Pulsed perturbations in population dynamics
Ludovic Mailleret

To cite this version:
Ludovic Mailleret. Pulsed perturbations in population dynamics. MOMI2023 - Le MOnde des Mathématiques Industrielles, Apr 2023, Sophia Antipolis (06), France. hal-04144067

HAL Id: hal-04144067
https://hal.inrae.fr/hal-04144067
Submitted on 8 Aug 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Pulsed perturbations in population dynamics

MOMI 2023

Ludovic Mailleret

M2P2, UMR ISA, INRAE, CNRS, Université Côte d'Azur
Macbes (ex Biocore), Inria d'Université Côte d’Azur

with: S. Nundloll, N. Bajeux, B. Ghosh, F. Aubree,
V. Calcagno, F. Hamelin, V. Lemesle & F. Grognard
200 pp. working on plant health issues
- interactions b. plants, pests/symbionts
- interactions b. pests and enemies
- population dynamics in time and space
- development of ecological pest management programs

Methods
- comparative and functional genomics
- population and community ecology
- mathematical and computer modelling
Institut Sophia Agrobiotech
UMR INRAE, CNRS, Université Côte d’Azur

200 pp. working on plant health issues
• interactions b. plants, pests/symbionts
• interactions b. pests and enemies
• population dynamics in time and space
• development of ecological pest management programs

Methods
• comparative and functional genomics
• population and community ecology
• mathematical and computer modelling
Population dynamics modelling

Understand how/why population sizes change with time and space

- predict plant pest and disease dynamics and evolution
- design control actions: external perturbations of population sizes

Main applications

- efficient and sustainable use of plant resistance
- optimization of biological control programs
Population dynamics modelling

Understand how/why population sizes change with time and space
- predict plant pest and disease dynamics and evolution
- design control actions: external perturbations of population sizes

Main applications
- efficient and sustainable use of plant resistance
- optimization of biological control programs
External perturbations of population size

Two main types of perturbations

• increase population size (introductions of individuals)
 → immigration, reintroduction biology, biological control

• decrease population size (removal of a fraction of the population)
 → emigration, harvesting, culling
External perturbations of population size

Two main types of perturbations

- increase population size (introductions of individuals)
 - immigration, reintroduction biology, biological control

- decrease population size (removal of a fraction of the population)
 - emigration, harvesting, culling
Continuous or pulsed perturbations

Both types of perturbation may occur:

- continuously over time
- as pulses at discrete time instants

- intensity of perturbations significantly influences population dynamics
- role of the temporal pattern of perturbations has been much less studied
Continuous or pulsed perturbations

Both types of perturbation may occur:
- continuously over time
- as pulses at discrete time instants

- intensity of perturbations significantly influences population dynamics
- role of the temporal pattern of perturbations has been much less studied
Outline

Framework to study the influence of pulsed perturbations on population dynamics

- for a given perturbation effort
- role of temporal pattern (magnitude / frequency)

Investigate the two main perturbation types

- pulsed introductions
- pulsed removals
- if time: pulsed introductions & removals
Pulsed introductions

with special emphasis on

augmentation biological control & adaptation under pulsed migration
Framework for studying pulsed introductions

Compare different patterns of introductions for a given introduction effort μ

Continuous introductions1

$$\begin{cases} \dot{x} = f(x) + \mu. \end{cases}$$

1: Kermack, McKendrik (1932), Kostitzin (1937)

Pulsed introductions2

$$\begin{cases} \dot{x} = f(x), \\ x(kT^+) = x(kT) + \mu T. \end{cases}$$

Both models account for the same mean rate of introduction

- comparison of different introduction patterns through introduction period
- pulsed model reduces to continuous one as $T \to 0$
Framework for studying pulsed introductions

Compare different patterns of introductions for a given introduction effort μ

Continuous introductions\(^1\)

\[
\begin{cases}
\dot{x} = f(x) + \mu.
\end{cases}
\]

1: Kermack, McKendrick (1932), Kostitzin (1937)

