

LCA of aquafeed: introduction to ecoformulation. Application to rainbow trout

Aurélie Wilfart, Florence Garcia-Launay, Frédéric Terrier, Espoir Soudé,

Pierre Aguirre, Sandrine Skiba-Cassy

▶ To cite this version:

Aurélie Wilfart, Florence Garcia-Launay, Frédéric Terrier, Espoir Soudé, Pierre Aguirre, et al.. LCA of aquafeed: introduction to ecoformulation. Application to rainbow trout. Life Cycle Assessment in Aquaculture, University of Milan, Dec 2022, Milan (Italie), Italy. hal-04139056

HAL Id: hal-04139056 https://hal.inrae.fr/hal-04139056v1

Submitted on 23 Jun 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. ECO-FORMULATION OF FISH FEEDS: A promising efficient solution to limit aquaculture impacts on the environment. Application to rainbow trout

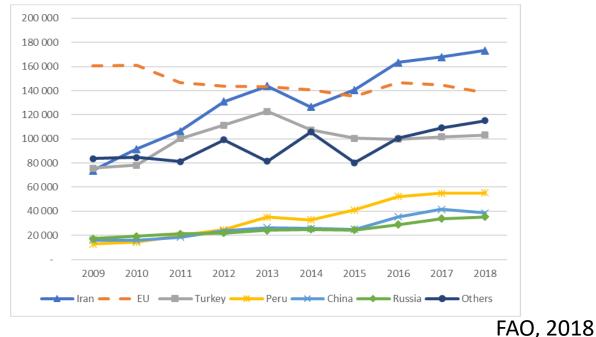
<u>Aurélie Wilfart¹</u>, Florence Garcia-Launay², Frederic Terrier³, Espoir Soudé³, Pierre Aguirre³, Sandrine Skiba-Cassy³

1INRAE, Institut Agro, SAS, 35000 Rennes, France
2INRAE, Institut Agro, PEGASE, 35590 Saint-Gilles, France
3INRAE, Univ. Pau & Pays Adour, E2S UPPA, NUMEA, 64310 Saint Pée-sur-Nivelle, France.

Life cycle Assessment of in aquaculture University of Milan December 5th 2022

ECO-FORMULATION OF FISH FEEDS: A promising solution or crazy idea of mathematicians ?

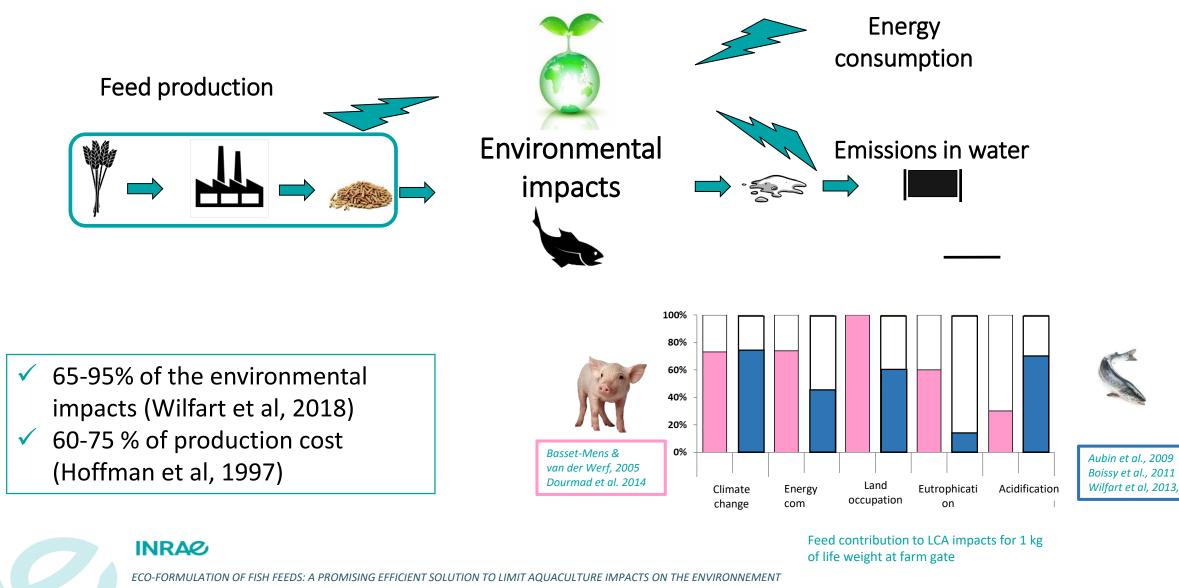
<u>Aurélie Wilfart¹</u>, Florence Garcia-Launay², Frederic Terrier³, Espoir Soudé³, Pierre Aguirre³, Sandrine Skiba-Cassy³


