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Abstract

Current agricultural practices facilitate emergence and spread of plant diseases through the

wide use of monocultures. Host mixtures are a promising alternative for sustainable plant

disease control. Their effectiveness can be partly explained by priming-induced cross-pro-

tection among plants. Priming occurs when plants are challenged with non-infective patho-

gen genotypes, resulting in increased resistance to subsequent infections by infective

pathogen genotypes. We developed an epidemiological model to explore how mixing two

distinct resistant varieties can reduce disease prevalence. We considered a pathogen popu-

lation composed of three genotypes infecting either one or both varieties. We found that

host mixtures should not contain an equal proportion of resistant plants, but a biased ratio

(e.g. 80 : 20) to minimize disease prevalence. Counter-intuitively, the optimal ratio of resis-

tant varieties should contain a lower proportion of the costliest resistance for the pathogen

to break. This benefit is amplified by priming. This strategy also prevents the invasion of

pathogens breaking all resistances.

Author summary

This study addresses the optimal design of mixtures of resistant hosts to reduce disease

prevalence, and prevent the emergence and invasion of multi-virulent pathogen geno-

types. Specifically, we investigated how pathogen mediated plant-plant interaction,

through immune priming of host defences, influences the optimal proportion of each

resistant host in such mixtures. We thus designed a mathematical model explicitly

accounting for immune priming in mixtures of two resistant plant varieties. We showed,

through analysis and simulation, that the optimal ratio is not 50:50, as commonly done in

practice, but should be biased towards the variety that is the least costly for the pathogen

to break. We also showed that this bias depends on immune priming effectiveness, and is

enhanced when virulence costs are high. This somewhat counter-intuitive outcome finds

its explanation in the complex interplay of ecological and physiological mechanisms
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acting in cultivar mixtures, and is of major relevance for the application of mixtures in

agricultural practice. This model therefore provides new clues to best manage and exploit

plant biodiversity for sustainable plant health. It also provides new insights into how host

heterogeneity and immunity can prevent the evolutionary emergence of pathogens capa-

ble of breaking several resistances.

1 Introduction

Current agricultural practices can be productive, but they also have negative externalities on

our environment. They modify the functioning of ecosystems, contribute to the collapse of

biodiversity and to climate change, pollute the environment, and impact human health

[1, 2].

Intensive agriculture is mainly based on monocultures [3], which make agricultural envi-

ronments favorable to plant disease emergence [4]. Despite the continuous selection of resis-

tant plant varieties, pathogens often adapt and quickly break down newly introduced

resistances [5]. This is why it is difficult to protect monocultures without pesticides.

One path to developing more sustainable agriculture is through the reintroduction of

genetic diversity into crops [6–8]. However, driving diverse host-pathogen populations

requires the use of sound ecological concepts and methods from ecology. For instance, the

effectiveness of host mixtures against plant diseases involves ecological mechanisms not pres-

ent in monocultures, such as dilution, interception, competition, and cross-protection effects

[9–12]. It has in particular been shown that pathogen competition for susceptible hosts gener-

ates apparent cross-protection between host varieties in the mixture [13]. Therefore, an ecolog-

ically informed choice of the varieties used in the mixture can allow growers to control plant

diseases more effectively.

Immune priming is an additional cross-protection mechanism. Priming occurs when path-

ogens capable of infecting one variety come in contact with another variety, which they cannot

infect. Infection then does not succeed, but the plant increases its level of defense against future

infections by the same or other pathogen species [14, 15]. The plant is then said to be primed.

Both experimental [16, 17] and theoretical work [13, 18] have highlighted the key effect of

priming for the effectiveness of host mixtures against plant diseases, although the ecological

mechanisms underlying it have so far only been partially explored.

The density of each variety in the mixture should be carefully chosen [19]. The article [13]

considered mixtures of resistant and susceptible hosts exposed to polymorphic pathogen

populations (including wild-type and resistance-breaking genotypes), and showed that mini-

mizing disease prevalence is achieved with an intermediate proportion of resistant hosts.

