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ASYNAPSIS 1 ensures crossover
fidelity in polyploid wheat by
promoting homologous
recombination and suppressing
non-homologous recombination

Chiara Di Dio1†, Heïdi Serra2†, Pierre Sourdille2

and James D. Higgins1*

1Department of Genetics and Genome Biology, Adrian Building, University of Leicester,
Leicester, United Kingdom, 2Genetics, Diversity and Ecophysiology of Cereals, Unité Mixte de
Recherche (UMR) 1095, The Institut National de la Recherche Agronomique (INRAE), Université
Clermont Auvergne, Clermont-Ferrand, France
During meiosis, the chromosome axes and synaptonemal complex mediate

chromosome pairing and homologous recombination to maintain genomic

stability and accurate chromosome segregation. In plants, ASYNAPSIS 1 (ASY1)

is a key component of the chromosome axis that promotes inter-homolog

recombination, synapsis and crossover formation. Here, the function of ASY1 has

been cytologically characterized in a series of hypomorphic wheat mutants. In

tetraploid wheat, asy1 hypomorphic mutants experience a reduction in

chiasmata (crossovers) in a dosage-specific manner, resulting in failure to

maintain crossover (CO) assurance. In mutants with only one functional copy

of ASY1, distal chiasmata are maintained at the expense of proximal and

interstitial chiasmata, indicating that ASY1 is required to promote chiasma

formation away from the chromosome ends. Meiotic prophase I progression is

delayed in asy1 hypomorphic mutants and is arrested in asy1 null mutants. In both

tetraploid and hexaploid wheat, single asy1 mutants exhibit a high degree of

ectopic recombination between multiple chromosomes at metaphase I. To

explore the nature of the ectopic recombination, Triticum turgidum asy1b-2

was crossed with wheat-wild relative Aegilops variabilis. Homoeologous

chiasmata increased 3.75-fold in Ttasy1b-2/Ae. variabilis compared to wild

type/Ae. variabilis, indicating that ASY1 suppresses chiasma formation between

divergent, but related chromosomes. These data suggest that ASY1 promotes

recombination along the chromosome arms of homologous chromosomes

whilst suppressing recombination between non-homologous chromosomes.

Therefore, asy1 mutants could be utilized to increase recombination between

wheat wild relatives and elite varieties for expediting introgression of important

agronomic traits.
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Introduction

The majority of sexually reproducing eukaryotes undergo

meiosis, a specialized cell division required to produce haploid

gametes from diploid progenitor cells. Meiosis is characterized by

the homologous recombination of genetic material between

chromosomes that is necessary to ensure accurate chromosome

segregation as well as create new combinations of alleles. In wheat,

meiotic recombination is initiated by ~2,000 programmed DNA

double-strand breaks (DSBs) (Gardiner et al., 2019), catalyzed by

SPO11-1/SPO11-2 (Benyahya et al., 2020; Da Ines et al., 2020; Hyde

et al., 2022). DSBs are repaired as crossovers (COs) when a

reciprocal exchange of DNA takes place between homologous

chromosomes (that are cytologically detected as chiasmata), or

non-crossovers (NCOs) when DSBs are repaired by non-

reciprocal exchange of DNA, via either the sister chromatid or

homologous chromosome as a template. In plants, ~85% of COs

form via the class I pathway that ensures every chromosome pair

receives at least one “obligate CO” so that homologous

chromosomes are tethered together at metaphase I and accurately

segregate during meiosis II (Higgins et al., 2004; Higgins et al.,

2008b; Osman et al., 2011). Class I COs are sensitive to interference

and therefore more likely to be spaced apart than by random chance

(Jones and Franklin, 2006). The class II pathway accounts for ~15%

of COs and is insensitive to interference (Berchowitz et al., 2007;

Higgins et al., 2008a; Lambing et al., 2017; Wang and Copenhaver,

2018; Desjardins S. D. et al., 2020). In wheat, the FANCM helicase

promotes class I COs as well as suppressing class II CO formation,

suggesting that the two CO pathways are intimately linked

(Desjardins et al., 2022).

In plants, inter-homolog recombination and the obligate CO

are promoted by the synaptonemal complex (SC), which also

imposes CO interference (Higgins et al., 2005; Sanchez-Moran

et al., 2007; Sanchez-Moran et al., 2008; Ferdous et al., 2012;

Chambon et al., 2018; Capilla-Perez et al., 2021; France et al.,

2021). The SC is an evolutionary conserved tripartite proteinaceous

structure that assembles and disassembles during meiotic prophase

I (Page and Hawley, 2004; Hughes and Hawley, 2020). The SC is

composed of two chromosome axes that mature into lateral

elements upon installation of the transverse filament proteins

(Page and Hawley, 2004; Gao and Colaiacovo, 2018). The core

components of the chromosome axes are ASYNAPSIS 1 (ASY1)/

PAIR2, ASY3/PAIR3, and ASY4 (Armstrong et al., 2002;

Nonomura et al., 2004; Yuan et al., 2009; Ferdous et al., 2012;

Chambon et al., 2018) as well as the transverse filament proteins

ZYP1/ZEP1 (Higgins et al., 2005; Wang et al., 2010; Barakate et al.,

2014). ASY1 possesses a conserved HORMA domain that is

predicted to bind to chromatin along with its interacting partners

p31COMET, ASY3, and ASY4 (Caryl et al., 2000; Armstrong et al.,

2002; Sanchez-Moran et al., 2007; Ferdous et al., 2012; Chambon

et al., 2018; Balboni et al., 2020). ASY1 also acts as a gene dosage-

dependent antagonist of telomere-led recombination in

Arabidopsis, thereby promoting interfering COs (Lambing et al.,

2020), although ASY1 immunoprecipitation experiments in wheat
Frontiers in Plant Science 02
suggest that the protein is more abundant toward the chromosome

ends (Tock et al., 2021).

