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Abstract 

Ectopic expression of defensins in plants correlates with their increased capacity to withstand abiotic 

and biotic stresses. This applies to Arabidopsis thaliana, where some of the seven members of the 

PLANT DEFENSIN 1 family (AtPDF1) are recognised to improve plant responses to necrotrophic 

pathogens and increase seedling tolerance to excess zinc (Zn). However, few studies have explored 

the effects of decreased endogenous defensin expression on these stress responses. 

Here, we carried out an extensive physiological and biochemical comparative characterisation of i) 

novel amiRNA lines silenced for the five most similar AtPDF1s, and ii) a double null mutant for the 

two most distant AtPDF1s. 

Silencing of five AtPDF1 genes was specifically associated with increased aboveground dry mass 

production in mature plants under Zn excess conditions, and with increased plant tolerance to 

different pathogens – one fungus, one oomycete and one bacterium, while the double mutant 

behaved similarly to the WT. 

These unexpected results challenge the current paradigm describing the role of PDFs in the plant 

response to stresses. Additional roles of plant endogenous defensins are discussed, which open new 

perspectives for their functions. 

 

Key-words  

Anthocyanin, AtPDF1, Arabidopsis thaliana, amiRNA gene silencing, biotic stress, fungal, oomycetes 
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Highlight 

Decreased endogenous AtPDF1 levels are associated with increased tolerance to pathogens and zinc 

toxicity, while better tolerance to stresses had so far been associated with ectopic PDF over-

expression. 
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Introduction 

Plants are continuously exposed to simultaneous environmental changes whose intensity and 

duration interfere with their optimal growth and reproduction. Plant responses to biotic and abiotic 

stresses rely on different signalling pathways leading to changes at the physiological, molecular and 

cellular levels (Yamaguchi-Shinozaki & Shinozaki, 2006; Ahuja et al., 2010; Skirycz & Inze, 2010; 

Osakabe et al., 2014). This results in better adaptation including cross-talk between signalling 

pathways (Fujita et al., 2006; Rejeb et al., 2014; Pandey et al., 2015; Foyer et al., 2016; Nejat & 

Mantri, 2017). This fine tuning climaxes when it comes to balancing the trade-off between growth 

maintenance and the energetic cost of adaptation to abiotic stress and/or biotic defence processes 

(Denance et al., 2013; Bechtold & Field, 2018; Berens et al., 2019; Chen et al., 2021). Defensin is a 

generic term encompassing PLANT DEFENSINs (PDFs) and PLANT DEFENSIN-LIKE (DEFLs) peptides 

which both are integral parts of the plant immune system (Lay & Anderson, 2005; Stotz et al., 2013; 

Lacerda et al., 2014). Defensins are involved in a wide range of biological activities and physiological 

processes (Carvalho & Gomes, 2009; Carvalho & Gomes, 2011; Parisi et al., 2019); as such, they are 

downstream elements of these biotic and abiotic stress-signalling cascades. PDFs and DEFLs are 

members of the large ANTIMICROBIAL PEPTIDES (AMPs) family (Van der Weerden & Anderson, 

2013; Shafee et al., 2016a; Shafee et al., 2017). These molecules have a characteristic three-

dimensional folding (three anti-parallel β-strands and one α-helix) stabilised by disulphide bonds 

(Lehrer, 2004; Yount & Yeaman, 2004; Yount & Yeaman, 2006; Padovan et al., 2010; Gachomo et al., 

2012; Shafee et al., 2016b). 

The antifungal activity of defensins was first – widely – studied (Lay & Anderson, 2005; De Coninck et 

al., 2013; Lacerda et al., 2014; Parisi et al., 2019; Sher Khan et al., 2019). Defensins have been 

described to bind preferentially to lipid II (Wilmes et al., 2011), to the fungal acidic sphingolipids 

mannosyldiinositol phosphorylceramide [M(IP)2C; (Thevissen et al., 2004)], and the neutral 

sphingolipids glucosylceramide (GlcCer; Thevissen et al., 2004), to phosphatidic acid (PA; (Sagaram et 

al., 2013; Kvansakul et al., 2016; Payne et al., 2016) and to phosphatidylinositol 4,5 bis-phosphate 

[PI(4,5)P2; (Poon et al., 2014; Baxter et al., 2015)]. In addition, the novel Medicago truncatula Def5 

(MtDef5) bi-domain plant defensin binds to several membrane-resident phospholipids with 

preference for phosphatidylinositol monophosphates (Islam et al., 2017). Defensin activity also 

involves production of reactive oxygen species (Aerts et al., 2007; Oyinloye et al., 2015) and 

induction of fungal cell wall stress (Thevissen et al., 2012). Defensins are also involved in defence 

against insects by reducing the activity of insect digestive enzymes (Melo et al., 2002; Liu et al., 

2006; Pelegrini et al., 2008). Regarding metal abiotic stress, the expression of antifungal PLANT 

DEFENSIN 1 (PDF1) was first identified as a gain of function in zinc (Zn) tolerance in yeast and in 

Arabidopsis thaliana seedlings (Mirouze et al., 2006; Shahzad et al., 2013; Mith et al., 2015). The 

constitutive high transcript of PDF1s in the metal extremophile A. halleri is presently the main 

feature distinguishing this family from the one present in its close relative and model species A. 

thaliana (Becher et al., 2004; Weber et al., 2004; Talke et al., 2006; van de Mortel & Aarts, 2006; 

Shahzad et al., 2013). Recent genetic studies have identified a DEFL – CADMIUM ACCUMULATION IN 

LEAVES 1 (CAL1) – as a driver of cadmium (Cd) efflux and allocation in rice through chelation and 

transport activities (Luo et al., 2018; Luo et al., 2020), together with the close relative dual-function 

DEFENSIN 8 which mediates phloem cadmium unloading and accumulation in rice grains (Gu et al., 

2022). In A. thaliana, AtPDF2.5 and AtPDF2.6 are suggested to be involved in Cd tolerance (Luo, J-S 

et al., 2019; Luo, JS et al., 2019). AtPDF2.1 is proposed to modulate the ammonium metabolism by 
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regulating glutamine synthase activity (Yao et al., 2019) whereas the antifungal AtPDF2.3 blocks 

potassium channels (Vriens et al., 2016). In addition, AtPDF1.5 is probably involved in plant 

adaptation to low nitrogen levels and Cd stress (Wu et al., 2021). 

All these properties highlight that PDF and DEFL peptides are endowed with the remarkable protein 

promiscuity activity, in which multiple functions are associated with a single peptide structure 

(Aharoni et al., 2005; Nobeli et al., 2009; Franco, 2011), but the process still remains to be 

deciphered at the molecular level. On the one hand, studies in various species have highlighted that 

ectopic expression of defensins correlates with an increased capacity to withstand stresses (Terras et 

al., 1995; Gao et al., 2000; Dos Santos et al., 2010; Kaur, J et al., 2011; Sagaram et al., 2012; de Souza 

Candido et al., 2014; Gaspar et al., 2014; Wei et al., 2020). On the other hand, inactivation of single 

endogenous defensin genes has rarely been tested and has not always resulted in altered plant 

phenotypes in response to pathogens (Stotz et al., 2009; De Coninck et al., 2010). The existence of 

functional redundancy among defensins was hypothesized following the discovery of more than 300 

DEFL peptides, first in A. thaliana and then in other plant genomes (Silverstein et al., 2005; 

Silverstein et al., 2007; Tesfaye et al., 2013; Van der Weerden & Anderson, 2013). Superimposed on 

this framework, hardly any study have investigated whether decreased endogenous defensin 

expression would affect different functions in the same way, reflecting the existence of some 

specificity and/or cross-talk of the defensin signalling response to biotic and abiotic stresses. 

