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Eighteen years of upland grassland 
carbon flux data: reference 
datasets, processing, and  
gap-filling procedure
Bruna R. Winck  ✉, Juliette M. G. Bloor   & Katja Klumpp  

Plant-atmosphere exchange fluxes of CO2 measured with the Eddy covariance method are used 
extensively for the assessment of ecosystem carbon budgets worldwide. The present paper describes 
eddy flux measurements for a managed upland grassland in Central France studied over two decades 
(2003–2021). We present the site meteorological data for this measurement period, and we describe 
the pre-processing and post-processing approaches used to overcome issues of data gaps, commonly 
associated with long-term EC datasets. Recent progress in eddy flux technology and machine learning 
now paves the way to produce robust long-term datasets, based on normalised data processing 
techniques, but such reference datasets remain rare for grasslands. Here, we combined two gap-filling 
techniques, Marginal Distribution Sampling (short gaps) and Random Forest (long gaps), to complete 
two reference flux datasets at the half-hour and daily-scales respectively. The resulting datasets are 
valuable for assessing the response of grassland ecosystems to (past) climate change, but also for model 
evaluation and validation with respect to future global change research with the carbon-cycle community.

Background & Summary
Long-term carbon (C) flux measurements are critical to assess both the patterns and drivers of ecosystem func-
tion over space and time. Eddy covariance (EC) measurements are a direct and instantaneous way to measure 
carbon fluxes and energy between atmosphere and surface. In recent years, networks of flux towers (EC meas-
urements) have played a pivotal role in improving understanding of broad-scale carbon budgets and responses 
to abiotic and biotic factors both across and within contrasting ecosystems1. Although the installation of EC sys-
tems has increased worldwide (i.e., NEON, Ameriflux, AsiaFlux, ICOS), generating more available and reliable 
datasets based on standardised data-processing pipelines, the availability of long-term grassland flux datasets 
lags behind that of woody systems2. Long-term grassland flux studies hold great potential for identifying and 
understanding effective approaches to mitigate and adapt to global changes, including the provision of ecosys-
tem services at a global scale.

Here, we describe 18-year datasets of greenhouse gas (GES) fluxes from an EC tower located in an upland 
permanent grassland site in the French Massif Central region, along with the methodology used for the pre- and 
post-processing of the data3. The production of accurate long-term eddy flux datasets relies on a suite of soft-
ware and statistical tools for data pre- and post-processing4. Three general steps have a key effect on the quality 
of the final data in long-term eddy flux datasets: (i) raw-data pre-processing, (ii) time series discontinuity, that 
is, the number and length of gaps, and (iii) the gap-filling techniques (also called “imputation”). Data gaps in 
EC time series may be related to technical failures and/or changes in analyser technology, often non-randomly 
located across the EC time series, as well as to data quality checks (i.e., rejection of low-quality C fluxes5,6), which 
are typically randomly located in the time series7. Further, data measured in periods of low turbulence, which 
occurs mainly at nighttime, are rejected, thus generating more gaps7,8. Standard gap-filling methods based on 
Marginal Distribution Sampling (MDS9) are effective for short gaps7 because the missing value is replaced by 
the average of the response variable under similar weather conditions in a small-time window. However, recent 
studies show that MDS has low accuracy and high uncertainty when dealing with long gaps10,11. To overcome 
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problems of long gaps in EC datasets, a variety of machine learning (ML) techniques (i.e., Random Forest and 
artificial neural networks) have been used to reconstruct long-term EC time series10–12. The application of ML 
techniques to flux data has the potential to provide robust gap-filling and requires few predictive variables to 
be measured continuously over long time periods10,12,13. Moreover, ML considers the temporal dependence and 
structure of the time series (i.e., trend and seasonality) and can deal with “noise” and complex interactions 
between variables10. In the present work, we therefore combined different statistical techniques to gap-fill data 
gaps of different origin and length in our EC time series, i.e., MDS and Random Forest techniques, generating 
two complete flux datasets (half-hourly and daily scale).

Our grassland study site is managed with low intensity cattle grazing typical for the region14,15, and the 
tower-based measurements include ecosystem-atmosphere turbulent fluxes of CO2 and H2O. The main prod-
ucts presented are: (1) half-hour data of C fluxes and energy with their respective quality flags and related 
meteorological variables (temperature, precipitation, radiation) from the onsite meteorological station; (2) 
gap-filled half-hourly NEE under three uStar threshold percentiles; (3) half-hourly C flux partitioning using 
night-time and daytime methods; and (4) gap-filled meteorological and C flux variables at the daily (diel) scale 
(daytime/night-time), accounting for long gaps3. To explore changes in C flux results as a function of pre- and 
post-processing techniques used in this paper, we also present a comparative analysis of parameterisation steps 
and C fluxes between the present analysis, and a previous shorter analysis of daily fluxes at the same site (2003–
2011)14. Our datasets will be useful for exploring grassland ecosystem responses to environmental disturbances 
such as climate anomalies, the detection of possible early warning signals and tipping points, as well as providing 
a valuable resource for biogeochemical modelling and the prediction of grassland responses to future climate 
change.

