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ABSTRACT Fibrobacter succinogenes is a cellulolytic bacterium that plays an essen-
tial role in the degradation of plant fibers in the rumen ecosystem. It converts cellu-
lose polymers into intracellular glycogen and the fermentation metabolites succinate,
acetate, and formate. We developed dynamic models of F. succinogenes S85 metabolism
on glucose, cellobiose, and cellulose on the basis of a network reconstruction done
with the automatic reconstruction of metabolic model workspace. The reconstruction
was based on genome annotation, five template-based orthology methods, gap filling,
and manual curation. The metabolic network of F. succinogenes S85 comprises 1,565
reactions with 77% linked to 1,317 genes, 1,586 unique metabolites, and 931 pathways.
The network was reduced using the NetRed algorithm and analyzed for the computation
of elementary flux modes. A yield analysis was further performed to select a minimal set
of macroscopic reactions for each substrate. The accuracy of the models was accepta-
ble in simulating F. succinogenes carbohydrate metabolism with an average coefficient
of variation of the root mean squared error of 19%. The resulting models are useful
resources for investigating the metabolic capabilities of F. succinogenes S85, including
the dynamics of metabolite production. Such an approach is a key step toward the
integration of omics microbial information into predictive models of rumen metabolism.

IMPORTANCE F. succinogenes S85 is a cellulose-degrading and succinate-producing
bacterium. Such functions are central for the rumen ecosystem and are of special
interest for several industrial applications. This work illustrates how information of the
genome of F. succinogenes can be translated to develop predictive dynamic models of
rumen fermentation processes. We expect this approach can be applied to other rumen
microbes for producing a model of rumen microbiome that can be used for studying
microbial manipulation strategies aimed at enhancing feed utilization and mitigating
enteric emissions.

KEYWORDS dynamic model, elementary flux mode analysis, genome-scale metabolic
model, fiber degradation, network reconstruction, rumen fermentation

T he rumen microbiota plays an essential role in ruminant nutrition by breaking
down and fermenting plant-based feed, transforming it into a source of energy

and protein for the host. The rumen microbiota is composed of a very diverse commun-
ity of prokaryotes (bacteria and archaea) and eukaryotes (protozoa and fungi) which
concur to the degradation and fermentation of the feed components, and particularly
complex fibrous substrates that cannot be digested by the host. Rumen bacteria, fungi,
and protozoa participate in the degradation of the plant cell wall lignocellulose (1),
producing a large array of enzymes and various enzymatic systems to deconstruct
the intricate chemical structure of plant biomass (2). Among them, cellulose degraders
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have been particularly studied for decades, because cellulose is the most degradation-
resistant polysaccharide in plants, and it represents an abundant renewable resource
on earth (3). Within cellulolytic bacteria, Fibrobacter succinogenes has been particularly
studied (2). F. succinogenes is found in large numbers in ruminants fed high-fiber diets (4)
and is present in domestic and wild ruminant species from many geographical regions
worldwide (5). It has been quantified at higher levels in bovines compared to deer, sheep,
or camelids, suggesting that it may play an essential role in plant fiber degradation in
cattle. F. succinogenes belongs to the Fibrobacteres phylum which also comprises the
species Fibrobacter intestinalis, mainly isolated from the feces of ruminant and non-rumi-
nant animals (6).

The strain F. succinogenes S85 has been isolated from a bovine rumen a long time ago
(7, 8) and is the most studied strain of the species. For efficient plant cell wall degra-
dation, F. succinogenes adheres closely to the substrate and produces specific cellulose-
binding proteins and possibly also pili to mediate its adhesion (9–11). F. succinogenes
is considered as particularly efficient in the hydrolysis of crystalline cellulose, and it
degrades at the same rate amorphous and crystalline regions of wheat straw cellulose
(12). Cellulose is degraded into cellodextrins, cellobiose, and glucose, and F. succino-
genes was shown to be a very effective competitor for cellodextrin utilization (13). The
bacterium is also able to synthesize and efflux oligosaccharides that may be used by
other rumen bacteria through cross-feeding (12, 14). Given all these properties, it may be
interesting to promote F. succinogenes populations in the rumen of cattle to improve the
degradation of recalcitrant substrates and their utilization by the rumen microbiota.

The analysis of the F. succinogenes S85 genome showed that it consists of approxi-
mately 3.84 Mbp with a GC content of 48% and that it contains a high number of genes
(134) encoding carbohydrate-active enzymes (CAZymes) (10). The genome analysis
also confirmed that despite its ability to degrade xylans (15), F. succinogenes cannot
use xylose because it lacks the sugar transporter and phosphorylation system (16).
This species is thus a cellulose specialist using cellulose and its degradation products
as its sole energy source. Glucose and cellobiose are fermented mainly through the
Embden-Meyerhof-Parnas (EMP) pathway into succinate as major final product, followed
by acetate, formate and CO2. F. succinogenes is able to store intracellular glycogen
which can represent up to 70% of the dry weight of the bacterium (17). This storage
could allow bacteria to remain in the rumen in the absence of metabolizable substrates
(18), but the intracellular glycogen is simultaneously stored and degraded, suggesting
a futile cycling (19). F. succinogenes uses ammonia as the sole source of nitrogen,
and several steps in the ammonia assimilation pathway have been identified (20). In
addition to its interest for ruminant nutrition, F. succinogenes has also received much
attention from the biotechnology sector (21). Firstly, because this species produces an
original cellulolytic system, whose organization is still not well understood, and includes
membrane vesicles as vehicles of CAZymes (22). Deciphering this system could help in
the design of novel Consolidated Bioprocessing (CBP) for the production of cost-effective
and sustainable lignocellulosic biofuels (9). Secondly, the capacity of F. succinogenes to
transform lignocellulosic material into succinate may also be of interest because succinic
acid could be used as a platform molecule (23, ,24). However, increasing bacterial
product yield or maximizing the production of powerful lignocellulose degradation
enzymes is dependent on detailed knowledge of metabolic pathways for microbial
engineering processes (25). An efficient way of deciphering a bacterium metabolic
network and identifying possible bottlenecks in the production of metabolites is via
genome-scale metabolic models (GEM). A GEM is a mathematical representation of
a metabolic network that allows the study of genotype-phenotype relationships (26)
and facilitates the prediction of multiscale phenotypes (27). For a genome-sequenced
microorganism, a GEM is defined by a stoichiometry matrix that links metabolites to
the collection of reactions that occur in the organisms according to evidences about
genes catalyzing the reactions. The resulting metabolic network can be further analyzed
using methods such as flux balance analysis (FBA) (28–30). However, the FBA approach
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does not allow to predict the dynamics of metabolites concentrations. In parallel, kinetic
modeling approaches allow to represent the dynamics of metabolites of interest by
deriving mass balance equations (31). Kinetic models are built following a macroscopic
representation of the metabolism with a reduced set of macroscopic reactions which
are often selected from documented literature. These models are called unstructured
models where the cell biomass is described by a single state variable in addition to
the concentration of extracellular metabolites [see reference (32) for a review on kinetic
models]. Kinetic unstructured models rarely integrated microbial genomic information,
with the exception of certain approaches that exploit the information of the stoichiome-
try matrix to derive macroscopic reactions (33). The objective of this work was to develop
dynamic metabolic models (DMM) to represent the metabolism of glucose, cellobiose
and cellulose by of F. succinogenes. These DMM integrate microbial genomic knowledge
from the reconstruction of a GEM of F. succinogenes.

