

Effect of ploidy and life cycle on plant resistance durability

Méline SAUBIN, Clémentine LOUET, Fabien HALKETT

l'ère Réunion du Réseau E3GP3 (6-7 décembre à Paris en visio)

The gene-for-gene relationship

Host plant

The gene-for-gene relationship

Host plant

In diploids, immunity is overcome at the homozygous state

Host plant

In diploids, immunity is overcome at the homozygous state

Working hypothesis: At initial (heterozygous) state virulent allele is only subjected to drift.

Different measures of resistance durability

Different outcomes for different time points

van den Bosch and Gilligan 2003 Phytopathology, Rimbaud et al. 2021 Ann. Rev. Phytopathol.

Two contrasted life cycles

Autoecious: One host species 20smogarny Vegetative cycle Xartoo Meiosis

Adapted from Lorrain *et al.*, 2019 New Phyt

Alternate Hosts (A)

Probability of virulent allele fixation

favr

favr

Probability of virulent allele fixation

Probability of virulent allele fixation

Focus on two events

Year of invasion

Year of resistance breakdown

Focus on two events

propR = 0.1

Year of invasion

	cycle With host alternation
	SR
	A
propR = 0.9	Without host alternation
~~	SR
propR = 0.5	
<u> </u>	

Focus on two events

Year of invasion

Year of resistance breakdown

Stochastic evolutionary trajectories

Why host alternation enhance stochasticity?

Why host alternation enhance stochasticity?

Alternate Hosts (A)

Why host alternation enhance stochasticity? **Susceptible** Resistant Hosts (S) Hosts (R) • Avirulent (Avr/Avr) • Avirulent (Avr/avr) • Virulent (avr/avr) Annual migration event

Alternate Hosts (A)

sex

- Sexual reproduction breaks homozygotes

Why host alternation enhance stochasticity?

Why host alternation enhance stochasticity?

Evolution of virulence from standing genetic variation

Thank-You

RESEARCH ARTICLE

Impact of ploidy and pathogen life cycle on resistance durability

Méline Saubin¹, Stéphane De Mita², Xujia Zhu³, Bruno Sudret³, & Fabien Halkett¹

Des indices Fst marqueurs d'un contournement de résistance

Fréquences initiales d'allèles virulents :

 $\begin{array}{l} {\rm O} \ {\rm f}_{\rm avr} = 0.01 \\ {\rm O} \ {\rm f}_{\rm avr} = 0.032 \\ {\rm O} \ {\rm f}_{\rm avr} = 0.1 \\ {\rm O} \ {\rm f}_{\rm avr} = 0.316 \end{array}$

<u>Générations d'évaluation des indices :</u>

RB : Génération du contournement de résistance EQ : Dernière génération de la simulation (retour à l'équilibre)