Methods
Study site. The study site is located in an upland semi-natural grassland in the Auvergne region of France 
(1040 m asl; 45°38′N, 2°44′E) (Fig. 1) and has been under permanent grass cover since the 1950s. The local climate 
is classified as Cfb (Temperate oceanic climate) according to the Köppen classification; mean annual temperature 
and precipitation are 8.05 °C and 1073 mm, respectively (INRAe Climatik platform, 2022). The soil is an Andosol 

Fig. 1 (a) Grassland management, (b) daily precipitation (mm), (c) temperature (°C), (d) seasonal CO2 
footprint, and (e) seasonal wind rose at Laqueuille site, France during the study period.
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(20% clay, 53% silt and 27% sand) with carbon content ranging from 100 to 104.1 g kg−1and average bulk soil 
density of 0.87 g cm−3.

Since 2002, an experimental field (3.4 ha) has been managed by cattle grazing under low animal stocking 
rate (0.51 LSU ha−1 yr−1), with continuous grazing during the plant growing season (late April to late October). 
Vegetation is dominated by grasses including Dactylis glomerata, Holcus mollis, Poa pratensis and Agrostis capil-
laris. For full details on the experiment, see Allard et al. (2007) and Klumpp et al. (2011).

Data processing and post-processing. The workflow showing the steps of raw-data pre-processing and 
post-processing can be found in Fig. 2.

Eddy covariance and meteorological systems. Continuous measurements of surface-atmosphere exchanges of 
CO2 and H2O have been carried out in the extensively managed field since the start of the experiment (spring 
2002). Flux measurements are done using an Eddy Covariance (EC) system installed at a height of 2 m (here-
after, “EC tower”). The tower is equipped with a high frequency sonic anemometer (Model Solent R3; Gill 
Instruments, Lymington, UK) to measure wind speed components (u, v, w) and an open-path analyser to meas-
ure CO2 and H2O (Model LI-7500; LI-Cor Inc., Lincoln, NE, USA). Data is recorded at 10 to 20 Hz and recorded 
on a computer and datalogger14,15.

The site is equipped with a meteorological station that provides high frequency measure of atmospheric 
(Tair: air temperature, RH: relative humidity, PA: atmospheric pressure, P: total precipitation, ws: wind speed, 
wd: wind direction) and solar radiation (PPFD: photosynthesis active radiation, Rg: global radiation, Rn: net 
radiation). The frequency for atmospheric and solar radiation is 30 and 20 seconds, respectively.

Flux data processing and post-processing. Raw-data (10 Hz until 2016 and 20 Hz onwards) from the EC tower 
and meteorological station were pre-processed with EddyPro® software (Li-COR, version 7.0.9) following the 
processing steps and methods16–27 presented in Supplementary Table 1 and Table 1. Processed data was con-
verted into half-hourly flux data and post-processing was performed following international recommendations 
of FLUXNET2 using R Studio Software. In brief, post-processing steps included: (i) data filtering of low-quality 
values of NEE, (ii) filtering of values outside the footprint area20, (iii) filtering of values under low friction veloc-
ity (uStar), (iv) gap-filling of missing values using the MDS method11 for half-hour data (shorter gaps), (v) 
partitioning net ecosystem exchange (NEE) into ecosystem respiration (Reco) and gross primary productivity 
(GPP), based on the nighttime and daytime algorithms9,28, (vi) gap-filling of missing values using RF algorithms 
for daily data (long gaps)2,10. Short gaps are random gaps often produced during data quality check that were 
distributed throughout the EC time. On the other hand, long gaps are non-random gaps that are mainly related 
to instrumental failures or changes, and they located in specific points across the EC time series. For instance, 
in our EC time series we identified four long gaps (Fig. 3), the largest gap being a sequence of 26 months, from 
October 2014 to December 2016. Post-processing steps are described in detail below.

Data quality check. The quality check procedure for the half-hour data was performed in six steps (Table 1) 
using the R packages “FreddyPro”(https://github.com/cran/FREddyPro) and “REddyProc”8:

Fig. 2 Workflow of pre- and post-processing step for half-hour and diurnal-daily data.

https://doi.org/10.1038/s41597-023-02221-z
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Post-processing steps Klumpp et al. (2011) This dataseta

Remove values beyond the physical boundaries −50 to 50 for CO2, −250 to 1000 for LE, 
−250 to 1100 for H

FREddyPro::cleanVar ‡ (−50 to 50 for CO2, −250 to 
1000 for LE, −250 to 1100 for H)

Despiking Removed at pre-processing (see 
Supplementary Table 1)

Removed all values flagged as 1 (not passed) during 
statistical test performed during the pre-processing 
in EddyPro (Mauder and Foken, 2004)

Remove Spectra and co-spectra Removed all values flagged as 2 FREddyPro::qcClean (removed all values flagged 
as 2)

Remove Values based on standard deviation of means See Supplementary Table 1 for detailed 
conditions

FREddyPro::sdClean (removed all values higher 
than 3 standard deviation)

Remove values based on outliers See Supplementary Table 1 for detailed 
conditions

FREddyPro::removeOutliers (removed all values 
below the 25th percentile or above the 75th 
percentile)