MATERIALS AND METHODS

Culture conditions and sample preparation

F. succinogenes strain S85 (ATCC 19169) was grown in triplicates in a chemically defined
medium (19) with 3 g/L glucose, cellobiose, or filter paper cellulose. The culture medium
used the mineral medium of Bryant and Burkey (34) as a base, with the following
additions: volatile fatty acids (mM): acetic acid 28.8, propionic acid 7.93, n-butyric acid
4.27, isovaleric acid 1.27, DL- α-methyl butyric acid 0.9, isobutyric acid 1.02, n-valeric acid
1.3, resazurin 1 mg/L, p-aminobenzoic acid 0.1 mg/L, biotin 0.05 mg/L, hemin 1 mg/L,
and cysteine/HCl 0.5 g/L.

The cultures were grown at 39°C using Hungate tubes and the Hungate anaerobic
cultivation technique, under a 100% CO2 atmosphere (35). The bacterial growth on
cellobiose or glucose was monitored by measuring the absorbance at 600 nm. The
quantification of succinate was used to monitor growth on cellulose cultures (12, 36).
During growth, supernatants were collected by centrifugation (10,000 rpm for 5 min at
4°C), at six time points of the bacterial growth (0, 5, 9, 13, 17, 20, and 24 hours), and then
stored at −20°C for further analysis.

Quantification of substrate consumption and metabolite production

The triplicate culture supernatants at each time point were used for substrate and
end-product assays. Concentrations of succinate, acetate, formate, ammonia, and
glucose were measured in culture supernatants by enzymatic methods, using Megazyme
kits (K-SUCC 06/18, K-ACET 04/18, K-FORM 10/17, K-AMIAR 04/18, and K-GLUHK-220A,
respectively) according to the manufacturer’s recommendations. Cellobiose consump-
tion was estimated by quantification of the remaining reducing sugars in the culture
medium using Miller’s method (37).

Metabolic network reconstruction

The metabolic reconstruction of F. succinogenes S85 was performed using the freely
available workspace AuReMe (automatic reconstruction of metabolic models) (38).
AuReMe embeds existing tools as well as ad hoc packages to reconstruct and handle
GEMs. It uses (i) the outputs of the Pathway Tools software (39, 40) to perform anno-
tation-based reconstruction, (ii) the OrthoFinder method (41, 42) to perform orthology-
based reconstructions, and (iii) the Meneco tool (43) to perform a gap-filling procedure.
AuReMe relies on the PADMet library (Python library for handling metadata of metabo-
lism [38]) to ensure the reproducibility of the workflow used to create a GEM, to guaranty
the interoperability between the different methods used, to curate GEMs, and to export
the GEM under several formats (SBML, matrix, wiki, RDF-like format). AuReMe also
uses CobraPy (44), a Python package to analyze FBA, and flux variability analysis (FVA)
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(analysis of essential and blocked reactions). In Fig. 1, we summarize the steps of the
reconstruction of F. succinogenes S85 metabolic network.

Step 1 (collecting genomes and reference reaction data set)

The two complete annotated genomes of F. succinogenes S85 were downloaded,
respectively, from https://www.ncbi.nlm.nih.gov/nuccore/CP001792.1 and https://
www.ncbi.nlm.nih.gov/nuccore/CP002158.1. Each F. succinogenes S85 genome contains
3.84 Mbp with, respectively, 3,160 and 3,174 genes identified.

The biomass reaction of Escherichia coli K-12 MG1655 (45) was adapted to F. succino-
genes and used to build the metabolic network (Table S1 in supplementary material A;
the supplemental material is available at https://doi.org/10.5281/zenodo.7228115).

The list of seeds (essential constituents of the culture medium to guarantee growth)
was prepared based on the minimal medium composition needed for F. succinogenes
growth (Table S2). The final products’ (targets’) list was prepared according to our
knowledge on the metabolism of this bacterium metabolism and network reconstruc-
tion needs (Table S2).

Step 2 (generating draft models)

A first GEM was reconstructed according to the genome annotations via Pathway Tools
using both complete genomes: NC_013410.1 and NC_017448. In parallel, orthology-
based reconstruction GEMs were obtained using the GEMs of the following gut microbes:
Bacteroides thetaiotaomicron iAH991 (46), E. coli K-12 MG1655 (45), Faecalibacterium
prausnitzii A165 (29), Bifidobacterium adolescentis L2-32 (28), and Lactobacillus plantarum
WCFS1 (47), and mapped to MetaCyc (48), thanks to the MetaNetX database (49). Finally,
all GEMs obtained from the annotation and the orthology reconstruction steps were
combined into a draft GEM with the PADMet library.

Step 3 (gap filling)

To analyze and curate the GEM of F. succinogenes S85, we applied a gap-filling procedure.
Here, a GEM is considered as a graph in which metabolites are nodes and reactions are
the links between the nodes. In these analyses, stoichiometry is not considered. This
procedure allows adding reactions to guarantee the production of specific metabolites
according to a graph-expansion criterion. We used Meneco (metabolic network
completion [43]) and the MeneTools package (metabolic network topological tools [38,
50]) for this gap-filling step.

Step 4 (manual curation and gene-reaction association)

The draft network was manually curated to find  potential errors and filling  gaps
based on the phenotype and experimental data reported in the literature. FBA was
used to reconstruct and validate models for maximizing the biomass reaction flux.

