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Abstract

The nature of fishing activities is such that marine habitats can
be deteriorated when employing destructive fishing gear. This makes
even more complex the determination of sustainable fishing poli-
cies and has led some authors to propose dynamic models which
take into account this habitat degradation. In this work, we ana-
lyze in detail one of these models, an extension of the single-species
Gordon-Schaefer model to two state interrelated variables: stock of
fish and habitat. The model assumes that stock and carrying capac-
ity are positively linked, and that the fishing activity has a direct
and negative impact on the carrying capacity. We extend and char-
acterize Clark’s most rapid approach optimal solution to this case.

Keywords: Bio-economic models, Gordon-Schaefer model, Marine habitats,
Fishery management, Singular Control

1 Introduction

This paper focuses on the problem of habitat degradation, that is one of
the most important causes of the over-exploitation of marine resources: see,
e.g., Barbier (2000), Fluharty (2000), Kaiser and de Groot (2000), Botsford
et al. (1997). See also Auster and Langton (1999), Barbier and Strand (1998),
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Barbier et al. (2002) for practical applications. This literature highlights the
interdependent relationship between commercial fishing and fish habitats. In
one way habitats are deteriorated by fishing activities. This reduction of
habitats in turn leads to a reduction in the growth rate of the fish stock.

A number of papers have tried to model some aspects of the two-way
relationship between fish stock and the habitat stock. Among those, and at the
origin of the present work, the paper Long, Zaccour, and Tidball (2020) takes
into account an interrelated fishery-habitat model with myopic agents that act
non-cooperativelly and shows that there exists a steady-state solution to the
planner’s problem that can be supported by different tax schemes. The model
assumes that the damage of fishing on the environment is proportional to
harvest (effort times stock of fish). Habitat evolves in time following a logistic
growth function and affects both the stock of fishing via the carrying capacity
and the natural growth. Profit of fishermen are revenue (price times harvesting)
minus a cost that is quadratic in the effort. In this model the planner’s problem
and the definition of the tax schemes are only treated at the steady state
owing to the lack of tractable optimal social planner solution. Being concerned
about the lack of information on the optimal dynamic path, Professor Long
suggested, in one of the last discussions, to develop a simpler model in order
to obtain more analytical results, while keeping the main ingredients about
the relation between stock of fish and habitat.

1.1 Purpose and Contribution

Following this objective, we study the dynamic controlled model specified by:

Ẋ = rX(1− X

K
)− qEX, K̇ = ρK(1− K

K
)− βEK, (1)

where X is the stock, K is the carrying capacity and E is the fishing effort.
This is a simplification of the model in Long, Zaccour, and Tidball (2020)
by assuming that the natural growth rate is now constant, and a modifica-
tion since the damage of fishing on the environment is now proportional to
effort, not to harvest. In addition, we will remove the quadratic part from the
fisherman’s revenue to end up with a linear function of effort.

Thus simplified, the model can also be seen as a direct extension of Clark’s
model (Clark (1990)), to which it reduces by a proper choice of parameters
and initial values. It is well known that the solution to Clark’s model is a
“most rapid approach” path leading to an optimal extraction maintaining the
resource at an optimal level. By selecting a model linear in the control variable
E, we expect the solution to be similar in nature, with possibly an explicit
expression.

We start (Section 2) with an extension of the standard singular control
model to two variables: stock and carrying capacity, with general growth func-
tions. We derive first-order optimality equations, identify a singular curve in
the state space (Proposition 1), and compute the optimal singular extraction
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(Proposition 2). Proposition 4 describes how non-singular trajectories connect
to the singular one. In Proposition 3, we consider the particular case where the
fishing effort does not impact the carrying capacity, which nevertheless evolves
over time (e.g. when β = 0 in (1)). In that case, the equation of the singular
curve is obtained explicitly.

We then specialize the growth functions to the logistic form of model (1)
(Section 3). We describe the set of possible steady states (Lemma 1), and
provide results on their existence and on their properties (Lemma 2). Explicit
formulas for non-singular trajectories are derived in Section 3.2 and the special
case β = 0 is analyzed in Section 3.3.

Finally, we present numerical illustrations in which the pieces of analysis
are glued together to provide a global solution to the optimization problem
(Section 4). We conclude with a summary and perspectives in Section 5.

1.2 Literature

We review now related models and results of the literature and their
relationship with the present paper,

The theory of optimal management of fisheries classically refers to the
“Gordon-Schaefer model”. In this model, the stock of fish X is endowed with
a natural dynamics Ẋ = F (X) which is modified by the fishing effort E to
become Ẋ = F (X)−H(X,E). In this representation,H is the harvest function,
depending on stock and effort and taking into account the “catchability” of fish.
The economic part of the model is represented by a profit function P (X,E)
and its optimization, either over time, or at the steady-state of the system.

The general purpose for extending the standard model with an explicit
consideration of habitat, is to propose the implementation of a policy apt at
achieving a given economic and/or ecological objective. Some contributions
are concerned with the use of different fishing technologies as in Nichols et al.
(2018b). Others consider the deployment of a tax system to combat the tragedy
of commons, as in Long et al. (2020). Models involving a spatial component
aim in particular at deciding if managing marine reserves is economically bene-
ficial/optimal or not Moeller and Neubert (2013); Nichols et al. (2018a); Kelly
et al. (2019), or study the implementation of a quota system as in Holland
and Schnier (2006). In contrast, the primary purpose of the present paper is to
explore how far one can go in the explicit solution of a model involving stock
and habitat as variables. We leave a detailed parametric analysis and potential
applications to further studies.

Taking habitat into account in this standard model has been done princi-
pally in two ways.1 The first one is to consider habitat as a parameter that
affects the intrinsic growth function F (the bio-physical part), the harvest
function, or the profit function. Foley et al. (2012) review this part of the bio-
economic literature and discuss how habitat can be embedded in the model
by affecting growth rate, carrying capacity or catchability parameters. More

1A third way, appearing recently in Poulton et al. (2023), links directly habitat quality and
fishing effort.
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recent developments in this family of models include the paper by Moeller and
Neubert (2013) which takes into account spatial features in the growth rate
of the resource. A general conclusion of this branch of the literature is that
the effect of fishing on habitat should not be neglected, and this calls for an
explicit modeling of this dynamic effect.

Accordingly, a second family of papers endows the habitat, represented by
the carrying capacity of the stock, with its own dynamics. This dynamics is
negatively affected by the fishing effort. Udumyan (2012) reviews and compares
some of these models, which vary in the assumptions on the natural dynamics
of stock and habitat, as well as on the effect of fishing on habitat. The model (1)
we will analyze is referred to as “modelH2” in this reference. It is characterized
by two assumptions concerning the dynamics of the habitat, represented by
the carrying capacity, which we discuss now.

One assumption is that the natural dynamics of the habitat is governed
by a logistic growth function. This appears to be a natural, first-approach
assumption if this habitat is itself a living stock submitted to resource con-
straints. In addition to Udumyan (2012), the assumption is present in Nichols
et al. (2018a,b) (in discrete-time models) and Kelly et al. (2019).