Remove values lower than a given u* threshold Fix u* = 0.8 REddyProc::sEstimateUstarScenarios ‡, using 
seasonal threshold (Wutzler et al., 2018)

Remove values beyond the field boundaries (footprint check) Not taken into account Removed all values for which the x_peak was 
beyond the footprint

Gap-filling half-hour data (short-gaps) REddyProc::sMDSGapFillUStarScens REddyProc::sMDSGapFillUStarScens

Flux partitioning into GPP and Reco (nighttime method) REddyProc::sMRFluxPartitionUStarScens REddyProc::sMRFluxPartitionUStarScens

Flux partitioning into GPP and Reco (daytime method) Not taken into account REddyProc:: sGLFluxPartitionUStarScens

Gap-filling daily data (long-gaps) Not taken into account RF algorithm (several R packages)

Table 1. Comparison of post-processing steps applied on half-hour and diurnal-daily data in the present study 
and that of Klumpp et al. (2011). apackage::function in R software (when applied).

Fig. 3 Gaps in net ecosystem exchange (NEE) data at the grassland site, Laqueuille, France. (a) fingerprint 
showing gaps in half-hour NEE data; (b) time series of daily NEE data showing long gaps.

https://doi.org/10.1038/s41597-023-02221-z
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•	 Physical boundaries: Data were rejected when beyond the physical boundaries considered for this experi-
mental site: CO2 (−50 to 50 μmol CO2 sec−1 m2), LE (−250 to 1000 W m−2), H (−250 to 1000 W m−2), and 
VPD (0 to 50 Pa).

•	 Quality control (QC) flags: EddyPro software assigns QC flags based on the combination of both steady-state 
turbulence and well-developed turbulence tests, where the flag “0” represents high-quality fluxes, “1” inter-
mediate-quality fluxes, and “2” represents low-quality fluxes29,30. Following the recommendation of Vitale et 
al. (2020), we rejected all low-quality fluxes, flagged as “2”.

•	 Raw data statistical screening: Based on nine statistical tests to check unusual behaviours in the time series, 
EddyPro software assigns two hard flags for each half-hourly data, where “0” represents “passed” and “1” 
represents “failed”. Data with a hard flag of 1 for the spike test were rejected. The quality check results related 
to all other statistical screening procedures (Supplementary Table 1) are presented in the dataset.

•	 Standard deviation and outliers: We rejected data with values greater than 3 standard deviations from the 
mean positive and negative values of the complete EC time series (i.e., outliers from the interquartile range 
with 75th and 25th percentiles).

•	 Footprint: Data were filtered with respect to field margins to minimize the risk of fluxes from outside the field. 
We rejected values where the distance between the tower and the peak was greater than that of the fetch, so 
that only values in the target area remained.

•	 uStar: Data were filtered for insufficient atmospheric turbulence (i.e., mostly at night) using multiple uStar 
thresholds (0.05, 0.5, 0.95 quantiles) during the year to account for seasonality in vegetation and climate 
classes (air temperature and precipitation). The uStar thresholds were estimated using the bootstrapping 
method31 (n = 1000 resamples).

The percentage of missing values before and after data cleaning by day and diel period is given in the XLSX 
file “FR_Lq2_EXTENSIF_Li_7500_CR3000_2003_2021_gaps.xlsx”.

Gap-filling of short gap periods and C flux partitioning. Following data quality checks, short gaps in NEE were 
imputed using Marginal distribution sampling-MDS8 as recommended by FLUXNET2, using the R package 
“REddyProc”8. The MDS combines two gap-filling techniques: the “look-up table” and the “mean diurnal course”. 
In essence, the MDS technique creates look-up tables which seek similar meteorological conditions (global 
radiation Rg, air temperature Tair, and vapor pressure deficit VPD) under different window sizes that are physi-
cally and temporally similar to the missing data and imputes them using the average values. The meteorological 
conditions are considered similar when they do not vary more than 50 W m−2, 2.5 °C, and 5, hPa respectively. 
When all the meteorological variables are available in a 7-day window, the gap is filled by the mean value. When 
MDS fails to find similar meteorological data, the search continues and considers only the presence of Rg, and 
the gap is filled with the mean value in a 7-day window. When no appropriate similar conditions are available, 

Fig. 4 Example summary fingerprint plots of net ecosystem exchange (NEE), gross primary productivity 
(GPP), and ecosystem respiration (Reco) in 2004 after MDS gap-filling showing diurnal and seasonal C fluxes at 
the study site.

https://doi.org/10.1038/s41597-023-02221-z
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the gap is filled using diurnal curve courses, which replace the gaps with the mean value for the exact time of day 
of the adjacent days32. If the gap still exists after these steps, the same procedure is carried out using progressively 
larger time windows31.

After the gap-filling procedure, different gap-filled NEE (NEE_f) are generated, including their uncertainties 
(_fsd), distinguished by a suffix with the quantile (_05, _50, and _95). The final gap-filled NEE were partitioned 
into GPP (GPP_f) and Reco based on standard night-time and daytime algorithms9,28,also distinguished by a suf-
fix with the quantile (_05, _50, and _95). The night-time method uses night-time NEE to fit a respiration model 
based on the relationships between NEE and air temperature. GPP is inferred by extrapolating Reco to daytime 
temperature and by subtracting the latter term from NEE. The daytime algorithm uses daytime and night-time 
NEE to calibrate a model based on light-response curves and VPD to predict GPP, and the relationship between 
temperature and respiration to predict Reco, as with the night-time method.