Faced with this bottleneck, in response to biotic and abiotic stresses, we studied the effect of 

simultaneous silencing expression of the five most similar PDF1 members (i.e. AtPDF1.1, 1.2a, 1.2b, 

1.2c, and 1.3) out of the seven composing this multigenic family in A. thaliana. The AtPDF1s 

members have all been described to provide better Zn tolerance when expressed in yeast (Mirouze 

et al., 2006; Shahzad et al., 2013; Mith et al., 2015). In seedlings, AtPDF1 transcripts are not 

responsive to Zn (Nguyen et al., 2014), but their syntenic orthologues are all highly accumulated in 

the hyper-accumulating and metal-tolerant species A. halleri (Weber et al., 2004; Talke et al., 2006; 

Shahzad et al., 2013) and Noccaea caerulescens [formerly Thlaspi caerulescens; (Hammond et al., 

2006; van de Mortel & Aarts, 2006; van de Mortel et al., 2006)]. Five of them (AtPDF1.1, 1.2a, 1.2b, 

1.2c and 1.3) have been positively tested in the plant response to pathogens, either in vitro (Terras 

et al., 1993; Sels et al., 2007), or in transgenic plants (Zimmerli et al., 2004; De Coninck et al., 2010; 

Hiruma & Takano, 2011; Hsiao et al., 2017). The variation of AtPDF1.1 expression has no or little 

effect upon plant infection with necrotrophic B. cinerea or with the non-host pathogen Cercospora 

beticola, respectively (De Coninck et al., 2010), whereas this gene has been proposed to mediate 

defence via an iron-withholding defence system in response to the necrotrophic bacterium 

Pectobacterium carotovorum (Hsiao et al., 2017). AtPDF1.2a is a marker of the jasmonic acid 

response (Yan et al., 2009; Pieterse et al., 2012), and AtPDF1.2a, 1.2c, and 1.3 transcripts have been 

described for their similar positive response to non-host pathogens (Hiruma & Takano, 2011). The 

mature peptides encoded by AtPDF1.2a, 1.2b and 1.2c are identical, and they differ from AtPDF1.3 

by only one amino acid (Sels et al., 2008; De Coninck et al., 2013) This, together with the similar 

tissue localisation of the expression of several of these genes (Sels et al., 2008), suggest the 

existence of a potential functional redundancy between these genes, as already mentioned (De 

Coninck et al., 2013). 

To study the effects of decrease expression of the AtPDF1 endogenous genes, we associated genetic 

approaches using T-DNA null mutants and amiRNA plants, and carried out an extensive 
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characterisation of these lines as compared to the wild type (WT) in response to different pathogens 

and metal excess. Given the abundant literature describing that defensin over-expression improves 

the plant response to biotic and/or abiotic stresses (Gao et al., 2000; Carvalho & Gomes, 2011; Kaur, 

J et al., 2011; Gaspar et al., 2014), the null hypothesis was that decreased endogenous AtPDF1 

transcript would result in a plant phenotype more sensitive to stresses. The results presented here 

do not support this assumption. Instead, the transgenic lines whose AtPDF1 expression was 

decreased were more tolerant to different pathogens and displayed specific increased dry mass in 

response to Zn excess. These unexpected and puzzling results modify the defensin-plant stress 

response paradigm in the same way, i.e., an increased tolerance to both biotic and abiotic stresses. 

Several alternative hypotheses on additional roles of endogenous plant defensins are discussed, and 

will call for further testing. 

Materials and Methods 

Plant material and growth conditions 

All A.thaliana lines were in the Columbia-0 (Col-0) accession background. Seeds of wild type plants 

(WT, N60000) and T-DNA insertion lines Atpdf1.4 (GK-311B04) and Atpdf1.5 (SALK_151733) were 

purchased from the Nottingham Arabidopsis Stock Centre (http://arabidopsis.info/). The transgenic 

lines, which express AhPDF1.1b under the 35S promoter, are described in Mirouze el al (2006). The 

homozygous single Atpdf1.4 and Atpdf1.5 mutants were checked by polymerase chain reaction (PCR) 

(Supplementary Table S1; Supplementary Fig. S1) and characterised by real-time quantitative PCR 

(RT-qPCR) for the absence of corresponding AtPDF1 transcripts using specific oligonucleotides 

(Nguyen et al., 2014) to ensure that these mutant lines were null mutants (Supplementary Table S2). 

The double null Atpdf1.4-Atpdf1.5 mutant was identified by PCR (Supplementary Table S1) in the F2 

generation produced from a genetic cross between single Atpdf1.4 and Atpdf1.5 mutants. The lacs2-

3 mutant affected in LONG-CHAIN ACYL-COA SYNTHETASE 2 is described in (Bessire et al., 2007). In 

order to make crosses, propagate seeds or collect plant materials, A. thaliana plants were cultivated 

at 22°C in a glasshouse in individual small pots containing compost (Neuhaus N2). When the 

intensity of natural light was less than 130 μmol m-2 s-1, artificial light (220 μmol m-2 s-1) was supplied 

up to 16 h per day. 

In vitro cultivation experiments were conducted under axenic conditions in a growth chamber at 

21.5°C under a 16-h daily light cycle and 130 μmol m-2 s-1 light intensity. Surface-sterilised seeds 

were germinated on standard medium containing Murashige and Skoog inorganic salts (Murashige & 

Skoog, 1962) at half concentration, with 1% (w/v) sucrose, 0.8% (w/v) agar and 2.5 mM (2-[N-

morpholino] ethanesulphonic acid) - KOH at pH 5.7. Kanamycin (Km) was added at a final 

concentration of 50 mg l-1 to screen transgenic A. thaliana lines. Phenotypic analyses of soil-grown 

plants were performed on plants grown in individual pots containing compost (Neuhaus N2) and 

placed in standard growth chambers with an 8-h-light photoperiod, 165 to 170 mmol m-2 s-1 

photosynthetic photon flux density, 21-23°C/17-23°C day/night temperatures, respectively, and 70% 

air relative humidity. Seeds were sown at the soil surface, and plants were irrigated manually to 

reach 0.35 g of water g-1 dry soil or watered by sub-irrigation every four to five days. For phenotypic 

analysis of hydroponically grown plants, plants were cultivated in controlled growth chambers under 

an 8-h daily light cycle under 165 μmol m-2 s-1 light intensity, and 20/23°C night/day temperature. 

Seeds were first germinated in tubes containing sterilised solid medium composed of Murashige and 

Skoog inorganic salts at half concentration (Murashige & Skoog, 1962), with 0.8% (w/v) agar and 2.5 
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mM (2-[N-morpholino] ethanesulphonic acid) - KOH at pH 5.7. At the five-to-six-leaf stage, the 

plantlets were transferred to hydroponic basins containing nutrient solution composed of 3 mM 

KNO3, 2 mM Ca(NO3)
2-4H2O, 1 mM NH4H2PO4, 0.5 mM MgSO4-7H2O, 1 µM KCl, 25 µM H3BO3, 2 µM 

ZnSO4, 2 µM MnSO4, 0.1 µM CuSO4-5H2O, 0.1 µM (NH4)6Mo7O24, 20 µM Fe(Na)EDTA and 2.5 mM (2-

[N-morpholino] ethanesulphonic acid) - KOH at pH 5.7, and renewed every four days. For phenotypic 

analysis of cuticle permeability and susceptibility to pathogens, plants were grown on soil pellets 

(Jiffy-7) under cool daylight fluorescent tubes (OSRAM) with a 10-h daily light cycle under 120 μmol 

m-2 s-1 light intensity, and 18/20°C night/day temperature. 

 

Generation of amiRNA lines targeting a decrease of AtPDF1 transcript accumulation 

Plasmid pBSK-RS300 (Schwab et al., 2006) harbouring the miR319a precursor was used to engineer 

amiRNAs targeting transcript decreases of all five AtPDF11.1, 1.2a, 1.2b, 1.2c, and 1.3 

simultaneously. Three amiRNA sequences named amiRNA-C1, amiRNA-C2 and amiRNA-C3 

(Supplementary Table S3) were automatically designed via the Micro RNA Designer website: 

http://wmd3.weigelworld.org/cgi-bin/webapp.cgi (Schwab et al., 2005; Schwab et al., 2006) and 

validated and/or improved manually following a set of crucial requirements (Ossowski et al., 2008). 

No off-target mutation was identified in silico when the three 21-bp oligonucleotides were probed 

with the Araport11genes 201606 cDNA database in the Micro RNA Designer website 

(http://wmd3.weigelworld.org/cgi-bin/webapp.cgi?page=TargetSearch;project=stdwmd), or when 

they were blasted against the NCBI database with the A. thaliana Reference RNA sequences 

(refseq_rna). In both tests, only the five targeted AtPDF1 sequences were highlighted with the 

highest e-value (between 0.007 and 0.11). The amiRNA construct and plasmid cloning were 

performed according to (Schwab et al., 2006). A functional stem-loop structure was regenerated by 

combining the PCR products obtained using the specific AtPDF1 primer pairs in a single overlapping 

PCR with primers A and B bordering the miR319a stem-loop structure in plasmid pBSK-RS300 

(Supplementary Table S3). The amiRNA constructs were cloned between the 35S promoter and 

Terminator Nos using the XhoI and XbaI restriction sites present in pKYLX71, a designed 

pBluescriptII-based plasmid [Stratagene®, Schardl et al., 1987)]. The expression cassette containing 

the amiRNA loop was further cloned in the pGreen 0029 binary vector (Hellens et al., 2000) in-

between the XmaI and KpnI restriction sites to form the final recombinant vector pGrenn029-35S-

amiRNA-C1 or -C2 or -C3. These final vectors were then transformed into Agrobacterium 

tumefaciens strain GV3103 (pMP90; Koncz & Schell, 1986). Positive bacterial transformant for each 

of the final recombinant vector were used to transform A. thaliana plants by floral dipping (Clough & 