Some manually and gap-filled added reactions had no gene associated. All the gene
sequences from other bacteria associated with these reactions were identified in the
National Center for Biotechnology Information (NCBI) using the reaction Enzyme
Commission (EC) number. The corresponding protein sequences were aligned using
BLAST (basic local alignment search tool [51]) to the F. succinogenes S85 translated
genomes. The identified proteins with identity >76% with coverage throughout the
sequence were associated with their corresponding reactions in the GEM. We set a high
identity percentage to avoid biological inconsistencies by linking a gene to a reaction
without experimental validation. Reactions with no gene associated or with gene coding
protein of lower similarity were retained in the model only when present in the E. coli
K-12 MG1655 model (45).
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Construction of a dynamic metabolic model

Exploiting EFMs to derive a macroscopic dynamic metabolic model

The dynamics of metabolism can be described by the following generic differential
equation resulting from applying a mass balance (equation 1)

(1)dxdt = S r( ⋅ )
where x is the vector containing the concentrations of metabolites, which can be either
intracellular (xi) or extracellular (xe). The vector r( ⋅ ) represents the reaction rates, which
are the function of the concentrations x and a parameter vector. The stoichiometric
matrix S contains the stoichiometric matrices for intracellular (Si) and extracellular (Se)
metabolites. Under the assumption that intracellular metabolism operates at a steady
state, it follows that

(2)dxidt = Si r( ⋅ ) = 0
The vectors of reaction rates that fulfill (equation 2) are non-negative vectors

contained in the null space of the stoichiometric matrix Si. The space of admissible fluxes
is a convex polyhedral cone. The generating vectors of the cone are called elementary
flux modes (EFMs). Any steady-state flux distribution can be expressed as a non-negative
linear combination of the EFMs. Biochemically, EFMs are independent minimal pathways
of the metabolic network that can operate at a steady state. Each EFM can be converted
into a macroscopic reaction that connects extracellular substrates and products (33, 52).
The identification of macroscopic reactions is the core of kinetic modeling. Once we find
a set of macroscopic reactions to represent the metabolism of our microorganism of
interest, we can derive the structure of a DMM.

FIG 1 Fibrobacter succinogenes S85 GEM reconstruction pipeline (created with BioRender).
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For the jth EFM ej, the macroscopic reaction j is obtained by the product Se ej. To
calculate the EFMs of the network of F. succinogenes, we used the efmtool algorithm
(53) of the MATLAB package CellNetAnalyzer (54), which is freely available at http://
www2.mpi-magdeburg.mpg.de/projects/cna/cna.html. Then, we proceeded to select
a reduced number of EFMs using the yield analysis method proposed by Song and
Ramkrishna (55). The selected EFMs were expressed as macroscopic reactions to define
further the kinetics in the dynamic metabolic modeling.

Reduction of the GEM

The calculation of EFMs is restricted to medium-scale GEM (less than 350 reactions) (56).
Hence, a complete EFM analysis of the network of F. succinogenes S85 is intractable.
A reduction of the network is thus here proposed. Several methods for the reduction
of GEM have been reported in the literature (57), which are mainly based on a fully
functional core metabolic network that preserves a set of important moieties and
capabilities from the full network. However, the selection of a subset of reactions might
produce loss of information regarding parallel pathways that can be used to attain the
same metabolic goal. In this work, we have selected another method called NetRed (58),
which analyses flux vectors generated from the complete network (FBA) and computes a
reduced network that holds the same flux distribution.

Differently from other methods, NetRed performs the reduction of the stoichiometric
matrix of the full network through matrix algebra based on given flux vectors and a list of
protected metabolites (57). This method provides a reduced network and its correspond-
ent flux vector, which is consistent with the flux vector of the full stoichiometric matrix.
NetRed is implemented in the MATLAB COBRA toolbox (59). This is advantageous since
the results from FBA, also implemented in the COBRA toolbox, can be directly used for
the reduction. As NetRed can manage several flux vectors, the reduced network can
represent various flux distributions and provide a unique biomass reaction that respects
the given flux vectors. Additionally, the use of the matrix approach allows mapping the
reactions in the reduced network into their corresponding ones in the full network.

The reduction of the GEM followed several steps: (i) calculation of fluxes by FBA, (ii)
carbon balancing, (iii) compacted lumped biomass reaction, (iv) re-calculation of fluxes
by FBA, and (v) network reduction.

To keep the flexibility of the full network, the flux distribution of the GEM was
calculated by FBA considering different objective functions that maximize the produc-
tion of specific metabolites (i.e., biomass, succinate, and acetate). Furthermore, several
input fluxes were considered for the three substrates: glucose, cellobiose, and cellulose.
Details about the values are described in the section Network reduction.

The results were analyzed in terms of yields for which all the obtained fluxes were
divided by the uptake flux of glucose, cellobiose, or cellulose. Yield analysis allowed to
verify the carbon balance of the network as well.

Further reduction of the network was achieved by computing a compact lumped
biomass reaction, which was based on the pathways identified as essential for biomass
production. This approach is like the construction of a core metabolism. In our case,
however, we have only used this core for biomass allowing for other pathways to
contribute as well to the production of metabolites needed for biomass. Finally, the
obtained fluxes from the network with compacted biomass formulation and correct
carbon balance have been introduced to NetRed to compute the final reduced network
which was used to compute EFMs.

Parameter identification

The model parameters were estimated from the in vitro experimental data detailed in
the sections Culture conditions and sample preparation and Quantification of sub-
strate consumption and metabolite production, where F. succinogenes was grown on
three different substrates (glucose, cellobiose, and cellulose). During culture on these
substrates, growth (optical density [OD] 600 nm), production of metabolites (succinate,
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acetate, and formate), ammonia and carbohydrate consumption were monitored at six
time points. The dynamic concentration of the metabolites were used in the model
calibration routine using the maximum likelihood approach implemented in the MATLAB
toolbox IDEAS (60), which is freely available at http://genome.jouy.inra.fr/logiciels/IDEAS.
The optimization uses the quasi-newton algorithm implemented in the MATLAB function
fminunc. The dynamic model representing the fermentation of each substrate is defined
by the kinetic rate function of substrate utilization through the macroscopic reactions
given by the EFMs. For glucose and cellobiose, we modeled the macroscopic reactions as
Monod functions (equation 3):

(3)μi = μmax, i ⋅ siK + si ⋅ B
where si and B are the molar concentrations of the substrate and biomass, respectively,μi is the microbial growth rate for the reaction i, μmax, i is the maximal growth rate
constant (per hour), and K is the substrate affinity Monod constant (moles per liter). The
estimation of the parameters of Monod kinetics is known to be hampered by practical
identifiability problems. That is, the parameters cannot be estimated uniquely from noisy
and limited data (61). This situation is reflected by a high correlation between the model
parameters. When practical identifiability problems occur, we should be cautious in
providing interpretations from the numerical values of the parameter estimates (62). The
interested reader in parameter identifiability aspects is referred to Muñoz-Tamayo et al.
(63). To avoid the practical identifiability problems mentioned above in our case study,
we set K to 9 × 10−3 M as in the rumen model developed by Muñoz-Tamayo et al. (64).
Since cellulose is a particulate substrate, we modeled the macroscopic reactions using
the Contois function (equation 4) as proposed by Vavilin et al. (65).