Uncertainty in gap-filling of C flux and uStar threshold. The most significant sources of uncertainties in the 
post-processing of half-hour data occur when estimating the uStar threshold and the gap-filling procedure. 
During the gap-filling procedure, searching for similar conditions attempts to keep the window size as small as 
possible. However, the more the variables are missing, the larger the time window. As a result, this increases the 
uncertainty in gap-filling, which is flagged (_F_MDS_QC) as follows: 0 (measured); 1 (high confidence impu-
tation); 2 (medium confidence imputation); and 3 (low confidence imputation). To visualise the uncertainty 
associated with the uStar filtering, we computed uStar thresholds using a large sequence of quantiles ranging 
from 0.025 to 0.975 (nSample = 1000 L, length.out = 39). The greater the difference between the extreme the 
greater can be the uncertainty introduced by uStar filtering. The time sequence with low data quality or the 
absence of measurements were excluded from this analysis. Uncertainties associated with the daily sum of NEE 
were calculated using the standard deviation of the observations, considering the autocorrelation between the 
observations33. More detailed information regarding uncertainty analysis in aggregated NEE can be found at the 
following website: https://cran.r-project.org/web/packages/REddyProc/vignettes/aggUncertainty.html.

Label Description Statistical aggregation Variable Type

Response variables

NEE Net ecosystem exchange sum continuous

GPP Gross primary productivity sum continuous

Reco Ecosystem respiration sum continuous

Predictive variables

Datea Split into several time series signature features # Category -> dummy

Period Daytime/nighttime # Category -> dummy

Tair Air temperature mean continuous

Tmin Air temperature minimum continuous

Tmax Air temperature maximum continuous

VPD Ambient water vapour pressure deficit mean continuous

VPDmin Ambient water vapour pressure deficit minimum continuous

VPDmax Ambient water vapour pressure deficit maximum continuous

PPFD Photosynthetically active radiation sum continuous

RH Relative moisture mean continuous

RHmin Relative moisture minimum continuous

RHmax Relative moisture maximum continuous

P Total precipitation sum continuous

Rg Global radiation sum continuous

Rn Net radiation sum continuous

Pa Air pressure mean continuous

LE Latent heat flux sum continuous

H Sensible heat flux sum continuous

Ustar Friction velocity mean continuous

ws Wind speed mean continuous

wd Wind direction mean continuous

anom_p Precipitation variability percentageb continuous

anom_t Temperature variability percentageb continuous

Table 2. List of predictor and response variables used in the random forest models. aDuring RF model building, 
the Date variable was used to create time series signature features (i.e., day of the year, day of the month, 
weekday). These variables are used to detect temporal patterns in the input dataset. bVariations in percentage in 
relation to climatological normal calculated over a 30-year period.

https://doi.org/10.1038/s41597-023-02221-z
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Gap-filling of long-term gaps and model uncertainty. Long gaps in C fluxes were filled using the random forest 
(RF) algorithm34 and a set of R packages (parsnip35, recipes36, ranger37, rsample38, tune39, workflows40). RF is a 
machine learning algorithm that uses an ensemble-learning method based on regression trees; predictions from 
multiple decision trees are aggregated to generate more accurate predictions than a single model. Use of RF is 
robust in the presence of noise and in detecting complex relationships between variables, but its performance 
depends on the tuning of its hyperparameters, the number of features, and the dataset size. Typically, the more 
the training data are increased, the greater the model accuracy becomes, reducing overfitting. For time series, a 
complete sequence of data should be large enough to detect patterns such as trend and seasonality. Given that 
RF requires high computation performance and that C fluxes have different patterns with respect to time-of-day, 
we downscaled our data into diel observations per day (daytime/night-time). Daytime was defined by using 
the R function “solartime::computeIsDayByLocation”41. Detailed description of the variables for RF training is 
described in Table 2. Overall, following steps were performed to predict and impute long-gap periods:

Response variables. 

•	 We used the daily sum of NEE (NEE_U50_f), Reco (Reco_U50), and GPP (GPP_U50_f) as response variables 
in the RF models.

Predictor variables. 

•	 The mean, minimum and maximum of variables describing meteorological conditions (uStar, Tair, P, RH, VPD, 
ws, and wd) and solar radiation (Rg, Rn, and PPFD) were inserted as predictor variables in the RF models.  
The minimum and maximum values are thought to capture the daily variation of the predictor variable.  
In view of the strong and bidirectional relationship between energy fluxes, often related to evapotranspiration 
processes, and C fluxes35, LE and H were also inserted as predictors.

•	 Anomalies of temperature (t_anom) and precipitation (p_anom) were included as additional predictors. Both 
variables were calculated as the difference of the observed value in relation to the climate “norm” of the refer-
ence month. The climate “norm” was calculated over a 30-year period using data from Laqueuille meteorolog-
ical station (INRAe Climatik platform, 2022, https://internet.inra.fr/climatik), in line with recommendations 
by the World Meteorological Organization42.