1INRAE, Institut Agro, SAS, 35000 Rennes, France
2INRAE, Institut Agro, PEGASE, 35590 Saint-Gilles, France
3INRAE, Univ. Pau & Pays Adour, E2S UPPA, NUMEA, 64310 Saint Pée-sur-Nivelle, France.

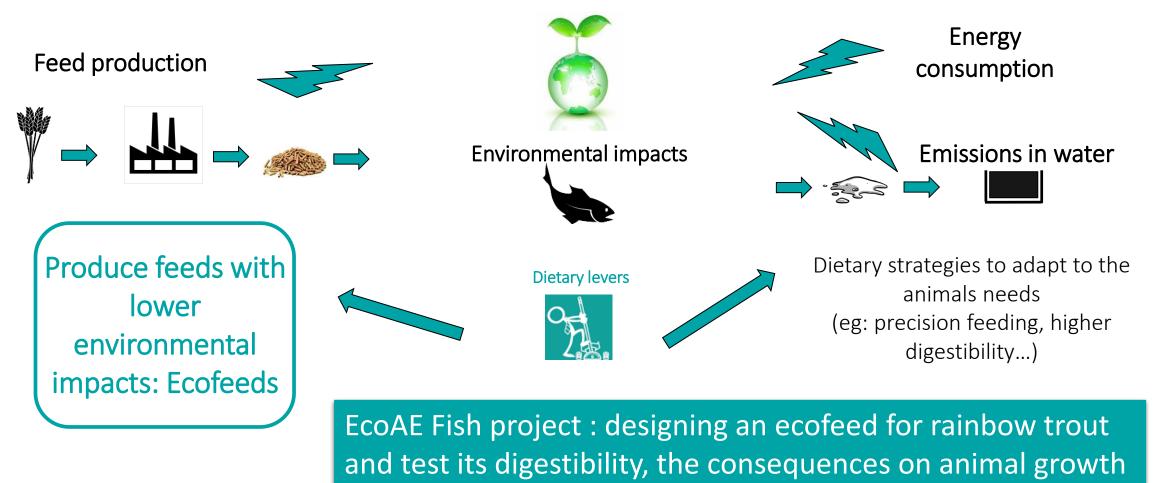
Life cycle Assessment of in aquaculture University of Milan December 5th 2022

Rainbow trout production

INRA@



- Leading freshwater farmed species in Europe (156,000 t)
- ✓ Mainly for portion size-fish (200-300 gr)
- Almost all rainbow trout on the EU market comes from aquaculture



EUMOFA, 2021

Environmental impacts of aquaculture

Environmental impacts of aquaculture

performances and its environmental impacts

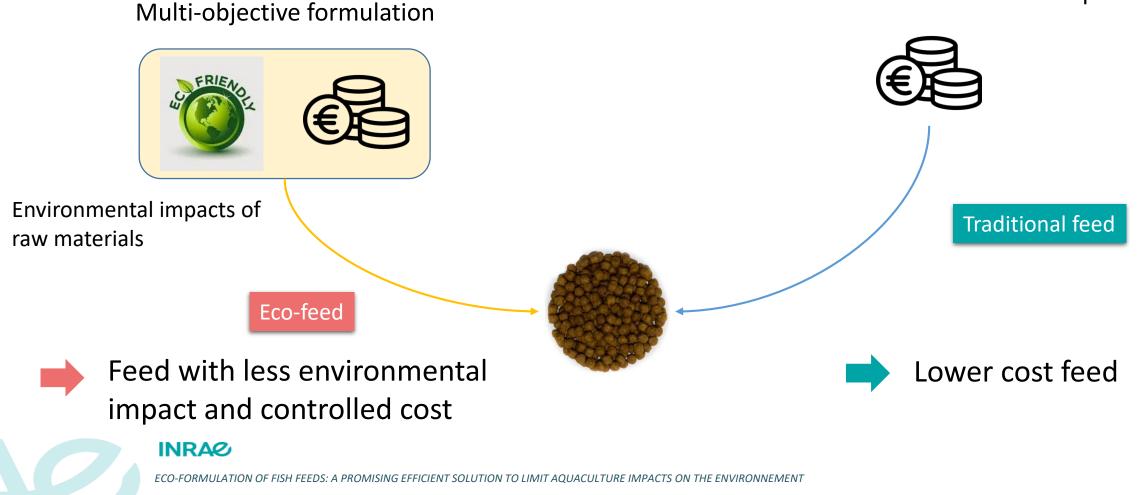
ECO-FORMULATION OF FISH FEEDS: A PROMISING EFFICIENT SOLUTION TO LIMIT AQUACULTURE IMPACTS ON THE ENVIRONNEMENT