Wheat is an allopolyploid crop in which COs predominantly

form toward the chromosome ends (Saintenac et al., 2009; Osman

et al., 2021; Higgins et al., 2022). It has evolved a meiotic program in

which homoeologous chromosomes rarely recombine due to the

Pairing homoeologous (Ph) 1 and 2 loci (Riley and Chapman, 1958;

Mello-Sampayo, 1971). TaZIP4-B2 gene in the Ph1 locus is required

for both promotion of homologous COs and restriction of

homoeologous COs in wheat/Aegilops variabilis hybrids (Rey

et al., 2017; Rey et al., 2018), while TaMSH7-3D in the Ph2 locus

is necessary for recombination partner selection (homologous vs.

homoeologous) by likely increasing the instability of homoeologous

recombination in wheat/Ae. variabilis hybrids (Serra et al., 2021). In

addition, reduced expression of ASY1 by RNAi in hexaploid wheat

generated high levels of multiple chromosome configurations at

metaphase I, implying loss of CO control and elevated

homoeologous recombination (Boden et al., 2009).

Here, cytological analysis of hypomorphic wheat asy1 TILLING

(Targeting Induced Local Lesions In Genomes) mutants has

revealed a delay in meiotic progression, loss of the obligate

chiasma, and ectopic recombination between multiple

chromosomes. Tetraploid wheat asy1 mutants crossed with

wheat-wild relative Ae. variabilis exhibit an increase in chiasma

formation, indicating that ASY1 is dosage-sensitive for promoting

accurate homologous recombination while suppressing non-

homologous recombination during meiosis.
Experimental procedures

Plant material and greenhouse conditions

Triticum turgidum ‘Kronos’ and Triticum aestivum ‘Cadenza’

were used as wild-type controls for experiments involving TILLING

mutant lines received from www.SeedStor.ac.uk. The Ensembl

Plants database (http://plants.ensembl.org) was used to identify

ASY1 genes: TtASY1-5A, TRITD5Av1G167820; TtASY1-5B,

TRITD5Bv1G159710; TaASY1-5A, TraesCS5A02G286500;

TaASY1-5B , TraesCS5B02G285800 ; and TaASY1-5D ,

TraesCS5D02G294100. TILLING mutants were screened by

BLAST search on the Wheat TILLING database (http://

www.wheat-tilling.com/): Ttasy1a, K0706; Ttasy1b-1, K0157;

Ttasy1b-2, K2071 (Krasileva et al., 2017); and Taasy1b, C0971

(Appels et al., 2018). To create hypomorphic mutants,

homozygous lines were crossed (K0706 Ttasy1a × K0157 Ttasy1b-

1 and K0706 Ttasy1a × K2071 Ttasy1b-2), while heterozygous

individuals from the F1’s (AaBb) were self-pollinated to create

F2’s. Wild-type Kronos and the Ttasy1b-2mutant line (K2071) were

crossed with Ae. variabilis (accession no. 26248, https://

www6 .c l e rmont . in rae . f r /umr1095_eng /Organ i sa t ion /

Experimental-Infrastructure/Biological-Resources-Centre; UUSS,

2n = 4x = 28) to produce Kronos/Ae. variabilis haploid hybrids

(ABUS, n = 28). Briefly, Kronos inflorescences were emasculated
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and pollinated with fresh Ae. variabilis pollen. Inflorescences were

then bagged to avoid cross-pollination, and seeds were collected

when mature. Plants were grown in soil-based compost (Levington

Advance Pot and Bedding M1 Compost) under greenhouse

conditions with a photoperiod of 16-h days light cycle at a

constant temperature of 22°C (day)/16°C (night) and relative

humidity ~60%.
Validating SNP mutations

To validate that the point mutations induced by ethyl

methanesulfonate treatment would be transcribed into mRNA,

total RNA was extracted from tetraploid wheat T. turgidum

‘Kronos’ and hexaploid T. aestivum ‘Cadenza’ inflorescences

using the ISOLATE II RNA Mini Kit (https://www.bioline.com/).

cDNAwas synthesized using the Tetro cDNA Synthesis Kit (https://

www.bioline.com/), followed by PCR with Q5® High-Fidelity DNA

Proofreading Polymerase (https://www.neb.uk.com/) with primers

TaASY1cDNAF and TaASY1cDNAR (Supplementary Table 1).

PCR ampl i cons wer e l i g a t ed in to pDr ive (h t tp s : / /

www.q i agen . com/ ) and Sange r s equenced (h t tp s : / /

eurofinsgenomics.eu/). Following validation, single-nucleotide

polymorphism (SNP)-specific primers were designed to amplify

individual TILLING lines for genotyping optimized by

gradient PCR.
Cytological procedures

Anther sizes were measured with a Nikon SMZ 745 dissecting

microscope and 10 mm/0.1 mm graticule. Chromosome spreads

were stained with DAPI and examined by light microscopy as

previously described (Higgins, 2013; Desjardins S. et al., 2020).