Pulsed introductions\(^2\)

\[
\begin{cases}
\dot{x} = f(x), \\
x(kT^+) = x(kT) + \mu T.
\end{cases}
\]

Both models account for the same mean rate of introduction
- comparison of different introduction patterns through introduction period
- pulsed model reduces to continuous one as $T \to 0$
Framework for studying pulsed introductions

Compare different patterns of introductions for a given introduction effort μ

Continuous introductions\(^1\)

\[
\begin{aligned}
\dot{x} &= f(x) + \mu.
\end{aligned}
\]

1: Kermack, McKendrik (1932), Kostitzin (1937)

Both models account for the same mean rate of introduction

- comparison of different introduction patterns through introduction period
- pulsed model reduces to continuous one as $T \to 0$

Pulsed introductions\(^2\)

\[
\begin{aligned}
\dot{x} &= f(x), \\
x(kT^+) &= x(kT) + \mu T.
\end{aligned}
\]

Both models account for the same mean rate of introduction

- comparison of different introduction patterns through introduction period
- pulsed model reduces to continuous one as $T \to 0$
Augmentation biological control
Augmentation biological control

Fight pests through regular introductions of natural enemies

- parastitoids or predators
- supplied by biofabrics

General predator-prey model
\[
\begin{align*}
\dot{x} &= f(x) - g(.y, \text{pest/prey}) \\
\dot{y} &= h(.y) - m(.y, \text{BCA/predator})
\end{align*}
\]

Natural enemy introductions
\[
y(kT^n) = y(kT) + \mu T, \quad \forall n \in \mathbb{N}
\]

How different introduction strategies affect pest control?
Augmentation biological control

Fight pests through regular introductions of natural enemies

- parasitoids or predators
- supplied by biofabrics

General predator-prey model

\[
\begin{align*}
\dot{x} &= f(x) - g(.)y, & \text{pest / prey} \\
\dot{y} &= h(.)y - m(.)y & \text{BCA / predator}
\end{align*}
\]

Natural enemy introductions

\[
\{ y(kT^+) = y(kT) + \mu T, \forall n \in \mathbb{N} \}
\]

How different introduction strategies affect pest control?
Augmentation biological control

Null model: no density dependance in BCA population

Pest control is achieved provideda:

$$\mu > S = \sup_{x \geq 0} \frac{mf(x)}{g(x)}$$

a Mailleret, Grognard (2009)

- pest control always possible
- threshold intro. rate increases w. m et $f(.)$, decreases w. $g(.)$
- introduction strategy (T) does not impact stability

What about transient dynamics?

- time for pest to fall below some damage threshold \bar{x}

$$\Pi (T, x_0, t_0) = \int_{t_0}^{t_f} (\tau - t_0) d\tau, \quad x(t_f) \triangleq \bar{x}$$
Augmentation biological control
Null model: no density dependance in BCA population

Pest control is achieved provided\(^a\):

\[\mu > S = \sup_{x \geq 0} \frac{mf(x)}{g(x)} \]

\(^a\) Mailleret, Grognard (2009)

- pest control always possible
- threshold intro. rate increases w. \(m \) et \(f(.) \), decreases w. \(g(.) \)
- introduction strategy (\(T \)) does not impact stability

What about transient dynamics?
- time for pest to fall below some damage threshold \(\bar{x} \)

\[\Pi(T, x_0, t_0) = \int_{t_0}^{t_f} (\tau - t_0) d\tau, \quad x(t_f) \triangleq \bar{x} \]
Augmentation biological control
Null model: no density dependance in BCA population

Pest control is achieved provided\(^a\):

\[
\mu > S = \sup_{x \geq 0} \frac{mf(x)}{g(x)}
\]

\(^a\) Mailleret, Grognard (2009)

- pest control always possible
- threshold intro. rate increases w. \(m\) et \(f(.)\), decreases w. \(g(.)\)
- introduction strategy (\(T\)) does not impact stability