This optimal proportion is a direct consequence of immune priming. In a follow-up study,

the article [20] considered mixtures with an arbitrary number n of resistant varieties,

exposed to polymorphic pathogen populations including genotypes capable of breaking sev-

eral resistances. Due to the large dimension of the model, some simplifying assumptions

were made. In particular, all resistant varieties were assumed to be present in the same pro-

portion in the mixture. This assumption is often made in modeling studies [21], and is often

translated in practice e.g., [22], though not always e.g., [23]. Our previous study [20] showed

that there is a diversity threshold, i.e. a critical number of varieties in the mixture above

which the disease can be eradicated in principle. Moreover, priming is expected to improve

the efficiency of mixtures by reducing the number of varieties to be mixed in order to remain

below a prevalence threshold.
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To challenge previous results, we here relaxed the equal proportion assumption, but

restricted our analysis to n = 2 resistant varieties. We thus considered three pathogen geno-

types (two capable of infecting either variety, and one capable of infecting both varieties). Spe-

cifically, we wondered (i) whether an imbalanced ratio of varieties in the mixture can

minimize disease prevalence, and if so (ii) which of the two varieties should be used in greater

proportion.

2 Material and methods

Let us consider a mixture of two resistant varieties, each having a single and distinct resistance

gene Vi, with i = 1, 2. Resistance is qualitative, meaning that an infection either succeeds or

fails. Table 1 shows all host-pathogen interactions, following the gene-for-gene model [24]. In

this framework, the term “virulence” denotes the pathogen ability to overcome one resistance

gene. The pathogen population is composed of at most three pathogen genotypes: two mono-

virulent genotypes, av1/Av2 and Av1/av2, and one doubly virulent genotype, av1/av2 (Av
means “avirulent” and av means “virulent”). Monovirulent pathogen genotypes can infect

either V1 or V2. The doubly virulent pathogen can infect both V1 and V2. When monovirulent

pathogens come in contact with the variety they cannot infect, they trigger priming, which

makes the plant partially resistant to future infections by other, compatible pathogens. We

ignore the doubly avirulent (Av1/Av2) pathogen genotype, since it can infect none of the resis-

tant varieties in the mixture, and therefore can not get established in the type of host mixtures

considered in this study. The model does not keep track of coinfections for simplicity.

The total host density is N, a constant. The proportions of varieties V1 and V2 are respec-

tively p1 = 1 − p and p2 = p. The density of V1 is thus p1N and the density of V2 is p2N. The

density of uninfected hosts of variety Vi is Si, for i = 1, 2. Similarly, the density of primed

hosts of variety Vi is S∗i , for i = 1, 2. The density of hosts of variety Vi infected by the corre-

sponding monovirulent pathogen genotype is Ii, for i = 1, 2. The density of hosts of variety Vi
infected by the doubly virulent pathogen genotype is Ji, for i = 1, 2. The density of uninfected

hosts of variety Vi is therefore Si ¼ piN � S∗i � Ii � Ji, for i = 1, 2. Fig 1 shows a flow diagram

of the model.

Bearing a virulence gene (avi, i = 1, 2) involves a cost ci to the pathogen, reducing its trans-

mission rate by a factor 0� 1 − ci� 1, as compared to that, noted β, of an avirulent pathogen

on a variety with no resistance gene. Monovirulent pathogens therefore have a net transmis-

sion rate (1 − ci)β, i = 1, 2. The idea of a cost as a counterpart of the ability of breaking a resis-

tance gene originated as a theoretical hypothesis to explain the often-observed persistence of

virulence polymorphism in pathogen populations, both in agricultural and in wild ecosystems

[5, 13, 25–31]. Such a cost has been demonstrated and measured in a number of parasites,

Table 1. Host-pathogen interactions in a mixture composed of 2 resistant varieties. Each resistant variety (row) cor-

responds to a single resistance gene (either V1 or V2). There are three possible pathogen genotypes that are able to infect

at least one variety (columns): av1/Av2, Av1/av2 and av1/av2 (Av means “avirulent” and av means “virulent”). For

instance, av1/av2 means that this pathogen genotype is able to infect both V1 and V2: this is a doubly virulent patho-

gen. In contrast, av1/Av2 and Av1/av2 cannot infect V2 and V1, respectively, but instead trigger immune priming on

V2, and V1, respectively. They are monovirulent pathogen genotypes. We ignore the doubly avirulent (Av1/Av2) patho-

gen genotype, since it can infect none of the resistant varieties in the mixture, and therefore can not get established in

the type of host mixtures considered in this study. The symbol + means infection and the *means priming.

Variety

Pathogen av1/Av2 Av1/av2 av1/av2

V1 + * +

V2 * + +

https://doi.org/10.1371/journal.pcbi.1011146.t001
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including bacteria [32, 33], fungi [34–40], viruses [41–46], nematodes [47] and oomycetes

[48].