(4)μi = μmax, i ⋅ siKc ⋅ B + si ⋅ B
where Kc is the half-saturation Contois constant. For each substrate, we selected initially
the EFMs that correspond to the vertices of the polygon enclosing the yield spaces.
A further reduction was implemented within the calibration procedure by adding a
penalization coefficient in the cost function of the optimization to penalize a large
number of EFMs. To account for the death of microbial cells, we included a first-order
kinetic rate with a death rate constant kd set to 8.33 × 10−4 as in Muñoz-Tamayo et al. (64).
We also included a conversion factor α (M/OD) to transform the biomass concentration
(moles per liter) into OD. This conversion is needed to compare the model output of
biomass against the measured OD. It should be noted that for cellulose, OD was not
measured. For this case, the initial condition of biomass was included as a parameter to
be estimated. We evaluated the model accuracy using the coefficient of variation of the
root mean squared error (CVRMSE).

RESULTS

Following Open Science practices to promote accessibility and reproducibility (66), the
metabolic network and mathematical models developed in this work are freely available
at https://doi.org/10.5281/zenodo.7228115.

Description of the network

Large-scale genome reconstruction process

The two published genomes of the F. succinogenes S85 strain were used to identify
potential reactions that could be present in the GEM of the bacterium. Genome
annotation performed by Pathway Tools detected 827 reactions (Fig. 2A) and 1,112
metabolites. Eight hundred seventeen reactions are common between the two available

Research Article mSystems

Month XXXX  Volume 0  Issue 0 10.1128/msystems.01027-22 7

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 1

6 
Ju

ne
 2

02
3 

by
 1

47
.1

00
.1

79
.2

33
.

http://genome.jouy.inra.fr/logiciels/IDEAS
https://doi.org/10.5281/zenodo.7228115
https://doi.org/10.1128/msystems.01027-22


F. succinogenes S85 annotated genomes. Four and six reactions were specific to
NC_013410 and NC_017448 genomes, respectively (Table S3 in supplementary material
A), illustrating that the two genome sequences are not complete.

Orthology and gap filling

First, we downloaded the annotated genome sequences of the five external models from
NCBI and their GEM SBML format with the reference file of ID reactions present in KEGG,
BiGG, or MetaCyc. Reconstruction by orthology provided 174 reactions for the F.
succinogenes S85 first model obtained from Pathway Tools (Fig. 2A). In addition, 203
reactions were brought by the combination of reconstructions by annotation and
orthology. Finally, 61% of orthology-based reactions were added to the network
according to cross-sources (Fig. 2B).

The definition of seeds and targets is an essential step in the reconstruction protocol.
We have determined a list of 51 sources (constituents of the culture medium) and 85
targets (molecules known to be produced by the bacterium) for F. succinogenes S85
(Table S2 in supplementary material A). The gaps in the model were first filled automati-
cally by mapping and transforming KEGG/BiGG identifiers to MetaCyc IDs using the
MetaNetX package. Ninety-nine reactions were added by Meneco (43), and all of them
came from the MetaCyc database (48). Twenty-four reactions were removed according to
expert validation (see below), and finally 75 reactions were added by gap filling.

FBA for unblocking biomass and manual curation

In our reconstruction process, the aim was to obtain a functional high-quality network,
which produces biomass yield. For this purpose, we first focused on reaching topologi-
cally all the targets according to the qualitative network-expansion criteria. Forty-one
reactions were expertly added to the gap-filled model network. These reactions belong
to four distinct databases: MetaCyc (48), KEGG (67), BiGG (68), and RHEA (69).

Afterward, we manually unblocked all the pathways referring to FBA analysis, which
were in direct and indirect relationships with each component of the biomass reaction.
We therefore focused on curating the network and the pathways involved in carbon and
nitrogen metabolism as well as some essential cofactor biosynthesis. In particular, we
checked the different pathways of glycolysis, the glycogen cycle (see below), and the
short-chain fatty acids biosynthesis. This required adding 490 manually curated reactions
in the pathways of the biomass compounds.

Manual completion

F. succinogenes S85 model reactions are linked to 1,317 genes, leading to 77% of
reactions associated with a gene (Fig. 3). Four hundred thirty reactions were not linked to
any gene before validation. Of them, 133 are exchange, transport or spontaneous
reactions. For all the other reactions, we search for the presence of a gene possibly
associated using BLAST (Data set S1 in supplementary material B). Finally, 68 unlinked
gene reactions were added by gap filling, 54 reactions that seemed inappropriate to the
metabolism of the bacterium were suppressed, and 22 reactions were linked manually to
their corresponding gene.

Qualitative analysis of the Fibrobacter succinogenes S85 metabolic network

FBA and essential reactions

The obtained network has 1,317 genes, has 931 pathways, and is composed of 1,565
reactions, from which 1,211 are associated with genes (Table 1). The final network
contains 1,586 unique metabolites and is available online as a wiki page at: https://gem-
aureme.genouest.org/fsucgem/index.php/Fsucgem.

We investigate our final metabolic network using FVA. All 85 target components are
reached topologically, 38.5% of the reactions are active, of which 137 are essential

Research Article mSystems

Month XXXX  Volume 0  Issue 0 10.1128/msystems.01027-22 8

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 1

6 
Ju

ne
 2

02
3 

by
 1

47
.1

00
.1

79
.2

33
.

https://gem-aureme.genouest.org/fsucgem/index.php/Fsucgem
https://gem-aureme.genouest.org/fsucgem/index.php/Fsucgem
https://doi.org/10.1128/msystems.01027-22


reactions for biomass production. The simulated growth rate from F. succinogenes S85
metabolic model is 0.137/hour.

