In vitro digestion of two age-tailored dairy products in the aging gastrointestinal tract

Anaïs Lavoisier, Martine Morzel, Cindy Sounouvou, Bérénice Houinsou-Houssou, Chantal Septier, Carole Tournier, Gilles Feron, Didier Dupont

To cite this version:

HAL Id: hal-04142497
https://hal.inrae.fr/hal-04142497
Submitted on 27 Jun 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License
In vitro digestion of age-tailed dairy products in the ageing gastrointestinal tract


UMR STLO, INRAE, Institut Agro, Rennes, France
UMR CSGA, INRAE, Dijon, France

Introduction

Context

• For older adults (> 65 y) insufficient protein intake can lead to sarcopenia, characterized by the loss of muscle mass, strength, and function.
• To avoid this condition healthy older adults need to increase the amount of high-quality proteins in their diet (at least 1g protein/kg body weight/day).
• Milk proteins are interesting to promote muscle health, and particularly whey proteins which are rich in leucine.
• Ageing leads to changes in the functionality of the digestive tract but the impact of ageing on the intake, digestion, and absorption of nutrients is still unclear.

Objective

Investigate the digestion of 2 high-protein (10 % w/w) dairy products, in different in vitro conditions, to compare the kinetics of proteolysis in the gastric and intestinal phase between “young” and older adults.

Results

High-protein products

• WBD = fermented dairy product formulated with a ratio of whey proteins to caseins of 80 to 20% (as opposed to milk).
• Skyr = fermented dairy product containing mainly caseins.

Static in vitro digestion

Oral phase

1:1 food: SSF dilution according to dry matter pH = 7.0, no chewing, no amylase

<table>
<thead>
<tr>
<th>Phase</th>
<th>Young adults</th>
<th>Older adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastric pH</td>
<td>3.0 ± 0.1</td>
<td>3.7 ± 0.1</td>
</tr>
<tr>
<td>Duration</td>
<td>2 h</td>
<td>3 h</td>
</tr>
<tr>
<td>Pepsin/mL</td>
<td>2000 ± 100</td>
<td>1200 ± 100</td>
</tr>
<tr>
<td>Gastric lipase</td>
<td>60 ± 10</td>
<td>36 ± 10</td>
</tr>
<tr>
<td>Intestinal pH</td>
<td>0.6 ± 0.1</td>
<td>1.0 ± 0.1</td>
</tr>
<tr>
<td>Duration</td>
<td>2 h</td>
<td>2 h</td>
</tr>
<tr>
<td>Pancreatin/mL</td>
<td>100 ± 10</td>
<td>80 ± 10</td>
</tr>
<tr>
<td>Bile salts</td>
<td>10 ± 2</td>
<td>6.7 ± 2</td>
</tr>
</tbody>
</table>

Rheological properties

WBD had rheological properties comparable to a stirred yogurt and was considered suitable for older adults in terms of texture.

Sensory analysis

Panel of 80 subjects (40 women, 35 men), aged 20 ± 2 y.

No relationships were observed between oral physiology (posterior functional units, salivary flow, and saliva viscosity) and comfort.

Gastric phase:

• Decrease in pepsin concentration (~30%), and increase in pH (from 3 to 3.7) between models resulted in a reduction in protein hydrolysis.
• Caseins were rapidly digested by pepsin even at pH 3.7
• Proteolysis depended on the composition & structure of the product

Intestinal phase: no significant differences in proteolysis were measured at the end of the digestion between models.

Conclusions

• The whey protein-based dairy product developed in this study is suitable for older adults.
• The digestion conditions used (young vs. older adult) influenced significantly the kinetics and extent of proteolysis in the gastric phase but not in the intestinal phase.
• A clinical study comparing the effect of WBD or Skyr on older adults’ postprandial muscle synthesis is underway.

Acknowledgments: This work was funded by the EAT4AGE project that received funding from the European National Research Agency (ANR, subvention number: ANR-20-HDHL-0002-02), under the umbrella of the European Joint Programming Initiative “A Healthy Diet for a Healthy Life” (UH HDHL) and of the ERA-NET Cofund ERA-HDHL ISA N° 696295 of the EU Horizon 2020 Research and Innovation Programme.

anais.lavoisier@inrae.fr