•	 Because RF algorithms do not deal with missing values in predictors, those variables were previously gap-
filled using the R function “missForest::missForest”43 with 200 trees and 5 interactions. Since the out-of-bag 
(OOB) error was around 0.03, which indicate high performance of the gap-filling method, we use these 
imputed meteorological variables in the next steps of the RF analysis.

Model training. 

•	 The EC time series after MDS gap-filling was 100% complete between 2003 and 2008 for all response varia-
bles. Therefore, we used this sequence to generate the training and testing datasets. The time sequence from 
2003 to 2007, corresponding to 70% of the data, was used to train the RF models and predict NEE, Reco, and 
GPP in 2008. The testing dataset (2008), corresponding to 30% of the data, was subsequently used to validate 
the RF models.

•	 RF models were built using the R functions “recipe”, “bake”, and “juice” from the “recipe”36 package. During RF 
model building, we insert all the aforementioned predictors, as well as the time series signatures using the R 
function “timetk::step_timeseries_signature”44. Time series signatures use the “Date” column to generate a set 
of time-based features (i.e., day of the year and the month, week of the year, day of the wee, month, quarter) 
that define when each observation occurred. These signatures can capture common seasonal and trend pat-
terns of a given time series. Continuous variables were normalised to have a data deviation of one and a mean 
of zero, whereas all the categorical variables, including time series signatures, were converted into dummy 
variables. While data normalization improves model prediction by reducing the strong difference between 
the predictors, dummy transformation reduces model complexity, the computation time, and the bias related 
to the number of levels in each category.

•	 The models were trained using the R function “parsnip::rand_forest”35 with 500 decision trees, which is above 
the value at which the out-of-bag error stabilized, and tunned “mtry”36. Computational engine and prediction 
outcome mode were set as “ranger” and “regression”, respectively.

•	 During the model training, we checked the importance of all predictors and we excluded those of low impor-
tance in a step-wise manner. This procedure was repeated until root mean squared prediction error (RMSE) 
was found to increase and R2 to decrease. When this happened, the last variable to be removed was re-inserted 
in the final model, and this was used in the validation step.

Model validation. 

•	 The validation of the models was carried out by predicting the entire year of 2008 and comparing it with the 
testing dataset. The models with the highest (R2) between the predicted and observed values were chosen for 
gap-filling of missing values in NEE, GPP, and Reco.

https://doi.org/10.1038/s41597-023-02221-z
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•	 To ensure high predictive capacity and lower uncertainty, each model was run 50 times. The average of the 
predicted values was used both in validation and in imputation, as well as to calculate the standard deviation 
(SD) of the coefficient of determination (R2), root mean squared prediction error (RMSE), and mean absolute 
error (MAE).

•	 As a further check of the validity of our RF models for the gap-filling procedure and the representativity of 
the climate for the years used in training step, we used 2004–2008 as an alternative training dataset to predict 
2003 (an atypical year).

Files names File contents

FR-Lq2_EXTENSIF_Li_7500_CR3000_2003_2021_Site_Description.xlsx Site description

FR-Lq2_EXTENSIF_Li_7500_CR3000_2003_2021_animal_stocking_rate.xlsx Daily grassland management

FR_Lq2_EXTENSIF_Li_7500_CR3000_2003_2021_HH.csv Output from eddypro and Reddyproc after processing 
and post-processing, meteorological data.

FR-Lq2_EXTENSIF_Li_7500_CR3000_2003_2021_HH_metadata.xlsx List of variables and units, description of the variables

FR-Lq2_EXTENSIF_Li_7500_CR3000_2003_2021_HH_gaps.xlsx Number and percentage of gaps before and after data 
quality check

FR_Lq2_EXTENSIF_Li_7500_CR3000_2003_2021_NA_QC_Table-S1.csv Number and percentage of missing values (NA) before 
and after quality check

FR_Lq2_EXTENSIF_Li_7500_CR3000_2003_2021_DD-DN.csv
Aggregated data at diel resolution split into daytime-
nighttime period, meteorological variables imputed with 
“missforest” package and outcome with random forest

FR-Lq2_EXTENSIF_Li_7500_CR3000_2003_2021_DD-DN_metadata.xlsx List of variables and units, description of the variables

FR_Lq2_EXTENSIF_Li_7500_CR3000_2003_2021_Models_RF.csv RMSE, R2, and MAE of the 50 random forest models for 
each response variable

FR_Lq2_EXTENSIF_Li_7500_CR3000_time_series_signature_Table-S2.xlsx Description of time series signature used in RF models

FR_Lq2_EXTENSIF_Li_7500_CR3000_2003_2021_postprocessing - MDS.Rmd R script of half-hour data post-processing

FR_Lq2_EXTENSIF_Li_7500_CR3000_2003_2021_postprocessing - RF.Rmd R script to generate DD-DN datasets and random forest 
model performed using the DD-DN

FR_Lq2_EXTENSIF_Li_7500_CR3000.eddypro Raw-data processing of 2021

FR_Lq2_EXTENSIF_Li_7500_CR3000.metadata Metadata of raw-data processing in EddyPro of 2021

FR_Lq2_EXTENSIF_Li_7500_CR3000_2003_2021_planar_fit.txt Input for raw-data processing in EddyPro of 2021

FR_Lq2_EXTENSIF_Li_7500_CR3000_2003_2021_time_lag.txt Input for raw-data processing in EddyPro of 2021

Table 3. List of dataset and contents. Country (FR = France), site (Lq2 = Laqueuille, ICOS code), grassland 
management (EXTENSIF = Extensive management), Li-Cor sensor (Li-7500 open-path), datalogger model 
(CR3000 Micrologger®), and the beginning and end of the time series. HH: half-hour data, DD: daily data; 
DN: daily data split into daytime and nighttime, RF: random forest, MDS: Marginal distribution sampling, NA: 
missing values.