Three hundred eighteen out of 931 (34%) metabolic pathways are complete at more
than 75% of the reactions present in the KEGG and MetaCyc databases. 76% of those
active pathways have at least one reaction with flux according to the FBA analysis, and
150 pathways are 100% active in flow (Data set S2 in supplementary material B). All the
essential reactions are present in the active pathways.

Glycogen biosynthesis and degradation pathways

As an example to illustrate the use of the reconstructed network, we analyzed the
glycogen biosynthesis and degradation pathways, because glycogen has been shown
to be simultaneously synthesized and degraded in F. succinogenes during all growth
phases (19). Intracellular glycogen accumulation is carried out by the consecutive
action of ADP-glucose pyrophosphorylase (glgC, FISUC_RS14455 FSU_RS00645) (EC
2.7.7.27), glycogen synthase (glgA FSU_RS16140 FISUC_RS15965) (EC 2.4.1.21), and
glycogen-branching enzyme (glgB FISUC_RS15575 FSU_RS01770) (EC 2.4.1.18) (Fig. 4).
All these anabolism reactions and genes were identified by annotation, except the

FIG 2 Venn diagram representing (A) distribution of reactions across different steps of final model reconstruction and (B) distribution of reactions across various

external metabolic models used for orthology-based model reconstruction.

FIG 3 Gene-reaction association.
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phosphoglucomutase (pgm FSU_0773) that was linked to the reaction EC 5.4.2.2 by
manual curation (Data set S1 in supplementary material B).

The known glycogen degradation pathway on MetaCyc 23.0 was detected with the
presence of the reactions EC 2.4.1.1 (Maltotetraose glucosidase malP FSU_RS06195) and
EC 2.4.1.25 (4-alpha-glucanotransferase malQ FISUC_RS04305; FSU_RS06200) identified
by annotation (Fig. 4). Then, we completed this pathway by adding manually the two
reactions EC 3.2.1.196 (limit dextrin α-1,6-glucohydrolase glgX) and EC 3.2.1.20 alpha-glu-
cosidase (malZ FSU_RS06195). The maltotetraose formation reaction present in E. coli
model was added to our model, and no gene was linked because of no significant BLAST
similarity with the F. succinogenes genome (Data set S1 in supplementary material B).

Network reduction

Reduced-scale genome reconstruction model process

Network reduction was achieved by NetRed method, which is based on flux vectors
computed by FBA from the full network. The reactions in the full network were defined
as irreversible reactions by decoupling the reversible reaction into their forward and
backward directions. The full network was then composed by 1,780 irreversible reactions.
The measured metabolites obtained from batch cultures growing on glucose, cellobiose,
and cellulose corresponded to extracellular acetate, formate, and succinate. From those
results, it was observed that formate is produced in small amounts while succinate
and acetate were the main products. Accordingly, two objective functions were defined
to maximize concomitantly: (i) biomass and succinate and (ii) biomass and acetate. To
enlarge the possible flux distribution, different input fluxes of glucose, cellobiose, and
cellulose ranging between 0 and 1,000 mmol/gbiomass/hour with a step of 50 mmol/
gbiomass/hour were considered. To facilitate the computation ease, we defined that
cellobiose was composed of two molecules of glucose while cellulose was considered
as four molecules of glucose, so the upper ranges were modified to 250 and 500 mmol/
gbiomass/hour, respectively. The resultant fluxes were analyzed in terms of yields for
which all fluxes were divided by the flux of the carbon uptake reactions.

Carbon balance was verified through yield analysis, where we have noticed that the
glycogen synthesis and degradation pathways generated unbalanced carbon produc-
tion. For the sake of carbon quantification, we assumed that glycogen and (1,4-α-D-glu-
can)n were composed of six and five molecules of glucose, respectively. Additionally,
a new hypothetical reaction (equation 5) was added to consider the production of
(1,4-α-D-glucan)n as

(5)5 glc‐1‐P[c] = 5 Pi[c] + 11‐4‐alpha‐D‐glucan_n0[c]

TABLE 1 Fibrobacter succinogenes S85 metabolic model information

F. succinogenes S85 model

Reactions 1,565
Unique metabolites 1,586
Genes 1,317
Activea/total pathways 233/931

No. of reactionsb

Annotation
Total: 827

Orthology
Total: 377

Gap filling
Total: 75

Manual curation
Total: 490

Exchange/transported 1 15 0 133
Spontaneous 1 2 1 45
Protein/amino acid biosynthesis 101 74 16 25
Glycolysis/fatty acid biosynthesis 51 17 2 12
aRatio (reaction found/total) >0.75 and ratio reaction with flux/reaction based on FBA analysis >0.5.
bTwo hundred four reactions are identified from cross method sources.
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This new reaction allowed to balance carbon and produce biomass with a mass of
25.394 g/molC. FBA was performed again to compute the flux vector and the reduction
was done with NetRed. The protected metabolites corresponded to biomass, acetate,
succinate, formate, glycogen, glucose, cellulose, cellobiose, protons, ammonium, and
fructose-6P. The reduced network contained 146 reactions and 78 metabolites whose
size was still large for the computation of EFM.

A further reduction of the network was achieved by constructing a lumped biomass
reaction, which was based on the precursors of several metabolites such as amino
acids. The precursors were identified by tracking back the pathways that produce the
metabolite to be deleted from the 137 essential reactions identified for the full network.
All the reactions involved in the pathways were added up to obtain a reaction to
replace the metabolite to be deleted by its precursors (e.g., pyruvate, fructose-6P). This
approach is similar to the computing of lumped biomass employed by Lugar et al.
(58). Details about the construction of the lumped biomass could be found in Data
set S3 in supplementary material B. Once the lumped biomass reaction was obtained,
the coefficients were corrected to obtain a biomass of 26.401 g/molC following the
formula C3.69H6.76O2.66N0.25S0.010 previously reported for the biomass composition of F.
succinogenes S85 (70).

The new network comprising the lumped biomass reaction and the carbon balance
was used to calculate flux vectors subject to several constraints. All the reactions used
for the construction of the lumped biomass reaction that did not correspond to essential
reaction were blocked to zero flux. Furthermore, we verified that cofactors such as FAD
(Flavin adenine dinucleotide), Pi, PPi, and ADP were not needed as sources, so their
fluxes were also assumed to be zero. A reduction of the extracellular cofactors was made
accepting small changes in yield analysis from FBA. Cofactors such as NADPH, NADP,
NAD, and NADH were not needed as sources, whereas ADP and NADH were not needed
as sinks.