Nikon Ni-E and Eclipse Ci fluorescence microscopes equipped with

NIS elements software were used to image chromosomes. The

following primary antibodies were used for immunolocalization:

anti-TaASY1 guinea pig, 1:500 (Desjardins S. D. et al., 2020); and

anti-AtZYP1 rabbit 1:500 (Osman et al., 2018). Secondary

antibodies: goat anti-guinea pig Alexa Fluor 488 (https://

www.abcam.com/) and goat anti-rabbit DyLight 594 (https://

www.2bscientific.com/) were used at 1:200. Chiasma counts were

performed using NIS software, and significance (p adj < 0.01) was

established using pairwise Wilcoxon rank sum tests adjusted with

Bonferroni correction method (RStudio v1.2.5033). The karyology

of Kronos/Ae. variabilis hybrids was checked by aceto-carmine

chromosome spreads as previously described (Serra et al., 2021).
Statistical analysis

A chi-square test for analysis of meiotic progression in asy1

hypomorphic mutants was performed to test the association

between meiotic prophase I stages and anther lengths, and a

significant p-value was set less than 0.05. A statistical analysis of
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seed counts per plant comparing the primary inflorescence was

performed on Minitab 20 with a t-test two-sample distribution.
Results

Identification of wheat ASY1

ASY1 is a component of the meiotic chromosome axis that is

highly expressed in anthers during prophase I of meiosis (Boden

et al., 2009; Alabdullah et al., 2019; Tock et al., 2021; Jiang et al.,

2023). The wheat ASY1 coding sequences were cloned and

sequenced from tetraploid ‘Kronos’ and hexaploid ‘Cadenza’

cDNA (Supplementary Figure 1). A wheat consensus ASY1

protein sequence derived from the clones shares a high level of

sequence similarity to PAIR2 in Oryza sativa (80%), ASY1 in

Arabidopsis thaliana (54%), and ASY1 in Brassica oleracea (51%).

The polyploid wheat ASY1 homoeologous sequences share >96%

nucleotide identity and >94% amino acid identity (Supplementary

Table 2). ASY1 is located on the long arm of chromosome 5 in

tetraploid wheat and hexaploid wheat. A Phyre2 structural analysis

(Kelley et al., 2015) predicts that the wheat ASY1 proteins contain a

conserved N-terminal HORMA domain (100% prediction at

residues 6–236 for 5A and 3–231 for 5B and 5D) and a winged

helix DNA binding domain (96% prediction at residues 339–457)

(Figure 1 and Supplementary Table 3). ASY1-5A and ASY1-5B are

predicted to contain a Set3 PhD finger H3K4me3 domain (85%–

91% prediction for ASY1-5A and 21%–42% ASY1-5B at residues

317–400) but not detected in ASY1-5D (Supplementary Table 3).

The predicted domains and immunoprecipitation experiments

(Tock et al., 2021) indicate that ASY1 binds to DNA and

chromatin at the chromosome axis during wheat meiosis.
Wheat asy1 TILLING mutants

T. turgidum ‘Kronos’ and T. aestivum ‘Cadenza’ asy1 mutants

were identified in the wheat TILLING populations (Krasileva et al.,

2017; Appels et al., 2018). Two Kronos lines possessing a premature

STOP codon and one line containing a mutation at a splice donor

site that retained an intron and subsequent STOP codon were

sequenced and verified. The mutations are predicted to truncate and

create non-functional ASY1 proteins (Ttasy1b-1, 785 C > T, Q 307 >

STOP; Ttasy1b-2, 148 G > A, W 156 > STOP; Ttasy1a, 714 G > A, V

231 > STOP) (Figure 1 and Supplementary Figures 2–4). In

Cadenza, only one asy1 mutant on chromosome 5B was

identified, and this is predicted to disrupt the protein function

due to a splice donor site mutation and intron retention that led to a

STOP codon ((Taasy1b (C0971), 1195 G > A, P 254 > STOP))

(Figure 1 and Supplementary Figure 5). The asy1 transcripts were

sequenced from the TILLING lines to confirm that the mutations in

the genomic DNA led to stop codons in the coding sequences

(Supplementary Figures 2–5). As tetraploid Kronos contains four

ASY1 copies, a phenotypic analysis could be performed on

hypomorphic mutants: Ttasy1a (aaBB), Ttasy1b-1 (AAbb),
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https://www.bioline.com/
https://www.bioline.com/
https://www.bioline.com/
https://www.neb.uk.com/
https://www.qiagen.com/
https://www.qiagen.com/
https://eurofinsgenomics.eu/
https://eurofinsgenomics.eu/
https://www.abcam.com/
https://www.abcam.com/
https://www.2bscientific.com/
https://www.2bscientific.com/
https://doi.org/10.3389/fpls.2023.1188347
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Di Dio et al. 10.3389/fpls.2023.1188347
Ttasy1b-2 (AAbb), Ttasy1Ab (Aabb), Ttasy1aB (aabB), Ttasy1_1

(aabb), and Cadenza Taasy1b (AAbbDD). Seed-set per plant

significantly decreased from 22 ± 3 SD per plant in wild-type

Kronos (n = 10) to 16 ± 4 SD in Ttasy1a (n = 10), 15 ± 3 SD (n = 10)

in Ttasy1a/b, 8 ± 1 SD in Ttasy1Ab/aB (n = 10), and 0 in Ttasy1_1

(n = 10) as well as from 41 ± 1 SD in wild-type Cadenza (n = 10) to

35 ± 3 SD (n = 10) in Taasy1b (p < 0.001 Mann–Whitney)