LCA in aquaculture/ Wilfart et al./ Milan 2022/12/5

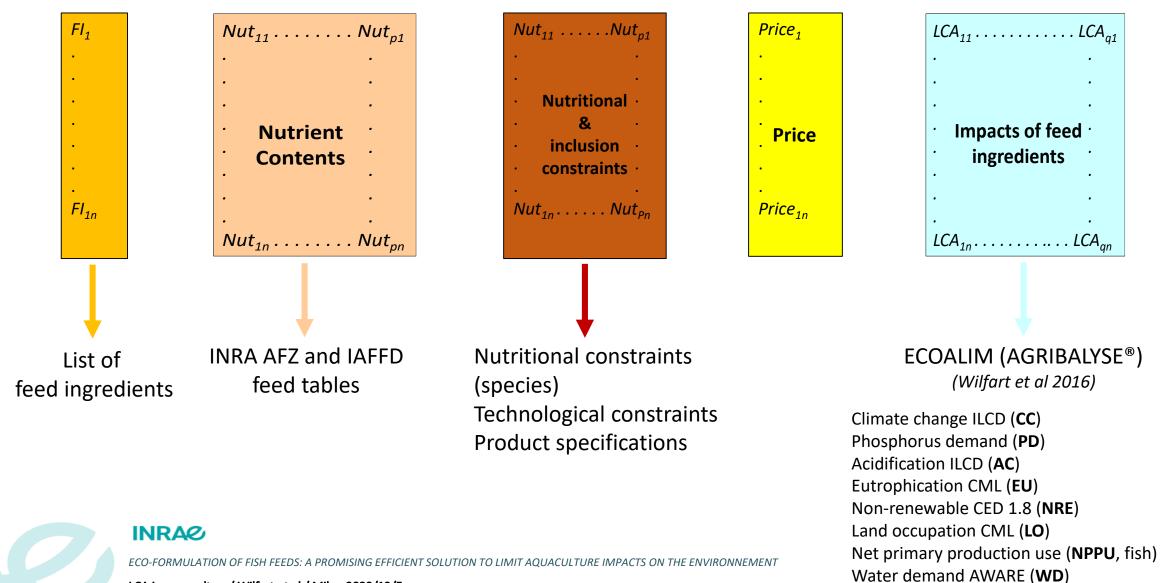
INRA

EcoFeed: multi-objective formulation concept

 Formulate : combine feed ingredients into feed by using linear programming to meet user-defined animal requirements with an objective to optimize


ECO-FORMULATION OF FISH FEEDS: A PROMISING EFFICIENT SOLUTION TO LIMIT AQUACULTURE IMPACTS ON THE ENVIRONNEMENT

EcoFeed: multi-objective formulation concept


Eco-formulation

Least-cost formulation

Cost of raw materials and nutritional requirements

Feed Formulation matrix

p. 8

Multi-objective formulation algorithm

$$f(x) = \sum_{i \in I} coef_i \frac{Impact_i^{t}x - Min_i}{Ref_{impact_i} - Min_i}$$

$$c^{t}x \le \epsilon \quad \epsilon = \{Ref_{prix}, \dots, Max_{prix}\}$$

$$Impact_i^{t}x \le 1.05 \times Ref_{impact_i}$$

$$\begin{pmatrix} q_{min} \\ n_{min} \\ 1 \end{pmatrix} \le \begin{pmatrix} Q \\ N \\ 1^t \end{pmatrix} x \le \begin{pmatrix} q_{max} \\ n_{max} \\ 1 \end{pmatrix}$$

i = [CC, AC, EU, NRE, LO, PD, NPPU, WD]