Flux vectors for the three substrates and the protected metabolites mentioned
before were used in NetRed to obtain a reduced network of 63 reactions with 36
intracellular metabolites and 16 extracellular metabolites. The biomass reaction of

FIG 4 Glycogen synthesis and degradation pathways identified and completed in Fibrobacter succinogenes S85 metabolic network.
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the reduced network accounts for a term called “salts” gathering all the metabolites
that do not participate in any other reactions, but that are, nevertheless, necessary
to produce biomass. The extracellular metabolites were biomass; acetate; succinate;
formate; ammonium; coenzyme A (Co-A; CO2; proton (cytosolic and extracellular); ATP;
salts; glycogen; PPi; and the three carbon sources glucose, cellobiose, and cellulose.
The reduced network (Data set S4 in supplementary material B) is appropriate for the
computation of EFM.

From EFMs to macroscopic reactions

EFMs were computed for each carbon source obtaining 9,861,037; 11,863,589; and
11,540,721 EFMs for glucose, cellobiose, and cellulose, respectively. The calculation did
not consider that the network could use the three carbon sources at the same time.
For the sake of analysis, only the EFMs that consumed the carbon source, produced
biomass, and did not consume glycogen were considered for the analysis leading to a
total of 798,872; 1,198,271; and 2,131,696 EFMs for glucose, cellobiose, and cellulose,
respectively.

The computed EFMs were multiplied by the stoichiometric matrix of the extracel-
lular metabolites to derive macroscopic reactions that can efficiently bring together
metabolism and dynamics through the development of DMMs (71, 72). However, the
consideration of many EFMs adds considerably to the kinetic parameters associated
with substrate uptake rates leading to an overparameterization. Yield analysis (71) was
presented as an alternative to perform a substantial reduction of the number of EFM
from an inspection of the convex hull in a two-dimensional (2-D) representation on the
yield vector space for extracellular products.

Yield analysis for the EFMs is reported for the four principal products: biomass,
acetate, formate, and succinate. Yields of the computed EFMs were obtained by dividing
their fluxes by the flux of the carbon source. The minima and maxima yield values
obtained from EFM for the main products are reported in Table 2.

Fig. 5 displays in the diagonal the distribution of 798,872 EFMs obtained for glucose
where it is observed that biomass is mainly produced at values around 0.01 g per mmol
of glucose. On the other hand, most of the EFMs producing acetate, succinate, and
formate report small extracellular production. The plots in the non-diagonal show the
yields of the products with respect to all the products, where each blue point is an EFM.
It is worth noting that the surfaces in yields mainly correspond to triangles except for
the yields for formate. Similar results were obtained when the only carbon source was
cellobiose (Fig. 6) and cellulose (Fig. 7).

We performed a yield analysis with a 2-D representation of the convex hull—
surrounding total EFMs—to reduce the number of EFM used for macroscopic reactions of
DMM. In this case, triangles were used to find a minimum number of EFM to be used in
DMM. Those EFMs are denoted as red points in Fig. 8A through C which display the EFM
and their reduction by yield analysis for glucose, cellobiose, and cellulose, respectively.
The nine selected EFMs obtained for each substrate were compared to avoid repeated
EFMs. For glucose, nine EFMs remained, while only seven and eight remained for
cellobiose and cellulose, respectively (Table 3). From Table 3, macroscopic reactions for
each substrate can be derived as:

TABLE 2 Yield boundaries of the reduced network

Yield Biomass Acetate Succinate Formate

Glucose
Minimum 0.0002 0.0000 0.0000 0.0000
Maximum 0.1465 2.6231 1.5622 3.8813

Cellobiose
Minimum 0.0001 0.0000 0.0000 0.0000
Maximum 0.2935 5.1987 3.1664 4.5788

Cellulose
Minimum 0.0012 0.0000 0.0000 0.0000
Maximum 0.5801 6.6722 6.2504 4.9125
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carbon substrate + a salts + b ATP + c CO2 + d Co − A + e ammonium = f biomass + g acetate+ ℎ succinate + i formate + j proton[c] + k proton[e] + l glycogens +m PPi + n CO2

where the coefficients a – n correspond to the absolute values of the EFM, which
represent the letters on the table. Note that the coefficients c or n will depend on
whether CO2 has a negative sign (c) or a positive sign (n). These EFMs are used to select a
minimal set of macroscopic reactions for the DMM as discussed below.

Dynamic metabolic model

Table 4 shows the selected EFMs and the model parameter estimates for each substrate,
including the conversion factors between the biomass concentration (moles per liter)
and OD for glucose and cellobiose. The metabolism of glucose and cellulose is represen-
ted by four macroscopic reactions. For cellobiose, the metabolism is represented by five
macroscopic reactions. All the EFMs are from the polygon vertices of the yield spaces.
The models were implemented in MATLAB and are available at https://doi.org/10.5281/
zenodo.7228115.

Fig. 9A through C show the comparison of the variables predicted by the model
against the dynamic experimental data obtained from the culture of F. succinogenes on
glucose, cellobiose, and cellulose, respectively. Table 5 shows the accuracy of the model.
For the experiments with glucose, the CVRMSE was 17%. For the experiments with
cellobiose, the average CVRMSE was 19%. For the experiments with cellulose, the
average CVRMSE was 22%.

DISCUSSION

The mathematical modeling of the rumen ecosystem is a useful endeavor to provide
tools for improving rumen function. Current kinetic rumen models do not consider

FIG 5 Yield representation of EFM and distribution of EFM when growing on glucose. Units are millimoles per mole except for the yield biomass/glucose (gram

per millimole).
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genomic information (31, 65, 73, 74). GEMs are a promising tool to fill this lacking gap
and allow a better understanding of the rumen systemic functionality (75) and the
individual bacteria metabolism (76).