The second assumption is that the reduction rate in carrying capacity due
to the habitat damage caused by fishing is assumed to be proportional to
fishing effort, and not to harvest as in e.g. Armstrong et al. (2017); Kahui
et al. (2016); Vondolia et al. (2020); Long et al. (2020). This assumption is also
made in Nichols et al. (2018a,b); Kelly et al. (2019); Poulton et al. (2023). It
is justified by the fact that trawling causes the damage to some habitats (see
e.g. Sainsbury et al. (1993), cited by Turner et al. (1999)), increasingly with
the surface of fishing gear, but independently of the actual quantity of fish
caught.

The paper Kelly, Neubert, and Lenhart (2019) makes these two assump-
tions in a continuous-time model as we do, but also considers the spatial
dimension of the problem and its profit function involves a quadratic func-
tion of effort. However, it reduces to (1) when the parameters of the spatial
component and the profit function are set appropriately.

Although model (1) is already present in the literature, the analysis we
make of it is different from previous ones. Indeed, in Udumyan (2012) the
analysis mostly concentrates on the steady-state analysis of the Bioeconomic
Equilibrium, the Maximum Sustainable Yield and the Maximum Economic
Yield. The dynamic optimization problem in infinite horizon is not solved.
Likewise, the spatial model of Kelly et al. (2019) leads to optimality conditions
which are solved numerically.

By extending Clark’s singular model to two state variables, we aim at
identifying necessary conditions, and possibly closed-form solutions which can
enjoy bioeconomical interpretations, and also serve as benchmark for numerical
solutions of more general models.
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2 The general model

In this section, we present the general model we study in this paper, and the
general results that can be stated. In the following sections, we shall specify
functional forms for the dynamics and derive more precise results.

2.1 Dynamics and control

We consider the case of one representative agent managing a fishery. This
agent takes into account the effect of fishing on the resource and on the habitat
when maximizing his infinite-horizon discounted utility. An increase in fishing
effort triggers two different effects in the dynamics. Firstly, an increase in the
current period’s aggregate fishing effort will reduce the future fish stock and
thus lower the next period marginal product of effort. Secondly, this increase
in fishing effort will have a negative effect on the habitat, which in turn leads
to a lower stock of fish in the future (through the adverse effect of reduced
habitat on spawning). Following this idea the dynamic model is:

Ẋ = F (X,K)− EX (2)

K̇ = G(K)− βEK (3)

where F,G are the growth functions of X (stock of fish) and K (carrying
capacity) respectively, β is a positive constant that measures the destructive
effects of fishing on the habitat, and the function E(·) is a control variable (E
is the fishing effort, EX is the harvesting).

The optimization problem is

max
E(·)

∫ ∞

0

e−δt(p− c(X)) EX dt (4)

where E(·) belongs to the class of measurable functions such that 0 ≤ E(t) ≤ E
for all t ≥ 0. The specification of the profit per unit of harvest is p − c(X).
The parameter p is a fixed price and c(X) is a unit cost decreasing in X. For
compactness of notation we shall write P (X) = (p − c(X))X: then P (X) is
the net marginal profit per unit of effort. Finally, δ is the discount rate.

The model thus specified contains as particular case the case where β = 0.
This is the case where fishing does not damage the habitat. It occurs for
instance when fishermen use a respectful technology (as in Nichols et al.
(2018b)) or inside a reserve (as in Nichols et al. (2018a)). In that situation, the
carrying capacity K(t) evolves independently of the control E(t). For instance,
it may be recovering from a degraded state after some change of technology
or some moratorium on fishing. It turns out that more analytical results can
be obtained in this case. Of course, the ultimate objective of the paper is to
understand the case where damage on the habitat does occur. Fortunately,



Springer Nature 2021 LATEX template

6 Dynamic fishing with endogenous habitat damage

the analytical solution of β = 0 helps reveal the general structure of the solu-
tion when β > 0, since these solutions are qualitatively similar. It may also be
useful for testing the numerical simulations.

The model of Clark (1990) is itself a particular case of the case β = 0, when
K(t) = K is constant: either because G = 0 (no dynamics at all) or because
G(K(0)) = 0 (for instance in the logistic growth model (1) if K(0) = K).
Nevertheless the case β = 0 cannot be reduced to Clark’s analysis since when
the carrying capacity evolves, this affects the growth rate of fish. If the initial
carrying capacity is low (less than its steady state K) this must induce the
fisherman to harvest less than in the case with constantK. The contrary occurs
when the initial carrying capacity is high.

2.2 First-order conditions

We derive here the first-order conditions with general growth functions. We
shall study specifically the case where the growth is logistic in Section 3.

The Hamiltonian of the problem is:

H = P (X)E+λX (F (X,K)− EX)+λK (G(K)− βEK)+γEE+µE(E−E) ,

where λX and λK are the adjoint variables of X and K respectively, and γE ,
µE the Lagrange multipliers for the constraints on effort E. From standard
theorems (see e.g. Seierstad and Sydsæter (1987), Chapter 6), the adjoint vari-
ables can be assumed to be continuous functions of time. Then the necessary
first-order conditions are:

∂H
∂E

= 0 = P (X)−XλX − βKλK + γE − µE (5)

λ̇X = δλX − ∂H
∂X

= δλX − EP ′(X)− λX (FX(X,K)− E) (6)

λ̇K = δλK − ∂H
∂K

= δλK − λXFK(X,K)− λK (G′(K)− βE) , (7)

at every time instant where E(·) is continuous. Here and in the following, FX

and FK denote the partial derivatives of function F with respect to variables
X and K. Complementarity conditions include γE ≥ 0 and µE ≥ 0, and if
γE > 0 then E = 0 and if µE > 0, then E = E. Considering (5), we are led to
introduce:

γE − µE = χ := XλX + βKλK − P (X) . (8)

From this, a rule can be sketched for the optimal control E(·), as follows.

Proposition 1 (Optimal control) On any optimal trajectory, we have necessarily

E(t) =


0 if χ(t) > 0

E if χ(t) < 0

some E ∈ [0, E] such that χ(t) = 0.
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This structural result is independent from the growth functions and the
specific functional form taken by P (X). As a consequence, optimal trajectories
will necessarily consist of segments where either of the three cases occur. In
the following Section 2.3 we focus first on the third case, the “singular” one. In
Section 2.4, we consider the pieces of optimal trajectories satisfying the other
conditions.

2.3 The singular curve χ ≡ 0

Proposition 1 opens the possibility that optimal trajectories may be such that
χ(t) ≡ 0 at least for some interval of time. We call such trajectories singu-
lar trajectories, and we call the corresponding curve in the (K,X) plane the
singular curve.

In this paragraph, we investigate the properties of this singular curve χ = 0,
which is central to the solution of the optimization problem. For such a control
problem, it is expected that the optimal control and the corresponding adjoint
variables can be expressed as a feedback of the state. The following results
exhibit explicit formulas for this. In Proposition 2, the result is general. In
Proposition 3, the additional assumption that β = 0 is made, and more precise
results are obtained.