The virulence (or resistance-breaking) cost is assumed to be multiplicative, meaning that

the doubly virulent pathogen bears a fitness cost (1 − c1)(1 − c2) as compared to an avirulent

genotype on a variety with no resistance gene [20, 26, 49–55]. Doubly virulent pathogens

therefore have a net transmission rate (1 − c1)(1 − c2)β from both varieties in the mixture.

The priming effect, 0� ρ� 1, reduces the probability that a primed host is infected by a vir-

ulent pathogen genotype compared to a non-primed host. Experimental evidence suggests that

priming usually becomes effective a few hours or days after challenge with an avirulent patho-

gen genotype [56, 57]. However, we here ignore this delay for simplicity. In some cases, prim-

ing can be fully effective (i.e., ρ = 1) [58]. Then, a virulent pathogen genotype cannot infect a

primed host as long as priming is active.

The rate at which priming loses its efficiency is γ. It corresponds to the inverse of the mean

time during which priming is effective. Several studies have shown that priming can last for

several weeks. The original one [56], on the tobacco mosaic virus, estimates that it persists for

20 days, but broader studies including viruses, bacteria, and fungi show that it can last for

weeks to months [58, 59]. Priming has been described in many plant species and is likely to be

ubiquitous in higher plants. The main biological models for study of priming include tobacco,

cucumber, and Arabidopsis [60].

For simplicity, we consider a continuous-time model with continuous planting and replant-

ing best adapted to perennial crops in tropical regions [61]. More specifically, we consider that

the host is present yearlong, and we ignore seasonality in climatic conditions.

Infected hosts remain infectious until harvest, as is the case for most plant viruses and

many other parasites. The rate at which a host is replaced with an uninfected one (due to har-

vesting and replanting) is α. It corresponds to the inverse of the length of the growing

period.

Fig 1. Flow diagram of model 1. S1 and S2 are uninfected hosts of varieties V1 and V2, respectively. S∗
1

and S∗
2

are

primed hosts of varieties V1 and V2, respectively. I1 and I2 are hosts of varieties V1 and V2 (respectively) that are infected

by the corresponding monovirulent pathogen genotype. J1 and J2 are hosts of varieties V1 and V2 (respectively) that are

infected by the doubly virulent pathogen genotype. The square grouping J1 and J2 represents the doubly virulent

pathogen genotype. The dashed arrows represent interactions leading to infection or priming. The gray color

represents the attenuating effect of priming.

https://doi.org/10.1371/journal.pcbi.1011146.g001
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The model is then expressed as a system of six ordinary differential equations:

_I 1 ¼ ð1 � c1ÞbI1S1 þ ð1 � rÞð1 � c1ÞbI1S∗1 � aI1 ;

_I 2 ¼ ð1 � c2ÞbI2S2 þ ð1 � rÞð1 � c2ÞbI2S∗2 � aI2 ;

_J 1 ¼ ð1 � c1Þð1 � c2ÞbðJ1 þ J2ÞS1 þ ð1 � rÞð1 � c1Þð1 � c2ÞbðJ1 þ J2ÞS∗1 � aJ1 ;
_J 2 ¼ ð1 � c1Þð1 � c2ÞbðJ1 þ J2ÞS2 þ ð1 � rÞð1 � c1Þð1 � c2ÞbðJ1 þ J2ÞS∗2 � aJ2 ;
_S∗

1
¼ ð1 � c2ÞbI2S1 � ð1 � rÞð1 � c1ÞbI1S∗1 � ð1 � rÞð1 � c1Þð1 � c2ÞbðJ1 þ J2ÞS∗1 � ðgþ aÞS

∗
1
;

_S∗
2
¼ ð1 � c1ÞbI1S2 � ð1 � rÞð1 � c2ÞbI2S∗2 � ð1 � rÞð1 � c1Þð1 � c2ÞbðJ1 þ J2ÞS∗2 � ðgþ aÞS

∗
2
;

ð1Þ

where the dot denotes differentiation with respect to time t.
To simplify the analysis and reduce the number of parameters, we rescale variables and

parameters in this way:

y1 ¼
I1

N
; y2 ¼

I2

N
; z1 ¼

J1
N
; z2 ¼

J2
N
; m1 ¼

S∗
1

N
; m2 ¼

S∗
2

N
;

and

t∗ ¼ at ; R ¼
bN
a
; n ¼

gþ a

a
� 1 :

More specifically, R is the basic reproductive number of an avirulent pathogen on a variety

with no resistance gene. We therefore assume R> 1, otherwise the disease would not persist

(if an avirulent pathogen cannot persist in a pure susceptible stand, a virulent pathogen cannot

persist either, due to virulence costs). The re-scaled removal rate ν means that primed hosts

can be removed due to either harvest or loss of priming.