What about transient dynamics?
- time for pest to fall below some damage threshold \(\bar{x}\)

\[
\Pi(T, x_0, t_0) = \int_{t_0}^{t_f} (\tau - t_0) d\tau, \quad x(t_f) \triangleq \bar{x}
\]
Augmentation biological control
Null model: no density dependence in BCA population

- $\mathbb{E}_{t_0 \in (0, T)} \left[\Pi(t_0, x_0) \right] = \min_T \left(\max_{t_0} \Pi(t_0, x_0) \right) (= \text{constant})$
- $\text{Var}_{t_0 \in (0, T)} \left[\Pi(t_0, x_0) \right]$ increases with T

- mean transients not influenced by intro. strategy
- variance increases with larger/less frequent introductions

anomaly of $\Pi(t_0)$ w.r.t T, $t_0 \in (0, T)$
Augmentation biological control (2)

Negative density dependance in BCA population

Per capita predation decreases with BCA population size

\[
\begin{align*}
\dot{x} &= f(x) - g(x, y)y \\
\dot{y} &= h(x, y)y - m(.)y
\end{align*}
\]

\[
g(x, y) = g\left(\frac{x}{\theta y + (1 - \theta)}\right)
\]

\[
g(.) \uparrow \quad \theta \in (0, 1]: \text{ - DD index}
\]
Augmentation biological control (2)

Negative density dependance in BCA population

Per capita predation decreases with BCA population size

\[
\begin{align*}
\dot{x} &= f(x) - g(x, y)y \\
\dot{y} &= h(x, y)y - m(y)y
\end{align*}
\]

\[g(x, y) = g\left(\frac{x}{\theta y + (1 - \theta)}\right)\]

\[g(.) \uparrow; \theta \in (0, 1]: -DD\ index\]
Augmentation biological control (2)

Negative density dependance in BCA population

Pest control is achieved iff

\[f'(0) < \frac{g'(0)}{\theta} \quad \text{and} \quad \mu > \frac{1 - \theta}{\theta T} \left(1 - e^{-m \frac{\theta f'(0)}{g'(0)} T} \right) \left(1 - e^{-mT} \right) \]

\[\left(e^{-m \frac{\theta f'(0)}{g'(0)} T} - e^{-mT} \right) \]

\(^a\text{Nundloll et al. 2010}\)

A biological and a strategy condition

- negative DD shall not be too strong
- threshold introduction rate increases with \(T \to +\infty \)
- too large \(T \) makes pest suppression impossible
- transients: the smaller the \(T \), the faster pests are suppressed

When DD comes into play, introduction pattern has major impacts
Augmentation biological control (2)

Negative density dependance in BCA population

Pest control is achieved iff:

\[f'(0) < \frac{g'(0)}{\theta} \quad \text{and} \quad \mu > \frac{1 - \theta}{\theta T} \left(1 - e^{-m \frac{\theta f'(0)}{g'(0)} T} \right) \left(1 - e^{-m T} \right) \]

\[\frac{e^{-m \frac{\theta f'(0)}{g'(0)} T}}{\left(e^{-m \frac{\theta f'(0)}{g'(0)} T} - e^{-m T} \right)} \]

\(^a\)Nundloll et al. 2010

A biological and a strategy condition

• negative DD shall not be too strong
• threshold introduction rate increases with \(T \to +\infty \)
• too large \(T \) makes pest suppression impossible
• transients: the smaller the \(T \), the faster pests are suppressed

When DD comes into play, introduction pattern has major impacts
Augmentation biological control (3)

Positive density dependance in BCA population

Per capita predation/natality increases with BCA population size

\[
\begin{align*}
\dot{x} &= f(x) - g(x)q_f(y)y \\
\dot{y} &= h(g(x)q_f(y))q_r(y)y - m(.)y
\end{align*}
\]

Component Allee effects:

\[q_f(\cdot), q_r(\cdot)\] increasing
Augmentation biological control (3)

Positive density dependance in BCA population

Per capita predation/natality increases with BCA population size

\[
\begin{align*}
\dot{x} &= f(x) - g(x)q_f(y)y \\
\dot{y} &= h(g(x)q_f(y))q_r(y)y - m(.)y
\end{align*}
\]