Fig. 5 Ustar threshold for each year. Red point represents original Ustar by season, blue point the uStar 
threshold 0.5th, and grey points the uStar sequence ranging from 0.025th to 0.975th percentiles.
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Sensibility of RF models to gap length and timing. 

•	 We evaluated the sensitivity of the RF models to gap length and location by generating testing datasets based 
on 2008; the complete dataset was altered to generate varying degrees of missing values (4, 14, 28, 41, 55, 69, 
82, and 100%) starting from the 1st day of the year. Artificial gap sequences were imputed using the trained RF 
models (2003–2007) described above. To test the sensibility to timing of gaps (gap location), we investigated 
the sensitivity of our RF models to a gap of constant length (2 months), positioned at different locations in the 
2008 time series according to the seasons. The performance of the gap-filling procedure for each gap scenario 
was evaluated by analysing the final R2 and RMSE (same methodologies as above). The slope of the linear 
models between predicted and observed values was also used as a metric to evaluate the model sensitivity to 
gap length or location.

Fig. 6 Uncertainties in aggregate net ecosystem exchange (NEE) an extensively-managed grassland, Laqueuille, 
France. (a) Hourly aggregation (black line) for each month and standard deviation (blue ribbon); (b) Daily 
aggregation (black line) and standard deviation (blue ribbon).
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Data Records
The long-term datasets (2003–2021) are distributed in files (CSV format, UTF-8 comma delimited) separated 
by temporal aggregation, e.g., half-hourly (HH suffixes) and daily split (daytime/night-time period, DD-DN 
suffixes). Each file is accompanied by its respective metadata in XLSX format, containing the full list of varia-
bles, the measurement units, and the variable description. The half-hour dataset is a complete dataset generated 
by the pre- and post-processing in EddyPro and REddyProc, respectively. This dataset contains 258 variables, 
including the original (_original suffixes) and gapfilled (_f suffixes) values for Rg, VPD, Tair, NEE, Reco, and GPP 
using the MDS technique. The daily dataset contains 31 variables aggregated from the half-hour dataset (_RF 
suffixes for gapfilled data and _original suffixes for non-gapfilled data) into daytime and nighttime period. We 
provide XLXS files describing the site and flux tower system, the animal stocking rate, and the number and 
percentage of gaps before and after the data quality check procedure. Finally, we provide a ZIP file with an 

Fig. 7 Daily mean of net ecosystem exchange (NEE) from 2003 to 2011 in an extensively-managed grassland, 
Laqueuille, France. Blue lines are reprocessed, and gapfilled raw-data performed in this study and red lines are 
the results from Klumpp et al. (2011).

Fig. 8 Final predictor variables considered each random forest model to predict NEE, Reco, and GPP.
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example of EddyPro processing where all configuration steps can be checked. The prefix of the file names “FR_
Lq2_EXTENSIF_Li_7500_CR3000_2003_2021_*” provides the follow information: country (FR = France), site 
(Lq2 = Laqueuille, ICOS code), grassland management (EXTENSIF = Extensive management), Li-Cor sensor 
(Li-7500 open-path), datalogger model (CR3000 Micrologger®), and the beginning and end of the time series. 
Details on the files names and their content are given in Table 3. All files are available for download as a single 
ZIP file through the public repository Dataverse INRAe3.

Fig. 9 Linear model regressions between predicted values of NEE, Reco, and GPP using random forest 
algorithms trained with 2004–2008 (predicting 2003) and with 2003–2007 (predicting 2008).

https://doi.org/10.1038/s41597-023-02221-z


1 2Scientific Data |          (2023) 10:311  | https://doi.org/10.1038/s41597-023-02221-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

technical Validation
To ensure robust and high-quality flux of our results after the pre-processing using EddyPro, the output of the 
half-hour C-fluxes were visually checked using fingerprint plots. A typical fingerprint plot presents negative 
NEE (photosynthesis) values during daytime in summer and spring and positive NEE values (respiration) dur-
ing at nighttime and in winter and autumn (Fig. 4). When the fingerprints were not as expected, suggesting 
low data quality or instrumental failures, the sequence was rejected from the time series and imputed using 
RF models. We also examined the uncertainties associated with the estimation of uStar thresholds (Fig. 5). 
The more dispersed are the uStar values, the greater their uncertainty. Figure 6 shows the mean diurnal and 
annual cycle of the NEE and the respective uncertainties. Uncertainty is higher in the colder months of the year 
(December-February) and during nighttime, possibly associated with the greater flux magnitude.