Bent, 1998). Seeds resistant to Km (KmR) obtained from primary transformed plants were selected, 

and their progeny was screened for a one-locus mendelian segregation of the KmR character. A total 

of 25 independent homozygous transgenic amiRNA lines were obtained (eight to nine per construct, 

listed in Supplementary Dataset S1). From now on, these homogeneous transgenic amiRNA lines 

named amiRNA-C1, amiRNA-C2 and amiRNA-C3 thereafter, will be generally referred to "amiRNA 

lines" or "amiRNA plants". 
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Quantitative Real Time PCR (qRT-PCR) 

Total RNA was extracted from the shoots of seedlings grown in vitro using the RNeasy kit (Qiagen, 

74904). For plants grown in soil and submitted to pathogenesis tests, RNAs were extracted according 

to (Mallory et al., 2001). Transcript was quantified by qRT-PCR. cDNA synthesis and qRT-PCR were 

essentially performed as previously described (Shahzad et al., 2013; Nguyen et al., 2014). For 

AtPDF1s, the primer list, location in the cDNA sequences, amplification efficiency and specificity 

were already described (Nguyen et al., 2014). PCRs were performed on cDNA samples in triplicate, 

and given the high variability range of AtPDF1 transcript (Supplementary Fig. S2B; Supplementary 

Table S4), threshold cycles (Ct) were considered up to 40 cycles. Above this value, transcripts were 

considered as non-detected (ND), as indicated by the qPCR system. Transcript was expressed with 

respect to three reference genes chosen as internal controls for their strong expression stability 

under different developmental stages, abiotic and biotic treatments (Czechowski et al., 2005; 

Remans et al., 2008; Rymaszewski et al., 2017; Veillet et al., 2017; Li et al., 2020). For the transcript 

studied in seedlings of different genotypes in Fig. 1B and Supplementary Fig. S5) we used: ACTIN 

[ACT2, AT3G18780 and ACT8, AT1G49240] already described by (Shahzad et al., 2010; Shahzad et al., 

2013; Nguyen et al., 2014), YELLOW-LEAF-SPECIFIC GENE 8 (YSL8, AT5G08290, 5'- 

TTACTGTTTCGGTTGTTCTCCATTT -3' and 5'- CACTGAATCATGTTCGAAGCAAGT -3'), and ELONGATION 

FACTOR 1 ALPHA (EF1alpha, AT5G60390, 5'- TGAGCACGCTCTTCTTGCTTTCA -3' and 5'- 

GGTGGTGGCATCCATCTTGTTACA -3') as reference genes. For the transcript studied in plants 

following B. cinerea treatments (Fig. 2C and Supplementary Fig. S9) we used: ACTIN (ACT2 and 

ACT8), YSL8 and expressed gene in AT4G26410 (5'- GAGCTGAAGTGGCTTCCATGAC-3' and 5'- 

GGTCCGACATACCCATGATCC-3') as reference genes. The AtPDF1 transcript accumulations calculated 

independently with respect to each of the three reference genes were significantly and highly 

correlated (P < 0.001; Supplementary Fig. S3 and Supplementary Fig. S4) demonstrating the high 

consistency of these values among these reference genes. 

 

Zinc (Zn) and other metal treatment of mature plants 

For plants grown in soil, Zn treatment was applied by daily manual watering with solutions 

containing different ZnSO4 concentrations to maintain the soil water content at 0.35 g water g-1 dry 

soil, or by sub-irrigation every four to five days with solutions containing different ZnSO4 

concentrations. For hydroponic grown plants, the treatment was applied by adding and renewing 

solutions containing different ZnSO4, CoCl2 or NiCl2 concentrations every four days. 

 

Biochemical measurements 

Zn, iron and manganese content measurement: whole rosettes of plants grown hydroponically or in 

soil were harvested and rinsed thoroughly three times with Milli-Q water at room temperature for 

a few minutes. All materials were desiccated at 80°C for 72 hours and ground to powder. Fifteen- to 

20-mg subsamples were homogenised with 750 µl of 65% (w/w) HNO3 and 250 µl of 30% (w/w) H2O2 

and mineralised in a microwave oven using a temperature step gradient (100, 180, 145 and 75°C) for 

50 min and holding for 30 min. After five-fold dilution with Milli-Q water, 1 ml from each sample 

was diluted again five-fold in 10% (w/w) HNO3 and analysed for its Zn, iron and manganese content 
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by inductively coupled plasma mass spectrometry (MP-AES, Agilent®) and compared with reference 

standard elements. 

Shoot anthocyanins content: anthocyanins were extracted and analysed according to (Nakata & 

Ohme-Takagi, 2014). The shoot fresh weight (FW) was measured directly after harvesting, and the 

shoots were frozen in liquid nitrogen for grinding. Extraction buffer (45% methanol, 5% acetic acid) 

was added at a ratio of 15 ml per g FW. Samples were centrifuged twice at 12,000 x g at room 

temperature for five minutes, and absorbance (A) was read at 530 and 657 nm on the supernatant. 

The anthocyanin content was calculated as (A530 g FW-1):[A530 - (0.25 x A657)] according to (Nakata 

& Ohme-Takagi, 2014). 

 

Liquid Chromatography Coupled with Mass Spectrometry (LC-MS/MS) Analysis 

Proteins, from pools of 3 rosettes from 6-weeks-old plants, pools of ca. 10 of 21-days-old seedlings 

aerial parts and ca. 10 mg of dry seeds, were extracted with 6M urea, 50mM Tris-HCl, EDTA-free 

protease inhibitor cocktail. In the case of seed protein extraction 1% PolyVinylPyrrolidone (PVP) was 

added. Protein concentration was measured (Bradford, 1976) using Pierce™ Detergent Compatible 

Bradford Assay Kit (ThermoScientific). For each sample 20µg of extracted proteins were loaded on a 

15% acrylamide SDS-PAGE gel and subjected to a 1h migration at 120V. A band corresponding to a 

protein migration of around 10kDa was cut for each loaded lane and treated for trypsin digestion as 

described in (Berger et al., 2020) before injection in an Orbitrap ExplorisTM 240 mass spectrometer 

for mass spectrometry analysis. 

Mass spectrometric raw data were analyzed in the MaxQuant environment [(Cox & Mann, 2008); 

v.2.0.3.0] and Andromeda software was employed for database searching (Cox et al., 2011). The 

MS/MS data were matched against the Araport11_genes_20210122 database. For protein 

identification and quantification, cysteine carbamidomethylation was set up as fixed modification 

and oxidation of methionine as a variable modification. At least one peptide is necessary for protein 

identification and quantification with a score at least equal to 20 for unmodified peptides and a 

score of 40 for modified peptides. Up to two missed cleavages was allowed for protease digestion. 

For other characteristics, MaxQuant default parameters were used. The normalization was 

performed as described in (Berger et al., 2022). Following the quantification and normalization step, 

proteins were considered as quantifiable only if they were present in at least two biological 

replicates. The normal distribution of the log-transformed data was assessed before statistical 

treatment (one-way ANOVA followed by post hoc Tukey test, P<0.05). 

 

Plant trait measurements 

Aboveground dry mass was determined after drying plant material at 80°C for three days. Specific 

leaf area (SLA; mm2 mg-1) was calculated using one fully expanded leaf per plant, whose area was 

determined by image analysis (Schneider et al., 2012). The dry weight of each leaf was determined 

after drying at 80°C for 72 h. Flowering time was monitored on plants grown from seeds in soil under 

short days. Plants were checked visually every day for flowering bud appearance. The date of 

flowering bud appearance was monitored together with the concomitant total number of leaves. 
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Pathogenicity test 

Botrytis. cinerea strain BMM (Zimmerli et al., 2001) was cultured on V8-agar medium (50% of V8® 

Vegetable Juice, Campbells (v/v), 37 mM KH2PO4, agar 15 g l-1, pH 6) at 22 °C in the dark for seven to 

10 days. Spores were harvested using sterile water and filtered through sterile gauze to remove 

hyphae. Concentrated spore solutions (>1 108 spores ml-1) can be kept at 4°C for 10 days. A spore 

solution (5 104 spores ml-1) was prepared in potato dextrose broth (PDB, Difco) at 6 g l-1 for 

inoculation. Six-µl droplets of spore solution were deposited on four leaves of four-week-old plants, 

and lesion diameters were measured using a caliper after five days. Seven to eight plants per 

genotype were used in each biological replicate. During infection, plants were placed in high 

humidity in covered trays. For qRT-PCR analysis, four-week-old plants were sprayed with a spore 

solution (2 105 spores ml-1) prepared in PDB 6 g l-1 or with PDB alone as a mock control and kept in 

high humidity in covered trays. Samples were harvested at the indicated time point and frozen in 

liquid nitrogen. 