Component Allee effects:

\(q_f(.) \), \(q_r(.) \) increasing
Augmentation biological control (3)

Positive density dependance in BCA population

- reverted results compared to negative DD
- pest control facilitated by T large
- transients: the larger the T, the faster pest suppression
- what positive DD influences matters
Pulsed migration and adaptation

DNA helix
Pulsed migration from mainland to island

: AA genotype, fitness (1+s)
: aa genotype, fitness 1

1 Aubree et al. 2023
Pulsed migration from mainland to island

1 Aubree et al. 2023
Pulsed migration from mainland to island

: AA genotype, fitness (1+s)
: aa genotype, fitness 1
: aA genotype, fitness (1+hs)

stochastic framework (genet. drift + selection)

1 Aubree et al. 2023
Pulsed migration from mainland to island (2)

In the long run AA genotype will overtake the island population

- is it faster (or not) with pulsed migration?

AA fixation is (initially) faster with pulsed migration when:

\[s < \frac{-(K + 1)^2}{2K^2(1 + h(K - 1))} < 0 \]

In a nutshell:

- sufficiently deleterious alleles favored by migr. pulsedness
- neutral and beneficial alleles disfavored
Pulsed migration from mainland to island (2)

In the long run AA genotype will overtake the island population

• is it faster (or not) with pulsed migration?

AA fixation is (initially) faster with pulsed migration when:

\[s < \frac{-(K + 1)^2}{2K^2(1 + h(K - 1))} < 0 \]

In a nutshell:

• sufficiently deleterious alleles favored by migr. pulsedness

• neutral and beneficial alleles disfavored
Pulsed migration from mainland to island (2)

In the long run AA genotype will overtake the island population

• is it faster (or not) with pulsed migration?

AA fixation is (initially) faster with pulsed migration when:

\[s < \frac{-(K + 1)^2}{2K^2(1 + h(K - 1))} < 0 \]

In a nutshell:

• sufficiently deleterious alleles favored by migr. pulsedness
• neutral and beneficial alleles disfavored
Pulsed removals

with special emphasis on harvesting and vaccination
Framework for studying pulsed removals (1)

Compare different patterns of removals for a given taking effort E

Continuous removals\(^1\)

\[
\left\{ \begin{array}{l}
\dot{x} = f(x) - Ex.
\end{array} \right.
\]

1: Schaefer (1954)

Pulsed removals (first attempt)\(^2\)

\[
\left\{ \begin{array}{l}
\dot{x} = f(x), \\
\quad x(kT^+) = x(kT) - \tilde{E}x.
\end{array} \right.
\]

2: from Lu et al. (2003)

• Mean taking effort in the continuous model

\[
\langle E_c \rangle = \frac{\dot{x}E}{x} = \frac{Ex}{x} = E
\]
Framework for studying pulsed removals (1)

Compare different patterns of removals for a given taking effort E

Continuous removals\(^1\)

\[
\begin{cases}
\dot{x} = f(x) - Ex.
\end{cases}
\]

1: Schaefer (1954)

Pulsed removals (first attempt)\(^2\)

\[
\begin{cases}
\dot{x} = f(x),
\quad x(kT^+) = x(kT) - \tilde{E}x.
\end{cases}
\]

2: from Lu et al. (2003)

• Mean taking effort in the continuous model

\[
\langle E_c \rangle = \frac{\dot{x}E}{x} = \frac{Ex}{x} = E
\]
Compare different patterns of removals for a given taking effort E

- Mean taking effort in the pulsed model:

\[
\langle E_p \rangle = \frac{1}{T} \int_{kT}^{(k+1)T} \frac{\dot{x}_E}{x} d\tau = \frac{1}{T} \int_{kT}^{kT^+} \frac{\dot{x}_E}{x} d\tau = \frac{1}{T} \int_{x(kT)}^{x(kT^+)} \frac{dx_E}{x},
\]

so that:

\[\langle E_p \rangle = \frac{1}{T} \ln \left(\frac{1}{1 - \tilde{E}} \right) \neq E\]

In Lu et al. (2003) framework, the mean taking effort varies with T
Framework for studying pulsed removals (3)

Desired property: mean taking effort constant to allow comparisons

Solve:

\[\langle E_p \rangle = E = \frac{1}{T} \ln \left(\frac{1}{1 - \tilde{E}} \right) \Rightarrow \tilde{E} = 1 - e^{-ET} \]

⇒ more frequent removals shall be smaller...