A dimensionless version of model (1) is the following,

y0
1
¼ ð1 � c1ÞRy1ð1 � p � m1 � y1 � z1Þ þ ð1 � rÞð1 � c1ÞRy1m1 � y1 ;

y0
2
¼ ð1 � c2ÞRy2ðp � m2 � y2 � z2Þ þ ð1 � rÞð1 � c2ÞRy2m2 � y2 ;

z0
1
¼ ð1 � c1Þð1 � c2ÞRðz1 þ z2Þð1 � p � m1 � y1 � z1Þ þ ð1 � rÞ

ð1 � c1Þð1 � c2ÞRðz1 þ z2Þm1 � z1 ;

z0
2
¼ ð1 � c1Þð1 � c2ÞRðz1 þ z2Þðp � m2 � y2 � z2Þ þ ð1 � rÞ

ð1 � c1Þð1 � c2ÞRðz1 þ z2Þm2 � z2 ;

m0
1
¼ ð1 � c2ÞRy2ð1 � p � m1 � y1 � z1Þ � ð1 � rÞð1 � c1ÞRy1m1 � ð1 � rÞ

ð1 � c1Þð1 � c2ÞRðz1 þ z2Þm1 � nm1 ;

m0
2
¼ ð1 � c1ÞRy1ðp � m2 � y2 � z2Þ � ð1 � rÞð1 � c2ÞRy2m2 � ð1 � rÞ

ð1 � c1Þð1 � c2ÞRðz1 þ z2Þm2 � nm2 ;

ð2Þ

where the prime denotes differentiation with respect to time t*.
The prevalence of the disease is defined as the proportion of infectious hosts in the mixture:

P ¼
I1 þ I2 þ J1 þ J2

N
¼ y1 þ y2 þ z1 þ z2 :

A necessary condition for a monovirulent pathogen to invade an uninfected susceptible

population (and for that matter a mixture) is that its basic reproductive number in a pure sus-

ceptible stand, Ri = R(1 − ci), i = 1, 2, exceeds 1. Similarly, R3 = R(1 − c1)(1 − c2) is the basic

reproductive number of the doubly virulent pathogen. Model parameters and variables are

listed in Table 2.
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The model was only partly amenable to mathematical analysis (see S1 Text). There are 7

biologically feasible equilibria:

1. the “disease-free” equilibrium (0, 0, 0, 0, 0, 0),

2. the “monovirulent 1” equilibrium (y1, 0, 0, 0, 0, m2),

3. the “monovirulent 2” equilibrium (0, y2, 0, 0, m1, 0),

4. the “doubly virulent” equilibrium (0, 0, z1, z2, 0, 0),

5. the “monovirulent 1 and doubly virulent” equilibrium (y1, 0, z1, z2, 0, m2),

6. the “monovirulent 2 and doubly virulent” equilibrium (0, y2, z1, z2, m1, 0),

7. the “monovirulent 1 and monovirulent 2” equilibrium (y1, y2, 0, 0, m1, m2).

In particular, there exists no equilibrium of the form (y1, y2, z1, z2, m1, m2)> 0, in which

the three possible pathogen genotypes coexist (section S1.1 in S1 Text).

All the positiveness conditions of the equilibria were obtained analytically, except for the

“monovirulent 1 and monovirulent 2” equilibrium, for which only sufficient conditions were

obtained (Table 3; section S1 in S1 Text). Regarding the stability conditions, explicit expres-

sions were obtained for the disease-free, monovirulent 1, monovirulent 2, and doubly virulent

equilibria. However, we were not able to derive explicit stability conditions for the “monoviru-

lent i and doubly virulent” equilibria (i = 1, 2), and the “monovirulent 1 and monovirulent 2”

equilibrium.

Table 2. Model parameters and variables.