Hyaloperonospora. arabidopsidis isolate NOCO (Slusarenko & Schlaich, 2003) was maintained every 

week by spraying a solution of spores (5 104 spores ml-1 sterile distilled water) on 10-day-old A. 

thaliana Col-0 seedlings. For the pathogenicity test, seven three-week-old plants were inoculated by 

spraying a solution of spores (5 104 spores ml-1 sterile distilled water) and placed in high humidity in 

a tray closed with a transparent lid. The next day, the tray was partially opened. Six days post 

inoculation, the lid was sprayed with water and the tray was closed to induce sporulation, which was 

analysed one day later by collecting and pooling four leaves per plant in a laboratory glass pillbox 

and weighing them. Ten ml of sterile dH2O were added, and the leaves were gently shaken using a 

vortex for four min to harvest H. arabidopsidis spores. After filtration using a small stainless-steel 

metal sieve, spores were counted using a Malassez cell. 

Pseudomonas. synringae pv maculicola ES4326 (Katagiri et al., 2002) growth was conducted at 28°C 

in media containing 50 µg ml-1 rifampicin. A bacterial glycerol stock was plated onto King’s B agar 

plate (20 g l-1 peptone special (Millipore), 1% glycerol (v/v), 11 mM KH2PO4, 6 mM MgSO4-7H2O, 15 g 

l-1 agar, pH 7.2). After 2 days of growth, a single bacterial colony was grown overnight in King’s B 

liquid medium under shaking. Fifty µl of this culture medium were added to 50 ml of liquid KB 

medium and incubated overnight under shaking to reach an OD600nm of 0.2. After centrifugation 

(3,500 rpm, 15 min), each bacterial pellet was resuspended in 10 mM MgCl2. Serial dilutions in 10 

mM MgCl2 were made to reach an OD600nm of 0.002 (106 bacteria ml-1). For each genotype, three 

leaves of four-five-week-old plants were infiltrated with this bacterial solution using a 1-ml 

needleless syringe. The plants were placed in a tray closed with a transparent lid in a high-humidity 

atmosphere. After 24h, the lid was removed. After 48 h, 7-mm diameter leaf disks were harvested in 

each infiltrated leaf for each genotype, ground with a mortar and pestle and resuspended in 10 ml of 

10 mM MgCl2 to extract the bacteria. One hundred and fifty µl of 10-fold dilutions (10-2 to 10-5) were 

plated onto King’s B agar plates and incubated at 28°C. Colony-forming units were counted after two 

days. 

Cuticle permeability assay 

Cuticle permeability was evaluated using the toluidine blue test as described by (Bessire et al., 2007) 

and (L'Haridon et al., 2011), with slight modifications. Six-µl droplets of 0.1% toluidine blue dissolved 

in water (m v-1) were placed on the leaf surface. The plants were kept in high humidity in covered 
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trays overnight. The leaves were washed gently with distilled water to remove excess toluidine blue 

solution, and data were acquired with photographs of the leaves. 

 

Statistical analyses 

All results from physiological and biochemical analyses were performed in R programming 

environment (RCoreTeam, 2020). For each treatment and genotype, the transcript of the five 

AtPDF1s were compared based on mean and bootstrapped 95% confidence intervals (CIs) computed 

using the Hmisc package. Correlations between relative expression were calculated for each 

reference gene independently and were tested as highly significant using Pearson's correlation 

coefficients (P < 0.001, Supplementary Fig. S3 and S4). Hence, the relative expression levels of the 

transcripts were calculated using the geometric mean of three reference genes (Vandesompele et 

al., 2002; Andersen et al., 2004). Fold changes of transcript were calculated as the ratio of transcript 

relative to the three reference genes or ACTIN only in transgenic lines and in WT (i.e. RELtransgenic line / 

RELWT). In each experiment, differences in lesion diameter between genotypes were compared 

following Dunnett’s multiple comparison test using the WT as a baseline. Differences in the changes 

in dry weight (% of the control) in response to Zn treatment between genotypes were tested using 

simultaneous 95% CI for ratios of linear combinations in a one-way ANOVA model using the sci.ratio 

function in the mratios package. Differences in leaf Zn content between genotypes were tested by a 

non-parametric Kruskal-Wallis test. Relationships between harvest time and anthocyanin content 

were tested using linear regression analysis. All experimental settings, data acquisitions and 

biological replicates are described in Supplementary Dataset S1, and all raw data are available in 

Supplementary Dataset S2 and online (https://doi.org/10.15454/AXY7FV). Proteomic data are 

available via ProteomeXchange with identifier PXD037695. 

Results 

 

AtPDF1s transcript and protein accumulation is decreased in amiRNA lines 

The AtPDF1s family is composed of seven members grouped in three different clades  and one of 

which is gathering five most similar members [(Shahzad et al., 2013) and Supplementary Fig. S2A]. 

The different AtPDF1s accumulate at different levels [(Shahzad et al., 2013; Nguyen et al., 2014), 

Supplementary Fig. S2B, Supplementary Table S4], and have different plant tissue localisations 

(Supplementary Fig. S2C). These disparities also occurs at the protein level where, specific peptides 

detection by mass spectrometry for the five most similar AtPDF1 proteins targeted by our amiRNA 

approach can vary according to tissue [(Wang et al., 2015; Mergner et al., 2020); summarized in 

Supplementary Table S5 and S6]. In addition, protein similarity impairs reliable individual specific 

identification (Fig. 1C). Given the existence of two tandem duplicates separated by only a few kb – 

[i.e. AtPDF1.2a, 1.2c and AtPDF1.2b, 1.3 , (Shahzad et al., 2013), Supplementary Fig. S2D)], this 

makes it difficult to knock-down the whole AtPDF1s family by combining multiple crosses of single 

mutants. Therefore, we designed three independent amiRNA sequences (Supplementary Table S3) 

targeting different positions in the five most similar PDF1s – AtPDF1.1, 1.2a, 1.2c, 1.2b and 1.3 – to 

decrease their respective AtPDF1 transcript in plants (Fig. 1A). Twenty-five independent homozygous 
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amiRNA lines expressing one of these different constructs were obtained (listed in Supplementary 

Dataset S1). 

Quantification of AtPDF1 transcript in seedlings of each independent amiRNA homozygous line (Fig. 

1B, Supplementary Fig. S5) showed that in amiRNA lines, AtPDF1.3 and AtPDF1.2a transcripts 

significantly decreased by fold changes of 0.0966 and 0.0244 relative to the WT, respectively (P < 

0.001) while AtPDF1.1 transcript was detected in the WT but was not detected in the amiRNA 

seedlings. Moreover, AtPDF1.2b and AtPDF1.2c were not detected in any WT or amiRNA seedling. As 

for non-targeted transcripts (i.e. AtPDF1.4 and AtPDF1.5), no significant decrease, or only a marginal 

one (0.906 for AtPDF1.4 and 0.404 for AtPDF1.5) was detected in the amiRNA lines relatively to the 

WT. Overall, for each detected AtPDF1 transcript, no significant difference was observed among 

amiRNA lines expressing one construct or the other, and transcript decrease in amiRNA lines as 

compared to the WT was validated statistically. 

When performed in over-expressing transgenic plants, detection of higher defensin protein levels 

relied on specific antibodies [western-blotting or ELISA assay; only to cite a few: (Gao et al., 2000; 

Kaur et al., 2012; Gaspar et al., 2014)] or antibodies against tagged-defensin fusion. Still comparative 

analysis of endogenous expressed defensins proteins is rare (Kaur, P et al., 2011). Since no 

commercial antibodies are available in A. thaliana, endogenous AtPDF1s protein quantification 

relied on proteomic approaches which seems biased by AtPDF1 high similarity and/or low 

abundance (Fig.1C; Supplementary Table S5 and S6). We performed mass spectrometry analysis on a 

10 kDa fraction of each of the different samples from WT, amiRNA-C2 and amiRNA-C3 genotypes No 

peptide was detected for AtPDF1.4 and AtPDF1.5 (ProteomeXchange with identifier PXD037695). 