The property at the origin of these results is that the functions χ(t) and
χ̇(t) do not depend formally on the control, as shown in Equation (37) of
Appendix A, where both propositions are proved.

Proposition 2 If an optimal trajectory is constrained to stay on the curve defined by
χ = 0, then: there exist two functions φ(K,X) and ψ(K,X), explicitly constructed,
such that the optimal control is E(t) = φ(K(t), X(t))/ψ(K(t), X(t)).

Although Proposition 2 provides explicitly the value of the singular feed-
back control, it provides neither the equation of the singular curve, nor clear
interpretations. It is nevertheless useful for testing numerical algorithms for
this general case and it introduces elements needed for describing how opti-
mal trajectories connect to the singular curve in Proposition 4. When β = 0
the following Proposition 3 does provide explicitly the singular curves and
interpretations.

Proposition 3 Assume β = 0. If an optimal trajectory is constrained to stay on the
curve defined by χ = 0, then:

a) the following relations hold

λX =
P

X
= p− c(X) (9)

δ = FX + F
P ′X − P

PX
. (10)
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b) Let

θ(X,K) = δP − FP ′ + P

(
F

X
− FX

)
.

The optimal control on this piece of trajectory is given by:

E =
F

X
+
G

X

θK
θX

. (11)

Proposition 3 can be interpreted referring to Clark’s Most Rapid Approach
(Clark, 1990, Section 2.6). Equation (10) is the equation of the singular curve
in the (K,X) plane. Clark’s singular solution is solution of Eq. (2.16) op. cit.:
δ = F ′−Fc′/(p− c). It is easily checked that for each K, equation (10) solved
for X gives exactly this singular solution, so that it is optimal to maintain X
at this solution as K(t) evolves. To achieve this, the optimal harvest must be
EX = F +GθK/θX according to (11). We find the optimal harvest EX = F
of Clark when K is constant (or equivalently G = 0).

2.4 Connecting to the singular curve

In view of Proposition 1, an optimal trajectory will necessarily consist of con-
tinuous connections (for the state variable as well as for the adjoint variables)
of pieces of trajectories where one of three conditions prevails: E = 0, E = E
or E maintains the state on the singular curve. The question is to determine
at which states (K,X) these changes occur. The next proposition will give us
a piece of information about these changes. It will be used in the construction
of the optimal solution in the numerical simulations (see section 4).

We consider in this section the case where an optimal piece of trajectory,
different from the singular curve, connects to it at some point (K0, X0). Then
we have the following property. It refers to functions φ and ψ introduced in
Proposition 2.

Proposition 4 Assume an optimal trajectory connects to the singular curve at point
(K0, X0) at time t0. Then:

a) χ(t0) = χ̇(t0) = 0;
b) if the optimal control is E = 0 then necessarily φ(K0, X0) ≥ 0;
c) if the optimal control is E = E then necessarily φ(K0, X0) ≤ Eψ(K0, X0).

The proof of a) is another consequence of the fact that χ̇ does not
depend on the control E. The other statements follow from Equation (40) in
Appendix A.1, which writes as: χ̈ = δχ̇+ φ(K,X)−Eψ(K,X), and from the
continuity of all variables at t0.
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3 Specific functional forms

In this section, the analysis is pursued with logistic growth functions:

F (X,K) = rX(1−X/K) G(K) = ρK(1−K/K)

where K, r and ρ are positive constants. Accordingly, the dynamics of the
system (2)–(3) now write as in (1):

Ẋ = rX(1− X

K
)− EX (12)

K̇ = ρK(1− K

K
)− βEK. (13)

As in Clark’s example, we consider c(X) = c/X: our profit function reads

(pX − c)E. (14)

Remark 1 The parameter β measures the degradation of the carrying capacity K
due to the harvesting effort, relatively to the degradation of the stock X. Depending
on the value of β and the effort E, there can be situations where the stock, initially
smaller than the current carrying capacity, can become larger than it. Indeed, con-
sider the case where X = K. The harvesting effort drives the system (K,X) in the
direction (ρK(1−K/K)−βE,−E). If β is large enough, the first component can be
made smaller than −E, so that the dynamics points outside the region {X ≤ K}.
Actually, from the dynamics of the ratio X/K, it can be seen that the impact of
some effort E on the ratio X/K is negative if β < 1 (any effort makes the growth
rate of ratio smaller), whereas this impact is positive if β > 1.
Stocks and capacities X, K, K are in units of mass: kg. Rates r, ρ, δ and E are
in s−1. β is dimensionless. P (·) is expressed in e, adjoint variables λX and λK in
ekg−1, Lagrange multipliers γE and µE in e, and the Hamiltonian H in es−1.

This specification does not allow in itself to determine more precisely the
singular curve than in the general result of Proposition 2. The specification of
general formulas of Section 2 is presented in details in Appendix B.1. In par-
ticular, the explicit form of functions φ and ψ of Proposition 2 can be deduced
from Equation (49). However, some explicit formulas do become possible: for
steady states and for trajectories. Also, in the particular case of β = 0, the
singular curve has an explicit expression, which becomes linear when c = 0.
We develop these formulas in this section.

3.1 Stationary states

Stationary states are such that the values of the state and adjoint variables
does not depend on time. Such states are the only possible limits of trajectories



Springer Nature 2021 LATEX template

10 Dynamic fishing with endogenous habitat damage

(including adjoint variables in the trajectory). Accordingly, we denote such
states as K∞, X∞, λ∞K and λ∞X .

Assuming stationarity, the control E is some constant E∞ and we have the
four algebraic equations deduced from (12), (13), (6) and (7):

0 = rX(1− X

K
)− E∞X (15)

0 = ρK(1− K

K
)− βE∞K (16)

0 = δλX − pE∞ − λX

(
r − 2rX

K
− E∞

)
(17)

0 = δλK − rλX
X2

K2
− λK

(
ρ− 2ρK

K
− βE∞

)
. (18)

The set of stationary states is then described in the following result, the
proof of which is presented in Appendix B.2.

Lemma 1 The set of stationary states satisfies

K∞ = K

(
1− βE∞

ρ

)
(19)

and: either X∞ = 0, λ∞K = 0 and

λ∞X =
pE∞

δ − r + E∞ , (20)

or:

X∞ = K∞
(
1− E∞

r

)
= K

(
1− βE∞

ρ

)(
1− E∞

r

)
(21)

λ∞X =
pE∞

δ + r − E∞ (22)

λ∞K = λ∞X

(
1− E∞

r

)2
r

δ + ρ− βE∞ , (23)

for some effort E∞. It is necessary that E∞ ≤ ρ/β (and E∞ ≤ r in the case
X∞ ̸= 0) and 0 ≤ E∞ ≤ E for such a stationary solution to exist.