(Supplementary Table 4). Since fertility is affected and ASY1 is a

known meiosis gene, this suggests that meiosis may be disturbed in

the mutants leading to infertile gametes. We therefore analyzed the

meiotic behavior of these mutants.
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Meiotic progression is delayed in asy1
hypomorphic mutants

Meiotic stages in wheat are relatively synchronous and correlate

with anther length (Shunmugam et al., 2018). Immunolocalization

of ASY1 and ZYP1 was performed on pollen mother cells from wild

type and asy1 hypomorphic mutants to determine if meiotic

prophase I progression was affected (Figure 2). In the wild type,

ASY1 forms linear stretches along the chromosome axes at

leptotene, and ZYP1 forms axis-associated foci in anthers 0.7 mm

in length (85% nuclei, n = 240) (Figure 2 and Supplementary
FIGURE 1

Schematic representation of wheat ASY1 coding regions and altered proteins from TILLING mutations. The coding regions of ASY1 and the Phyre2
predicted protein domains are shown relative to the TILLING mutations. The purple triangle represents a mutated splice donor site that retains an
intron, whereas the red triangles represent a stop codon.
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Figure 6) as previously reported (Sepsi et al., 2017; Osman et al.,

2021). At zygotene, ASY1 becomes depleted along the chromosome

axes concomitant with ZYP1 polymerization in anthers 0.8 mm in

length (90% nuclei, n = 240) (Figure 2 and Supplementary Figure 6)

until pachytene when ASY1 is present as a weak, diffuse signal in

anthers 0.9 mm in length (90% nuclei, n = 240) (Figure 2 and

Supplementary Figure 6). In the Ttasy1a and Ttasy1b mutants, the
Frontiers in Plant Science 05
ASY1 signal appears indistinguishable compared to the wild type at

leptotene, although protein quantities were not determined

(Figure 2). However, Ttasy1a and Ttasy1b leptotene nuclei were

only observed in 0.8-mm anthers (93%, n = 720, c2 test, p < 0.05,

Supplementary Table 5), compared to 0.7 mm in wild type (85%, n

= 240, c2 test, p < 0.05, Supplementary Table 5), suggesting that

prophase I progression was delayed. In the wild type, ZYP1
FIGURE 2

Meiotic prophase I progression in asy1 mutants. Chromosome axes were marked with ASY1 (green), the synaptonemal complex was marked with
ZYP1 (red), and chromosomal DNA was counterstained with DAPI (blue). Anther lengths (mm) were measured for each genotype and prophase 1
stage as shown in the top left corner for each image. Scale bar = 10 µm (Kronos wild type, Ttasy1Ab, and Ttasy1aB) and 20 µm (Ttasy1a, Ttasy1b-2,
and Ttasy1_1).
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localized as foci or short stretches in 0.7-mm anthers, but equivalent

stages were only observed in anthers 0.8 mm in length in Ttasy1a

and Ttasy1b (Figure S6). In the minimum ASY1 dose mutants

(Ttasy1aB and Ttasy1Ab), leptotene stages were detected in anthers

0.9 mm (95%, n = 480, c2 test, p < 0.05, Figure S6), indicating a

greater delay than the single Ttasy1a and Ttasy1b mutants

(Figure 2). Short stretches of ZYP1 were detected in 1.1-mm

anthers (n = 480), and in 50% of cells, ZYP1 failed to polymerize,

instead forming polycomplexes (Figure 2). Neither ASY1 nor ZYP1

was detected on meiotic chromosomes in 0.7–1.1-mm anthers in

Ttasy1_1 (n = 480), suggesting that it was a null asynaptic mutant.

ASY1 labeling at leptotene in Cadenza Taasy1b appeared

indistinguishable from the wild type, although protein levels were

not determined. The A and D copies are expected to be fully

functional, although the Set3 PhD finger H3K4me3 domain was

not detected in TaASY1-5D, and this could have a detrimental effect

(Figure S6). At zygotene, ZYP1 installation in Taasy1b occurred as

in the wild type, but polymerization was discontinuous and

temporally compromised (1.0 mm in 65% nuclei, n = 240 versus

0.8 mm in 85% wild-type nuclei, n = 240), indicating that a reduced

dose of ASY1 delayed meiotic progression in hexaploid wheat

(Figure S6).
Correct dosage of ASY1 is required for
crossover assurance

A cytological analysis was performed on the wild type and asy1

Kronos mutants with DAPI-stained metaphase I chromosome

spreads. Chiasmata ranged from 21 to 30 per nucleus in wild-type

Kronos, with a mean of 26 ± 2.2 (n = 50), and each of the 14 pairs of

chromosomes received at least one chiasma (Figure 3A). In Ttasy1a,

chiasmata ranged from 16 to 27 per nucleus with a significantly

lower mean (22 ± 2.8, n = 50) (pairwise Wilcoxon rank sum test, p <

0.01) (Table 1) compared to the wild type. Similarly, Ttasy1b-1 (n =

50) and Ttasy1b-2 (n = 50) exhibited a mean of 22 ± 2.8 and 23 ±

2.4, respectively (Figures 3A, 4A, 4B and Table 1). Chiasma

frequency for the Ttasy1a/b lines was not significantly different

from each other (pairwise Wilcoxon rank sum test, p adj > 0.05,

Ttasy1a, n = 50; Ttasy1b-1, n = 50; Ttasy1b-2, n = 50), indicating

that both A and B sub-genomes provide a similar, non-redundant

contribution of ASY1 (Supplementary Tables 6–12). Chiasmata

were significantly reduced in Ttasy1Ab (15.0, n = 50) and

Ttasy1aB (14.4, n = 50), and no chiasmata were observed in the

null mutant Ttasy1_1 (n = 50) (Figure 3A). Similarly, chiasmata

were significantly reduced in hexaploid wheat from 39 ± 1.6 (n = 50)

in wild type to 37 ± 3.5 (n = 50) in Taasy1b (two-sample t-test, p <

0.001, n = 50 Taasy1b and n = 50 Cadenza wild type) (Figure 4C, D,

Table 1, and Supplementary Table 13).