Trade-off economy/environment

INRAe

ECO-FORMULATION OF FISH FEEDS: A PROMISING EFFICIENT SOLUTION TO LIMIT AQUACULTURE IMPACTS ON THE ENVIRONNEMENT

Feed formulas : ingredients

2 different formulations approaches

- ✓ **Commercial formulation** in accordance with practices in commercial farms (**C-diet**)
- ✓ **Ecodiet** with MO-formulation considering feed cost and environmental impacts (**ECO-diet**)

Major ingredients (%)	C-diet	ECO-diet	
Wheat	2.00	17.31	
Fababean	17.01	-	
Fish meal	16.01	7.24	-45 %
Fish oil	6.53	3.61	
Gluten meal	8.50	-	
Oilseed meal	16 raw)	7 23 raw	
Poultry meal (blood, feather)	materials	materials	
Oilseed oil	1276.9 €/t	1171.5 €/t	-8 %
Guar meal/Soy lecithin	-	2.97/5.76	
Pea protein concentrate	25.01	20.00	
Premix and additives	4.35	4.4	

(Context	Ecofeed design	In vivo e	xperiments	Enviro	nmental assessment	Take h	nome message		
Feed formulas: chemical composition and environmental impacts										
	Chemical con	nposition	C-die	t	ECO-diet					
		966.4		973.4						
		Crude protein (g/kg)				476.7				
		Crude lipid (g/kg)				237.9				
		Starc	91.5		111.1					
		GE (k	J/g DM)	25.7		24.6				
	Environmental impacts /kg of feed)									
		Climate change (kg	CO ₂ -eq)	1.387	,	0.751	- 46 %			
		Non renewable ene	rgy (MJ)	14.85	1	8.547	- 57 %			
		Acidification (molc H ⁺ -eq)				0.012				
		Eutrophication (kg PO ₄ ³⁻ -eq)				0.00458				
		NPPU (kg C)			3	12.150	- 44 %			
	Land occupation (m ² year)					1.240				
	Water demand (n			10.32	L	5.759	- 44 %			
		Phosphorus demar	nd (kg P)	0.007		0.00556		p. 11		

Consequences on the formula: take home message

- Reduction >50% of fishmeal and fish oil
- Elimination of soybean meal and soybean protein concentrate
- Introduction of new yeast ingredients such as yeast
- Reduction of feed cost (8%)

But :

- Increase in the number of ingredients (16 \rightarrow 23)
- Significant use of animal by-products : hydrolysed feather protein, poultry blood meal, poultry oil
- Introduction of raw materials in very small quantities: 0.02% linseed oil, 0.01% potato protein concentrate

INRA

ECO-FORMULATION OF FISH FEEDS: A PROMISING EFFICIENT SOLUTION TO LIMIT AQUACULTURE IMPACTS ON THE ENVIRONNEMENT

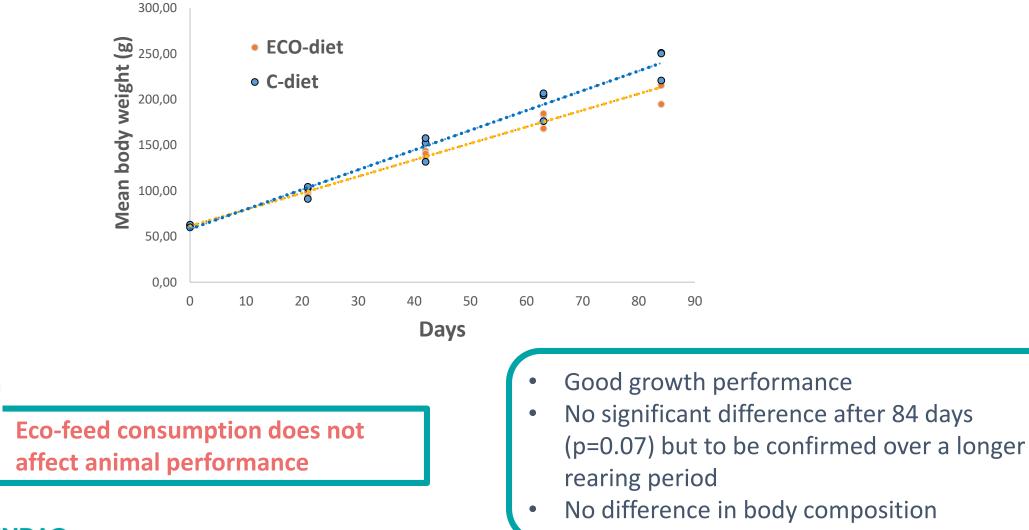
Digestibility and growth trials

- Triplicate groups of 27 fish (initial BW 60 g) per diet
- ✓ 84 d of experiment (Growth) 21 d (digestibility)
- ✓ C-diet or Ecodiet
- ✓ Feeding ad libitum twice a day
- ✓ Biomass weighing every 21 days
- Total quantity of feed distributed
- Control of physico-chemical parameters (O₂, N-NH₄, °C)
- Calculation of growth performance parameters