Remark 2 From Equations (19), (21) and (22), we can conclude the following influ-
ence of steady-state effort on steady-state stock and habitat. If, all other parameters
being constant, E∞ is decreased, then both K∞ and X∞/K∞ increase while λ∞X
decreases. Reducing effort is, of course, beneficial to the habitat, but also to the
occupancy of the habitat.
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Remark 3 The choice in Lemma 1 is to express quantities as a function of E∞

alone, but other identities are possible. For instance, eliminating E∞ between (15)
and (17), then between (16) and (18), we obtain the following ones:

λ∞X =
pr(1−X∞/K∞)

δ + rX∞/K∞ λ∞K = λ∞X
(X∞/K∞)2

δ + ρK/K
,

connected with Lemma 1 by the equation E∞ = r(1−X∞/K∞).

Lemma 1 identifies possible stationary states of the dynamical system,
without considerations for optimality. If an optimal trajectory converges to a
steady state (or stays there), then Proposition 1 applies to it and the control
E∞ must be consistent with the sign of the function χ, defined in (8). Assume
that the system is stationary and X∞ ̸= 0: then equations (19)–(23) apply.
Replacing in the equation 0 = X∞λ∞X + βK∞λ∞K − P (X∞), we obtain that
E∞ is a root of a polynomial of degree 4 in E, Pol(E).

Pol(E) = −c(Eβ − δ − ρ)r(E − δ − r)ρ (24)

+ pK(E − r)(βE − ρ)(3E2β − (βδ + 2βr + 2δ + 2ρ)E + (δ + r)(δ + ρ)).

Some properties of these roots are described in the next result, the proof
of which is presented in Appendix C.

Lemma 2 Assume ρ > 0 and β > 0. Optimal stationary solutions have the following
properties:

a) If Kp− c > 0, c > 0, then:

– there exists a unique solution E∞ to Pol(E) = 0, in the interval
(0,min(r, ρ/β));

– when considered as a function of c, E∞(c) is decreasing: ∂E∞/∂c < 0.

b) When c = 0 denote with E∞
0 ≡ E∞|c=0. Let

E1 (25)

=
βδ + 2βr + 2δ + 2ρ−

√
(δ + 2r)2β2 − 4(δ + ρ)(2δ + r)β + 4(δ + ρ)2

6β
.

Then:

– If δ < r ≤ ρ/β, then E∞
0 = E1;

– If δ < r and r > ρ/β then E∞
0 = min(ρ/β,E1).

The results about the variations of E∞ with respect to c can be cou-
pled with Remark 2 to conclude that if c increases then the stationary ratios
X∞/K∞ and K∞/K increase as well.
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3.2 Equations of trajectories

From Proposition 1, we know that some parts of optimal trajectories will have
a constant control, E = 0 or E = E. It turns out that the system of differential
equations (12)–(13) can be solved in closed form when E is constant. These
solutions are useful when developing numerical examples.

Assuming that (K(0), X(0)) = (K0, X0), the functions obtained are:

K(t) =
K0K(ρ− βE) e(ρ−βE)t

(ρ− β E)K + ρK0 (e(ρ−βE)t − 1)
(26)

X(t) =

[
e(E−r)t

X(0)
(27)

+ r

(
1

K0
− ρ

ρ− βE

1

K

)
e(βE−ρ)t − e(E−r)t

(β − 1)E + r − ρ
+

rρ

(ρ− βE)K

1− e(E−r)t

r − E

]−1

.

In addition, in the specific case where E = 0, it is also possible to obtain
an explicit formula for the adjoint variable λX . Indeed, it can be shown that
the function ΘX = XλX satisfies the relation Θ̇X/ΘX = δ + r − Ẋ/X, which
leads to the expression:

λX(t) = λX(0)
X2

0

X(t)2
e(δ+r)t . (28)

The derivation of these formulas and more details are provided in
Appendix B.3.

3.3 The singular curve in the case β = 0

When β = 0, the singular curve takes a polynomial form. Indeed, from (10),
and the specification P (X) = pX − c,

0 = (pX − c)

(
δ + r(1− X

K
)− r(1− 2X

K
)

)
+ prX(1− X

K
)

⇐⇒ 0 =
2pr

K
X2 + ((δ − r)p− cr

K
)X − δc. (29)

This equation gives the following solutions, as a function of K or of X:

X∗(K) =
cr − pK(δ − r) +

√
(p(δ − r)K − cr)2 + 8prcδK

4pr
(30)

K∗(X) =
rX(2pX − c)

δc− (δ − r)pX
. (31)

Observe that the point (K∞, X∞), given by (19) and (21), where E∞ is
solution of (24), is located on this curve, which is expected by construc-
tion. As observed previously, this point is a steady state only if the condition
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0 ≤ E∞ ≤ E is satisfied. Also, observe that K∗(c/p) = c/p, which means
that the point (c/p, c/p) is located on this curve as well. In the particular
case where c = 0, the singular curve is a straight line: from (29) we obtain:
K∗(X) = 2rX/(r − δ). This curve is meaningful if δ < r, an economic con-
dition for a sustainable exploitation of the resource already appearing in the
description of steady states in Lemma 2.

While these explicit results provide valuable information for constructing
optimal controls, they do not provide all the details. We will complement this
theoretical analysis with numerical examples in the next section.

4 Numerical illustrations

In this section, we present two numerical examples based on the analysis of
Section 3, that is, with the logistic specification for the dynamics and the linear
specification for the profit function P (·).

In a first example, developed in Section 4.1 we set β to 0. This allows us
to use the strong result of Proposition 3 and its application in Section 3.3 for
determining the equation of the singular curve. The knowledge of this curve
is sufficient to determine the pieces of optimal trajectories that use a constant
control. This way, we obtain a global view of optimal trajectories and optimal
control.

In a second example we set β to 1/3. Then, the equation of the singular
curve is not known, but we check with a numerical approximation that the
global configuration of optimal trajectories is similar.

4.1 Example 1 with β = 0

Consider the following parameters: in addition to β = 0, let:

K = 1, r = 8, δ = 0.05, ρ = 4, p = 1, c =
205

808
≃ 0.2537. (32)

The value of E will be specified later. The equation of the singular curve (29)
is:

258560X2 − 128472XK − 205K − 32800X = 0 .

The (potential) stationary optimal point (with non-zero X) is located on this
curve, and from (19), (21) and (24) it follows that:

E∞ = 3, K∞ = 1, X∞ =
5

8
.

As noted in Lemma 1, these values actually correspond to a steady-state opti-
mal solution if E∞ ≤ E. The optimal feedback control on the singular curve,
given by (11), has the form:

E∗(K,X) = 8− 8X

K
+

4K (1−K) (128472X + 205)

X (128472K − 517120X + 32800)
. (33)
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It turns out that this value is positive, for (K,X) on the singular curve, only
for K ≥ Ks ≃ 0.399316 (corresponding to X ≥ Xs ≃ 0.326237). The point
(Ks, Xs) located on the singular curve is called the “zero-control singular
point” (see the forthcoming Conjecture 5).

For a better understanding of the optimal trajectories, it is useful to look
more closely to the dynamics of the system when E = 0. As computed in (27),
the trajectory of X(t) is given by:

X(t) =

(
e−rt

X(0)
+ r

(
1

K(0)
− 1

K

)
e−ρt − e−rt

r − ρ
+

1− e−rt

K

)−1

.

