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Abstract: Maternal obesity is increasingly prevalent and is associated with elevated morbidity and
mortality rates in both mothers and children. At the interface between the mother and the fetus,
the placenta mediates the impact of the maternal environment on fetal development. Most of the
literature presents data on the effects of maternal obesity on placental functions and does not exclude
potentially confounding factors such as metabolic diseases (e.g., gestational diabetes). In this context,
the focus of this review mainly lies on the impact of maternal obesity (in the absence of gestational
diabetes) on (i) endocrine function, (ii) morphological characteristics, (iii) nutrient exchanges and
metabolism, (iv) inflammatory/immune status, (v) oxidative stress, and (vi) transcriptome. Moreover,
some of those placental changes in response to maternal obesity could be supported by fetal sex. A
better understanding of sex-specific placental responses to maternal obesity seems to be crucial for
improving pregnancy outcomes and the health of mothers and children.
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1. Introduction

Obesity (excess adipose tissue) is characterized by a pro-inflammatory environment,
profound dyslipidemia, and lipotoxicity in various organs. It constitutes one of the greatest
public health challenges of the 21st century [1]. A worldwide survey found that the
prevalence of obesity (defined as a body mass index [BMI] ≥30 kg/m2) has doubled
since 1980 in more than 70 countries and is steadily increasing in most other countries [2].
Unsurprisingly, the prevalence of obesity during pregnancy is also rising.

Maternal obesity increases the risk of adverse health outcomes in both mothers and
children. Complications of pregnancy include preeclampsia, gestational diabetes (GD)
mellitus, and gestational hypertension [3]. Concerning the impact on children, it was
shown that maternal obesity in the absence of GD did not affect birthweight but that it
was specifically associated with greater adiposity at birth in female offspring (but not in
male offspring) [4]. Moreover, with reference to the developmental origins of health and
disease (DOHaD), there is evidence to suggest that maternal obesity increases the risk of
the offspring suffering from metabolic and cardiovascular diseases (including obesity, type
2 diabetes mellitus, and metabolic syndrome) later in life [5–8]. Recent research indicates
that male offspring are more susceptible to neurodevelopmental disorders in the case of
maternal obesity [9].

The relationship between the mother’s health and the child’s health is closely linked to
the placenta, which constitutes the primary site for maternal–fetal exchanges. A large body
of data in the literature has highlighted the impact of an obesogenic maternal environment
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on the placenta’s development and exchange functions, although some of the results are
subject to debate [10–16]. The heterogeneity of the study population in terms of lifestyle
factors, dietary habits, ethnicity, and the prevalence of pregnancy-related complications
(such as GD) could explain these discrepancies. Another possible explanation is that most
studies did not consider fetal sex. Indeed, the idea that the sex of the fetus could influence
the way the placenta adapts to its environment is still fairly recent [17–19].

In this context, and in order to reduce the influence of possible confounding factors,
our review focuses on recent studies of the impact of maternal obesity (in the absence of
GD) on the placenta’s main characteristics, such as its morphology, endocrine function,
metabolism, and inflammatory/oxidative status. We also highlight the influence of fetal sex
during pregnancy and describe some sex-specific placental adaptations to maternal obesity.

2. Placental Development

The placenta is a complex organ with an essential role in embryo implantation and the
maintenance of pregnancy. More specifically, the human placenta is “hemochorial” and
characterized by a direct contact of the placental cells with the maternal blood [20]. The
placenta exerts many essential functions for fetal survival: (i) the formation of a physical
and immune barrier between the maternal and fetal circulations, in order to protect the fetus
from certain pathogens; (ii) the production of a multitude of signals (such as hormones and
growth factors) that are crucial for maternal and fetal metabolism, and (iii) the exchange of
nutrients, gases, and water between the mother and the fetus [21].