Chiasma position was also significantly altered in the asy1

hypomorphic mutants. In the wild type, the majority of

chiasmata formed distally to the centromere (57.5%, 15 ± 3),

followed by interstitial (31%, 8 ± 4) and proximal (12%, 3 ± 2)

(Figure 4E). In Ttasy1a/b, interstitial and proximal chiasmata were

reduced by 1% (n = 150), but in Ttasy1Ab/aB, where interstitial and

proximal chiasmata decreased from 8 to 1 per nucleus and from 3 to
Frontiers in Plant Science 06
0.9, respectively, compared to the wild type (n = 100) (Figure 4E). In

Ttasy1a/b, the proportions remained similar, although there was a

slight reduction in distal chiasmata (53%, t-test, ns) with a minor

increase in interstitial (32%, t-test, ns) and proximal chiasmata

(15%, t-test, ns). In Ttasy1Ab/aB, distal chiasmata were

predominant (84%, t-test, p adj < 0.001), followed by interstitial

(10%, t-test, p adj < 0.001), and the remaining 6% of chiasmata were

proximal (t-test, p adj < 0.001; Supplementary Tables 6-12)

(Figure 4E). These data indicate that ASY1 is required to create a

bias for promoting chiasma formation in the centromere proximal

and interstitial regions in wheat.

In all Ttasy1a/b and Ttasy1Ab/aB hypomorphic mutants, ring

bivalents (where at least one chiasma forms in each chromosome

arm) were significantly reduced (by 18%, 9 ± 2, n = 150, t-test, p adj <

0.001; and by 64%, 4 ± 3, n = 100, t-test, p adj < 0.001, respectively).

This was accompanied by a 33% (3.5 ± 2, n = 150, t-test, p adj < 0.001)

increase in rod bivalents (only one chiasma) in Ttasy1a/b, which

further increased by 1.9-fold (6.5 ± 4.2, n = 100, t-test, p adj < 0.001)

in Ttasy1Ab/aB (Figure 3A). Lastly, univalents (no chiasma)

significantly increased from 0.16 per nucleus in the wild type by

fivefold in Ttasy1a/b (1 ± 1, n = 150, t-test, p adj < 0.001) and by 20-

fold in Ttasy1Ab/aB (3 ± 5, n = 100, t-test, p adj < 0.001) (Figure 3A),

revealing loss of the obligate chiasma and an inability to maintain CO

assurance. Loss of the obligate chiasma resulted in chromosome mis-

segregation and chromosome bridges at anaphase I (Figure 3A).
ASY1 suppresses non-homologous
recombination

Ectopic recombination leading to multiple chromosome

associations was observed in all hypomorphic asy1 mutants

(Figures 3A, B). In Ttasy1Ab/aB, multiple chromosome

associations per nucleus were observed (0.18 ± 0.5, n = 100).

These were classified into three groups of which 44% were

tetravalents (4 chromosomes), 33% trivalents (3 chromosomes),

and 23% multivalents (more than 4 chromosomes). Multiple

chromosome associations were twofold more frequent in

Ttasy1Ab/aB than in Ttasy1a/b (0.08 ± 0.3, n = 150), of which

100% were tetravalents (n = 150). A meiotic cytological analysis was

also performed on the hexaploid wheat at metaphase I, revealing an

increase in multivalents from 0 in the wild type to 0.06 ± 0.2 (n =

100) in the Taasy1b mutant (p < 0.005) (Table 2).

To determine if the ectopic recombination observed in Kronos

and Cadenza asy1 hypomorphic mutants extended to more

divergent genotypes, crosses were made between Ttasy1b-2 and

wheat allotetraploid wild-relative Ae. variabilis. Fourteen bivalents

would be expected if Kronos and Ae. variabilis were capable of

forming the obligate chiasma, and 28 univalents would be expected

if chiasmata did not form (Figure 5A). In the Kronos wild type/Ae.

variabilis cross, univalents ranged from 22 to 28 with a mean of

26.93 ± 0.12, and bivalents ranged from 0 to 3 with a mean of 0.54 ±

0.06 (n = 155) (Table 3), indicating a low level of CO formation

between these divergent wheat genotypes. However, in Ttasy1b-2/

Ae. variabilis, the number of univalents decreased in range (16–28,

n = 155), with a 3.44-fold increase in the number of bivalents to 1.86
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± 0.1 (p < 0.001 Mann–Whitney) (Figures 5A–C). The mean

chiasma frequency significantly increased in Ttasy1b-2/Ae.

variabilis by 3.75-fold from 0.55 (n = 155) to 2.06 (n = 152)

chiasmata per nucleus with a range from 0 to 7 (p < 0.001
Frontiers in Plant Science 07
Mann–Whitney) (Figures 5B, C, Table 3 and Supplementary