Parameter Definition

Vi variety with a single resistance gene, i = 1, 2

pi proportion of each variety in the mixture: pi 2 [0, 1] for i = 1, 2

p proportion of variety 2 in the mixture, i.e. p = p2 = 1 − p1

ci virulence cost for each virulence: ci 2 [0, 1] for i = 1, 2

ρ priming effect: ρ 2 [0, 1]

γ priming loss rate: γ� 0

α harvest and replanting rate: α > 0

β pathogen transmission rate: β > 0

N total host population density: N> 0

R basic reproductive number of an avirulent pathogen in a pure susceptible stand: R = βN/α > 1

Ri basic reproductive number of a monovirulent pathogen in a pure susceptible stand: Ri = R(1 − ci), for

i = 1, 2

R3 basic reproductive number of the doubly virulent pathogen: R3 = R(1 − c1)(1 − c2)

ν re-scaled removal rate: ν = (γ + α)/α � 1

Variable Definition

t time: t� 0

Ii density of hosts of variety i infected by the associated monovirulent pathogen genotype, i = 1, 2

Ji density of hosts of variety i infected by the doubly virulent pathogen genotype, i = 1, 2

S∗i density of hosts of variety i that are primed, i = 1, 2

Si density of hosts of variety i that are uninfected, i = 1, 2

yi proportion of hosts of variety i infected by the associated monovirulent pathogen genotype: yi = Ii/N
zi proportion of hosts of variety i infected by the doubly virulent pathogen genotype: zi = Ji/N
mi proportion of hosts of variety i that are primed: m ¼ S∗i =N

https://doi.org/10.1371/journal.pcbi.1011146.t002
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We thus complemented the analysis with numerical computations. By using the expressions

of the different equilibria and the Jacobian matrix of the model, we numerically assessed the

stability of the equilibria for chosen parameter sets. More specifically, parameter sets were cho-

sen by varying one parameter at a time around an arbitrary default parameter set: R = 7, ν = 1,

ρ = 0.8, c1 = c2 = 0.4. The parameter values considered were R = {2, 3, 4, 5, 6, 7, 10}, ν = {1, 2,

10}, ρ = {0, .2, .5, .7, .8, .9, .95, 1}, c1, c2 = {.1, .2, .3, .35, .4, .45, .5, .55, .6, .65, .7, .75}.

This way, we obtained a rather extensive picture of the model behavior. This approach

allowed us to plot the prevalence of the disease (P) at equilibrium as a function of the propor-

tion (p) of the second variety (resistance 2), while keeping track of the genotypic composition

of the pathogen population. In what follows, we restrict the results to the biologically reason-

able case in which c1, c2� 0.5, meaning that the virulence cost is reasonably low.

3 Results

The model yields four possible outcomes: disease extinction, the persistence of a single mono-

virulent pathogen genotype (either Av1/av2 or av1/Av2), the persistence of the doubly viru-

lent pathogen (av1/av2) while monovirulent pathogen genotypes are excluded, and the

coexistence of a monovirulent pathogen with the doubly virulent pathogen genotype (either

Av1/av2 and av1/av2, or av1/Av2 and av1/av2).

The coexistence of the three possible genotypes is impossible (section S1.1 in S1 Text). This

may be interpreted as an instance of the competitive exclusion principle, which states that

three species (here pathogen genotypes) cannot coexist on fewer than 3 resources (2 host varie-

ties here) [62].

Moreover, the coexistence of the two monovirulent pathogens is likely impossible (assum-

ing c1, c2� 0.5; equation S16 in S1 Text) since the virulence costs allow the doubly virulent

pathogen genotype to persist, and the latter likely excludes the monovirulent pathogen geno-

type capable of infecting the variety that is in the lowest proportion. This is because there are

no coinfections in the model, therefore hosts infected by the doubly virulent pathogen are no

longer available for the monovirulent pathogens.

Table 3 summarizes the equilibria, their existence/positiveness and stability conditions. In a

mixture of two resistant varieties, the quantities (1 − p)R1, pR2, and R3 are the basic reproduc-

tive numbers of the monovirulent 1 (which can infect a fraction 1 − p of the host population),

the monovirulent 2 (which can infect a fraction p of the host population), and the doubly viru-

lent (which can infect the entire host population), respectively. If the basic reproductive num-

ber of a pathogen genotype is lower than one, the latter cannot persist in the mixture. The

Table 3. Summary of model (2) equilibria, with their positiveness and stability conditions. All conditions are neces-

sary and sufficient conditions except those marked with an exclamation mark, which are only sufficient conditions in

general. The expressions of r̂1; r̂2; ~r1; ~r2 are given by equations S5, S7, S13, S14 in S1 Text, respectively. The exclama-

tion mark means that we have no explicit conditions in general. The meaning of the parameters can be found in

Table 2. The “extra” stability conditions are those that are not redundant with the positiveness conditions.

