N

N

Hands on Pluto: dynamical systems with reactive Julia
notebooks
Ludovic Mailleret

» To cite this version:

Ludovic Mailleret. Hands on Pluto: dynamical systems with reactive Julia notebooks. Julia day, Jan
2023, Sophia Antipolis, France. hal-04144081

HAL Id: hal-04144081
https://hal.inrae.fr /hal-04144081
Submitted on 8 Aug 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.inrae.fr/hal-04144081
https://hal.archives-ouvertes.fr

Hands on Pluto

Dynamical systems with reactive Julia notebooks

Ludovic Mailleret, M2P2-ISA (INRAE, CNRS, UCA) & Biocore Inria; ludovic.mailleret@inrae.fr

¢« >

Whatis Pluto ?

¢« >

Pluto is a notebook solution for Julia

You get cells to put code or text/LaTeX notes

Code is executed and rendered within the environment (data/plots exports are possible)

Nice for exploring models, sandbox, code sharing, supplementary materials...
o or making interactive presentations like the present one (we are actually ina Pluto notebook)

Pluto was developed for the free MIT course Introduction to Computational Thinking (which is very nice!)

Pluto is written in Julia, for Julia coding

Pluto Is reactive

¢« >

Pluto is a reactive Julia notebook environment

e Each cell is always executed in the workspace or scope

e Therefore dependent cells react to changes

ySin = sin.(2m % k * x) ;

Plot example
1.0 F

sin(2m a x)

0.5 F

0.0 r

—0.5

—1[] ~ |] | |

0.00 0.25 0.50 0.75 1.00

plot(x, ySin,
linewidth = 2,
label = "sin(2m a x)",
title = "Plot example”,
size =(800, 250))

¢« >

Reactivity is handy

num_cats = 2;

¢ | have 2 cats

md"- %%I have $num_cats cats*x"

e But of course you can't do anything (# e.g. Jupyter, or classical scripting)

foo = 2;

foo = 4;
e Multi lines of code should be putin: begin ... end blocks (variable update possible in blocks)

» (-1.0, 0.0)
begin
pl = =
cos(pi), sin(pi)
end

e but not for function definition, or if, for, while blocks (variable update possible in blocks)

¢« >

Reactivity is handy

yCos = cos.(2m * n * X);

Reactive plot example

0.0 F

_D‘S -

cos(2mnx)
-1.0 1 |] |]

0.00 0.25 0.50 0.75 1.00

plot(x, yCos,
linewidth = 2,
label = "cos(2mnx)",
title = "Reactive plot example”,
size=(800, 300))

¢« >

Simulating differential equations

¢« >

Simulating ODEs with DifferentialEquations. jl

Consider the predator-prey model attributed to Rosenzweig & MacArthur (1963) (see Turchin (2003), Smith (2008)).

;i':—ra:(l a::) C v

a K h+;13y
1=0>0 v m

J = h—l—:tfy Y

using DifferentialEquations, StaticArrays

e DifferentialEquations. jl provides numerical solvers (and more)

e StaticArrays.jl allows use of statically sized arrays in memory that speed up integration

¢ Model definition

function model_rma(u, params, t)

r, K, ¢, h, b, m = params # unpacking

X = u[1] # unpacking

y = u[2]

dx = rex*(1-x/K) - c=x/(h+x)*y # model equations

dy = bxx/(h+x)*y - m=y

@SVector [dx, dy] # return derivatives as static arrays
end;

¢« >

Initial conditions, parameters & time

e |nitial conditions

etatd = @SVector [x0, yO] # packing in a Static Array
end;

e Parameters

begin
r = 1.0
K = 10.0
c =1.0
h = 2.0 1s actually defined later through a Slider
b=2.0
m = 1.0 i1s actually defined later through a Slider
params_rma = [r, K, ¢, h, b, m] # packing
end;

e [ntegration time

¢« >

Numerical integration

e Define the Cauchy problem

prob_rma = ODEProblem with uType SVector{2, Float64} and tType Float64. In-place: false
timespan: (0.0, 80.0)
ud: 2-element SVector{2, Float64} with indices SOneTo(2):
1.0
2.5

prob_rma = ODEProblem(model_rma, etat0, tspan, params_rma, saveat = step)

¢ |ntegrate

sim_rma = solve(prob_rma, abstol=1e-6, reltol=1e-6);

e Rearrange the simulation in a dataframe, rename data (optional)

begin

sol_rma = DataFrame(sim_rma)

rename! (sol_rma, :timestamp => :time, :valuel => :x, :value2 => :y)
end;