Tables 14–18). This suggests that ASY1 suppresses CO formation

between divergent chromosomes in a gene dosage-

dependent manner.
A

B

FIGURE 3

Cytological atlas of asy1 mutants. (A) DAPI-stained meiotic stages from leptotene to anaphase I illustrating phenotypic effects of the asy1
hypomorphic mutants. Yellow circles highlight univalents, yellow stars indicate chiasmata in multivalents, and red arrows highlight lagging
chromosomes. Scale bar = 10 µm. (B) Cartoon of chiasma configuration of wheat. The panel depicts bivalent shapes (ring and rod) and trivalent and
tetravalent configurations at metaphase I, including points of chiasmata (black crosses) along the chromosomes (blue and pink).
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TABLE 1 Chiasma frequency and distribution in wheat asy1 mutants.

Genotypes
Distal chiasma Interstitial chiasma Proximal chiasma Total

Mean SD % Mean SD % Mean SD %

Kronos WT 15.04 3.34 57.5 8.08 3.74 30.9 3.02 2.02 11.6 26.1

Ttasy1a 12.32 3.37 54.9 7.28 2.85 32.4 2.84 2.16 12.7 22.4

Ttasy1b-1 11.8 3.75 52.6 7.12 3.2 31.8 3.5 2.22 15.6 22.4

Ttasy1b-2 10.32 3.5 45.5 8.7 3.12 38.3 3.68 2.24 16.2 22.7

p-Value 0.00 ns ns

Ttasy1Aa 12.66 7.44 84.4 1.42 2.2 9.5 0.92 1.48 6.1 15.0

Ttasy1aB 12.06 7.26 83.5 1.5 2.16 10.4 0.88 1.48 6.1 14.4

p-Value 0.01 0.00 0.00
F
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Chiasma frequency at meiotic metaphase I was scored for each genotype, and the mean and standard deviation (SD) are presented. A t-test two-sample distribution was applied to define the
statistical significance (p < 0.05).
A B

D

E

C

FIGURE 4

Hypomorphic asy1 mutants display dosage-dependent reduction in chiasma frequency. Bar charts illustrate the mean values of ring bivalents (sky
blue), rod bivalents (dark blue), univalents (red), and multivalents (purple) per cell among (A) Kronos wild type and Ttasy1 mutants and (C) Cadenza
wild type and Taasy1b mutant. Legend is at the bottom. (B) Box plots exemplify chiasma frequency per male meiocyte among Kronos wild type and
Ttasy1 mutants. Significant differences are indicated by pairwise Wilcoxon rank sum test (signif. codes: 0 "****" 0.0001 “***” 0.001 “**” 0.01 “*” 0.1
“ns”). The adjustment methods include the Bonferroni correction. (D) Box plots exemplify chiasma frequency per male meiocyte between Cadenza
wild type and Taasy1b mutants. Results of the two-sample t-test are shown (p < 0.001). (E) Position of chiasmata (distal, interstitial, proximal) along
the chromosomes in Ttasy1 mutants. Legend is at the bottom. Results of the two-sample t-test are shown (p < 0.001). Significant differences are
indicated by pairwise Wilcoxon rank sum test (signif. codes: 0 "****" 0.0001 “***” 0.001 “**” 0.01 “*” 0.1 “ns”).
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Discussion

ASY1 maintains CO assurance and
promotes CO formation away from the
chromosome ends

Chiasmata were reduced concomitantly with gene dosage in the

Kronos hypomorphic asy1 mutants (WT AABB = 26 chiasmata/

cell; AAbb/aaBB =22 chiasmata/cell; Aabb/aaBb = 15 chiasmata/

cell; and the null mutant aabb = 0 chiasmata/cell). The asy1 null

mutant phenotype is consistent with the ASY1 rice ortholog pair1

mutant where only univalents were observed (Nonomura et al.,

2004). Kronos possesses 14 pairs of chromosomes, so the mean

number of chiasmata in the hypomorphic mutants is sufficient to

ensure the obligate CO, although this is not maintained due to the

range around the mean, and also, chiasmata are not equally

distributed between the chromosomes. We were unable to

determine if this was stochastic or that certain chromosomes were

more likely to be affected due to the unreliability of oligonucleotide

fluorescence in situ hybridization (FISH) probes to barcode the

chromosomes (data not shown).

The cytological data reveal that wheat ASY1 promotes chiasma

formation proximal to the centromeres and along the chromosome

arms. This is remarkably similar to previous reports in A. thaliana

where ASY1 promotes recombination away from the telomeres in a

dosage-dependent manner and is essential for the obligate CO

(Sanchez-Moran et al., 2007; Lambing et al., 2020; Pochon et al.,

2022). In Arabidopsis, barley, and wheat, telomeres cluster during

leptotene (Armstrong et al., 2001; Higgins et al., 2012; Sepsi et al.,

2017), thus providing an early opportunity for nascent strand

invasion events in the sub-telomeric regions to precede those in

interstitial regions. These early contacts are likely to bias

recombination maturation in the distal regions and prevent

further COs from forming in the interstitial regions by CO
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interference (Higgins et al., 2014). Therefore, ASY1 could alleviate

