme. La promotion de la signalisation BMP a reçu très peu d'attention 

à ce jour, et le concept selon lequel un régulation fine et simultanée des voies BMP et TGF-β pourrait 

être intéressante pour lutter contre l'atrophie musculaire a été mentionné dans très peu d'articles. 

L'utilisation d'un modèle de résistance naturelle à l'atrophie musculaire, l'ours brun en hibernation, 

présente un grand potentiel pour la découverte de nouvelles cibles thérapeutiques pour la clinique 

humaine. De plus, notre stratégie de physiologie comparative entre un modèle d'atrophie induite et 

un modèle résistant à l'atrophie a révélé de nouvelles pistes prometteuses pour de futurs traitements. 

Dans ce projet de thèse, nous avons (1) réalisé une analyse transcriptomique comparant des muscles 

d'ours en hibernation versus actifs à des muscles de souris suspendues versus contrôles, (2) étudié 

l'impact de l'induction contrôlée d'ATF4 par l'halofuginone chez des souris soumises à une suspension 

du train arrière et (3) exploré l'effet du sérum d'ours d'hiver sur des cellules musculaires humaines. 

Ces travaux ont (1) démontré que l'équilibre BMP/TGF-β est important dans le phénotype de 

résistance à l'atrophie musculaire et (2) suggéré qu'il pourrait être reproduit dans les cellules 

musculaires humaines par la présence de composés actifs circulants dans le sérum d'ours hibernant. 

L'identification de nouvelles cibles pertinentes au sein des signalisations BMP et TGF-β qui pourraient 

être modulées par les composés du sérum d'ours hibernant et l'identification de ces composés 

permettraient donc de développer des stratégies innovantes contre l'atrophie musculaire. La poursuite 

de ce projet est donc la première étape du développement futur de nouvelles solutions thérapeutiques 

pour conférer une résistance à l'atrophie musculaire chez l'homme. 
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Résumé  

L'atrophie musculaire impacte des millions de personnes à travers le monde, inlcuant des personnes 
âgées, des personnes atteintes de maladies ou encore des personnes immobilisées pendant de longues 
périodes. La perte de masse musculaire conduit à un déclin de l'autonomie, favorise l'apparition de 
maladies, augmente la résistance aux traitements mis en place, et est associée à une augmentation de 
la mortalité. De ce fait, l'atrophie musculaire constitue un problème majeur de santé publique. 
Enormément de mécanismes biomoléculaires ont été documentés pouvant expliquer l'apparition de 
l'atrophie musculaire, principalement grâce à l'utilisation de modèle de rongeurs de laboratoire. 
Pourtant, aucun traitement n'est réellement efficace et/ou adaptable pour tous aujourd'hui.  
L'objectif principal de cette thèse était de trouver de nouveaux mécanismes sous-jacents qui 
pourraient devenir des cibles thérapeutiques pour combattre l'atrophie musculaire chez l'Homme. 
Nous avons choisi une approche basée sur le biomimétisme. Notre stratégie a été (1) de réaliser une 
étude de physiologie comparée entre le modèle de l’ours brun naturellement résistant à l'atrophie 
pendant hibernation et la souris suspendue sensible à l’atrophie musculaire, (2) d’étudier le rôle des 
voies de signalisations ATF4 et TGF-β/BMP dans ces deux modèles, et enfin (3) d’initier des études sur 
des cellules musculaires humaines pour valider les hypothèses issues des deux premières études.  
Dans notre première étude, la stratégie a été d’identifier les gènes différentiellement régulés dans les 
muscles de l'ours brun entre la période d’hibernation et la période d’activité. Ensuite, nous les avons 
comparés à ceux différentiellement régulés dans les muscles de la souris suspendue par rapport à la 

souris contrôle. Nous avons montré que la concomitance de l’inhibition de la signalisation TGF- et de 
l’induction de la signalisation BMP semblait être cruciale pour le maintien de la masse musculaire en 
condition d'inactivité physique prolongée. Dans notre deuxième étude, nous avons montré que 
l’induction de la voie de signalisation d’ATF4 dans le muscle était découplée de l’atrophie musculaire 
chez la souris saine ou soumise à une situation d’inactivité physique lorsqu’elles étaient préalablement 
traitées par la molécule d’halofuginone, et également chez l’ours hibernant. Dans ces 3 situations, le 
maintien de la masse musculaire était associé à la fois à l’induction de la signalisation d’ATF4 et de 
BMP et à l’inhibition de TGF-β. Enfin, des résultats préliminaires obtenus en cultivant des cellules 
musculaires humaines avec du sérum d'ours brun hibernant suggèrent la présence d'un composé actif 
circulant pouvant reproduire certaines caractéristiques observées dans le muscle de l'ours brun 
hibernant résistant à l'atrophie. En conclusion, ces travaux ouvrent de nombreuses perspectives dans 

la modulation de la balance des voies de signalisation TGF- et BMP dans des situations d'inactivité 
physique prolongée. De plus, ils ouvrent de nouvelles recherches sur l'identification de composés actifs 
dans le sérum de l'ours pouvant être utilisables en clinique humaine afin de limiter ou prévenir 
l'apparition d'atrophie musculaire lors de l’immobilisation ou dans d'autres conditions 
physiopathologiques. 

 

 

 

 

 



Abstract 

Muscle wasting affects millions of people around the world, including the elderly, people with illnesses, 

and people who are immobilised for long periods of time. The loss of muscle mass leads to a decline 

in independence, promotes disease, increases resistance to treatment, and is associated with 

increased mortality. As a result, muscle wasting is a major public health problem. Many biomolecular 

mechanisms have been documented to explain the occurrence of muscle wasting, mainly through the 

use of laboratory rodent models. However, no treatment is really effective and/or adaptable for all 

today. The main objective of this thesis was to find new underlying mechanisms that could become 

therapeutic targets to combat muscle atrophy in humans. We chose an approach based on biomimicry. 

Our strategy was (1) to perform a comparative physiology study between the brown bear model 

naturally resistant to atrophy during hibernation and the unloading mouse sensitive to muscle atrophy, 

(2) to study the role of the ATF4 and TGF-β/BMP signalling pathways in these two models, and finally 

(3) to initiate studies on human muscle cells to validate the hypotheses from the first two studies. In 

our first study, the strategy was to identify genes differentially regulated in brown bear muscle 

between the hibernation and active periods. Then we compared them to those differentially regulated 

in the muscles of the unloading mouse versus the control mouse. We showed that the concomitance 

of inhibition of TGF-β signalling and induction of BMP signalling appeared to be crucial for the 

maintenance of muscle mass under conditions of prolonged physical inactivity. In our second study, 

we showed that the induction of the ATF4 signalling pathway in muscle was uncoupled from muscle 

atrophy in healthy and physically inactive mice when previously treated with the halofuginone 

molecule, and also in hibernating bears. In all three situations, the maintenance of muscle mass was 

associated with both the induction of ATF4 and BMP signalling and the inhibition of TGF-β. Finally, 

preliminary results obtained by cultivating human muscle cells with hibernating brown bear serum 

suggest the presence of a circulating active compound that may mimic some of the characteristics 

observed in atrophy-resistant hibernating brown bear muscle. In conclusion, this work provides 

numerous perspectives in the modulation of the balance of TGF-β and BMP signalling pathways in 

situations of prolonged physical inactivity. In addition, it opens up new research on the identification 

of active compounds in bear serum that could be used in the human clinic to limit or prevent the onset 

of muscle atrophy during immobilisation or in other pathophysiological conditions. 
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