Depending on the values of K(0) = K0 and X(0) = X0, the term within
parentheses may vanish for some value tℓ < 0. In that case, limt→t+ℓ

X(t) =

+∞. The necessary and sufficient condition for this is, from Lemma 3 (in
Appendix B.3):

X0 > ζ(K0) :=
K0K

2K −K0

. (34)

We call the curve of equation X = ζ(K) the “divergence curve”, to highlight
the fact that trajectories with E = 0 located above it tend to infinity (when
considered backwards in time) for some finite value of t < 0 with some finite
value of K. Trajectories located below it are bounded. They tend to X =
0 when K → 0+, that is, when t → −∞. The divergence curve is itself a
trajectory with E = 0.

The location of (K0, X0) with respect to the divergence curve is important
when considering the function χ(t) = λX(t)X(t)−P (X(t)). Indeed, according
to (28), along a trajectory with E = 0,

χ(t) = λX(0)
X(0)2

X(t)
e(δ+r)t − pX(t) + c .

Therefore, if t0 is such that when t → t+0 , X(t) → +∞, then χ(t) → −∞.
So, if we consider a trajectory with E = 0 which joins the singular curve at
time t = 0 at some location (K0, X0) located above the divergence curve, we
have the following properties: a) χ(t) > 0 in a neighborhood of t = 0− (which
can be checked using Proposition 4 b) ); b) there exists some t0 such that
limt→t+0

χ(t) = −∞. This implies the existence of t1 ∈ (t0, 0) with χ(t1) =

0 and with χ(t) > 0 for t ∈ (t1, 0). The corresponding trajectory is then
consistent with Proposition 1. The locus of the points (K(t1), X(t1)) forms a
curve which is called the “switching curve”.

On the other hand, if (K0, X0) is located below the divergence curve, the
function χ(t) remains positive for all t < 0, as can be observed (but not proved)
from numerical evidence. Trajectories with E = 0 are therefore consistent with
Proposition 1 until they join with the singular curve, whatever their starting
point.
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Consider now trajectories with E = E. When they are supposed to join, at
time t = 0, some position (K0, X0) where χ(0) = 0, then numerical evidence is
that χ(t) < 0 for all t < 0. These trajectories are then consistent with Propo-
sition 1 until they joint the point (K0, X0). Two situations may occur. In the
first one, the location (K0, X0) is on the singular curve (which is indeed char-
acterized by χ = 0). A trajectory which follows the singular curve from then
on is consistent with Proposition 1. In the second one, the location (K0, X0) is
some point defined as (K(t1), X(t1)) above: in that case χ(0) = 0 also, but an
optimal trajectory cannot be such that χ(t) = 0 for all t > 0. Then it is optimal
to switch the control to E = 0 and continue with the trajectory constructed
above. This motivates the name “switching curve” chosen for such locations.

Summing up, we conjecture the following result, numerically validated in
the present example:

Conjecture 5 Assume E ≥ E∞. Then, there exists a “switching curve” X = σ(K),
which connects to the singular curve at the “zero-control singular point”, thus forming
a “separating curve”, and which is such that the optimal feedback control is:

E∗(K,X) =


0 if (K,X) is below (or on) the separating curve

E if (K,X) is above the separating curve

the control (33) if (K,X) is on the singular curve.

The situation is represented in Figure 1, obtained with the value E = 5. The
figure shows the singular curve (violet), limited by the “zero-control singular
point” in its left, and the steady state point on the line K = K. The figure
further shows the divergence curve (blue), which joins the singular curve at the
“divergence point”. Its part to the right of the divergence point is not relevant
and is not displayed. A third curve is the switching curve: it was numerically
computed using differential equations, continuity of the adjoint variables and
finding the time instant at which χ(t) = 0. Optimal trajectories are represented
in green if the optimal control is E = 0, or in red if E = E.

Figure 1 also displays the line X = c/p. All points below this line represent
economically unprofitable stocks, and indeed, the optimal control is always to
do E = 0 for such stocks.

In a second experiment, we set E = 5/2, so that now E < E∞. It is not
possible anymore for an optimal trajectory to follow the singular curve forever.
The situation is displayed in Figure 2. The global diagram is on the left, a
zoom appears on the right. The elements of these diagrams are as follows.

The singular curve is, of course, the same as in Figure 1. However, there
is now a point at which Es(t) = E. It is called “end point” and has approxi-
mate coordinates (Ke, Xe) ≃ (0.882533, 0.566600). But it turns out that it is
not optimal for the optimal trajectory to remain on the singular curve until
the end point. There is actually another point with approximate coordinates
(Kℓ, Xℓ) ≃ (0.800911, 0.526016) at which it is optimal to leave the singular
curve and switch the control to E. For this reason, we call this point the “leave
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Fig. 1 Optimal trajectories in the example with β = 0, with E > E∞

point”. All optimal trajectories ultimately use the control E. For this reason,
they all converge to the steady state of the dynamical system with E = E,
labelled as “actual SS point” in the diagram.

As in Figure 1, there is a “divergence curve” which attaches to the singular
curve at a “divergence point”. The switching curve max/0 is also identical to
Figure 1, despite the fact that E is different. Indeed, this curve is computed
using only trajectories with E = 0, and the value of E is nowhere involved.

The new element is a switching curve which appears for large values of K:
since joining and following the singular curve is not possible anymore, optimal
trajectories switch directly from E = 0 to E = E. This new switching curve is
labelled as “switching 0/max” in Figure 2. It connects with the singular curve
and joins the line K = K at some stock level Xs ≤ X∞.
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Fig. 2 Optimal trajectories in the example with β = 0, with E < E∞

The general behavior of the optimal trajectories can now be summarized,
taking as reference the separating curve ς composed of: a) the switching curve
max/0, until the starting point; b) the singular curve between the starting
point and the leave point; c) the switching curve 0/max:

• For initial states located under the curve ς, use control E = 0 until:
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a) either the trajectory encounters the singular curve between the starting
and the leave points: then use the singular control until the leave point,
then the control E;

b) or the trajectory encounters the switching 0/max curve: then switch
directly to E;

The groups of trajectories corresponding the the different situations are
separated in Figure 2 by the particular curve labelled as “0/Emax”.

• For initial states located over the curve ς, use control E = E until:

a) either the trajectory encounters the switching max/0 curve: then switch
to E = 0 and continue as indicated above;

b) or the trajectory encounters the singular curve between the starting and
the leave points: then follow it as above;

c) else continue applying E = E forever.

The groups of trajectories corresponding to the different situations are sep-
arated in Figure 2 by the particular curves labelled as “Emax→singular”
and “Emax→Emax”.

Connection to Clark’s optimal singular solution.

As already noted, the model of Clark arises when β = 0 and K = K. The
solution constructed in these numerical examples indeed corresponds to Clark’s
solution. In the first situation where E is large enough, the optimal trajectory
in Figure 1 starting with K0 = K and X0 < X∞ obviously consists in applying
E = 0 until X(t) = X∞, then staying there. Similarly if X0 > X∞, applying
E = E. In the situation of Figure 2, the optimal control for small X0 is to
apply E = 0 until some value Xs at which the optimal control switches to
E = E. This situation is described in Clark (1990), Section 4.1.