this early bias by forming axial bridges between chromosomes at

greater distances to promote strand invasion, thereby enabling CO

formation away from the chromosome ends.
Synapsis is dependent on ASY1

ASY1 protein levels were not quantified, but the ASY1 axis

signal by immunofluorescence did not appear different in the

hypomorphic mutants when compared to the wild type. However,

a significant delay in prophase I progression in the hypomorphic

mutants associated with a reduction in chiasmata may reflect a

lower rate of ASY1 protein production that eventually reached wild-

type levels. As no ASY1 protein was detected on the axes in the null

asy1mutant, it is unlikely that truncated forms of the ASY1 proteins

would influence the phenotype in these mutants as dominant

negatives. The delay in ZYP1 loading at zygotene is also

associated with reduced ASY1 dosage in the hypomorphic

mutants. Incomplete ZYP1 polymerization in Ttasy1a/b and its

total absence in Ttasy1Ab/aB and Ttasy1_1 led to asynchronous

meiotic progression that arrested at pachytene and diplotene. In

barley, ZYP1 is required for ~85% COs (Barakate et al., 2014), so a

delay in synapsis may have had an additive effect in the wheat asy1

mutants on chiasma formation as well as loss of function of ASY1 in

promoting interhomolog recombination.
How does ASY1 promote and suppress
COs in wheat?

A role for ASY1 in preventing ectopic recombination during

meiosis was previously reported (Boden et al., 2009), which is

supported by our data. In addition, wheat ASY1 also promotes
TABLE 2 Chromosome associations in wheat asy1 mutants.

Genotypes
Univalent pairs Bivalent (rod) Bivalent (ring) Chiasmata Multivalents

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD

Kronos WT 0.16 ± 0.37 2.6 ± 1.67 11.24 ± 1.66 26.14 ± 2.18 0

Ttasy1a 0.94 ± 0.1 3.82 ± 2.26 9.12 ± 2.45 22.44 ± 2.79 0.08 ± 0.27

Ttasy1b-1 0.98 ± 1.02 3.50 ± 2.14 9.42 ± 2.29 22.48 ± 2.80 0.06 ± 0.24

Ttasy1b-2 0.80 ± 0.81 3.74 ± 1.59 9.28 ± 1.90 22.58 ± 2.44 0.08 ± 0.27

Ttasy1Ab 3.44 ± 5.26 6.18 ± 4.29 4.04 ± 3.71 15.14 ± 8.40 0.18 ± 0.48

Ttasy1aB 3.56 ± 5.27 6.30 ± 4.22 3.80 ± 3.57 14.58 ± 8.16 0.18 ± 0.48

Ttasy1_1 14 ± 0 0 0 0 0

p-Value 0.00 0.00 0.00 0.00 0.00

Cadenza WT 0.14 ± 0.40 2.44 ± 1.43 18.42 ± 1.72 39.48 ± 1.55 0

Taasy1b 0.82 ± 0.94 3.02 ± 2.24 17.08 ± 2.80 34.24 ± 10.74 0.06 ± 0.24

p-Value 0.00 0.00 0.00 0.00 0.00
Chromosome configurations at meiotic metaphase I were scored for each genotype, and the mean and standard deviation (SD) are presented. A t-test two-sample distribution was applied to
define the statistical significance (p < 0.05).
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A

B C

FIGURE 5

Ttasy1b-2/Aegilops variabilis exhibits increased chiasma frequency at metaphase I. (A) Metaphase I spread of Kronos wild type/Ae. variabilis showing
28 univalents and Ttasy1b-2/Ae. variabilis mutants forming three non-homologous bivalents. Asterisks indicate rod bivalents. Scale bar = 10 µm. (B)
Bar chart illustrates the mean values of ring bivalents (sky blue), rod bivalents (dark blue), univalents (red), and multivalents (purple) per cell among
Kronos wild type/Ae. variabilis and Ttasy1b-2/Ae. variabilis mutants. Legend is at the bottom. (C) Box plot exemplifies chiasma frequency per male
meiocyte among Kronos wild type/Ae. variabilis and Ttasy1b-2/Ae. variabilis mutants. A two-sample t-test was applied to define the statistical
significance between wild type/Ae. variabilis and Ttasy1b-2/Ae. variabilis mutant (signif. codes: 0 “****”).
TABLE 3 Chiasma counts of Kronos wild type/Aegilops variabilis and Ttasy1b-2/Ae. variabilis mutants.

Genotypes Anther
Univalents
(mean ±
SEM)

Bivalents (rod)
(mean ± SEM)

Bivalents (ring)
(mean ± SEM)

Multivalents
(mean ±
SEM)

Chiasma fre-
quency (mean ±

SEM)
Mean Fold

increased

Kronos WT/
Ae. variabilis

1 (n =
50)

26.96 ± 0.20 0.52 ± 0.10 0 0 0.52 ± 0.10 0.55

(22–28) (0–3) (0–3)

2 (n =
50)

26.80 ± 0.21 0.56 ± 0,10 0.04 ± 0.03 0 0.64 ± 0.12

(22–28) (0–3) (0–1) (0–3)

(Continued)
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recombination along the chromosome arms to assuage the

telomere-led bias, phenotypically similar to ASY1 in Arabidopsis.

Therefore, how does ASY1 promote and suppress COs in wheat?