A well-posed pulsed taking model reads:

\[
\begin{align*}
\dot{x} &= f(x), \\
\ x(kT+1) &= e^{-ET} x(kT).
\end{align*}
\]
Framework for studying pulsed removals (3)

Desired property: mean taking effort constant to allow comparisons

Solve:

\[\langle E_p \rangle = E = \frac{1}{T} \ln \left(\frac{1}{1 - \tilde{E}} \right) \Rightarrow \tilde{E} = 1 - e^{-E \cdot T} \]

⇒ more frequent removals shall be smaller...

A well-posed pulsed taking model reads:

\[
\begin{align*}
\dot{x} &= f(x), \\
x(kT^+) &= e^{-E \cdot T} x(kT).
\end{align*}
\]
Framework for studying pulsed removals (3)

Desired property: mean taking effort constant to allow comparisons

Solve:

\[\langle E_p \rangle = E = \frac{1}{T} \ln \left(\frac{1}{1 - \bar{E}} \right) \Rightarrow \bar{E} = 1 - e^{-ET} \]

\Rightarrow more frequent removals shall be smaller...

A well-posed pulsed taking model reads:

\[\begin{cases} \dot{x} = f(x), \\ x(kT+) = e^{-ET} x(kT). \end{cases} \]
Pulsed harvests
Pulsed harvesting

Assuming logistic growth, we get the ‘pulsed Schaefer model’

\[
\begin{align*}
\dot{x} &= rx \left(1 - \frac{x}{K}\right), \\
x(kT^+) &= e^{-ET} x(kT).
\end{align*}
\]

Properties:

- periodic solution \(x_p^*(t) \), GAS if \(E < r \)
- \(x^* = 0 \) is GAS if \(E > r \).

(i.e. similar to continuous model)
Pulsed harvesting

Assuming logistic growth, we get the ‘pulsed Schaefer model’

\[
\begin{align*}
\dot{x} &= rx \left(1 - \frac{x}{K}\right), \\
x(kT^+) &= e^{-ET} x(kT).
\end{align*}
\]

Properties:

- periodic solution \(x^*_p(t) \), GAS if \(E < r \)
- \(x^* = 0 \) is GAS if \(E > r \).

(i.e. similar to continuous model)
Pulsed harvesting (2)

Compute the mean yield over a time period T:

$$Y_p(T) = \frac{(1 - e^{-ET}) (1 - e^{(E-r)T})}{(1 - e^{-rT})} \frac{K}{T}$$

This can be compared to continuous harvesting yield:

$$Y_c = KE \left(1 - \frac{E}{r}\right) = \lim_{T \to 0} Y_p(T)$$

Properties:

- temporal pattern of pulsed harvests matters
- more frequent (less intense) harvests are better
Pulsed harvesting (2)

Compute the mean yield over a time period T:

$$Y_p(T) = \frac{(1 - e^{-ET})(1 - e^{(E-r)T})}{(1 - e^{-rT})} \frac{K}{T}$$

This can be compared to continuous harvesting yield:

$$Y_c = KE \left(1 - \frac{E}{r}\right) = \lim_{T \to 0} Y_p(T)$$

Properties:

- temporal pattern of pulsed harvests matters
- more frequent (less intense) harvests are better
Pulsed vaccination
Pulsed vaccination (1)

Vaccination of individuals is also a form of removal of S individuals.