In both cases, the practical conclusion is that the optimal control taking
into account the state and the dynamics of the carrying capacityK, is substan-
tially different from the uninformed control which would consider that K = K
and apply the usual most rapid approach.

4.2 Example 2 with β ̸= 0

In this second experiment, we take the same parameters as in Example 1 (see
(32)), except that we set β to 1/3. For these values, the values of steady-state
variables are:

E∞ ≃ 2.1494, K∞ ≃ 0.8209, X∞ ≃ 0.6003.

We first run the experiment with E = 3.5 so that E > E∞. Applying the
Value Iteration method to a discretized version of the optimization problem,2

2The Value Iteration algorithm was applied to a 256×256 discretization of the state space with
time increment h = 10−4 and iterations until the L1 distance between two successive functions
was less than ε = 10−6. Running time was of the order of minutes on a 4-core Intel i7-6820HQ
CPU@2.70GHz laptop.
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we compute numerically the value function and the optimal control. The latter
is displayed in Figure 3, left. We then set E = 1.8 so that E < E∞ and the
optimal trajectories cannot finish at the steady state. The result is displayed
in Figure 3, right.
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Fig. 3 Optimal control for Example 2: E = 3.5 (left), E = 1.8 (right)

More precisely, the figure displays, in red, the zone of points (K,X) for
which the value iteration algorithm concluded that E = E is optimal. For all
other points, E = 0 was the best control found. The points represented in
green are those where the approximation of χ was found to be positive. This
approximation was built using the (approximate) value function V obtained
at grid points, approximating λX = ∂V/∂X and λK = ∂V/∂K with the
symmetric difference quotient. Other elements of the figure are the steady state
and the line where X = c/p.

A first observation is that the red and green regions slightly overlap in a
zone that likely includes the singular curve. The overlap is not extended, which
validates the accuracy of numerical methods. Indeed, around the singular curve
we have χ = χ̇ = 0 on optimal trajectories, so that deciding numerically the
sign of χ is challenging.

A second observation is that the shape of the separating curve (switching
curve and singular curve, see Conjecture 5) is globally the same as in Example
1. It can be checked numerically that, when all parameters but β are the
same (including E), this curve is located above the one for β = 0. Practically
speaking, this means that for a given value of the carrying capacity, the fishing
threshold for the stock X is larger when the impact of fishing on the habitat
is larger.

5 Discussion and conclusion

In this work we have made an extension of the singular control model (Clark’s
model, most rapid approach) when habitat is taken into account. In general
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we have obtained some analytical optimal solutions which, completed with
simulations, give the optimal solution of the problem. As a special case, Clark’s
solution follows when some parameters are zero (ρ = β = 0). The case β =
0, allows us to compute the singular curve analytically and the case β >
0, is completed numerically via Value Iteration that converges quickly. We
have found regions in the plane (K,X) where the optimal control consists in
four different phases: bang (E = E)-bang (E = 0)-bang (E in the singular
curve)-bang (E = E) trajectories. This is the case when carrying capacity is
small enough as compared with the stock of fish. This kind of change in the
harvesting that takes into account the state of the habitat must be taken into
account when proposing public policies.

The immediate technical followup to this work should be to investigate
further the properties of the singular and the switching curves: characterize
analytically their equations in general, and characterize the location of “leave
points”.

Also, several extensions of the model can be envisioned. For instance, it
would be interesting to analyze the case where β is a control and to investigate
how trajectories differ from the case with β constant. In a dynamic game the-
oretic context, the present model can be seen as describing a social optimum
from the point of view of a regulator. Following the ideas of Long et al. (2020),
a decentralized situation with myopic (of almost myopic3) agents can be con-
sidered and economic instruments can be proposed to achieve or approach this
social optimum.
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A Proofs of Propositions 2 and 3

It may be convenient in calculations to manipulate the following functions:

ΘX(t) = X(t)λX(t) ΘK(t) = K(t)λK(t) ,

with which χ can be written as:

χ(t) = ΘX(t) + βΘK(t)− P (X(t)).

Using (6) and (7), the first-order derivatives are given by:

dΘX

dt
= ẊλX +Xλ̇X

= δΘX + (F (X,K)−XFX(X,K))λX − EXP ′(X) (35)

dΘK

dt
= K̇λK +Kλ̇K

= δΘK + (G(K)−KG′(K))λK −KFK(X,K)λX . (36)

Using (36) and (35) for the derivative of χ, one obtains:

χ̇(t) = Θ̇X + βΘ̇K − ẊP ′(X)

= δ(ΘX + βΘK) + (F −XFX)λX − EXP ′(X)

+ β(G−KG′)λK − βKFKλX

− (F − EX)P ′(X)

χ̇ = δ(χ+ P (X)) + λX (F −XFX − βKFK) + βλK (G−KG′)− FP ′(X).
(37)

This derivative does not depend, formally, on the control function E(t). Of
course, the trajectories of X, K, λX and λK do depend on the control.

A.1 Proof of Proposition 2

If the trajectory is constrained to stay on the curve defined by χ = 0, then we
must have, for all t, χ(t) = χ̇(t) = 0. With (37), this leads to the system of
equations:

XλX + βKλK = P

λX (F −XFX − βKFK) + βλK (G−KG′) = FP ′ − δP,

which is linear in the variables λX and βλK . Solving this linear system, we
obtain

λX =
1

∆
((G−KG′)P +K(δP (X)− FP ′)) (38)
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βλK = − 1

∆
(X(δP − FP ′) + (F −XFX − βKFK)P )) (39)

∆ = X(G−KG′)−K(F −XFX − βKFK).

For statement b), we start from (37) but introduce the new functions
F (1)(X,K) = F (X,K) − XFX(X,K) − βKFK(X,K), G(1)(K) = G(K) −
KG′(K) and P (1)(X,K) = F (X,K)P ′(X). Accordingly:

χ̇ = δ(χ+ P ) + λXF
(1) + βλKG

(1) − P (1)

χ̈ = δ(χ̇+ ẊP ′) + λ̇XF
(1) + λX(ẊF

(1)
X + K̇F

(1)
K ) + βλ̇KG

(1) + βλKK̇G
(1)′

− (ẊP
(1)
X + K̇P

(1)
K ).

Then, applying (2), (3), (6) and (7), separating the terms with E from the
rest, we have:

χ̈ = δχ̇+

{
δFP ′ + λX(δ − FX)F (1) + λX(FF

(1)
X +GF

(1)
K ) (40)

+ βλK(δ −G′)G(1) − βλXFKG
(1) + βλKGG

(1)′ − (FP
(1)
X +GP

(1)
K )

}
− E

[
δXP ′ + (P ′ − λX)F (1) + λX(XF

(1)
X + βKF

(1)
K )− β2λKG

(1) + β2KλKG
(1)′

− (XP
(1)
X + βKP

(1)
K )

]
.