Placental cells can differentiate along two distinct pathways: the villous and extravil-
lous pathways. In the villous pathway, mononuclear cytotrophoblasts (CTs) differentiate
by fusing to form the syncytiotrophoblast (ST)—a specialized, multinuclear syncytium on
the outer layer of placental villi. The ST will ensure fetal–maternal exchanges, hormone
production, and protection against a number of pathogens [22]. In the extravillous pathway,
CTs provide the placenta with anchorage in the maternal uterus. Indeed, CTs are able to
proliferate and differentiate, in order to gain an invasive phenotype and penetrate into
the maternal decidua and myometrium. The matrix metalloproteinases (MMPs) 2 and
9 enable the degradation of the decidual and endothelial extracellular matrix and, thus,
the invasion by CTs [23]. Moreover, invasive CTs colonize the maternal spiral artery; this
favors fetal development by expanding the vessel diameter, reducing vessel contractility,
and enabling constant oxygen delivery at a low blood pressure [24]. The interactions
between CTs and a range of uterine cell types (such as uterine natural killer (uNK) cells,
lymphocytes, macrophages, dendritic cells, and decidual stromal cells) during the invasion
have an important role in the immune acceptance of the placental/fetal allograft and in
the timing and depth of CT invasion. The particular pattern of histocompatibility antigens
expressed by invasive CTs appears to be one of the most important strategies; in contrast
to most somatic cells, polymorphic human leukocyte antigen (HLA) class Ia molecules
are not present at the surface of invasive CTs [25]. Indeed, invasive CTs express the non-
classical major histocompatibility complex (MHC) class IB antigens, including HLA-G,
with strong immunosuppressive effects. During placentation, invasive CTs are exposed
to maternal immunocompetent cells in the decidual environment. This constitutes a real
challenge in terms of immune modulation which is controlled, in part, by HLA-G. Indeed,
soluble HLA-G is able to (i) promote the apoptosis of activated maternal CD8+ T cells,
(ii) inhibit the proliferation of maternal CD4+ T cells, and (iii) abrogate uNK-cell-mediated
cytotoxicity [26]. Some complications of pregnancy (such as spontaneous abortion and
pre-eclampsia) are associated with the failure of CT invasion; this might be due to a prema-
ture rise in oxygen levels, which increases oxidative stress and thus damages the placental
villi. In summary, correct placental development is the key to the successful progress
of pregnancy.
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3. Impact of Maternal Obesity on Placental Development: Trophoblast Differentiation

The chorionic villus is the human placenta’s structural and functional unit and it is
covered by the ST, i.e., a highly specialized, multinucleated, epithelial cell layer [20]. Indeed,
the ST is derived from CT fusion through a process called syncytialization. This process
involves a membrane protein of retroviral origin (syncytin-2), which binds to its specific
receptor (major facilitator superfamily domain containing 2, MFSD2) and enables CT fusion.
Both syncytin-2 and its receptors are strongly expressed in the ST [27,28]. Furthermore,
the CT’s differentiation into a functional ST is associated with the elevated production of
hormones such as leptin, progesterone, human chorionic gonadotropin (hCG), and human
placental lactogen (hPL) [20]. Thus, the ST underpins the placenta’s endocrine functions
throughout pregnancy [29].

The results of two recent studies clearly showed that maternal obesity influences the
placenta’s endocrine function. Firstly, with regard to the biochemical differentiation of
placental cells, researchers have found that the levels of secretion of three key hormones
(hCG, leptin, and progesterone) by the ST were abnormally low in placentas from obese
women [10,30]. Since hCG and leptin are actively involved in the growth and development
of the fetal–placental unit [31,32], one can hypothesize that a low production of these
hormones disturbs fetal growth. Moreover, another adipokine (adiponectin, which is also
secreted at the fetal–maternal interface by the endometrium itself) appears to favor the
development of a functional placenta with differentiative abilities [33,34]. Thus, recent
data demonstrated that maternal obesity was associated with epigenetic changes in both
placental leptin and adiponectin systems [32]. More precisely, human maternal obesity was
associated with (i) hypermethylation of the DNA in the leptin promoter, (ii) hypomethy-
lation of the DNA in the adiponectin promoter, and (iii) significantly low mRNA and
protein expression levels of both leptin and adiponectin receptors in the third-trimester
placenta [32]. These results suggest that maternal obesity abrogates the beneficial effects of
these two adipokines on placental growth.