ASY1 may be required to provide a minimum number of

interhomolog axial bridge contact points between chromosomes

in the pairing process, thereby ensuring accurate fidelity so that the

homologous chromosomes can synapse and recombine. It is

possible that stronger associations would form between

homologous chromosomes rather than homoeologous

chromosomes due to the stringency of base pairing and hydrogen

bonding of the single-end invasions, promoted by ASY1 and

DMC1. If the minimum number of contact points is reduced

below a threshold, such as what could happen in the asy1

hypomorphic mutants, then the fidelity of chromosome

recognition may be impaired leading to ectopic recombination in

the tetraploid/hexaploid mutants and increased chiasmata in asy1/

Ae. variabilis. The delay in meiotic progression in the asy1

hypomorphic mutants may reflect a surveillance system

performing sub-optimally that is required to monitor accurate

pairing and ensure that synapsis initiates between homologous,

rather than homoeologous chromosomes.
Does ASY1 share the characteristics of
pairing homoeologous loci in wheat?

The pairing homoeologous (Ph) loci in wheat negatively act on

recombination between chromosomes of diverged species. Here, we

show that the mean chiasma frequency increased by 3.75-fold in

Kronos Ttasy1b-2/Ae. variabilis when compared to wild type/Ae.

variabilis, indicating that ASY1 suppresses recombination between

divergent chromosomes. This is similar to the Ph loci, although to a

lesser extent as chiasmata increased by 8.3-fold/cell in Ph1 (zip4 5B)

and up to 5.5-fold/cell in Ph2 (msh7-3D) hexaploid wheat mutants
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when crossed with Ae. variabilis. TaASY1-5B is located on the long

arm of chromosome 5, separated by 33.5 Mb of DNA from the class

I CO gene ZIP4-5B (Rey et al., 2017; Martıń et al., 2018). The novel

duplication of ZIP4 on chromosome 5B is indicative of adaptive

evolution, whereas there are no obvious hallmarks of adaptation at

the ASY1 5B locus (although this requires further investigation).

However, phenotypic similarities exist between Ph1 and asy1 such

as an increase in homoeologous recombination and a delay in

synapsis. Pochon et al. (2022) reported that not all MLH1 foci

maturate into COs in Arabidopsis asy1 mutants, reminiscent of the

Ph1 phenotype, suggesting a possible association between asy1 and

Ph1 (Martıń et al., 2014; Martıń et al., 2017; Pochon et al., 2022).

Moreover, in ph1b, localization of ASY1 was perturbed, adopting a

spiral-like pattern during zygotene and pachytene (Boden et al.,

2009). Surprisingly, no multivalents were observed in Tazip4-B2

mutant lines, whereas they are observed in ph1b at a low frequency

(trivalents 0.2% and tetravalents 0.37%) (Rey et al., 2017) and in the

Taasy1 5B mutant line.

The chromosome axis has been implicated in adaptation to

meiotic recombination in autotetraploid Arabidopsis arenosa and

Arabidopsis lyrata. ASY1 and ASY3 alleles are under selection in

these tetraploids that distalize chiasmata to the chromosome ends

and reduce their number (Morgan et al., 2020; Seear et al., 2020).

This implicates ASY1 as a major gene required to stabilize both

allopolyploid and autopolyploid meiotic recombination. It also

raises the potential to combine zip4 5B and asy1 (5A, 5B, or 5D)

to increase introgression from wheat wild relatives.

In conclusion, this study provides further support for the role of

ASY1 in controlling CO number and position as well as CO

assurance in plants. The dosage sensitivity of ASY1 in wheat is

similar to the haplo-insufficiency reported in Arabidopsis (Lambing

et al., 2020), suggesting that ASY1 performs a conserved role in both

diploid and polyploid species. The fidelity of accurate chromosome

pairing is reduced in the hypomorphic asy1 wheat mutants, leading
TABLE 3 Continued

Genotypes Anther
Univalents
(mean ±
SEM)

Bivalents (rod)
(mean ± SEM)

Bivalents (ring)
(mean ± SEM)

Multivalents
(mean ±
SEM)

Chiasma fre-
quency (mean ±

SEM)
Mean Fold

increased

3 (n =
55)

27.02 ± 0.19 0.49 ± 0.10 0 0 0.49 ± 0.10

(24–28) (0–2) (0–2)

Ttasy1b-2/Ae.
variabilis

1 (n =
51)

23.92 ± 0.35 1.86 ± 0.17 0.18 ± 0.07 0 2.22 ± 0.20 2.06 3.75

(18–28) (0–5) (0–2) (0–6)

2 (n =
50)

24.26 ± 0.40 1.58 ± 0.19 0.26 ± 0.07 0.02 ± 0.02 2.18 ± 0.25

(16–28) (0–6) (0–2) (0–1) (0–7)

3 (n =
51)

24.57 ± 0.32 1.65 ± 0.16 0.04 ± 0.03 0.02 ± 0.02 1.78 ± 0.17

(18–28) (0–5) (0–1) (0–1) (0–6)

p-Value 0.00 0.00 0.00 ns ns 0.00 0.00
f

Chromosome configurations were scored for each cell in individual anthers for each genotype, and the mean, standard error of the mean (SEM), and range are presented. A t-test two-sample
distribution was applied to define the statistical significance (p < 0.05) between WT/Kronos/Ae. variabilis and Ttasy1b-2/Ae. variabilis.
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to ectopic recombination This indicates that ASY1 plays a major

role in chromosome recognition and may bias recombination

toward the homolog rather than homoeologous chromosomes by

monitoring DNA sequence homology during stable strand invasion.

Thus, wheat hypomorphic asy1 mutants could provide a tool to

enhance the introgression of agronomically important traits from

wheat wild relatives into elite varieties.
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