NuMéA, Donzacq experimental facilities

ECO-FORMULATION OF FISH FEEDS: A PROMISING EFFICIENT SOLUTION TO LIMIT AQUACULTURE IMPACTS ON THE ENVIRONNEMENT

In vivo performance of the Eco-diet


	C-diet		ECO-diet				C-diet		ECO-diet		
	Mean	SD	Mean	SD	P-value	ADC (%)	Mean	SD	Mean	SD	P-value
Initial BW, g	61.73	1.54	61.23	1.54	0.71	Protein	91.69	0.23	91.01	0.17	0.08
Final BW, g	240.74	17.32	210.37	13.72	0.08	Lipid	95.56	0.27	93.99	0.08	0.0003
SGR, %	1.62	0.06	1.47	0.08	0.07	Starch	92.51	0.48	97.66	0.32	0.0003
DFI, g kg ⁻¹ day ⁻¹	16.17	0.03	15.03	0.02	0.009	Energy	89.07	0.34	87.27	0.29	0.02
FCR	1.15	0.02	1.15	0.05	0.93	Ash	44.93	1.36	38.81	0.3	0.04

- No effect on body composition, final BW, nutrient retention and nutrient gain except for protein
- Energy and lipid gain are lower with ECO diet
- ECO-Diet significantly affected daily feed intake

INRA

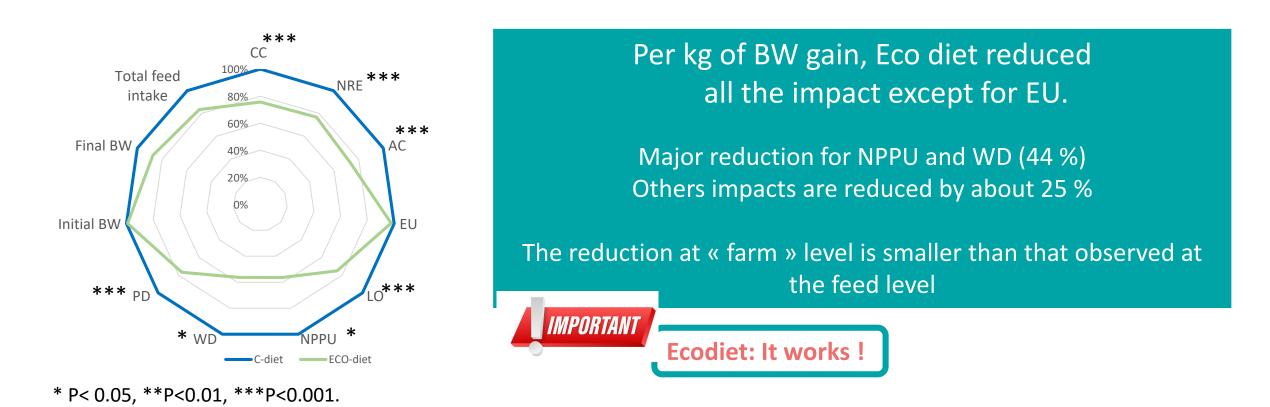
ECO-FORMULATION OF FISH FEEDS: A PROMISING EFFICIENT SOLUTION TO LIMIT AQUACULTURE IMPACTS ON THE ENVIRONNEMENT