# Equilibrium Positiveness conditions Extra Stability conditions

1 (0, 0, 0, 0, 0, 0) None R1(1 − p), R2p, R3 < 1

2 (y1, 0, 0, 0, 0, m2) R1(1 − p) > 1 r > r̂1 ; ~r1

3 (0, y2, 0, 0, m1, 0) R2p> 1 r > r̂2 ; ~r2

4 (0, 0, z1, z2, 0, 0) R3 > 1 R3 > R1(1 − p), R2p
5 (y1, 0, z1, z2, 0, m2) R1(1 − p) > R3 > 1 and r < r̂1 ?

6 (0, y2, z1, z2, m1, 0) R2p> R3 > 1 and r < r̂2 ?

7 (y1, y2, 0, 0, m1, m2) R1(1 − p), R2p> 1 (!) ?

https://doi.org/10.1371/journal.pcbi.1011146.t003
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doubly virulent equilibrium is stable if and only if the basic reproductive number of the doubly

virulent pathogen is greater than the basic reproductive numbers of the monovirulents patho-

gens (in the mixture). A necessary condition for the “monovirulent i and doubly virulent”

equilibria (i = 1, 2) to be positive is that the basic reproductive number of the monovirulent

pathogen i is greater than that of the doubly virulent pathogen.

Even if varieties are epidemiologically interchangeable (c1 = c2), they should

not be mixed in equal proportions to minimize disease prevalence

Fig 2A shows that a balanced ratio (50:50) of resistant varieties (p = 0.5) does not minimize the

prevalence of the disease. Instead, the minimum of prevalence is reached for 70:30 and 30:70

(variety 1:variety 2) ratios, for this specific parameter set. These ratios correspond to thresholds

at which the doubly virulent pathogen can invade. The optimal strategy is therefore to mix the

varieties as much as possible while preventing the doubly virulent pathogen to invade. Fig 2B

shows that this result is a direct consequence of priming: in the absence of priming, any ratio

between 82:18 and 18:82 minimizes disease prevalence, for this parameter set. However, the

most extreme optimal ratios (about 82:18 and 18:82) prevent the emergence of the doubly viru-

lent pathogen, in the absence of priming. Varieties should thus not be mixed in equal propor-

tions, whether or not priming occurs. The results illustrated in Fig 2 are representative of the

results obtained with a broader range of parameter values, as shown in Fig 3.

Fig 2. Prevalence of the disease (P, black line) at equilibrium as a function of the proportion of resistance 2 (p), when varieties epidemiologically

interchangeable (c1 = c2). (A) When priming occurs (ρ = 0.7), the optimal proportion deviates from p = 0.5. (B) In absence of priming (ρ = 0), the disease

prevalence is minimized for a range of p values. The colored areas correspond to different genetic compositions of the pathogen population at equilibrium.

From left to right: monovirulent 1 only, coexistence of monovirulent 1 and doubly virulent, doubly virulent only, coexistence of monovirulent 2 and doubly

virulent, and monovirulent 2 only. Parameter values: R = 7, ν = 1, and c1 = c2 = 0.4. The prevalences are the same at the edges (p = 0 and p = 1, in which one or

the other monovirulent genotype is present) or in the middle region (in which only the doubly virulent genotype is present) regardless of whether priming

occurs (A) or not (B). Priming only has an effect in the intermediate regions, in which a monovirulent genotype coexists with the doubly virulent one (in the

absence of priming).

https://doi.org/10.1371/journal.pcbi.1011146.g002
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If varieties are not epidemiologically interchangeable (c1 6¼ c2), the mixture

should be biased against the resistance that has the highest breaking cost

Fig 4A shows that a unique ratio (65:35, for the considered parameter set), of (variety 1:variety

2) resistant plants minimizes disease prevalence, when c1 < c2. The optimal strategy, that con-

sists in mixing varieties as much as possible while preventing the doubly virulent to invade, is

biased against resistant variety 2, which has the greatest breaking cost (since c1 < c2). This con-

trasts with the optimal variety to be used in monoculture, which is variety 2 (compare the prev-

alences for p = 0 and p = 1). Fig 4B shows that, even in absence of priming, mixing varieties as

much as possible while preventing the doubly virulent pathogen to invade is achieved by using

variety 1 in greater proportion than variety 2 (compare the sizes of the “monovirulent 1” and

“monovirulent 2” areas). The results illustrated in Fig 4 are representative of the results

obtained with a broader range of parameter values, as show in Fig 5 for other virulence costs.

