Environmental conditions affects wheat grain texture: consequences on grain fractionation and flour properties ?

V. LULLIEN-PELLERIN valerie.lullien-pellerin@inra.fr

INRA, UMR IATE, Montpellier France

Research group Grain(e)s

umr-iate-grain-e-s@supagro.inra.fr

Texture : composition, consistency, constitution, structure, ...

Fate of the different wheat grain tissues along milling has a main effect on yield and biochemical composition of the recovered products

Main involvement of the **grain tissue mechanical properties** (breaking resistance/hardness)

Wheat Hardness can be controlled through genes located in CH5D encoding puroindolines A et B

involved in the adhesion between starch granules and the protein network

T. durum AABB genome Mechanical Resistance +++

Soft

Translocation in durum cv. Svevo of both wild type alleles *Pina-D1a* et *Pinb-D1a* (*Morris et al., 2011*)

Durum(Svevo)-Pin (expected soft phenotype)


```
T. aestivum
AABBDD genome
2 hardness class Hard
++
in locus Ha/CH5Ds
(Law et al., 1978)
```

Near-isogenic lines for hardness

wild type allele *Pina-D1a,* **mutated** *Pinb-D1* allele (**b** or **d**)

wild type alleles Pina-D1a et Pinb-D1a

To evaluate the respective effect of genetic or environmental factors on grain characteristics & milling behavior...

common wheatnear-isogenic lines (≠<1.6%)</td>for hardnesswildor mutated allelePinb-D1aPinb-D1 (b or d)

durum wheat Svevo or Svevo + Pina-D1a/Pinb-D1a

+ cultivars whose
puroindoline alleles were identified: *Pinb-D1a* (wild) or mutated (b, c or d)

+ durum wheat cultivars (no puroindolines)

grown in different environments (locations, years, N supply)

Examine grain characteristics (« hardness/vitreousness » reported) & milling behavior including tissue distribution

Grain characteristics

Hardness

Indirect measurement

(linked to particle size)

75 µm

% fine particles

= **PSI value** or through IR measurement

= NIRS value

NIRS

90> Extra hard <10 Extra soft

Direct mechanical resistance measurement (SKCS)

Vitreousness

Estimated through Pohl grain cutter

Quantified through measurement of light transmission (*Beer Lambert* law) *Chichti et al., 2018*

I_T Reflects **porosity** level

Effect of environmental conditions on grain texture

common wheat near-isogenic lines + ct cultivar, 3 years, 7 sites, $2 \neq N$ supply (n=304 samples)

ANOVA study revealed the high significance on vitreousness

Oury et al. TAG (2015)

Marked effect (p value <0.001) of :

Effects on Pinb-D1 alleles on grain characteristics

Independent study on comparison between NILs

* with wild type *Pinb-D1a* (or mutated *Pinb-D1b* allele)
* with (*Pinb-D1b* or *Pinb-D1d*)

ANOVA study revealed no significant differences between NIL pairs for TGW, TW or protein mean values

	NIRS mean value	SKCS mean value	Vitreousness mean value (%)	
Pinb-D1a	20.2	18.9	29.2	X1.5 Pinb-D1 allele impacts
Pinb-D1b	61.6	52.3	41.5	
Significance	***	(3 ***	***	
Pinb-D1b	73.3	51.1	44.9	
Pinb-D1d	67.1	46.9	42.1	vitreousness
Significance	*** b>d	(*) b>d	ns	

*** *p* value < 0,001 ; (*) *p* value < 0,1 ; ns non significant

Oury et al. TAG (2015)

Relationship between NIRS hardness, SKCS Hi & vitreousness depending on *Pinb-D1* allele

Vitreousness increases the E to break whatever the Pin allele

A threshold of vitreousness and SKCS value was observed if Pinb-D1a allele is present

Grains carrying *Pinb-D1b*/or *d* + low vitreousness can be mixed with those carrying *Pinb-D1a* + high vitreousness

SKCS Hi values depends on *Pinb-D1* allele but possible overlap due to environmental conditions

Oury et al. TAG (2015) Joubert et al. Ind Cereales (2016) Heinze et al. JCS (2016)

How distinct vitreousness will affect the milling behaviour (samples carrying *PinbD1b/d*)?

Vitreousness leads to :

- Lower the ability to produce flour
- Increase the amount of E to break
- Increase starch damaged in flour

Mayer et al, IFSET (2018) Oury et al, TAG 2017 Chichti PhD 2013 Lasme et al. Cereal Chem 2012 Greffeuille et al. TAG 2006

How distinct vitreousness will affect the milling behaviour (*PinbD1a* versus *PinbD1b/d*)?

Different behaviour depending both on Pinb-D1 allele & environment

- * Favorable effect of vitreousness if *PinbD1a* is present
- * Unfavorable effect of vitreousness if *PinbD1b/d* is present

Oury et al, TAG 2017 Greffeuille et al. TAG 2006

Combining vitreousness and *Pin B-D1* allele leads to an optimum for total flour yield

Optimum total flour amount corresponds to either grains carrying *Pinb-D1b/c/d* with low vitreousness or carrying *Pinb-D1a* + high vitreousness (**SKCS values ~ 30-40**)

DIET

ENVIRONMENT

AGRICULTURE

Oury et al. TAG (2017)

CONCLUSIONS

Grain texture affects its mechanical properties & depends on :

- Genetics: puroindoline allele
- Environmental conditions: vitreousness (=1/porosity)

(Year, Sites, N supply) impacts Vitreousness

- whose level depends on *Pinb-D1* presence a<<d<b
- which is related linearly with SKCS values but with specific equation depending on puroindoline alleles
- which affects grain milling behaviour: increase the breaking E, starch damage, modify the ability to produce & reduce semolina
 (>0 for grains carrying *Pinb-D1a*, <0 for those carrying *Pinb-D1b/c/d*)

Optimum total flour production for SKCS values ~ 30-40 (vitreous grains with *Pinb-D1a* or porous grains with *Pinb-D1b/c/d*)

Numerical modelling of the starchy endosperm was developed to mimic & describe breakage behaviour

AGRICULTURE

DIET

ENVIRONMENT

Special Acknowledgments

V. Greffeuille P. Lasme Cifre ARVALIS Institut du végéta

Modelling

E. Chichti **INRA-UM**

K Heinze **INRA-Labex Numev**

Near-isogenic lines

Colleagues & Partners

&

F-X. Oury (INRA, Clermont-Ferrand)

Durum wheat + Pin genes

C. Morris (Washington State U., Pullman, USA)

Projects

Students

Consortium Valeur Meunière I

Consortium Valeur Meunière II: UFS, ANMF, ARVALIS-Institut du végétal, Bühler, Chopin Technologies, ENILIA-ENSMIC, IRTAC, INRA, Lu France + Fonds de Soutien Obtention Végétale