TABLE 3 EFMs from the polygon (triangle) enclosing the yield spaces

Glucose

Triangles

Coefficiente1 e2 e3 e4 e5 e6 e7 e8 e9

Glucose −1 −1 −1 −1 −1 −1 −1 −1 −1
Salts 0 −0.006 −0.039 0 −0.004 −0.04 −0.043 0 −0.012 a
ATP 0 −0.008 −0.057 0 −0.005 −0.06 −0.064 0 −0.018 b
CO2 −0.361 0.048 0.333 −0.542 −0.751 0.255 0.372 −0.361 −2.166 c/n

Co-A
−7.26e-7 −8.27e-5 −5.70e-4 −2.26e-6 −5.20

e-5
−5.96e-4 −6.37e-4 −6.91e-7 −1.81e-4 d

Ammonium −0.001 −0.139 −0.956 −0.004 −0.087 −0.999 −1.068 −0.001 −0.304 e
Biomass 0 0.019 0.129 0.001 0.012 0.134 0.144 0 0.041 f
Acetate 0 2.623 0.414 1.089 0 0 0 0 0 g
Succinate 0.723 0 0 0 1.562 0.187 0 0.723 0.663 h
Formate 0 0 0 1.087 0 0 0 0 3.881 i
Proton [c] 0 0 1.138 0 2.467 0 0 0 4.806 j
Proton [e] 1.327 2.754 0 2.09 0 0 1.003 1.326 0 k
Glycogens 0.096 0 0.002 0.09 0.002 0 0.008 0.096 0.003 l
PPi 1.27e-5 1.45e-3 1.00e-2 3.96e-5 9.13e-4 1.05e-2 1.12e-2 1.21e-5 3.19e-3 m

Cellobiose Triangles

e1 e2 e3 e4 e5 e6 e7

Cellobiose −1 −1 −1 −1 −1 −1 −1
Salts −0.088 0 −0.008 0 −0.007 0 −0.026 a
ATP −0.131 0 −0.012 0 −0.011 0 −0.039 b
CO2 0.761 −0.684 0 0 −1.513 −0.11 −2.065 c/n
Co-A −1.32e-1 −2.53e-1 −1.18e-1 −2.83e-6 −1.78e-1 −6.47e-7 −3.90e-1 d
Ammonium −2.181 −0.004 −0.198 −0.005 −0.181 −0.001 −0.654 e
Biomass 0.293 0.001 0.027 0.001 0.024 0 0.088 f
Acetate 0 0 5.199 2.906 0 2.39 2.576 g
Succinate 0 1.37 0.138 0.003 3.152 0.148 0.008 h
Formate 0 0 0 0 0 0.074 4.579 i
Proton [c] 2.055 0 0 0 6.474 0 0 j
Proton [e] 0 2.545 5.327 2.747 0 2.575 6.587 k
Glycogens 0.01 0.2 0.002 0.171 0 0.185 0.029 l
PPi 2.28e-2 4.45e-5 2.07e-3 4.97e-5 1.89e-3 1.12e-5 6.84e-3 m

Cellulose Triangles

e1 e2 e3 e4 e5 e6 e7 e8

Cellulose −1 −1 −1 −1 −1 −1 −1 −1
Salts −0.049 −0.175 −0.001 −0.022 −0.029 −0.029 −0.028 −0.018 a
ATP −0.072 −0.259 −0.001 −0.033 −0.043 −0.043 −0.041 −0.027 b
CO2 −0.204 1.503 −0.391 0.075 −2.602 −0.673 −2.215 −3.956 c/n
Co-A −7.16e-4 −2.57e-3 −1.18e-5 −3.26e-4 −4.24e-4 −4.31e-4 −4.05e-4 −2.71e-4 d
Ammonium −1.2 −4.311 −0.02 −0.547 −0.711 −0.723 −0.679 −0.455 e
Biomass 0.162 0.58 0.003 0.074 0.096 0.097 0.091 0.061 f
Acetate 6.609 0 0 0 0 6.672 0 0 g
Succinate 1.244 0 0.796 0 5.699 1.851 4.904 4.325 h
Formate 0 0 0 0.231 0 0 0 3.904 i
Proton [c] 9.418 0 0 0.166 0 9.171 10.361 10.166 j
Proton [e] 0 0 0 0 12.064 0 0 0 k
Glycogens 0.001 0.028 0.586 0.582 0.007 0.009 0.089 0.125 l
PPi 1.26e-2 4.51e-2 2.07e-4 5.72e-3 7.44e-3 7.56e-3 7.10e-3 4.76e-3 m

Research Article mSystems

Month XXXX  Volume 0  Issue 0 10.1128/msystems.01027-22 14

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 1

6 
Ju

ne
 2

02
3 

by
 1

47
.1

00
.1

79
.2

33
.

https://doi.org/10.1128/msystems.01027-22


Many independent methods have been developed to generate genome-scale
models, including some toolboxes and workspaces, such as Pathway Tools (39), RAVEN
(77), merlin (78), KBase (79), The SEED (80), AuReMe (38), AutoKEGGRec (67), CarVeMe
(81), and gapseq (82). They rely on one or several metabolic databases such as MetaCyc
(48), KEGG (83), ModelSEED (84), or BiGG (68). However, the output of a main platform for
a GEM requires adjustments assisted by a choice of specialized tools, especially when the
network reconstruction requires to take advantage of information spread in different
models, formats, and organisms, leading to issues in the standardization of metadata and
reproducibility of the reconstruction procedure. In this work, the GEM construction of F.
succinogenes S85 was performed using the AuReMe platform, selected for its full
traceability reconstruction (38) and capabilities to produce high-quality reconstructions
(85).

GEMs are widely used for microbial-defined growth medium identification (30, 86),
metabolic functional characterization (29, 87), or the design of novel treatment against
pathogens (88). Regarding gut communities, they have been mainly applied to human
gut bacteria to decipher the microbial interactions in the human intestinal microbiome
(28, 30, 89–91).

Until now there have been few GEMs available for rumen bacteria such as the
networks for the lactate-utilizing bacterium Megasphaera elsdenii (76), and the succinic
acid–producing strain Actinobacillus succinogenes (92). Recently, one simplified represen-
tative rumen community metabolic model was reported (75). A synthetic community
composed of a cellulolytic bacterium, a proteolytic bacterium, and a methanogen was
developed to enlighten metabolite secretion profiles, community compositions, and

TABLE 4 Selected EFMs of the dynamic model and parameter estimatesa

Glucose

e2 e5 e6 e9μmax, i(h−1) 0.037 0.031 0.31 0.004

K (M) 9 × 10−3α(M/OD) 6.15*10−4

Cellobiose

e1 e4 e5 e6 e7μmax, i(h−1) 0.33 0.0002 0.033 0.0001 0.007

K (M) 9*10−3α(M/OD) 7.24*10−4

Cellulose

e1 e3 e6 e8μmax, i(h−1) 0.087*10−3 0.34*10−3 0.96*10−3 0.08*10−3

Kc(molcellulose/molbiomass) 6.05
aThe stoichiometry of the EFMs is given in Table 3.