Secondly, with regard to the morphological differentiation of CTs, MFSD2 mRNA
expression and the fusion index (evaluated by e-cadherin immunostaining) during syn-
cytialization were transiently higher after 24 h and 48 h of cell culture in CTs from the
placentas of obese women than in CTs from the placentas of non-obese women [30]. How-
ever, the mRNA expression of syncytin-2 (the morphological marker of ST) was similar
in control and obese placentas [30]. These data highlighted a dissociation between the
trophoblasts’ morphological and biochemical differentiation processes. This dissociation
has already been described in the literature and reflects the fact that trophoblast fusion and
functional differentiation are regulated in different ways. For example, sphingolipids (and
specifically short-chain ceramides) can regulate biochemical trophoblast differentiation but
not fusion [35], whereas regulators of fusion can have no effects (or even have opposing
effects) on biochemical differentiation [36,37]. Moreover, mitochondria have been linked to
CT differentiation; various studies have evidenced morphological and functional changes
in mitochondria during CT differentiation. It has been observed that the mitochondria in
the human ST are morphologically different from those in the CTs: the mitochondria in the
ST are smaller, with a condensed matrix and fewer cristae [38,39]. It has also been suggested
that anaerobic metabolism is the main source of ATP production during trophoblast differ-
entiation [40,41]. This could be due to a lower level of mitochondrial ATP production in the
ST than in CTs. Moreover, it has been shown that mitochondrial reactive oxygen species
(ROS) are the second messengers involved in cell differentiation [42]. Lastly, the morpholog-
ical and functional changes reported in mitochondria during CT differentiation appear to be
associated (at least in part) with elevated steroid production in the ST, since placental cells
are the main participants in progesterone synthesis during pregnancy [39,40,43,44]. Recent
studies have demonstrated that maternal obesity is associated with a lower mitochondrial
content and the disrupted expression of a key regulators of mitochondrial biogenesis and
activity, such as transcription factors such as estrogen-related receptor-gamma (ERR-γ),
peroxisome proliferator-activated receptors (PPAR)-γ, and PPAR-γ co-activator 1-alpha
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(PGC-1α) during CT differentiation [30,43–46]. Taken as a whole, these results highlight
the structural, cellular, and molecular mechanisms involved in the placenta’s adaptation to
an adverse intrauterine environment.

4. Impact of Maternal Obesity on Placental Morphological Characteristics

Some literature data show that human maternal obesity can also affect the morpho-
logical characteristics of the third-trimester placenta. An early histological study showed
that there were no significant abnormal macroscopic or microscopic placental differences
(in terms of placental maturity, the degree of terminal villi formation, and the CD68 and
CD14 macrophage counts) between obese and non-obese pregnant women [47]. How-
ever, maternal obesity appeared to be associate with greater muscularity in the placental
vessel walls [47]. Two subsequent histological studies revealed a number of sex-specific
differences: female placentas from obese women were more susceptible to chronic villi-
tis and thrombosis, while male placentas from obese women had more intense villous
edema [19,48]. More recently, recent data used an innovative stereological approach to
identify placental differences between obese and non-obese pregnant women, showing:
(i) a similar volume fraction and surface density for trophoblasts, fetal vessels, mesenchyme,
sprouts/knots, and intervillous chamber components in the two groups; (ii) a lower vessel
density of the villous tree (as reflected by less intense CD34 and CD31 immunostaining)
in the obese group; (iii) a greater frequency of focal subchorial thromboses in the obese
group; and (iv) a higher frequency of subchorial fibrin deposits in the obese group [10].
These results suggest that the placental vascular pattern is altered by maternal obesity in
the absence of GD. Furthermore, the fibrin deposits specifically observed in placentas from
obese women might interfere with perfusion and gas/nutrient exchanges in the intervil-
lous space which, in turn, might result in the chronic placental insufficiency described by
Andres et al. [49].