Among the remaining five AtPDF1, although no peptide was detected in the rosette leaves of WT 

and amiRNA lines, analysis of aerial tissues from seedling reveals a statistical higher peptide 

detection in WT as compared to both amiRNA-C2 and amiRNA-C3 genotypes for AtPDF1.2a and/or 

1.2b and/or 1.2c and/or 1.3 which were even stronger in samples from dry seeds (Fig. 1D, 

Supplementary Fig. S6 and Supplementary Table S5). Apart from PDF1, additional specific peptides 

detected some others PDFs or DEFLs as listed in (Silverstein et al., 2005), either in seeds and / or 

seedlings, but none of them were significantly accumulated differentially in the amiRNA lines 

compared to WT (Supplementary Table S7). 

Overall, the AtPDF1-amiRNA approach used in this study is associated with a decrease at the mRNA 

and protein level of the targeted AtPDF1 genes. From then on, we performed further phenotypic 

and molecular analyses on representative amiRNA lines for at least two amiRNA constructs 

(Supplementary Dataset S1). 

 

The amiRNA plant lines show pleiotropic phenotypes 

Upon aging, we first observed that all amiRNA plants flowered earlier and produced fewer leaves 

than the WT (Supplementary Fig. S7A-B). The leaves of amiRNA plants were also a lighter green than 

those of the WT (Supplementary Fig. S7C), and appeared larger and thinner. The results of specific 

leaf area (SLA) quantification (ratio of leaf area to leaf dry mass) were in accordance with these 

observations: the SLA of amiRNA lines tended to be higher than the SLA of the WT (Supplementary 

Fig. S7D). 
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Overall, the amiRNA lines produced using the three different amiRNA constructs exhibited significant 

differences in development, growth and leaf morphological trait values as compared to the WT, and 

only marginal differences were observed among the amiRNA lines harbouring the different amiRNA 

constructs. 

 

Tolerance to different pathogens is increased in amiRNA lines 

We investigated the responses of WT plants and amiRNA lines to infection by different micro-

organisms: the fungus B. cinerea strain BMM which induces necrotic lesions on A. thaliana ecotype 

Col-0 (Zimmerli et al., 2001), the oomycete H. arabidopsidis NOCO2 which is virulent on Col-0 plants 

(Slusarenko & Schlaich, 2003), and the bacterial pathogen P. syringae pv maculicola ES4326 (Katagiri 

et al., 2002). Following inoculation with B. cinerea, all amiRNA lines exhibited visually less lesion than 

the WT (Fig. 2A), and similar observation was also made following H. arabidopsis and P. synringae pv 

maculicola inoculation (Fig. 3A and Fig. 3C, respectively). Lesion sizes measured after B. cinerea 

infection were significantly smaller on amiRNA plants than in WT (Fig. 2B), and H. arabidopsidis 

sporulation was significantly lower on amiRNA plants that in WT plants (Fig. 3B). Regarding P. 

synringae pv maculicola, bacterial counts were significantly lower in amiRNA lines in comparison to 

WT plants (Fig. 3D). This general decrease in pathogen sensitivity was specific to the amiRNA lines. It 

was not observed in the double Atpdf1.4-Atpdf1.5 mutant (Supplementary Fig. S8), which behaved 

like the WT plants whatever the pathogen tested. 

Following B. cinerea infection, all AtPDF1.1, 2a, 1.2b, 1.2c and 1.3 transcripts were detected in mock 

and treated WT plants whereas AtPDF1.5 transcripts were not (Fig. 2C, Supplementary Fig. S9). Upon 

botrytis-infection of WT plants, transcript of AtPDF1.1, 2a, 1.2b, 1.2c and 1.3 increased (Fig. 2C, 

Supplementary Fig. S9). The fold change of AtPDF1s detected in the amiRNA lines as compared to 

the control WT plants ranged from 18.6 to 0.06. Changes in transcript observed in the infected 

amiRNA lines as compared to the mock treatment for AtPDF1.1, 1.2a, 1.2b, 1.3, and 1.4 (fold 

changes of 1.13, 3.95, 2.49, 0.03, 0.89 and 0.80, respectively) were not significant. Moreover, their 

respective transcript levels never reached that of the infected WT plants: it was around two orders 

of magnitude lower [fold changes of 0.028, 0.13, 0.0023, 0.11, for AtPDF1.2a, 1.2b, 1.2c and 

AtPDF1.3, respectively, and of 0.55 and 1.59 but not significant (P = 0.56 and 0.74) for AtPDF1.1 and 

1.4, respectively (Fig. 2C, Supplementary Fig. S9). Finally, whatever the mock treatment or infection 

conditions, AtPDF1.2c was barely detected in the amiRNA lines (n = 5 out of 30 samples), and 

AtPDF1.5 was not detected as observed for WT (Fig. 2C, Supplementary Fig. S9). Overall, these 

results show that amiRNA plants are more tolerant than WT plants to infection by different 

pathogens, even in the presence of decreased AtPDF1. 

The amiRNA plants increase their aboveground dry mass in response to Zn excess 

without modifying their total leaf Zn content 

Zn tolerance gain of function conferred by defensins has been evidenced in transgenic A. thaliana 

expressing A. halleri PDF1.1b under the 35S promoter (OE AhPDF1.1b). The dry mass of these 

transgenic seedlings germinated on Zn excess increases as compared to the WT (Mirouze et al., 

2006). When applied to all independent amiRNA seedling lines, this germination test under Zn 

exposure highlighted a significant and specific decrease in shoot dry mass as compared to the WT 
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and the double Atpdf1.4-Atpdf1.5 mutant (Mirouze et al., 2006), which behaved similarly 

(Supplementary Fig. S10A-B). Yet, when mature amiRNA plants were submitted to Zn excess 

(whether in soil or hydroponics), their aerial dry mass increased as compared to the WT (Fig. 4A-B). 

This dry mass increase was not significantly detected in AhPDF1-over-expressing lines 

(Supplementary Fig. S10C), or in the double null Atpdf1.4-Atpdf1.5 mutant (Supplementary Fig. 

S10D), nor was it detected when amiRNA lines were exposed to other metals such as cobalt (Co), 

nickel (Ni) or cadmium (Cd) (Supplementary Fig. S11). Contrasted Zn accumulation in the tissues of 

plants from different genotypes might explain this surprising observation. In all growth conditions, 

the total Zn content of plant aerial parts specifically increased following Zn addition in the medium 

(Fig. 4C) as compared to the (Fe) and manganese (Mn) contents (Supplementary Fig. S12), but no 

significant difference in Zn, Fe or Mn contents was observed between the WT and amiRNA lines (Fig. 

4C and Supplementary Fig. S12). Overall, the aboveground dry mass of mature amiRNA plants 

specifically increased under Zn excess exposure, but no link was established with the Zn content. 

 

In the amiRNA plants, tolerance to Zn excess highlights a disturbance of anthocyanin 

accumulation, and tolerance to B. cinerea reveals cuticle permeability 

Visual inspection of mature plants showed that WT plants accumulated anthocyanins upon Zn 

treatment whereas rosette leaves of amiRNA plants did not seem to do so, whatever the growth 

condition (Fig. 5A). Parallel kinetic quantification of shoot anthocyanins showed that anthocyanins 

were similarly detected in WT and amiRNA plants grown under the control condition (Fig. 5B). 

However, two to three days after the start of Zn exposure, anthocyanins started to accumulate in 

WT plants but no change was observed in amiRNA plants (Fig. 5B). On the other hand, the 

unexpected tolerance of amiRNA lines to B. cinerea was reminiscent of observations on cuticle 

permeable mutants, e.g., lacs2.3 and bdg (Bessire et al., 2007; Tang et al., 2007), pec1 (Bessire et al., 

2011), eca2 and aba (Blanc et al., 2018). Consequently, we investigated cuticle permeability of the 

amiRNA lines. Toluidine blue tests indicated that the cuticle of the amiRNA lines was more 

permeable than the cuticle of the WT plants, and behaved like the A. thaliana lacs2-3 cuticle mutant 

used as a control (Fig. 6A). Conversely, anthocyanins accumulated in the Atlacs2-3 mutant under Zn 

excess conditions (Supplementary Fig. S13), but aboveground dry mass decreased in the same range 

as in the WT, and significantly differed from the increase dry mass characteristic of amiRNA plants 

(Fig. 6B). 

 

Discussion 

Plant defensins have been mostly studied for their antifungal activities, but they also perform 

additional roles in vivo, hence they display promiscuous features (Aharoni et al., 2005; Nobeli et al., 

2009; Franco, 2011). However, studies exploring if decreased endogenous defensin expression can 

affect different activities are rare. We therefore, addressed here the effect of a decrease of 

endogenous AtPDF1 transcripts (and corresponding proteins) engineered by amiRNA technology and 

tested its effect on the response of A. thaliana to different pathogens and different metal excess. 