Changes in NEE related to pre-processing and data filtering (i.e., missing values allowance, uStar, footprint) 
were assessed with respect to the choices made in a previous work using a subset of the same EC raw-data16. 
The pre-processing of the current dataset generated similar patterns of C flux over time to those generated by 
the raw-data pre-processing in a previous study16. However, our outputs were significantly higher at several 
moments along the EC time series between 2003–2011 (Fig. 7). Although raw data from Klumpp et al. (2011) was 
pre-processed using the EdiRe (no longer available) to estimate C flux, and here pre-processed with EddyPro, a 
previous work has shown that there is an agreement between both software when the pre-processing steps are 
similar38. Thus, we assume that observed differences between the C fluxes are likely due to the parametrization 
choices made during pre- and post- data processing (Supplementary Table 1 and Table 1). Some steps of data 
processing may have been critical in this difference. For instance, during the raw-data pre-processing, we applied 
a planar fit for tilt correction, while Klumpp et al. (2011) used double rotation. Likewise, algorithms used in 
spectral analyses, dropouts in the registration of raw data in 20 Hz compared to initial 10 Hz, as well as perfor-
mances in low and high path filtering have been improved since the EdiRe software, providing slightly modified 
C flux estimations39. Finally, unlike Klumpp et al. (2011) who applied an annually fixed uStar thresholds (u* ~ 
0.8) to filter the data under low friction velocity, we applied seasonal uStar thresholds that was estimated using 
nighttime NEE measurements and bootstrap procedure. Indeed, we found that sliding thresholds minimized the 
risk of excluding realistic and high-quality data which could lead to C-flux underestimation.

Fig. 10 Linear model regressions between observed and predicted values of NEE, Reco, and GPP using random 
forest algorithm trained with 2004–2008 (predicting 2003) and 2003–2007 (predicting 2008) for the grassland 
study site.
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The relative importance of the predictors used in RF models (training: 2003–2007, testing: 2008) for each 
response variable is given in Fig. 8. Our analysis revealed that the daily NEE, GPP, and Reco values could be 
estimated by basic meteorological and radiation variables (Tair, Tmin, Tmax, Rg, Rn, PPFD), but also by energy 
fluxes (LE and H) and the time series signature. Meteorological variables can control C fluxes in different ways, 
either by affecting CO2 detection by the analyzer, or by affecting the ecosystem per se. For instance, the detection 

Gap length slope R2 RMSE

NEE

 4% 0.80 0.91 10.65

 14% 0.74 0.92 9.37

 28% 0.81 0.96 8.95

 41% 0.91 0.98 10.73

 55% 0.95 0.99 11.41

 69% 0.95 0.99 11.30

 82% 0.96 0.99 11.00

 100% 0.96 0.99 10.80

Reco

 4% 0.86 0.98 2.64

 14% 0.85 0.96 2.30

 28% 0.86 0.94 4.09

 41% 0.94 0.99 5.73

 55% 0.95 0.99 6.77

 69% 0.95 0.99 6.86

 82% 0.95 0.99 6.62

 100% 0.95 0.99 6.22

GPP

 4% 0.78 0.95 8.58

 14% 0.70 0.93 8.92

 28% 0.79 0.96 9.45

 41% 0.94 0.99 11.80

 55% 0.96 0.99 11.88

 69% 0.96 0.99 11.64

 82% 0.97 0.99 11.51

 100% 0.97 0.99 11.24

Table 4. Linear model metrics comparing observed and predicted C fluxes across a sequence of gap length 
(%). Slope of regression model, R2: coefficient of determination, RMSE: root mean square error. Random Forest 
training using the data range from 2003 to 2007, testing using 2008.

Gap position slope R2 RMSE

NEE

 Winter 0.82 0.93 8.97

 Spring 0.96 0.99 13.01

 Summer 0.97 0.99 11.38

 Autumn 0.98 0.96 10.77

Reco

 Winter 0.80 0.94 8.45

 Spring 0.96 1.00 14.29

 Summer 0.97 1.00 11.11

 Autumn 0.99 0.97 10.35

GPP

 Winter 0.85 0.96 2.23

 Spring 0.92 0.99 7.26

 Summer 0.93 0.98 7.53

 Autumn 0.96 0.99 2.85

Table 5. Linear model metrics comparing observed and predicted C fluxes in different gap position (seasons). 
Slope of regression model, R2: coefficient of determination, RMSE: root mean square error. Random Forest 
training using the data range from 2003 to 2007, testing using 2008.
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of CO2 by the analyzer can be reduced under low friction velocity, resulting in underestimated fluxes. Likewise, 
by influencing the performance of autotrophic organisms, mainly of plants, meteorological variables can alter 
the balance between respiration and photosynthesis, mainly under high climatic amplitude. On the other hand, 
the effect of LE and H on C fluxes seems to be mediated by their effect on water fluxes (evapotranspiration) and 
consequently stomatal closure of the plants. This physiological change can also alter the balance between respi-
ration and photosynthesis in the ecosystem45.