In vivo performance of the Eco-diet

INRAØ

Important

ECO-FORMULATION OF FISH FEEDS: A PROMISING EFFICIENT SOLUTION TO LIMIT AQUACULTURE IMPACTS ON THE ENVIRONNEMENT


LCA methodology

- LCA was conducted for each tank according to tank performance and feed consumption. Electricity and water consumption for feed production were measured directly on the experimental feed facility
- ✓ The functional units and the main components considered in LCA model were:
 - ✓ One kg of feed at factory gate, including resources and emissions to the production of feed and transportation to plant (ECOALIM dataset, Wilfart et al 2016)
 - One kg of live body weight gain at the end of experiment which included the uses of resources (oxygen, energy, water) and emissions during the experiment.
- The impacts considered were climate change (CC), acidification (AC) obtained by ILCD method, eutrophication (EU by CML IA) and non renewable energy demand (NRE by CED v1.08), water demand (WD by AWARE) as implemented in Simapro[®] v8.3.0.0 and net primary production use (NPPU, Papytryphon et al 2004) and phosphorus demand (Wilfart et al 2016)
- Background data base : Agribalyse 3.0 including ECOALIM dataset (Wilfart et al, 2016) for agricultural machineries, Ecoinvent v3.8

INRAe

ECO-FORMULATION OF FISH FEEDS: A PROMISING EFFICIENT SOLUTION TO LIMIT AQUACULTURE IMPACTS ON THE ENVIRONNEMENT

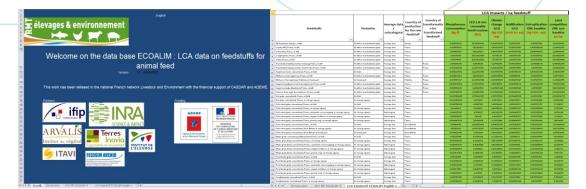
LCA results at the end of the experiment

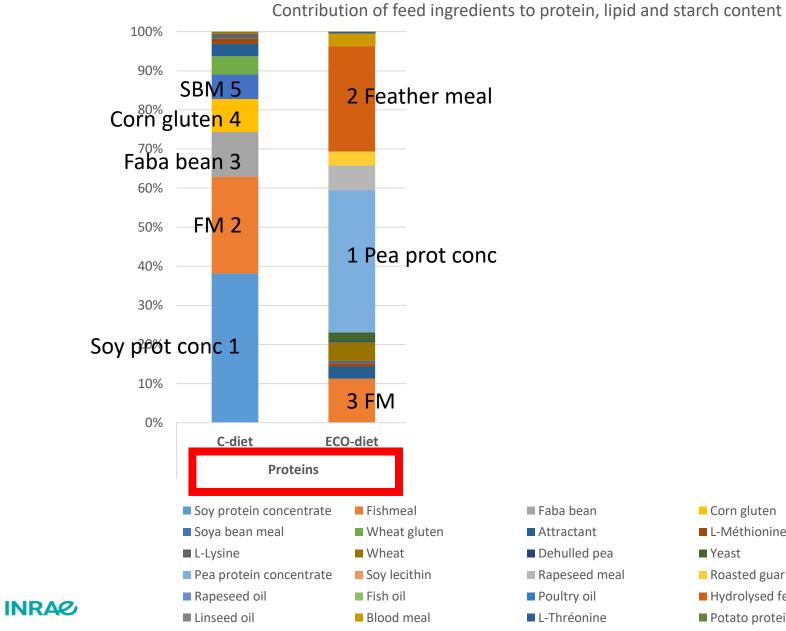
CC = climate change (kg CO2eq); NRE = non-renewable and fossil energy demand (MJ); AC = acidification (molcH+eq); EU = eutrophication (kg PO43eq); LO = land occupation (m².y); NPPU = net primary production use (kg C); WD = water demande (m3); PD = phosphorus demand (g P)

INRAØ

ECO-FORMULATION OF FISH FEEDS: A PROMISING EFFICIENT SOLUTION TO LIMIT AQUACULTURE IMPACTS ON THE ENVIRONNEMENT

- By formulating with environmental impacts, it is possible to reduce the environmental impacts of trout feed
- ✓ ECO diet use more raw materials than a commercial diet
- To compensate the substitution of fishmeal and fish oil, more animal co-products are needed in the ECO diet
- Despite a tendancy to reduce growth, ECO diet reduce significantly environmental impacts per kg of BW gain
- The interest of the multi-objectives formulation has to be validated for longer rearing times and on other fish species


ECO-FORMULATION OF FISH FEEDS: A PROMISING EFFICIENT SOLUTION TO LIMIT AQUACULTURE IMPACTS ON THE ENVIRONNEM


> Thank you for your attention !