Unexpectedly, the amiRNA plants exhibiting decreased expression of five AtPDF1 transcripts were 
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unexpectedly found more tolerant to different pathogens (Fig. 2, Fig. 3) and their dry mass 

specifically increased in response to Zn excess exposure (Fig. 4A-B, Supplementary Fig. S10). 

 

Variation of gene expression within the AtPDF1 family 

Within AtPDF1 members, variation in expression has been documented according to the tissue, the 

developmental stage and/or cultivation conditions or in response to stress [(De Coninck et al., 2010; 

Nguyen et al., 2014); Supplementary Fig. S2B-C, Supplementary Table S4-S5 and S6)]. The present 

work also reports discrepancies in transcript and protein detection for some AtPDF1s: i) in both WT 

and amiRNA seedlings grown in vitro, AtPDF1.2b and 1.2c transcripts were not detected (Fig. 1B, 

Supplementary Fig. S5), ii) AtPDF1.5 transcripts was detected in seedlings grown in vitro (Fig. 1B, 

Supplementary Fig. S4) but not in mature plants grown in soil (Fig. 2C, Supplementary Fig. S9) and iii) 

no AtPDF1.4 and 1.5 specific peptide could be detected by MS/MS on any of the samples 

analyzed (seeds, seedlings and mature plants) and peptide identifying AtPDF1.2a and/or 1.2b 

and/or 1.2c and/or 1.3 detection could not be detected in mature plants (in coherence with 

information in public databases, see Supplementary Table S5 and S6). The origin of these 

discrepancies would need further investigations. Yet, they did not bias the fact that, in amiRNA lines, 

transcripts and proteins levels are decreased for the five most similar AtPDF1 members AtPDF1.1, 

1.2a, 1.2b, 1.2c and 1.3 as compared to WT (Fig.1A-D) so that the phenotypic differences between 

the WT and the homozygous amiRNA lines generated for this study could be validated statistically 

and associated with endogenous AtPDF1 expression decrease. 

 

Functional specificity questioned among members of the AtPDF1 family 

The extensive phenotypic analysis of amiRNA plants presented here is novel. It highlights that 

decreased expression of the five most similar AtPDF1s is specifically associated with increased 

tolerance to different pathogens (Fig. 2, Fig. 3 and Supplementary Fig. S8 and S9) and with increased 

plant dry mass upon Zn exposure (Fig. 4A-B and Supplementary Fig. S10 and S11). Still, it is difficult 

at present to predict if one or more amiRNA-targeted PDF1 genes are more particularly involved in 

the response to one and/or the other stress, nor we can ascertain that expression of other PDFs 

and/or DEFLs is modified. A genome-wide transcript analysis of the 317 PDF and DEFLs inventoried 

genes (Silverstein et al., 2005) would start to provide some indications. This should be completed by 

MS/MS analysis spanning the entire range of protein molecular weight (since we presented here the 

analysis of a 10 kDa fraction). In addition, this study shows that the seven AtPDF1s are not all equally 

involved in the plant response to pathogens and to Zn excess. Expression of AtPDF1.4 and 1.5 indeed 

increases Zn tolerance in yeast (Shahzad et al., 2013), but no phenotype of the plant response to Zn 

excess or to pathogens was observed in the double null Atpdf1.4-Atpdf1.5 mutant (Supplementary 

Fig. S10B and -D and Supplementary Fig. S8, respectively). The transcript levels of AtPDF1.4 and 

AtPDF1.5 were amongst the highest within the AtPDF1 family members (Fig. 1B, Supplementary Fig. 

S5; Fig. 2C, Supplementary Fig. S9), but they did not compensate for the dominant amiRNA plant 

growth phenotypes in Zn excess conditions (Fig. 4A-B) and the increased tolerance to pathogens (Fig. 

2A-B and Fig. 3). At present, we cannot totally rule out that these AtPDF1.4 and 1.5 genes could have 

undergone a neo-functional evolutionary fate, so that they can be endowed with a new function 
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other than the response to pathogens and/or Zn excess. This hypothesis is supported by the 

suggested role of AtPDF1.5 in nitrogen nutrition and Cd stress (Wu et al., 2021). 

 

Decrease in endogenous AtPDF1 expression: a by-pass to confer tolerance to pathogens? 

We show here that amiRNA plants are affected in cuticle permeability (Fig. 6A). Changes in cuticle 

permeability such as those observed in the lacs2, bdg and eca2 mutants (Kurdyukov et al., 2006) 

have been associated with resistance to B. cinerea and other major pathogens including P. synringae 

pv maculicola (Bessire et al., 2007; Chassot et al., 2007; Blanc et al., 2018). This has been linked to 

higher ROS production in cuticle mutants (L'Haridon et al., 2011), but also to distinct phyllosphere 

microbiome populations in WT plants and cuticle mutants (Ritpitakphong et al., 2016). In this 

regards, knowing whether amiRNA transgenics accumulate more ROS and/or if their phyllosphere 

microbiome populations differs from WT would be of interest (Bi et al., 2023). Increased tolerance of 

amiRNA plants to H. arabidopsdis seems unlikely related to cuticle permeability because the lacs2.3 

mutant was as susceptible as the WT plants to this pathogen (Supplementary Fig. S8). Still, this 

hypothesis cannot be totally ruled out since different cuticle mutants can behave differently in 

response to a single pathogen (Ziv et al., 2018; Aragon et al., 2021). Increased plant tolerance to 

pathogens has been described in various situations affecting hormonal signalling (Sanchez-Vallet et 

al., 2012; Liu et al., 2016), metabolic reprogramming or structural modifications (Eschen-Lippold et 

al., 2012; Taurino et al., 2014; AbuQamar et al., 2017; Sham et al., 2017). However, it has been 

suggested that resistance of cuticle mutants can also be attributed to the induction of additional 

defence pathways, beyond the canonical ones (Aragon et al., 2021). Concomitant tolerance to 

different pathogens is thus complex and multi-layered. Therefore, it would be highly interesting to 

conduct a comparative investigation between the wild-type (WT) and amiRNA genotypes using a 

multi-OMIC approach including transcript and metabolomic analysis. This could shed light on the 

putative links between PDF1 decrease cuticle permeability and tolerance to different pathogens. 

 

A role of AtPDF1s in the interplay between plant growth and response to Zn excess? 

When plants are exposed to high Zn levels in their environment, they face the need to maintain Zn 

homeostasis. This is achieved through a regulated crosstalk between processes of transmembrane 

transport, cellular uptake, export and subcellular compartmentalisation, and chelation of free ions 

by small organic molecules, peptides and proteins (Clemens, 2001; Verbruggen et al., 2009; Lin & 

Aarts, 2012; Sinclair & Kramer, 2012). In response to Zn excess, ectopic expression of PDF1 in A. 

thaliana seedlings, cultivated in vitro axenic conditions, resulted in better tolerance, but this process 

cannot be related to the above-mentioned homeostasis mechanisms (Mirouze et al., 2006; Mith et 

al., 2015). When cultivated in similar in vitro axenic conditions, amiRNA seedlings were more 

sensitive than the WT and double null Atpdf1.4-Atpdf1.5 mutant to Zn excess (Supplementary Fig. 

S10A-B). Therefore, a correlation exists between PDF1 expression and Zn tolerance in seedlings 

germinated in the presence of Zn in axenic conditions. This brings some mechanistic coherence to a 

process that still remains to be causally elucidated. Interestingly, during plant growth, ectopic 

expression of PDF1 did not provide zinc tolerance to transgenic over-expressing plants (OE 

AhPDF1.1b), which behaved like the WT and the double null Atpdf1.4-Atpdf1.5 mutant 

(Supplementary Fig. S10C-D). A similar behaviour has been reported for the SNAKIN AMP (SN1), 
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where SN1 over-expressing lines were phenotypically indistinguishable from the WT control 

(Nahirnak et al., 2012), whereas silenced lines were affected in their growth and development 

(Almasia et al., 2020). In this context, we report here a new property of PDF1 with respect to Zn 

tolerance where decreased expression of endogenous AtPDF1 transcripts interferes directly or 

indirectly with the plant balance between growth and the Zn excess response, resulting in 

continuous shoot growth during stress. 

As a general process, the trade-off between growth and stress resistance involves specialised 

molecular mechanisms that target reduced resource consumption resulting in increased fitness 

(Campos et al., 2016; Major et al., 2017; Bechtold & Field, 2018; Chen et al., 2021; Ogawa-Ohnishi et 

al., 2022). There are indications that this process results from the suppression of growth by stress 

signalling pathways as an adaptive strategy to maximize survival (Zhang et al., 2020). Under Zn 

excess conditions, we noted a time point when mature WT plant growth was reduced, whereas 

amiRNA plant growth was not affected. Most surprisingly, amiRNA plants maintained growth and 

leaf production under Zn excess (Fig. 4A-B). This unbalanced response between growth and the 

response to Zn excess was specific to the five AtPDF1-amiRNA silencing (Supplementary Fig. S10D) 

and was specific to Zn excess as compared to the other metals tested (Supplementary Fig. S11). 