Placental efficiency (defined by the birth weight:placenta weight ratio) might also be
modulated by the maternal environment. Indeed, the results of two studies demonstrated
that placental efficiency was significantly lower in obese women than in lean women. This
observation was particularly true for women with a female fetus (since females presented
a greater placental weight than males), suggesting the presence of sex-specific effects
of maternal obesity [4,10]. Thus, maternal obesity clearly alters placental structure and
efficiency, which might lead to placental dysfunction.

5. Impact of Maternal Obesity on Placental Metabolism

Placental nutrient transport depends on the placenta’s size (in particular, the surface
area available for exchange), nutrient transporter activity/availability, and the utero– and
fetal–placental blood flows [50]. Glucose, amino acids, free fatty acids (FFAs), and choles-
terol are essential macronutrients for fetal growth, and each nutrient crosses the placenta
through specific transporters and engages different metabolic pathways.

5.1. Impact of Maternal Obesity on Placental Glucose Metabolism

Glucose is the most important source of energy for both the placenta and the fetus.
Indeed, the fetus is entirely dependent on glucose transfer from the maternal plasma, which
is itself conditioned by placental glucose metabolism and transporter expression. Glucose
crosses the placenta by facilitated diffusion through glucose transporters 1 and 3 (GLUT1
and GLUT3), which are the two major transporter isoforms expressed at high levels in the
human term placenta [51,52]. The results of two recent studies clearly demonstrated that
mRNA and protein expression levels of GLUT1 were lower during maternal obesity [10,53].
Moreover, placental metabolism is highly oxidative and “prefers” oxidative metabolism
to glycolysis [54]. There is now some evidence to show that maternal obesity increases
aerobic glycolysis, and so compromised mitochondrial homeostasis might contribute to
fetal acidosis [55,56].
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5.2. Impact of Maternal Obesity on Placental Amino Acid Metabolism

Amino acids are crucial for the synthesis of important biomolecules (such as nucleic
acids and proteins) in the fetal–placental unit. Amino acids are transported from the
maternal circulation into the intervillous space by the ST. The active transport across the
placenta involves two main isoforms of the L-type sodium-independent neutral amino
acid transporter (LAT1 and LAT2) [57,58] and three main isoforms of the A-type sodium-
dependent neutral amino acid transporter (SNAT1, SNAT2, and SNAT4); all five isoforms
are strongly expressed in the human term placenta [11,59,60]. Glutamate appears to be the
most important amino acid substrate for the fetus once it is metabolized into glutamine
by the placenta [61]. The results of two recent studies demonstrated that maternal obesity
was associated with lower mRNA expression levels of LAT1-2, and SNAT1-2-4 in the
placenta [10,11], while a third study did not show any differences in the placental expression
of SNAT1 and 4 and even found higher SNAT2 expression levels in placentas from obese
women than in placentas from non-obese women [12]. These discrepancies could be
explained by a failure to consider the fetal sex or by the inclusion of obese women with a
very high BMI (>40 kg/m2). However, concerning placental amino acid uptake, a study
revealed that maternal obesity was accompanied by a reduced placental SNAT activity [31].
The low levels of placental amino acid transport might also be related (at least in part) to
maternal hyperleptinemia. Many studies have shown that leptin favors placental amino
acid delivery to the fetus [62]. In addition, it was known that the protein expression level
of the placental leptin receptor was significantly lower in obese women than in non-obese
women [32]. Hence, one can hypothesize that adaptative leptin resistance arises in the
placenta in obese women as a response to maternal hyperleptinemia. Lastly, insulin (a key
regulator of placental amino acid transport) might also play a role [63].

Moreover, Ditchfield et al. demonstrated that the placental activity of the taurine trans-
porter TauT was significantly lower in obese women than in normal-weight women [64].
Since the maternal plasma taurine concentration at term was significantly higher in obese
women than in non-obese women, the researchers suggested that low placental TauT ac-
tivity in obesity might be an adaptive, protective response to elevated maternal plasma
taurine concentrations. Lastly, using a general approach (metabolomics), a recent study
confirmed that maternal obesity altered placental amino acid levels, with higher levels of
serine and leucine and lower levels of taurine and lysine [65].