¢« >

Numerical integration

e you get the simulated solution along time, every 0.01 timesteps

time
1 0.0
2 0.01
3 0.02
4 0.03
5 0.04
6 0.05
7 0.06
8 0.07
o 0.08
10 0.09
more
8001 80.0

i e e = T = T =~ e T

X

.00068
.00139
.00213
. 0029

.0037

.00453
. 00539
. 00627
.00719

.31688

R e ™ N o T e L e ™ I " I o B

.49168
.4834

.47516
.46695
.45878
.45064
44254
43447
.42644

.07748

¢« >

Plotting against time

population densities

Rosenzweig MacArthur model

| | ' |

prey a n

predators y
B +
ﬁ =
4
2 -
0 | - | L 1 L 1

20 40 60 80

time

plot(sol_rma.time, [sol_rma.x sol_rma.y],
palette = :tab10,
linewidth = 2,

title = "Rosenzweig MacArthur model",
'LabE'L — [Ilprey] % L"}{" "pTEdatDTS L]} * L"y"],
ylabel = "population densities",

xlabel = "time",
size = (650,350))

latex strings, mardown latex i1s off in labels

¢« >

Plotting in state space

e One can have nice state space plots, but code is longer

10.0

1.5

5.0

predators y

2.5

0.0

Rosenzweig MacArthur model

trajectory
nulicline x

nulicline y

pre'}'s <

¢« >

Playing with plots in the state space

= o ' 1.0
Rosenzweig MacArthur model
10.0
trajectory
nulicline r
nulicline y
7.5 F
I~
¥
S ol
2.
©
-
Q.
2.5 \
0.0 . . ——
0.0 2.5 5.0 7.5 10.0

pre')s T

¢« >

Bifurcation diagram

¢« >

Bifurcation diagram in function of K

Model undergoes transcritical and Hopf bifurcations as K increases
o analytics below Hopf bifurcation
o numerics for asymptotics above Hopf bifurcation

For a given K, simulate for a long time to remove transients
From this, start a new simulation and get the min and max of the limit cycle

K loop, and equilibria

begin
K_step = 0.1

before transcritical
K_plotl = 0:K_step:m*h/(b-m)
y_eq01l = ones(length(K_plotl)).x0

between transcritical and Hopf

K_plot2 = m*h/(b-m):K_step:h+2*m*h/(b-m)

y_eq02 = ones(length(K_plot2)).x0

y_co2 = [r/cx(h+mxh/(b-m))*(1-mxh/(b-m)/K_p) for K_p in K_plot2] # may have broadcasted

above Hopf

K_plot3 = h+2#mxh/(b-m)-K_step/5: (K_step/10):8

y_eq03 = ones(length(K_plot3)).x0

y_co3 = [r/cx(h+mxh/(b-m))*(1-m%h/(b-m)/K_p) for K_p in K_plot3]; # may have broadcasted
end;

¢« >

Bifurcation diagram in function of K

e Simulate transients, restart from there, and get extrema

begin
for storage
1 =1

y_cmin = zero(K_plot3)
y_cmax = zero(K_plot3)

estimate limit cycle through loop on K
for K_c 1n K_plot3 # loop on K values
params_rma_cycle = [r, K_¢c, ¢, h, b, m] # set parameters

transient initial value problem; simulation

rma_trans_pbe = ODEProblem(model_rma, etat®, t_trans, params_rma_cycle)

post_trans2 = solve(rma_trans_pbe, save_everystep = false, save_start = false,
abstol=1e-6, reltol=1e-6)

limit cycle initial value problem; simulation

rma_cycle_pbe = ODEProblem(model_rma, post_trans2[:,1], tspan, params_rma_cycle, saveat =
step)

sol_cycle = solve(rma_cycle_pbe, abstol=1e-6, reltol=1e-6)

get the extrema
y_cmin[i] = minimum(sol_cycle[2,:]) # pushing is probably bad programming here
y_cmax[i] = maximum(sol_cycle[2,:])

i+=1
end
end

¢« >

Bifurcation diagram in function of K

e After plotting everything

Bifurcation Diagram

asymptotically stable
unstable
limit cycle
6 imit cy
-
+
T
-
L 4
©
N
—
o
JJ
(]
o
Q
o)
2 -
0 L
| | | |
0 2 il 5]

carrying capacity K

¢« >

Playing with bifurcation diagrams

h = — 2.0
Bifurcation Diagram
asymptotically stable
unstable
limit cycle
6 -
==
=
0
C
v 4
©
0
o
o
O
e
Q
—
Q. 5> |
U N | | |
0 2 4

carrying capacity K

¢« >

Final words

Pros:

Cons:

Julia code is easy to learn and fun to write !
Julia is a general purpose language, very good at scientific computing

Julia is free software, community is growing

(after pre-compilation) Julia is incredibly fast at simulating DE (and pretty much everything)

o same bifurcation code in Python runs 2 order of magnitude slower (with my own programming skills)
Pluto notebooks are reactive

o reactivity is fun and useful

o WYSIWIG programming : order of cell execution does not matter (Jupyter, scripting/ ctrl+return)

o Pluto notebooks are plain Julia (text) files

e Julia is still confidential (no colleague of mine works with it at this moment)

e Time to first... can be frustrating, especially for newcomers (and sometimes first never comes for some reason)

e Code may need regular maintenance (present code is only 1-year old, and needed revisiting for properly

running today on new Julia and library versions)

¢« >