Moreover, no difference in Zn content was noted between the WT and amiRNA plants (Fig. 4C). 

Based on studies mostly performed on metal-hyperaccumulating species, we know that Zn is not 

evenly distributed among tissues, nor it is found as a single molecular species (Küpper et al., 1999; 

Sarret et al., 2009; Haydon, 2014; Kozhevnikova et al., 2017). Since we cannot rule out that these 

modifications could impact Zn toxicity, it would thus be interesting to further investigate and 

compare these Zn characteristics in WT and amiRNA plants. 

 

Disturbance in stress signalling and development in amiRNA plants 

Several characteristics observed in amiRNA plants suggest that stress signalling and development 

might be disrupted at several levels. First, anthocyanins are known to accumulate in plants exposed 

to abiotic stress (Dixon & Paiva, 1995; Kovinich et al., 2015). Among their numerous roles (Gould, 

2004), they act on cellular protection from oxidative damage (Chalker-Scott, 1999; Agati et al., 2012) 

and protect the photosynthetic apparatus (Xu et al., 2017; Xu & Rothstein, 2018). This occurs in 

particular upon metal exposure, as evidenced in the extremophiles A. halleri and A. arenosa, in 

which exposure to high Cd or Zn decreases the chlorophyll content and increases the anthocyanin 

content in leaves compared to the control (Szopinski et al., 2019). This has also been nicely shown in 

Cd excluder A. halleri populations, where flavonoid accumulation appears important to cope with Cd 

toxicity as compared to Cd hyperaccumulator populations (Corso et al., 2018). WT A. thaliana plants 

accumulated anthocyanins shortly after Zn exposure, but amiRNA plants did not (Fig. 5). In this 

respect, the pale green colour of the amiRNA lines upon aging (Supplementary Fig. S7C) might be 

indicative of damage to the photosynthetic apparatus due to poor anthocyanin accumulation. 

Second, specific leaf area [(i.e., the light-capturing surface area per unit of dry mass that is a proxy of 

fundamental plant functions such as net photosynthetic capacity, growth rate and development rate 

(Vasseur et al., 2012; Sartori et al., 2019)] was significantly higher in amiRNA plants (Supplementary 

Fig. S7D), indicating faster development and/or an earlier flowering phenotype than the WT (Sartori 

et al., 2019). In this regard, early flowering can also be considered as a stress-induced response, a 

third category of flowering response in addition to photoperiodic flowering and vernalisation (Riboni 
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et al., 2014; Kazan & Lyons, 2016; Park et al., 2016). And indeed, amiRNA plants flower before WT 

plants (Supplementary Fig. S7A-B). Third, amiRNA plants had a more permeable cuticle than WT 

plants, suggesting that decrease of various defensin expression – could ultimately alter cell wall 

and/or plasma membranes constituents with consequences on development and stress sensing (Rui 

& Dinneny, 2020). Fourth, amiRNA plants were more tolerant to pathogens with different life styles, 

i.e., a necrotrophic fungus, a hemibiotrophic bacterium and an obligate biotrophic oomycete (Fig. 2 

and Fig. 3), although resistance to these pathogens is thought to be mediated by different signalling 

pathways (Zhang et al., 2018; Li et al., 2019). A more general mechanism probably occurs in these 

plants, possibly related to a global disruption of stress signalling. 

Overall, the convergence of these observations, could point to some basic intrinsic stress signalling 

disruption in amiRNA plants leading to increased tolerance to biotic and abiotic stresses. Finally, if Zn 

excess is not perceived correctly by amiRNA plants, this could alter the fine tuning of the stress 

response and growth of plants, and tip the scales towards growth. Interestingly, studies on SNAKIN 

SN1 have shown that it potentially integrates development and defence signals directly and/or 

indirectly by modulating protein activity, modifying the hormonal balance and/or participating in 

redox regulation (Nahirnak et al., 2012; Almasia et al., 2020). Thus, it still remains to be clarified 

whether and how PDF1-expression-dependent defence mechanisms are finely tuned to overcome a 

given stress. More specifically, regarding the behaviour of amiRNA plants presented in this work, the 

way the observed stress perception disruptions are translated at the molecular level will remain to 

be investigated, and the unexpected phenotypes will have to be re-evaluated with CRISPR-edited 

plants where expression of the five most similar AtPDF1s will be totally inactivated. 

 

Functional promiscuity of a single protein: one or several pathway(s)? 

Plant defensins and DEFLs by extension are recognised as promiscuous proteins, but studies 

explaining how one protein can display such functional diversity are still rare. Recent analyses have 

shown that Medicago truncatula defensin MtDef4 inhibits the growth of two ascomycete fungi – 

Neurospora crassa and Fusarium graminearum – via different mechanisms (El-Mounadi et al., 2016). 

In addition, differences have been highlighted in the fungal and tumour cell killing mechanisms of a 

Nicociana alata defensin (Bleackley et al., 2016). This exemplifies that the promiscuous nature of 

defensins can be evidenced through different mechanisms for one or several activities. Cuticle 

permeability was affected in amiRNA lines (Fig. 6A); this could at least explain their tolerance to B. 

cinerea. Conversely, the relative dry masses of the WT and the cuticle permeability lacs2-3 mutant 

were similarly affected upon Zn excess (Fig. 6B), and differed from the continuous growth of amiRNA 

lines. Overall, in amiRNA plant, tolerance to B. cinerea may well be disconnected from the disrupted 

balance between growth and the plant response to Zn excess. The lacs2-3 mutant also accumulated 

anthocyanins (Supplementary Fig. S13), a characteristic of WT plants under Zn excess not found in 

amiRNA lines. In this regard, it might be interesting to observe the Zn excess behaviour of A. thaliana 

anthocyanin biosynthetic and/or signalling mutants (Xu et al., 2015) to investigate if there is any 

causal relationship between these two processes. 
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Conclusion-Perspectives 

Molecular and phenotypic characterisation of amiRNA lines highlight that a specific decrease in five 

out of seven AtPDF1 increases tolerance to abiotic (Zn) and biotic (pathogen) stresses. These findings 

are unexpected and further studies are necessary to clarify their underlying mechanisms. CRISPR-

edited plant analysis, as well as genome-wide investigations using multi-OMIC approaches (including 

transcriptomic, proteomic, and metabolomic analyses) would be of great interest in understanding 

why a lack of AtPDF1 expression potentially affects stress perception and signalling integration 

under conditions of Zn excess and pathogen attack. It would also be most interesting to investigate 

whether PDF1 silencing in Zn-hyperaccumulating plants results in better foliar growth since the 

production of aboveground biomass by these species has always been a limiting factor for the 

application of these traits, e.g., in soil phytoremediation. 
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Figure Legends 

 

Figure 1. Localisation of the different amiRNA sequences targeting AtPDF1.1, 1.2a, 1.2b, 1.2c, and 

1.3 transcripts simultaneously and resulting in a specific decrease of transcript and protein 

accumulation. 

(A) Alignment of seven AtPDF1 cDNA sequences retrieved from The Arabidopsis Information 

Resource (TAIR; http://arabidopsis.org/index.jsp) according to the ID given in parentheses: AtPDF1.1 

(NM_106233), AtPDF1.2a (NM_123809), AtPDF1.2b (NM_128161), AtPDF1.2c (NM_123810), 

AtPDF1.3 (NM_128160), AtPDF1.4 (NM_101817) and AtPDF1.5 (NM_104375). Sequences were 

aligned with MUSCLE 3.8.31 software (Edgar, 2004) and visualised with BOXSHADE 3.21 software 

(http://www.ch.embnet.org/software/BOX_form.html). The alignment of the three designed 

artificial microRNAs (light purple, C1; light yellow, C2; light blue, C3) are positioned on the multiple 

alignments. The mismatch points according to (Ossowski et al., 2008) are highlighted in pink. The 

start and stop codons are highlighted in green (with red letters). (B) AtPDF1 transcript in seedlings of 

the WT accession Col-0 (n = 12 pools of ca. 20 seedlings) and amiRNA lines (n = 24 pools of ca. 25 

seedlings from 24 independent homozygous lines) grown under controlled in vitro conditions. 