Continuous vaccination at rate Ψ in the susceptible population:

\[
\begin{align*}
\dot{S} &= b - \mu S - \beta SI - \Psi S \\
\dot{I} &= \beta SI - \mu I - \alpha I
\end{align*}
\]

In such a model:

\[R_{eff} = \frac{\beta S^*_c}{\alpha + \mu} = \frac{\beta}{(\alpha + \mu)(\psi + \mu)}\]

Vaccination prevents disease spread when

\[\psi > \frac{b\beta}{\alpha + \mu} - \mu\]

\(^2\)model adapted from Onyango & Müller, 2014
Pulsed vaccination (1)

Vaccination of individuals is also a form of removal of S individuals

Continuous vaccination at rate Ψ in the susceptible population

\[
\begin{align*}
\dot{S} &= b - \mu S - \beta SI - \Psi S \\
\dot{I} &= \beta SI - \mu I - \alpha I
\end{align*}
\]

In such a model

\[
R_{\text{eff}} = \frac{\beta S^*_c}{\alpha + \mu} = \frac{\beta}{(\alpha + \mu)} \frac{b}{(\Psi + \mu)}
\]

Vaccination prevents disease spread when

\[
\Psi > \frac{b\beta}{\alpha + \mu} - \mu
\]

\(^2\)model adapted from Onyango & Müller, 2014
Pulsed vaccination (2)

A comparable pulsed vaccination model reads\(^3\)

\[
\begin{align*}
\dot{S} &= b - \mu S - \beta SI \\
\dot{I} &= \beta SI - \mu I - \alpha I \\
S(kT) &= e^{-\Psi T} S(kT)
\end{align*}
\]

\(T\)-periodic infection free solution \(S^*(t, \Psi)\), so that:

\[
R_{eff} = \frac{\beta}{(\alpha + \mu)} \frac{1}{T} \int_0^T S^*(\tau, \Psi) d\tau
\]

\(^3\)pulsed vaccination has originally been introduced by Agur et al., 1993. Advocated as a more efficient vaccination strategy, a statement which is still debated today.
Pulsed vaccination (3)

Pulsed vaccination prevents disease spread when:

\[
\frac{1}{T} \int_0^T S^*(\tau, \Psi) d\tau < \frac{(\alpha + \mu)}{\beta}
\]

Unfortunately, isolating \(\Psi \) is difficult, and ultimately uninformative.

Yet, numerics show vaccination may fail for large
Pulsed vaccination prevents disease spread when:

$$\frac{1}{T} \int_0^T S^*(\tau, \Psi) d\tau < \frac{(\alpha + \mu)}{\beta}$$

unfortunately, isolating Ψ is difficult, and ultimately uninformative

Yet, numerics show vaccination may fail for large

$\frac{1}{T} \int_0^T S^*(\tau, \Psi) d\tau$
Pulsed vaccination (3)

Pulsed vaccination prevents disease spread when:

\[
\frac{1}{T} \int_0^T S^*(\tau, \Psi) d\tau < \frac{(\alpha + \mu)}{\beta}
\]

Unfortunately, isolating \(\Psi \) is difficult, and ultimately uninformative.

Yet, numerics show vaccination may fail for large \(T \)

\[
\frac{1}{T} \int_0^T S^*(\tau, \Psi) d\tau
\]

Vaccination succeeds for \(\Psi = 0.5 \), \(\Psi = 1 \), and \(\Psi = 10 \) as shown in the graph.
Mixing: pulsed migration
Pulsed migration and the Allee effect (1)

Emigration from a habitat is also a form of removal

- emigration is harmful to populations
- even more in species subjected to Allee effects

Pulsed emigration more harmful than continuous emigration:
Pulsed migration and the Allee effect (1)

Emigration from a habitat is also a form of removal

- Emigration is harmful to populations
- Even more in species subjected to Allee effects

Pulsed emigration more harmful than continuous emigration:

\[
\begin{align*}
\dot{x} &= rx \left(\frac{x}{K_a} - 1 \right) \left(1 - \frac{x}{K} \right), \\
x(kT^+) &= e^{-mT} x(kT).
\end{align*}
\]
Emigration from a habitat is also a form of removal

- emigration is harmful to populations
- even more in species subjected to Allee effects