TABLE 5 Model accuracy

Glucose utilization

Acetate Succinate Formate Ammonia Substrate OD
100*CVRMSEa 34 19 11 10 14 14

Cellobiose utilization

Acetate Succinate Formate Ammonia Substrate OD
100*CVRMSEa 18 11 19 8 44 17

Cellulose utilization

Acetate Succinate Formate
100*CVRMSEa 15 38 13
aCoefficient of variation of the RMSE (CV(RMSE)).
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interactions with bacteriophages (75). Our work contributes to expand the application of
the GEM approach to study the rumen ecosystem.

The obtained GEM of F. succinogenes is composed of thousands of metabolites and
reactions associated with their genes and can be set as a useful network information for
generating future ruminal bacterial draft models. The 1,317 genes of the final F. succino-
genes S85 model cover more than 41.5% of the genes identified in the two genomes of
the strain (3,170 and 3,161 ASM14650v1 and ASM2466v1, respectively).

Our model contains 2.5 times more genes than the model of the rumen cellulolytic
bacterium Ruminococcus flavefaciens previously reconstructed (75) by ModelSEED (84)
and gaps-filled by GapFind-GapFill (75), as well as 1.5 more reactions and metabolites.
Our final reconstructed network is functional for biomass and SCFA production with
compacted core metabolism represented by 30% of active pathways (Data set S3 in
supplementary material B) and has a simulated growth rate of 72% times greater than
that of R. flavefaciens, its cellulolytic model candidate (75). GEMs are very powerful to
provide a qualitative analysis of microbial metabolism. However, they are limited to
quantitative prediction of the dynamics of metabolites. This work develops an approach
for developing a DMM exploiting the microbial genomic information embedded in the
GEM of F. succinogenes S85. The use of GEM for dynamic modeling and other analysis
methods is cumbersome due to the large number of reactions and metabolites, which
hamper the interpretation/visualization of fluxes (e.g., FBA) and limit the calculation of
computationally expensive analysis (e.g., EFM) (93). Hence, a reduction of the GEM into a
network that still captures phenotypic and genotypic properties while displaying
flexibility is needed (94). For our modeling exercise, the NetRed tool (58) was instrumen-
tal to perform the reduction of our network. All the full-scale GEM reactions participating
in the 63 reduced-scale genome-based metabolic network reactions of F. succinogenes

FIG 6 Yield representation and distribution of EFM when growing on cellobiose. Units are millimoles per mole except for the yield biomass/cellobiose (gram per

millimole).
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S85 are present in the list of active pathways of the large-scale network (Data set S2 in
supplementary material B).

Yield analysis was used in the flux vectors to verify the carbon balance of the network.
The obtained yields showed that carbon balance was not respected, and the difference
was coming from the glycogen pathways. Some of the glycogen pathway reactions were
identified from the databases as generic reactions. F. succinogenes is known to synthesize
glycogen during all its growth phases (19). We focused on the validation of its produc-
tion/degradation pathway including generic reactions not only for its specificity in this
organism but also for its importance in the carbon cycle equilibrium that needs to be
held for the network, the EFM computation step, and the DMM. As a solution, we have
set for glycogen a number of monomers equal to 6 to be able to complete the carbon
balance and therefore stoichiometrically balance the reactions of this metabolic
pathway. The reduced network helped to calculate the EFM whose reduction was
performed by yield analysis (71). A 2-D representation of yields was used to compute the
convex hull that surrounds the EFMs. The EFMs belonging to the convex hull were further
reduced by a method employing polygons (95). The EFMs on the convex hull are
normally chosen to provide a wide range of steady states to the system.

The resulting model structures are similar in degree of complexity with respect to the
rumen fermentation model developed by Muñoz-Tamayo et al. (64), where carbohydrate
metabolism is represented by five macroscopic reactions. The main difference in the
approach developed in the present work is that the macroscopic reactions are derived
from the reconstructed metabolic network of F. succinogenes. It should be noted that the
resulting macroscopic reactions included in the models correspond to the active sets of
EFMs specific to the experimental here studied while the subsets of all EFMs at the
vertices of the polygon enclosing the yield spaces shown in Fig. 8A through C constitute
a minimal generating of EFMs covering almost all possible metabolic states. This

FIG 7 Yield representation and distribution of EFM when growing on cellulose. Units are millimoles per mole except for the yield biomass/cellulose (gram per

millimole).
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approach provides a high flexibility to span the metabolic space at different experimen-
tal conditions. Such a flexibility in the model structure is a great asset to study in the
future strategies to enhance substrate utilization and target-desired fermentation profile.

The model performances were acceptable to capture the dynamics of fermentation
by F. succinogenes. However, Table 5 and Fig. 9A through C display that there is room for
improvement. The prediction of succinate by the model for cellulose utilization has

FIG 8 Yield analysis of the EFM for A (blue stars) glucose, B (purple stars) cellobiose, and C (gray stars) cellulose. Representation computation of the convex hull

(black circles) and reduction of the convex hull (red circles) with respect to experimental data (diamonds).
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indeed a high CVRMSE. One key element for model improvement is glycogen metabo-
lism, which was not integrated into this work. Glycogen plays an important role in F.
succinogenes and appears to be submitted to a futile cycle that results from simultaneous
utilization and storage (19, 96). As observed in Table 3, glycogen is a net product for the
EFMs of the polygon vertices. Thereby, the current model structure cannot account for
the futile cycling. This limitation is intrinsic to the steady-state assumption for the EFM
derivation. To account for glycogen futile cycling, it will be then required to split the
metabolic network into subnetworks. The procedure of network splitting can be done on
the knowledge basis as applied for example to study microalgae metabolism (97).
However, the splitting method is a challenging issue. As a perspective, in the mid-term,
we will explore the use of splitting techniques such as those developed by Verwoerd (98)
and Schuster (99) to account for the glycogen futile cycle. In the long term, we will apply
the approach here developed to other key rumen microbes to address the modeling of
rumen microbial mini consortia. As we have previously discussed (100), this approach
will enable us to construct tractable models that integrate genomic information with
capabilities to inform on strategies for driving the rumen microbiome.
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