If the trajectory is constrained to stay on the singular curve, then χ̈(t) = 0.
We can also eliminate λX and λK using (38) and (39). The function φ(K,X)
is defined as the term within braces, and the function ψ(K,X) is defined as
the term within square brackets, after this substitution. Then, solving χ̈ = 0,
taking into account χ̇ = 0, implies 0 = φ(K,X) − Eψ(K,X). This proves
Proposition 2.

A.2 Proof of Proposition 3

When β is set to 0 in (37), the expression of χ̇ does not depend on λK anymore.
Also, χ = 0 is equivalent to (9). Then eliminating λX from (37) gives (10).
This proves statement a) of Proposition 3.

For the proof of statement b), we first expose preliminary considerations.
Assume we want the state to stay on a particular curve, given in general by the
equation f(X,K) = 0. Differentiating with respect to t, we have the identities:

0 =
d

dt
f(X(t),K(t))

= Ẋ
∂f

∂X
+ K̇

∂f

∂K
= (F (X,K)− EX) fX + (G(K)− βEK) fK (41)
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E (XfX + βKfK) = F (X,K)fX +G(K)fK

E =
F (X,K)fX +G(K)fK

XfX + βKfK
. (42)

The expression (42) gives the control as a feedback of the state. If one plugs
(42) in the dynamics of the state, one gets the diffential system:

Ẋ = fK
βKF (X,K)−XG(K)

XfX + βKfK

K̇ = fX
XG(X)− βKF (X,K)

XfX + βKfK

and it is checked that this dynamics satisfies (41).
When β = 0, these expressions are simplified as:

E(X,K) =
F (X,K)

X
+
G(K)

X

fK
fX

(43)

Ẋ = −G(K)
fK
fX

K̇ = G(K),

which proves statement b) of Proposition 3. In (43), the term F (X,K)/X is
the extraction that would make the stock X constant. It is corrected with a
term, proportional to G(K), taking into account the growth of the carrying
capacity K.

B Logistic growth functions

In this section, we list the formulas obtained by specifying the general results
of Section 2 to the logistic growth functions.

B.1 Dynamics and the singular control

Assume the control has the objective of keeping the function χ equal to 0.
Then we have the following identities, in which we use the notation introduced
in Section A.1.

G(1) := G(K)−KG′(K) =
ρK2

K

F (1) := F (X,K)−XFX(X,K)− βKFK(X,K) = r(1− β)
X2

K
.

(44)
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B.1.1 Adjoint variables

When using the logistic form of the growth functions, we obtain for the
expressions (6) and (7):

λ̇X = δλX − pE − λX

(
r − 2rX

K
− E

)
(45)

λ̇K = δλK − rλX
X2

K2
− λK

(
ρ− 2ρK

K
− βE

)
(46)

B.1.2 The function χ(t)

The formulas for the first derivatives of χ(t) are obtained from the generic
formulas (37) and (40). Using the identities (44), we obtain:

χ = XλX + βKλK − pX + c = ΘX + βΘK − pX + c (47)

χ̇ = δ (χ+ pX − c) + ΘX(1− β)
rX

K
+ βΘK

ρK

K
− prX(1− X

K
) (48)

χ̈ = δ

[
χ̇+ prX(1− X

K
)

]
+ r(1− β)

X

K
ΘX

[
δ + r − ρ(1− K

K
)

]
+ ρβ

K

K

[
ΘK (δ + ρ)− rΘX

X

K

]
− rXp

(
r(1− X

K
)(1− 2X

K
) + ρ

X

K
(1− K

K
)

)
− E

[
r(1− β)2

X

K
ΘX + ρβ2K

K
ΘK + δXp+ rXp

(
(3− 2β)

X

K
− 1

)]
. (49)

B.1.3 Staying on the curve χ = 0

If the trajectory follows the curve χ(t) ≡ 0, then χ = χ̇ = 0. Using (38)
and (39) (or directly solving for ΘX and ΘK in (47) and (48)), we obtain the
following values:

ΘX =
1

∆

(
(pX − c)(δ + ρ

K

K
)− rXp(1− X

K
)

)
(50)

βΘK =
1

∆

(
−(pX − c)(δ + (1− β)r

X

K
) + rXp(1− X

K
)

)
(51)

∆ = ρ
K

K
− (1− β)r

X

K
. (52)

B.2 Proof of Lemma 1

The proof consists in enumerating the solutions of the system of four equations
(15)–(18) with four unknowns. We exclude K = 0 as a solution of (16) since in
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that case the dynamics (12) are not well defined. Then the solution of (16) is

K∞ = K

(
1− βE

ρ

)
. (19)

Next, X = 0 is clearly a solution of (15). Replacing in (17) and (18), we find:

pE∞ = λX (δ − r + E∞)

0 = λK (δ − ρ+ E∞) ,

leading to λK = 0 and the value of λX in (20). Assuming now that K ̸= 0 and
X ̸= 0, we have successively:

X∞ = K∞
(
1− E∞

r

)
= K

(
1− βE∞

ρ

)(
1− E∞

r

)
(21)

pE∞ = λ∞X

(
δ − r + 2r

[
1− E∞

r

]
+ E∞

)
rλ∞X

(
1− E∞

r

)2

= λ∞K

(
δ − ρ+ 2ρ

[
1− βE

ρ

]
+ βE∞

)
.

The two last equations rewrite as (22) and (23). This concludes the proof of
Lemma 1.

B.3 Trajectories for E constant

We investigate in this section the solutions to the differential systems when E
is constant. To that end, it is convenient to perform the change of functions
Z = K−1 and Y = X−1. This leads to the differential system:

Ẏ = (E − r)Y + rZ (53)

Ż = (βE − ρ)Z +
ρ

K
. (54)

Trajectories of the state.

The solution of (13) is, classically, (26). This is obtained for instance using the
function Z = K−1 and the linear differential equation (54), whose solution is:

Z(t) =
1

K(t)
=

1

K0
e(βE−ρ)t +

ρ

K

e(βE−ρ)t − 1

βE − ρ
. (55)

The solution of (12) can be deduced as follows. Using the function Y = X−1

and (53) we have:

Ẏ = (E − r)Y + re(βE−ρ)t

(
1

K0
− ρ

ρ− βE

1

K

)
+

rρ

(ρ− βE)K
. (56)
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Consequently, the solution will be:

Y (t) = Y (0)e(E−r)t

+

∫ t

0

[
re(βE−ρ)u

(
1

K0
− ρ

ρ− βE

1

K

)
+

rρ

(ρ− βE)K

]
e(E−r)(t−u)du

= Y (0)e(E−r)t

+ r

(
1

K0
− ρ

ρ− βE

1

K

)
e(βE−ρ)t − e(E−r)t

(β − 1)E + r − ρ
+

rρ

(ρ− βE)K

1− e(E−r)t

r − E
.

This equation directly leads to (27).

Alternative representations.