Fig 3. Prevalence of the disease (P) at equilibrium as a function of the proportion of resistance 2 (p), when varieties are epidemiologically

interchangeable (c1 = c2 < 0.5) for different values of (A) the basic reproductive number R, (B) the priming effect ρ, (C) the removal rate ν, (D) and the

virulence costs c1, and c2. Parameter values: (A) ρ = 0.7, ν = 1, and c1 = c2 = 0.35, (B) R = 7, ν = 1, and c1 = c2 = 0.35, (C) R = 7, ρ = 0.8, and c1 = c2 = 0.35,

(D) and R = 7, ρ = 0.8, and ν = 1.

https://doi.org/10.1371/journal.pcbi.1011146.g003
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We developed an interactive interface allowing the user to test their own parameter sets:

https://paulineclin-2-resistants-priming-model-app-chap3-wuqamb.streamlit.app/.

4 Discussion

The fight against plant diseases requires sustainable, environmentally friendly solutions. Host

mixtures are part of the ecological solution [63]. They have been the object of a vast literature

Fig 4. Prevalence of the disease (P, black line) at equilibrium as a function of the proportion of resistance 2 (p), when varieties are not epidemiologically

interchangeable (c1 6¼ c2). (A) When priming occurs (ρ = 0.9), there is a unique optimal proportion biased towards the variety the most likely to be broken,

here variety 1 (assumming c1 < c2). (B) In absence of priming (ρ = 0), the disease prevalence is minimized for a range of p values. The colored areas correspond

to different genetic compositions of the pathogen population at equilibrium. From left to right: monovirulent 1 only, coexistence of monovirulent 1 and doubly

virulent, doubly virulent only, coexistence of monovirulent 2 and doubly virulent, and monovirulent 2 only. Parameter values: R = 7, ν = 1, c1 = 0.1, and c2 =

0.4.

https://doi.org/10.1371/journal.pcbi.1011146.g004

Fig 5. Prevalence of the disease (P) at equilibrium as a function of the proportion of resistance 2 (p), when

varieties are not epidemiologically interchangeable (c1 6¼ c2 < 0.5). Parameter values: R = 7, ρ = 0.8, and ν = 1.

https://doi.org/10.1371/journal.pcbi.1011146.g005
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corpus for decades [9], including a number of modeling studies [64]. However, the basic math-

ematical theory underlying the effectiveness of host mixtures against plant diseases is still little

developed [13, 19, 20]. In this study, we theoretically explored, for the first time, the effective-

ness of host mixtures composed of two qualitatively resistant varieties in variable proportions,

against monovirulent and doubly virulent pathogen genotypes.

We first explored whether resistant varieties that differ only in their single specific resis-

tance gene, and that are otherwise epidemiologically interchangeable, should be mixed in

equal proportions. Somewhat unexpectedly, we found that the equi-proportion mixtures were

not the optimal ones. Fig 2A shows a case where the optimal ratio is around 30:70. While a

50:50 ratio reduces the disease prevalence compared to a monoculture, it is not optimal. This

is because it selects for a doubly virulent pathogen, that can infect both resistances in the mix-

ture. However, it is possible to mix varieties in such a way that the doubly virulent pathogen

does not invade. More specifically, with the parameters of Fig 2A, the 30:70 ratio is the thresh-

old above which the doubly virulent pathogen can invade. The optimal strategy is thus to mix

varieties as much as possible but still so that the doubly virulent pathogen does not invade.

This way, one of the two varieties cannot be infected at all by the pathogen population (com-

posed of an incompatible, monovirulent pathogen), which explains that the 30:70 ratio per-

forms better than monocultures (selecting for the corresponding monovirulent pathogen) or

the 50:50 ratio (selecting for the doubly virulent pathogen). However, this result is a direct con-

sequence of immune priming. If priming does not occur, then any ratio from 18:82 to 50:50

minimizes disease prevalence (Fig 2B), for this parameter set. Nevertheless, one may argue

that the most biased optimal ratio (18:82 for this parameter set) is more durable, since it pre-

vents the emergence of the doubly virulent pathogen, and therefore maintains one of the resis-

tances effective in the long run. When there is priming, an optimum that maximizes cross-

protection between varieties emerges. That is, the variety infected by the corresponding mono-

virulent pathogen indirectly protects the other variety through priming. The latter variety,

which is not infected, protects the former through a dilution effect [65].