Symbols correspond to the geometric means of relative expression obtained with three different 

reference genes (ACT2 and ACT8, YSL8 and EF1alpha). Values were obtained from four independent 

experiments with n = 4 (WT) to n = 9 (amiRNA) replicates each (see also Supplementary Fig. S5). Error 

bars, lower and upper Gaussian 95% CIs. Please note that the AtPDF1.2b and AtPDF1.2c transcripts 

were not detected in any genotype. (C) Alignment of seven AtPDF1 mature peptide sequences 

retrieved from The Arabidopsis Information Resource (TAIR; http://arabidopsis.org/index.jsp) 

according to the UniProtKB ID given in parentheses: AtPDF1.1 (P30224), AtPDF1.2a (P30224), 

AtPDF1.2b (O80994), AtPDF1.2c (Q9FI22), AtPDF1.3 (O80995), AtPDF1.4 (P82787) and AtPDF1.5 

(Q9FZ31). Sequences were aligned with MUSCLE 3.8.31 software (Edgar, 2004) and visualised with 

Sequence Manipulation Suite (https://www.bioinformatics.org/sms2/color_align_prop.html). Amino 

acid backgrounds are coloured for their identity or similarity according to their properties: non polar 

aliphatic (grey), aromatic (orange), unique C (yellow) and P (pink), polar uncharged (green), positively 

charged (red), negatively charged (blue). Peptides generated following trypsin digestion that were 

observed in this study are indicated within boxes differentially coloured according to their detection 

specificity. (D) Normalized intensities of detected proteins in fractionated proteome of WT, amiRNA-

C2 and amiRNA-C3 lines. (a) NQCINLEGAK representative peptide of the AtPDF1.2a, 1.2b, 1.2c and 

1.3 proteins as detected in 21 days-old seedlings (b) protein intensity based on NQCINLEK, 

LCERPSGTWSGVCGNSNACK and HGSCNYVFPAHK specific AtPDF1.1 peptides detected in dry seeds. 

For each experiment, three independent samples for each of the WT, amiRNA-C2 and amiRNA-C3 

lines were analysed: n = 3 pools of ca. 10 seedlings (a) and n = 3 pools of ca. 20 mg of dry seeds (b). 

Error bars show ± SD. Means within each genotype with the same letter are not significantly different 

according to one-way ANOVA followed by post hoc Tukey test, P < 0.05 . n.d: not detected. 

 

Figure 2. Phenotypic and molecular characterisation of amiRNA plant tolerance to B. cinerea 

infection. 

(A) Representative pictures of leaf symptoms five days after B. cinerea inoculation of A. thaliana 

leaves of WT plants and of representative homozygous lines (L) of the three amiRNA constructs 

(amiRNA-C1, amiRNA-C2 and amiRNA-C3) (Supplementary Dataset S1). (B) Lesion diameters (mean ± 

sem) obtained from five independent experiments (Supplementary Dataset S1) performed on WT 
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(white bars; n = 48-58) and on amiRNA-C1 (dark grey bar; n = 48-58), amiRNA-C2 (grey bar; n = 24-

112) and amiRNA-C3 (light grey bar; n = 48-58) lines. Different letters represent significant 

differences between genotypes at P < 0.05 (Student t-test). (C) Quantification of AtPDF1 transcript in 

the leaves (n = 5 per genotype and per treatment) of WT and amiRNA plants harvested 18 h after B. 

cinerea inoculation or mock treatment. Transcript quantification was expressed as the geometric 

means of relative expression obtained with three different reference genes (ACT2 and ACT8, YSL8 

and expressed gene in AT4G26410). Small symbols, means of individual samples for each AtPDF1. 

Large symbols, mean relative expression levels. Error bars, 95% CIs of five biological replicates and 

two triplicate qRT-PCR experiments for each genotype (see also Supplementary Fig. S9). Please note 

that AtPDF1.5 transcripts were not detected in any genotype, nor in any treatment, and that in any 

treatment, AtPDF1.2c trancripts were barely detected in the amiRNA lines (n = 5 out of 30 samples). 

 

Figure 3. Phenotypic characteristics of amiRNA plant tolerance to H. arabidopsidis NOCO2 and to P. 

synringae pv maculicola infection. 

Representative photographs of leaf symptoms. (A) H. arabidopsidis sporulation was observed seven 

days after inoculation, and (C) leaf wilting (red spots) was observed two days after P. synringae pv 

maculicola ES4326 infiltration. (B) Number of spores per mg fresh weight (mean ± sem) measured 

seven days after H. arabidopsidis infection (n = 4 independent experiments; Supplementary Dataset 

S1) of Col-0 WT (white bar) and amiRNA-C1, C2 and C3 lines (grey bars) . (D) Mean (± sem) cfu count 

per cm2 of leaf tissue of Col-0 WT (white bars) and amiRNA lines (grey bars) following infection with 

P. synringae pv maculicola at t = 0 and t = 2 dpi (hatched and plain bars, respectively; n = 5 

independent experiments). Different letters in (B) and (D) represent significant differences between 

genotypes at P < 0.05 (Student t-test). 

 

Figure 4. Increase of the dry mass of amiRNA lines in response to zinc exposure without 

modification of zinc accumulation 

(A) Dry mass response to Zn treatment of plants cultivated in soil in two independent experiments 

(Supplementary Dataset S1). Whole-rosette dry mass of WT (white bars) and amiRNA lines (grey 

bars) measured on plants aged 54-61 days and irrigated with water (WT, n = 18; amiRNA-C2, n = 9; 

amiRNA-C3, n = 24), or with a solution of ZnSO4 (WT, n = 12; amiRNA-C2, n = 9; amiRNA-C3, n = 24). 

Bars, average percent change in dry mass in response to Zn relative to the control; error bars, 95% 

CIs. Different letters represent significant differences between genotypes at P < 0.05. (B) Dry mass of 

plants grown in hydroponic conditions following 80 µM zinc treatment (n = 5 independent 

experiments; Supplementary Dataset S1). Dry mass was measured on whole rosettes of WT plants 

(circles) and amiRNA-C2 and amiRNA-C3 lines (triangles) aged 38 to 42 days and harvested 10 to 17 

days after the beginning of Zn exposure (WT, n = 3-12; amiRNA, n = 3-10). Large symbols, average 

percent change in dry mass in response to Zn relative to the control; error bars, 95% CIs. Small 

symbols, individual samplings. (C) Zinc content of rosette leaves in the control and zinc-treated plants 

grown in soil (n = 3) or in hydroponics (n = 3; Supplementary Dataset S1). Bars, average values from 

six independent experiments (n = 3-13 individual plants per treatment and per experiment (small 

symbols)). Error bars, 95% CIs. 
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Figure 5. Disturbance of the anthocyanin content in amiRNA plants submitted to Zn 

excess. 

(A) Representative zenital pictures of the abaxial rosette surface of WT and AtPDF1-amiRNA lines. 

The plants were grown in hydroponics for 39 days after sowing and treated with a solution 

containing 80 µM ZnSO4 (Zn) or not (Control) for 14 days. Bars = 5 cm. (B) Anthocyanin contents of 

the aboveground parts of WT (circles) and  amiRNA-C3 plants (triangles) cultivated in hydroponic 

conditions in four independent experiments. Large symbols, means of individual measurements 

(small symbols) performed on plant rosettes aged 32 or 26 days after germination and treated with 

80 µM ZnSO4 (grey symbols) or untreated (black symbols) at the time of harvest (0 to 15 days after 

the start of zinc exposure). The scale is indicated in Log10 and regression lines are indicated (r = -0.68, 

P = 0.011; r = -0.08, P = 0.81; r = -0.66, P = 0.014; r = -0.60, P = 0.04 for the control and Zn-treated WT 

and for the control and Zn-treated amiRNA line, respectively; n = 2-4 individual plants per treatment, 

per experiment and time point). 

 

Figure 6. Cuticle permeability is affected in amiRNA plants, and zinc excess causes a 

similar dry mass decrease in the WT and the cuticle mutant plants. 

(A) Cuticle permeability assay with toluidine blue. Representative photographs of three independent 

experiments conducted on different genotypes (see Supplementary Dataset S1). (B) Response to Zn 

excess of the shoot dry mass of different A. thaliana genotypes cultivated in hydroponics. Dry mass 

was measured 33 days after sowing in two independent experiments (Exp. 1, Exp. 2) on A. thaliana 

plants treated with a control solution or a solution containing 80 µM ZnSO4 for 11 days. WT plants (n 

= 15, 15 and n = 36, 43); amiRNA-C2 (n = 35, 9 and n = 0 in Exp. 2), amiRNA-C3 (n = 6, 7 and n = 17, 

21) and lacs2-3 (n = 9, 18 and n = 14, 19) mutant. Within each experiment, bars represent the 

average percent change in dry mass in response to zinc relative to the control, and error bars 

represent 95% CIs. Different letters indicate significant differences of computed CIs within each 

experiment. ND, not determined. 
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