Pulsed emigration more harmful than continuous emigration: \(^4\)
- for any \(m > 0\), large \(T\) will always lead to pop. extinction

\(^4\)Mailleret and Lemesle, 2009
Pulsed migration and the Allee effect (2)

In nature, migration is usually a bi-directional process

- emigration harmful, pulsed even more than continuous
- immigration beneficial, pulsed even more than continuous

How do pulsed migration, migration period and Allee effects interact at the metapopulation scale?
Pulsed migration and the Allee effect (2)

In nature, migration is usually a bi-directional process

- emigration harmful, pulsed even more than continuous
- immigration beneficial, pulsed even more than continuous

How do pulsed migration, migration period and Allee effects interact at the metapopulation scale?
Pulsed migration and the Allee effect (2)

In nature, migration is usually a bi-directional process

- emigration harmful, pulsed even more than continuous
- immigration beneficial, pulsed even more than continuous

How do pulsed migration, migration period and Allee effects interact at the metapopulation scale?
Pulsed migration and the Allee effect (3)

Keitt *et al.* (2001): populations ‘pinned’ at intermediate migration

Stepping stone, continuous migration
Pulsed migration and the Allee effect (3)

Keitt et al. (2001): populations ‘pinned’ at intermediate migration
Pulsed migration and the Allee effect (4)
The effects of pulsed migration, and migration period T

pulsed migration

continuous migration

same effects as continuous migration: population stable
Pulsed migration and the Allee effect (4)

The effects of pulsed migration, and migration period T

- **pulsed** migration
- **continuous** migration

same effects as continuous migration: population pinned
Pulsed migration and the Allee effect (4)

The effects of pulsed migration, and migration period T

pulsed migration

continuous migration

emerging patterns for larger periods T: invasion succeeds
Pulsed migration and the Allee effect (4)

The effects of pulsed migration, and migration period T

pulsed migration

continuous migration

emerging patterns for larger periods T: pop-up effect
Pulsed migration and the Allee effect (4)

The effects of pulsed migration, and migration period T

pulsed migration

continuous migration

Emerging patterns for larger periods T: global extinction
Conclusion
Take home messages

• Many populations are perturbed by pulsed introductions or/and removals, but this is rarely taken into account

• Temporal pattern of occurrence of perturbations may have different impacts on population dynamics:
 • none (or almost none)
 • quantitative effects
 • qualitative effects, up to the emergence of new dynamical patterns

• General conclusions: not restricted to population dynamics per se (e.g. therapies against diseases)
Thank You!

Do you have any questions?
Pulsed migration examples

- Ballooning dispersal
- Climate
- Behavior
- Human activities

Ballooning dispersal (© Barnett)

Carlton et al., 2017, Science
Rafting transportation of individuals after tsunamis

Ballast waters (© W. Carter)

Date intercepted
Richness
Some disagree on the pulsed vaccination framework

Comparing vaccinations on the basis of Ψ is unfair

Only the **number of vaccines delivered** over T can be compared

$$\psi \int_0^T S^*_c \, d\tau = \frac{\psi bT}{(\psi + \mu)}$$

Pulsed vaccinations should verify:

$$S(kT^+) = S(kT) - \frac{\psi bT}{(\psi + \mu)}$$

With

$$R_0 = \frac{\beta}{(\alpha + \mu)} \frac{1}{T} \int_0^T S^*(\tau, \Psi) \, d\tau$$
Some disagree on the pulsed vaccination framework. Comparing vaccinations on the basis of Ψ is unfair.

Further computations show that

$$\frac{1}{T} \int_0^T S^*(\tau, \Psi) d\tau = \frac{b}{\Psi + \mu}$$

so that, vaccination prevents disease spread when

$$\Psi > \frac{b\beta}{\alpha + \mu} - \mu$$

condition independent on T, coincides with cont. vaccination.

Only nonlinear incidence rates\(^5\), or density dependence, would discriminate between continuous and pulsed vaccination.

\(^5\) e.g. Liu et al. (1986)