Validation of the RF models using alternative training and testing datasets (either “training: 2004–2008, 
testing: 2003” or “training: 2003–2007, testing: 2008”) indicated that the two models resulted in very similar 
C flux output (Fig. 9). When predicting 2008, the cross-validation between predicted and observed values had 
R2 values > 0.85 in all cases, and slopes were 0.91, 0.84, and 0.85 for NEE, Reco, and GPP respectively (Fig. 10a–
c). The prediction of 2003 (training set 2004–2008) also had R2 values > 0.84 for all flux variables but showed 
marginally-lower slopes values for NEE (0.81), Reco (0.80), and GPP (0.80) (Fig. 10d,e). Overall, high R2 indicates 
that the RF models are not overfitting, whereas low slope values indicate low discrepancy of the fit between the 
observed and predicted values.

Sensitivity analysis of the RF models indicated no decrease in gap-filling reliability with respect to gap length 
in the 2008 test series (Table 4). Instead, the RF models actually improved their predictive capacity with increas-
ing gap size, with a reduction of the intercept and slope values, and increases in R2. The improvement of the 
model performance for large gaps may be due to the insertion of time series signature features in the RF models, 
which better capture the seasonality and trends in the EC time series. Reliability of gap-filling tended to be lower 
for gaps during the winter period based on comparisons of R2 and slopes of when fitting observed and predicted 
C fluxes (Table 5), but the magnitude of change was not significant. These results confirm that the models were 
able to predict and fill gaps at different times of the year.

Finally, after all steps of validation and sensitivity analysis, we used the RF models trained with 2003–2007 
to gap-fill missing values in our EC time series. To verify their uncertainty, we obtained the standard deviation 
of important performance metrics (RMSE, MAE, and R2) after running the models 50 times (Table 6). The 
results of each model are presented in the Supplementary Table 2”. All models presented low uncertainty and 
the gap-filled values of C fluxes were obtained by averaging their outputs. Finally, visual screening was used to 
check whether the RF models were able to detect and reproduce the temporal component of the C fluxes (NEE, 
daytime GPP, and nighttime Reco) across the long-term time series. The imputed databases presented similar 
seasonality along the years, that is, with the highest C sequestration and respiration in the summer and spring 
(Fig. 11).

Usage Notes
Our datasets have been produced using best-practice processing and quality check procedures as recommended 
in the literature2,8. The dataset3 can be used stand-alone to address climate-flux relationships at both fine-scale 
(half-hour) and coarser (daily) temporal resolutions for this model ecosystem; it is of particular value for 
improved understanding of the mechanisms underlying variation in grassland production and C sequestra-
tion, as well as exploring the proximal and distal climatic drivers of single anomalous events46. The data can 
also be used to explore as part of a larger database to answer broader questions related to interactive effects of 
management and climate on grassland functions across pedoclimatic gradients, analyses of trade-offs and/or 
synergies between a wider range of ecosystem services and energy fluxes in the food-web42, or cross-ecosystem 
comparisons. Further, the RF pipeline for gap-filling described here can be transposed to other flux datasets, 
independent of temporal resolution, and used to facilitate the compilation of older datasets.

The half-hour dataset presents important variables, i.e., time stamp (YYYYMMDDHHMM), quality flags, 
and statistical analysis (hard flags), which will be useful for final users in filtering and aggregating the data-
set according to their objectives. We also present the original NEE, Reco, and GPP (“_original”) values, as 
well as those ones gapfilled using the different uStar thresholds (“_U05”, “_U50” and “_U95”). More detailed 

Metric Mean SD

NEE

 RMSE 29.56 0.0945

 R2 0.88 0.0007

 MAE 22.12 0.0870

Reco

 RMSE 21.50 0.0781

 R2 0.92 0.0007

 MAE 16.74 0.0670

GPP

 RMSE 29.49 0.0824

 R2 0.95 0.0004

 MAE 21.40 0.0605

Table 6. Mean and standard deviation (SD) based on 50 random models for each response variable. RMSE: 
root mean square error, R2: coefficient of determination, MAE: mean absolute error. Random forest training 
using the data range from 2003 to 2007, testing using 2008.
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information about the use of EC data at different temporal resolutions can be found in numerous scientific pub-
lications, as well as on FLUXNET website (https://fluxnet.org). Missing values in half-hour dataset are indicated 
with NA, and column name descriptions are provided in the associated metadata file.

This long-term EC time series fills an important information gap for grassland systems. It is of particu-
lar value for improved understanding of the mechanisms underlying variation in grassland production and  
C sequestration, as well as exploring the proximal and distal climatic drivers of single anomalous events46. 
Finally, we emphasise that the use of long-term C-flux measurements helps to understand possible adaptation of 
grassland ecosystems to future climate changes. By using different statistical models, such as path analysis47, that 

Fig. 11 Daily C fluxes after gap-filling using the random forest models. (a) Daytime and nighttime NEE, (b) 
Daytime Reco, (c) Nighttime GPP.
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explore the causal relationship among the variables, and machine learning algorithms12,48 to forecast C-fluxes 
for future periods, we can contribute to the development of management strategies to meet high-C sequestration 
and climate mitigation goals.

Code availability
The code for climate variability calculation, EC post-processing, random forest algorithm used for gap-filling can 
be obtained with the flux dataset3.
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