5.3. Impact of Maternal Obesity on Placental Lipid Metabolism
5.3.1. Fatty Acids (FAs)

Maternal circulating triglycerides (TGs) are first broken down into FFAs by placen-
tal lipases (i.e., lipoprotein lipase and endothelial lipase). The FFAs are then available
for uptake into the placenta via FA transport proteins (FATP1 and FATP3) and FA bind-
ing proteins (FABPs, cytoplasmic proteins that handle unsaturated FAs and mediate FA
metabolism) [66]. The placental lipid content depends on the maternal supply [67]. There-
fore, one can expect maternal dyslipidemia in obese women to alter the lipid composition of
the placenta itself. Surprisingly, various studies have not revealed any differences in placen-
tal total lipid content or lipoprotein lipase mRNA expression between obese and non-obese
women [15,68,69]. Nevertheless, it has been reported that maternal obesity was associated
with (i) low placental FATP1 mRNA expression and a low proportion of saturated FAs in the
placenta from obese women, (ii) low placental FABP1 mRNA expression and an elevated
placental content of polyunsaturated free FAs, and (iii) elevated FA translocase FAT/CD36
mRNA expression and, thus, a higher placental content of long-chain polyunsaturated FAs,
which have essential structural and functional roles in fetal development [15,68]. These
observations suggest that maternal obesity leads to the mobilization and use of specific
FAs [68]. Since FATP expression is known to be regulated in a positive feedback loop by FAs
and their derivatives, lower expression of FATP1 might therefore be a protective placental
adaptation mechanism for limiting excessive nutrient transfer to the fetus. In addition to
binding FAs, FABP1 binds a range of hydrophobic molecules such as the PPAR transcription
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factors. There is evidence to show that PPARs have crucial roles in placental lipid handling
and FA metabolism [70–72]. However, data in the literature on the relationship between
placental PPAR expression and maternal obesity are contradictory. Dubé et al. observed
similar PPAR contents in placentas from obese women vs. lean women [15]. In contrast,
Calbabuig-Navarro et al. showed that, in placentas from obese women, PPARγ mRNA
expression was higher (due to FA synthesis) and PPARα mRNA expression was lower
(due to FA oxidation) [73]. Furthermore, two recent general studies evidenced marked,
fetal-sex-specific responses in placental FA oxidation, esterification, and transfer capacity
to maternal obesity [13,18]. More precisely, it was found that maternal obesity causes
(i) lower placental transfer of docosahexaenoic acid (which is critical for fetal growth and
brain development) to male fetuses only, (ii) lower placental availability of substrates
for β-oxidation (particularly free carnitine, which facilitates the transport of long-chain
FAs across the inner mitochondrial membrane) in female placentas only, and (iii) greater
enzymic FA esterification activity (i.e., by diacylglycerol-o-acyltransferase 2) in female
placentas [13,18]. Furthermore, male (but not female) cultured primary human trophoblast
cells isolated from placentas of obese mothers had a greater preference for FA and glucose
substrates at baseline. It has also been demonstrated that these substrate preferences were
accompanied by a lower placental ability to switch between glucose, FA, and glutamine
when oxidation demands increased [74]. Moreover, Mele et al. demonstrated that metabolic
flexibility (defined as the cell’s ability to adapt its metabolism to substrate availabilities
and energy needs) was lower in the ST from obese women [37]. Lastly, Fattuoni et al.’s
metabolomic analysis revealed high levels of palmitic acid and low levels of arachidonic
acid and stearic acid in samples from obese women, relative to samples from non-obese
women [65].