Using the asymptotic quantities when t → ∞, derived in Section 3.1, the
solution for E constant may be rewritten as:

Z(t) =
1

K(t)
=

(
1

K0
− 1

K∞

)
e(βE−ρ)t +

1

K∞ (57)

Y (t) =
1

X(t)
=

(
1

X0
− 1

X∞

)
e(E−r)t + r

(
1

K0
− 1

K∞

)
e(βE−ρ)t − e(E−r)t

(β − 1)E + r − ρ
+

1

X∞ .

(58)

Equations in the (K,X) plane.

Provided K0 ̸= K∞, the variable t can be eliminated from (57):

t =
1

ρ− βE
log

(
1
K0

− 1
K∞

1
K − 1

K∞

)
=

1

ρ− βE
log

(
K∞ −K0

K∞ −K

K

K0

)
.

This is the amount of time needed to go from state K0 to state K. Then,
replacing in (58), we have:

1

X
− 1

X∞ = e(E−r)t

(
1

X0
− 1

X∞ −
(

1

K0
− 1

K∞

)
r

(β − 1)E + r − ρ

)
+ e(βE−ρ)t

(
1

K0
− 1

K∞

)
r

(β − 1)E + r − ρ

=

(
K∞ −K0

K∞ −K

K

K0

) E−r
ρ−βE

(
1

X0
− 1

X∞ −
(

1

K0
− 1

K∞

)
r

(β − 1)E + r − ρ

)
+

(
1

K
− 1

K∞

)
r

(β − 1)E + r − ρ
. (59)

This is the equation of the trajectory in the (K,X) plane, parameterized by
any point (K0, X0) on the curve.
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If K0 = K∞, the trajectory is included in the line {K = K∞}. If needed,
the time variable may be eliminated from (58):

t =
1

r − E
log

(
1
X0

− 1
X∞

1
X − 1

X∞

)
=

1

r − E
log

(
X∞ −X0

X∞ −X

X

X0

)
.

This is, in particular, the case in the standard model with K constant.
We now investigate the behaviors of trajectories in the (K,X) plane. From

(59), and since with E = 0 we have X∞ = K∞ = K, these are the curves of
equation

1

X
=

1

K
+

(
K −K0

K −K

K

K0

)−r/ρ(
1

X0
− 1

K
−
(

1

K0
− 1

K

)
r

r − ρ

)
+

(
1

K
− 1

K

)
r

r − ρ

parametrized by any point (K0, X0) on the curve.4 These curves have the
following property.

Lemma 3 Let f(K) be one of these curves, parametrized by (K0, X0). There exists
some K1 ∈ (0,K) such that limK→K+

1
f(K) = +∞ if:

a) ρ > r, or
b) when and only when

X0 >
K0K(r − ρ)

rK − ρK0

(60)

if ρ < r.

The proof consists in analyzing the behavior of the curves when K → 0.
If ρ > r, we find that f(K) ∼ K(r − ρ)/r < 0: then necessarily f(·) changes
sign between K = 0 and K = K, which can occur only by diverging to ∓∞.
If ρ < r, we find that f(K) ∼ C(K0, X0)K

r/ρ for some value C(K0, X0). If
this value is negative, which is equivalent to condition (60), this is the same
situation as when ρ > r and there is a point K1 where f(·) diverges. If this
value is 0, the curve f has actually the equation

fc(K) =
KK(r − ρ)

rK − ρK0

and it does not diverge. If C(K0, X0) > 0, the trajectory lies below the curve
fc(K) (solutions to the differential system cannot cross each other) so that it
cannot diverge.

4When r = ρ, a different formula applies.
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Adjoint variable trajectories with E = 0.

In the specific case where E = 0, it is possible to obtain a formula for the
adjoint variable λX . Start with the differential equation for ΘX = XλX

Θ̇X = ẊλX +Xλ̇X = ΘX

(
δ + r

X

K

)
Θ̇X

ΘX
= δ + r − Ẋ

X

ΘX(t)

ΘX(0)
= e(δ+r)t X(0)

X(t)

ΘX(t) = ΘX(0)X(0)
e(δ+r)t

X(t)

and this last equation yields (28).

C Proof of Lemma 2

Proof a) Consider the polynomial in (24), that is,

Pol(E) = −c(Eβ − δ − ρ)r(E − δ − r)ρ

+ pK(E − r)(βE − ρ)
(
3E2β − (βδ + 2βr + 2δ + 2ρ)E + (δ + r)(δ + ρ)

)
.

Recall that we are looking for admissible roots of Pol(E), that is, such that 0 ≤ E ≤
min(r, ρ/β). This polynomial has the following properties.

Pol(0) = rρ(δ + ρ)(δ + r)(Kp− c),

Pol(r) = rcδρ(βr − δ − ρ), Pol

(
ρ

β

)
= −ρcδr(βδ + βr − ρ)

β
.

The existence part is proved by showing that Pol(·) changes sign over the interval.
The uniqueness follows from convexity.

Under the condition Kp > c > 0, Pol(0) > 0. Consider first the case r ≤ ρ/β.
This implies Pol(r) < 0, hence Pol(E) = 0 for at least one E ∈ (0, r). Through
tedious yet mechanical computations, using the assumption that Kp − c > 0, one
shows that Pol′′(E) > 0 if E ∈ [0, r]. Then in is not possible to have three roots
of Pol(·) in the interval. When r > ρ/β, then Pol(ρ/β) < 0, and the reasoning is
similar. From this analysis we conclude, not only that Pol(·) has a single root, but
also that Pol′(E) < 0 in the region where E is admissible.

Moreover from (24), and for admissible E,

∂Pol

∂c
(E) = − rρ(Eβ − δ − ρ)(E − δ − r) < 0.

Then using total differentiation for the root E∞(c), we have:

∂E∞

∂c
(c) = − 1

Pol′(E∞(c))

∂Pol

∂c
(E∞(c)) < 0. (61)

b) Now we consider c = 0. In this case, with Pol0(E) ≡ Pol(E)|c=0,

Pol0(E) = pK(E − r)(βE − ρ)
(
3E2β − (βδ + 2βr + 2δ + 2ρ)E + (δ + ρ)(δ + r)

)
.
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Let Q(E) denote the last polynomial of degree 2 in E. The discriminant of Q(E) is:

∆β := (δ + 2r)2β2 − 4(δ + ρ)(2δ + r)β + 4(δ + ρ)2.

This quadratic polynomial of β has in turn as discriminant: 48(δ+ ρ)2(δ− r)(δ+ r).
Then, if δ < r, this discriminant is negative and ∆β > 0 for all values of β. As
a consequence, Q(E) has two real and positive roots E1 < E2, where E1 is given
explicitly by (25). We proceed with locating E1 with respect to the other roots of
Pol0(E): r and ρ/β. We have:

Q(0) > 0,

Q

(
δ + r

2

)
=
β(δ − r)(δ + r)

4
.

If δ < r, this implies that 0 < E1 < (δ + r)/2. If furthermore r ≤ ρ/β, then
(δ + r)/2 < min(r, ρ/β) and therefore E1 = E∞

0 .
If δ < r but r > ρ/β, we just have E∞

0 = min(E1, ρ/β). □
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