aurelie.wilfart@inrae.fr

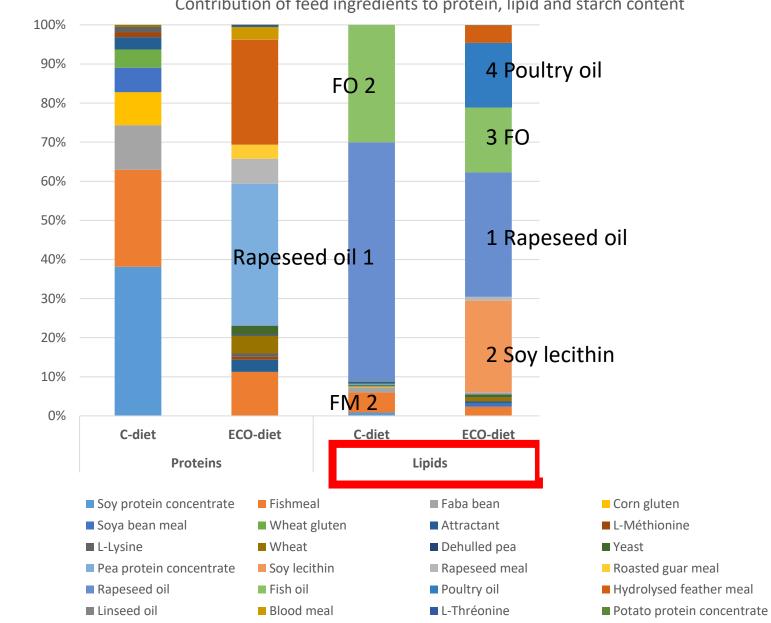
https://www6.inrae.fr/ecoalim_eng/

Want to know more ? Read our article in *Aquaculture* <u>https://doi.org/10.1016/j.aquaculture.2022.738826</u>

ECO-FORMULATION OF FISH FEEDS: A PROMISING EFFICIENT SOLUTION TO LIMIT AQUACULTURE IMPACTS ON THE ENVIRONNEMENT

LCA in aquaculture/ Wilfart et al./ Milan 2022/12/5

Corn gluten

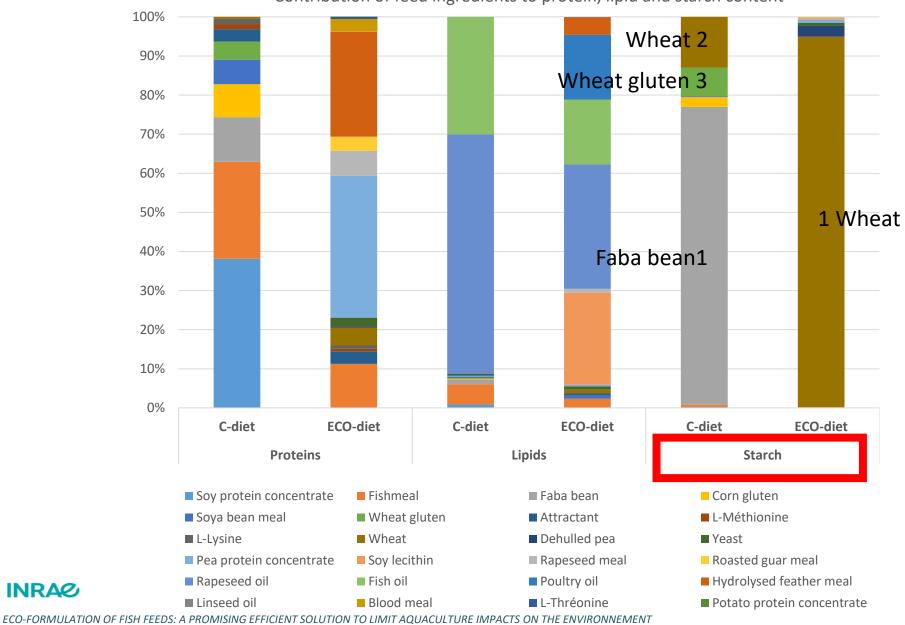

Yeast

L-Méthionine

Roasted guar meal

Hydrolysed feather meal

Potato protein concentrate



Contribution of feed ingredients to protein, lipid and starch content

ECO-FORMULATION OF FISH FEEDS: A PROMISING EFFICIENT SOLUTION TO LIMIT AQUACULTURE IMPACTS ON THE ENVIRONNEMENT

LCA in aquaculture/ Wilfart et al./ Milan 2022/12/5

INRA

Contribution of feed ingredients to protein, lipid and starch content

LCA in aquaculture/ Wilfart et al./ Milan 2022/12/5

INRA