5.3.2. Sphingolipids

Sphingolipids constitute a large family of lipids and are the main components of
biological membranes. They have also been described as bioactive lipids, due to their role
as second messengers within the cell [75–77]. Ceramides are the predominant precursors
of sphingolipids (such as sphingomyelins or gangliosides) and have a crucial role in cell
signaling. At present, little is known about the putative roles of these sphingolipids in preg-
nancy in general and in the human placenta in particular. Some studies have shown that
sphingolipids are involved in key cellular processes, such as apoptosis, differentiation, mi-
gration, and invasion of trophoblastic cells [35]. These findings suggest that sphingolipids
are of importance in placental development. However, to the best of our knowledge, the
effects of maternal obesity on the placental sphingolipid profile have not been investigated.

6. Impact of Maternal Obesity on Placental Inflammatory/Immune Status

The levels of most of the inflammatory cytokines in the maternal circulation increase
significantly during normal pregnancy; this is due, in part, to the secretion of cytokines by
the placenta itself [78]. Many researchers have reported that maternal obesity (characterized
by chronic, low-grade inflammation) further increases circulating levels of proinflammatory
cytokines such as interleukins-1 and -6, tumor necrosis factor alpha (TNF-α), monocyte
chemoattractant protein 1, C-reactive protein, and leptin [79,80]. It has even been reported
that placental TNF-α levels are abnormally high in female placentas (but not in male
placentas) from obese women; again this suggests the presence of fetal sex differences
in the placenta’s inflammatory response to obesity [81]. These observations support the
hypothesis whereby the mild proinflammatory state associated with normal pregnancy is
exacerbated by maternal obesity. However, data in the literature are inconsistent; surpris-
ingly, a number of reports failed to find significantly elevated maternal circulating levels
of cytokines in obese pregnant women [82], and one study even observed a significantly
low level of placental interleukin-6 secretion and significantly low macrophage/leukocyte
infiltration, specifically in GD-free obese women [10]. Furthermore, Nogues et al. re-
ported that maternal obesity did not influence the placenta activation of various major
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signaling pathways downstream of proinflammatory cytokines, including the Jun kinase,
Mitogen-activated protein kinase, and Janus-activated kinase pathways [10].

Taken as a whole, these results suggest that placental inflammatory status could
be reduced (at least moderately) by maternal obesity—even in the absence of GD. Since
placental inflammatory status is critical for the maintenance of pregnancy, these placental
changes might constitute a protective mechanism against the maternal hyperinflammatory
environment. There are many possible reasons for these discrepancies, including fetal
sex. Thus, the data suggest that heightened inflammation is not a general phenomenon
in pregnancies complicated by obesity, and so one cannot rule out the occurrence of this
phenomenon in specific subgroups of obese women only. Additional research is needed to
better precise these placental adaptations.

7. Impact of Maternal Obesity on Placental Oxidative Status

Pregnancy per se is characterized by maternal chronic inflammation, elevated metabolic
demand, and thus greater oxidative stress. Mitochondria generate ROS such as the superox-
ide anion (O2

−) and hydrogen peroxide (H2O2). Physiological ROS production is essential
for some biological processes, such as cell differentiation and the inflammatory response
(as described above). However, ROS overproduction and low antioxidant capacity lead
to oxidative stress, damage to mitochondria, and the disruption of cell homeostasis [45].
Furthermore, the combination of nitric oxide (NO) and O2

− produces reactive nitrogen
species such as peroxynitrites (ONOO−). This powerful oxidant exerts various harmful
effects by nitrating transporters, enzymes, and signal transduction molecules [83].

Recent studies have demonstrated that maternal obesity is associated with greater
placental oxidative stress. Indeed, levels of markers of oxidative stress (such as lipid
peroxidation, protein nitrosylation, and protein carbonylation) are higher in placenta
samples from obese women [14,84–86]. Moreover, maternal obesity is also associated
with damage to mitochondria in placental tissue, with deregulation of mitochondrial
DNA content, lower mitochondrial respiration, and less ATP production [16,37,43,44,46,87].
However, the data on the expression and activity of antioxidant enzymes are still subject to
debate. Some researchers have reported an elevation of placental antioxidant enzyme levels
in maternal obesity [13] while others have not found any differences or have even found
abnormally low levels of placental antioxidant enzymes [14,88]. These discrepancies might
be due to sexual dimorphism in enzymatic antioxidant defenses. Indeed, male placentas
in obese women showed a higher level of oxidative stress and a greater reduction in the
activities of both superoxide dismutase and catalase, relative to female placentas [17].