Next, given that varieties should not be mixed in equal proportions, we wondered which

variety should be used in greater proportion in the mixture. In this study, we focused on quali-

tative resistances only, meaning that the varieties do not differ in terms of quantitative resis-

tance. Therefore, the only possible epidemiological difference between varieties is the

virulence (or resistance-breaking) cost associated with the single, specific resistance gene each

carries. This way, we assumed that one variety is more costly for the pathogen to infect. One

might think that, to minimize disease prevalence, the latter variety should be mixed in greater

proportion than the variety which is less costly for the pathogen to infect. Surprisingly, we

found the reverse result: the variety that is less costly for the pathogen to infect should be

mixed in greater proportion than the other variety (Fig 4A). This is because the optimal strat-

egy is to mix the varieties as much as possible while preventing the doubly virulent pathogen

to invade, and it is easier to prevent the invasion of the most costly virulence (Fig 4B shows

that the “monovirulent 1” area is greater than the “monovirulent 2” area, with c2 > c1). For the

more costly virulence not to be selected for, one should mix the associated resistance in lower

proportion than the resistance the least costly to break. In addition, the monovirulent patho-

gen bearing the least costly virulence is more transmissible, which therefore increases prim-

ing-induced cross-protection. This further prevents the doubly virulent pathogen from

invading. More specifically, if the costliest variety is rare, the most transmissible pathogen

(capable of infecting the least costly variety) is selected for, which produces more spill-over

and therefore priming on the costliest variety. This in turns allows for a larger proportion of

the costliest variety without emergence of the double virulence. By contrast, if the least costly
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variety is rare, the least transmissible pathogen is selected for, which leads to lower spill-over

and therefore less priming.

We have been unable to find actual experimental data allowing us to challenge the outputs

of our model. Indeed, we have found no reports of experiments involving varying proportions

of resistant hosts in two-way mixtures with no susceptible component. Most reports on two

way mixtures relate to combination of a susceptible and one resistant host [12, 66]: these pre-

clude the intervention of some of the mechanisms (such as the competition between mono-

virulent and doubly virulent genotypes) that are at the core of our model.

Choosing the optimal proportion of resistant components in host mixtures is critical for the

lasting performance of this disease control strategy. One key output of our theoretical work is

that the optimal proportion for reducing disease prevalence is also the optimal proportion for

protecting the resistance genes involved in the mixture, by preventing the spread and persis-

tence of doubly virulent pathogen genotypes. This conclusion, based on the graphical analysis

shown in Figs 2–5, is of great practical relevance for the design of mixtures in perennial hosts,

in which altering the proportion of mixture components is not possible during the commercial

life of the stand [67]. Therefore, we expect that our theoretical results and the online interface

that we designed will be of great value in perennial crops, where mixture composition is set

once and for all [68].

In this study, we focused on relatively low virulence (or resistance-breaking) costs (c1, c2�

0.5), as is generally the case [69]. However, these costs might be higher in some virus and nem-

atode species [43, 47]. In this case (c1, c2 > 0.5), a balanced (50:50) ratio of resistant varieties

can be within the optimal range, assuming the varieties are epidemiologically interchangeable

(c1 = c2, Fig C in S1 Text). This is because the virulent costs are so high that the doubly virulent

pathogen genotype cannot persist. Instead, the monovirulent genotypes may coexist. However,

even in this case, a biased ratio may perform equally well as a balanced 50:50 ratio. Neverthe-

less, if the varieties are not epidemiologically interchangeable while both virulence costs are

relatively high (c2 > c1 > 0.5), the optimal ratio can be slightly biased against the resistance

with the lowest breaking cost (Fig D in S1 Text). These results contrast with those obtained for

reasonably low virulence costs (c1� c2� 0.5; Figs 1 and 2). However, relatively low virulence

costs represent the most generic situation in the state of our knowledge to date.

To go further in the study of host mixtures, it would be relevant to consider a third variety

in the mixture, to explore whether the bias would decrease as the number of varieties increases.

This would be a way of better connecting this study to a previous one [20], in which we consid-

ered an arbitrary number of varieties in equal proportions. It would also be interesting to

explore whether our main result (the optimal mixture is biased towards the resistance with the

lowest breaking cost) extends to other traits than the breaking cost, for instance the probability

that one of the resistances is broken down. This is left for future research.

To conclude, our model shows that, to minimize the prevalence of the disease, mixing resis-

tant varieties in equal proportions is sub-optimal, and that the optimal proportions directly

depend on the virulence costs associated with each resistance. This study therefore shows the

importance of assessing the virulence costs associated with each resistance when designing a

successful and lasting mixture. It also offers a number of practical indications on designing

such simple mixtures for maximum performance, and best ecological sustainability, especially

in perennial crops for which optimal design is critical.
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