Measuring tree water content with a portable, unilateral magnet

Shannan BLYSTONE

GERM, 13 June 2023

AgroResonance

A PAR

ALTERA

The future of forests as carbon sinks in a changing climate

- \rightarrow Climate change will bring :
- More extreme weather events (drought, etc)
- Increased temperatures

The water and carbon cycles are coupled

• Water is a reactant

 Water loss during transpiration +++

The future of forests as carbon sinks in a changing climate

• Water and carbon cycles coupled

• High water loss during transpiration

Water dynamics key to understanding the future of forests as carbon sinks

How to measure water dynamics

- Water content : Fresh/dry weights, NIRS, high-field NMR
- **Xylem flow** : Sap flow meters, porometers, gravimetric methods, isotopic tracing, high-field NMR
- **Phloem flow** : Aphids, ¹¹C PET imaging, high-field NMR

How to measure water dynamics

- Water content : Fresh/dry weights, NIRS, high-field NMR
- Xylem flow : Sap flow meters, porometers, gravimetric methods,

isotopic tracing, high-field NMR

• **Phloem flow** : Aphids, ¹¹C PET imaging, high-field NMR

However, all of these methods are either destructive, limited to the laboratory, or indirect

Advantages of MRI in the plant sciences

- Non-invasive
- Sensitive to ${}^{1}H \rightarrow$ water in biological systems
- Information about water movement in multiple water populations can be obtained (relaxometry)
- Multitude of information can be gathered with one instrument

Advantages of MRI in the plant sciences

- Non-invasive
- Sensitive to ${}^{1}H \rightarrow$ water in biological systems
- Information about water movement in multiple water populations can be obtained (relaxometry)
- Multitude of information can be gathered with one instrument

But typically restricted to the lab

A portable, unilateral device to study plants

The Nuclear Magnetic Resonance Mobile Universal Surface Explorer (NMR-MOUSE)

Taking the device into the field

The Nuclear Magnetic Resonance Mobile Universal Surface Explorer (NMR-MOUSE)

Taking the device into the field

The Nuclear Magnetic Resonance Mobile Universal Surface Explorer (NMR-MOUSE)

→ Is it quantitative ?

- 30 branches cut and measured over time as they dehydrated
- 6 species, including 2 functional types
- X-ray tomography scans performed to validate the location of the tissues
- Model of NMR signal as a function of water content
- 4 *in-situ* trees measured

Constructing the profiles

 CPMG sequence at each depth, with parameters: TE=102, TR=3000, scans = 4, NrEchoes = 128, resolution 100 μm

Constructing the profiles

Making the model

Making the model

Calculating Water Quantity in the NMR sensitive zone:

Water quantity (g) = Branch water content (g/cm³) X Volume of branch in sensor (cm³)

- Water content (g) was calculated by taking fresh and dry weights
- Volume (cm³) determined by taking 3D scans

Determing the actual depth of different tissues

Determing the actual depth of different tissues

Locating water peaks

Locating water peaks

Can we locate conductive tissues from profile peaks?

Can we locate conductive tissues from profile peaks?

But is quantitative?

Statistical Treatment :

- ANCOVA
- Collinearity between species and functional type as variables are nested
- Mixed model used :

Signal ~ Water Quantity * Species + (1|Branch)

Results of ANOVA :

	Df	Sum Sq	Mean Sq	F value	P-value
Water quantity	1	2.380	3.438	273.310	< 2e-16 ***
Species	5	0.145	0.039	3.127	9.323e-05 ***
Water quantity : Species	5	0.187	0.011	0.895	< 2e-16 ***

Species	Intercept	Slope
A. alba	101.732	309.724 ***

Species	Intercept	Slope	
A. Alba	101.732	309.724 ***	
B. pendula	594.149 ***	284.809 ***	

Species	Intercept	Slope
A. alba	101.732	309.724 ***
B. pendula	594.149 ***	284.809 ***
F. sylvatica	507.728 *	320.583 ***

Species	Intercept	Slope
A. alba	101.732	309.724 ***
B. pendula	594.149 ***	284.809 ***
F. sylvatica	507.728 *	320.583 ***
J. regia	1201.341 ***	191.983 ***

Species	Intercept	Slope
A. alba	101.732	309.724 ***
B. pendula	594.149 ***	284.809 ***
F. sylvatica	507.728 *	320.583 ***
J. regia	1201.341 ***	191.983 ***
P. abies	-446.083	392.784 ***

Species	Intercept	Slope
A. alba	101.732	309.724 ***
B. pendula	594.149 ***	284.809 ***
F. sylvatica	507.728 *	320.583 ***
J. regia	1201.341 ***	191.983 ***
P. abies	-446.083	392.784 ***
P. sylvestris	-210.90	358.59 ***

	Species	Intercept	Slope
	A. alba	101.732	309.724 ***
cies	B. pendula	594.149 ***	284.809 ***
A.alba	F. sylvatica	507.728 *	320.583 ***
F.sylvatica	J. regia	1201.341 ***	191.983 ***
J.regia P.abies	P. abies	-446.083	392.784 ***
P.sylvestris	P. sylvestris	-210.90	358.59 ***

Effects of species and functional type

- Spectrum of wood density between functional types
- The persian walnut, J. regia, is the most dense wood amongst the species, and it has the thickest bark zone (varying water content)

In-situ trees added to the model

Conclusions and perspectives

- Tree water content can be reliably measured with the NMR-MOUSE at the level of the species
- Conductive tissues can be detected as distinct water peaks on the NMR profile
- Additional *in-situ* measurements will help to validate these conclusions

<u>Acknowledgements</u>

AgroResonance

Join the project

• We are looking for a postdoctoral researcher to work

on this project

• The candidate will work on *in-situ* flow NMR with the

goal of measuring xylem and phloem fluxes

Normalizing for the volume of the measured slice

Treatment of Signal:

At each depth: slice amplitude/volume, where the volume is calculated:

$$v = 2\sqrt{R^2 - (R-d)^2} Sy$$