8. Impact of Maternal Obesity on the Placental Transcriptome

Overall, gene expression profiling experiments have demonstrated that maternal
obesity creates a unique in utero environment—one that impairs the placental transcrip-
tome [89]. Indeed, the results of recent studies have demonstrated a clear difference in
the placental transcriptome between obese women and normal-weight women [84,89,90].
More precisely, the placental transcriptome in obese women was characterized by an over-
all repression of most of the differentially expressed genes. The placental dysregulation
observed specifically in samples from the obese women involved genes mainly related to
inflammation, immune responses, and lipid metabolism. Interestingly, it was shown that
supplementation with unsaturated FAs during pregnancy modifies the placental transcrip-
tome in a sexually dimorphic manner, with female placentas being more responsive [91];
this might reflect greater plasticity in female placentas. In contrast, it has been shown
that male placentas express lower levels of the X-linked gene OGT coding for O-GlcNAc
transferase, which is required in some placental epigenetic processes. More specifically,
reduced OGT expression could result in male placentas having less of the histone repres-
sive mark H3K2me3 and, thus, being more vulnerable to modifications of the maternal
environmental [92,93]. Hence, one can hypothesize that maternal obesity affects placental
transcriptome in a sex-specific manner, although data in the literature are lacking.
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9. Conclusions

Most data in the literature aim to elucidate the influence of maternal obesity on
placental functions without taking into account fetal sex. Our review clearly demonstrates
the critical importance of fetal sex when evaluating placental responses to metabolic
diseases in general and maternal obesity (in the absence of GD) in particular. Indeed, some
studies show that the placenta is a transiently plastic organ that adapts its development
and metabolism, in a sex-specific manner, in response to an obesogenic environment
(Figure 1) (Table 1). These sex-specific placental changes might explain (at least in part)
the fetal-sex-dependent outcomes observed in infants born to obese women. However,
data concerning certain placental sex-specific adaptations (such as endocrine function and
nutrient exchange) are currently missing. Therefore, further investigations are needed to
completely understand the involvement of fetal sex in placental adaptive changes and to
support the notion of sexual dimorphism in response to maternal obesity.
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Maternal obesity exposes the placenta to a lipotoxic environment that might alter
placental functions and the offspring’s health via changes in placental nutrient transporter
expression, mitochondrial function, lipid metabolism, and oxidative stress levels. Moreover,
sex-specific placental responses have been described. Female placentas from obese women
are characterized by lower levels of FA oxidation, higher levels of FA esterification, and
higher levels of inflammation, and appear to adapt more easily to a lipotoxic maternal
environment. Nevertheless, it has been observed that female fetuses have larger amounts
of adipose tissue. Male placentas are characterized by lower expression of antioxidant



Int. J. Mol. Sci. 2023, 24, 9770 10 of 14

enzymes, a moderate level of inflammation, and lower docosahexaenoic acid transfer. The
latter might be related to the poor neurodevelopmental outcomes observed specifically
in male fetuses. The metabolic alterations caused by maternal obesity might contribute
to poor placental endocrine function and vascular alterations. Lastly, these various pla-
cental modifications might explain (at least in part) the long-term risks of metabolic and
cardiovascular diseases observed in the offspring of obese women.

GD: gestational diabetes; GLUT: glucose transporter; SNAT: A-type sodium-dependent
neutral amino acid transporter; LAT: L-amino acid transporter; FATP: fatty acid transport
protein FABP: fatty acid binding protein; FAT/CD36: fatty acid translocase; FA: fatty acid;
SFA: saturated fatty acid; DHA: docosahexaenoic acid; TNF-α: tumor necrosis factor alpha.
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