

A sex- and stage-structured population dynamics model for pest control using the sterile insect technique

Crésus Kounoudji, Suzanne Touzeau, Frédéric Grognard, Louise van Oudenhove, Ludovic Mailleret

► To cite this version:

Crésus Kounoudji, Suzanne Touzeau, Frédéric Grognard, Louise van Oudenhove, Ludovic Mailleret. A sex- and stage-structured population dynamics model for pest control using the sterile insect technique. MPDEE 2023 - Mathematical Population Dynamics, Ecology and Evolution, Apr 2023, Marseille, France. hal-04144139

HAL Id: hal-04144139 https://hal.inrae.fr/hal-04144139

Submitted on 8 Aug 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A sex- and stage-structured model for pest control using the sterile insect technique

C. Kounoudji, S. Touzeau^{1,2}, F. Grognard², L. van Oudenhove¹, L. Mailleret^{1,2*}

1: M2P2, ISA (INRAE, CNRS, Univ. Côte d'Azur) 2: MACBES (Inria, INRAE, CNRS Univ. Côte d'Azur)

Fruit flies

- widespread polyphagous dipteran insects that lay their eggs in fruits
 - Ceratitis capitata : citrus, stone fruits...
 - Drosophila suzukii : berries, cherries...
- after hatching, maggots develop inside fruits, entailing massive damage
 - make them unfit for consumption
 - may cause early fruit drop
 - create entry points for diseases

Fruit flies control

- control of fruit flies has long relied on chemicals
 - sustainability and health issues
 - development of resistant flies
 - more stringent state regulations (EU)

- alternative eco-friendly control means include
 - crop sanitation, mass trapping
 - biological control through natural enemies
 - taking advantage of sexual mode of reproduction through the sterile insect technique

Sterile Insect Technique (SIT)

- flood agricultural plots with factory produced sterilized males
 - prevent matings between wild males and wild females

SIT is like a football game with so many people on the ground you simply cannot find your teammates ¹

Outline

- SIT model in an agricultural context relevant to fruit flies
- access to reliable estimates of crop damage caused by the larvae
- analyze influence of sterile male introductions on model dynamics and damage levels
- study if and how sterile male pattern of introduction can be optimized

Fruit flies life cycle

Model diagram

• 4 stages: eggs/larvae L, unmated females V, males M, mated females F^{1}

Mating model

- frequency dependent mating probability ¹
 - # males M abundant
 females V mated at rate v_F
 - # males *M* limiting mating proba. $\frac{\gamma M}{V}$, *V* mating rate $\frac{\gamma M}{V}v_F$

- overall mating rate per unmated females ${\cal V}$

$$v_F \min\left(\frac{\gamma M}{V},1\right)$$

Population dynamics model

$$\begin{cases} \dot{L} = r \left(1 - \frac{L}{K}\right) F - v_L L - \mu_L L \\ \dot{M} = p v_L L - \mu_M M \\ \dot{V} = (1 - p) v_L L - v_F \min\left(\frac{\gamma M}{V}, 1\right) V - \mu_F V \\ \dot{F} = v_F \min\left(\frac{\gamma M}{V}, 1\right) V - \mu_F F \end{cases}$$

• in an agricultural context, the insect pest settles in crops at high densities s.t.

$$\eta_0 = \frac{r (1 - p) v_L v_F}{\mu_F (\mu_F + v_F) (\mu_L + v_L)} > 1$$

- in that case, the positive equilibrium of the saturated submodel is GAS for the full model (Anguelov *et alii*, 2017)
- thus the min(.) necessarily saturates to 1 after some transient times

Reduced model

• in what follows, we therefore concentrate on the simpler form

$$\begin{cases} \dot{L} = r \left(1 - \frac{L}{K}\right) F - v_L L - \mu_L L \\ \dot{M} = p v_L L - \mu_M M \\ \dot{V} = (1 - p) v_L L - v_F V - \mu_F V \\ \dot{F} = v_F V - \mu_F F \end{cases}$$

• assuming that the basic reproduction number

$$\eta_0 = \frac{r (1 - p) v_L v_F}{\mu_F (\mu_F + v_F) (\mu_L + v_L)} > 1$$

Model diagram (with sterile males)

• 5th stage: sterile males M_s (= constant for now)

 M_S divert a part of unmated females V to mated-with-sterile females

Model with sterile males

• only a proportion $\frac{M}{M+M_s}$ of matings yield egg-laying females

$$\begin{cases} \dot{L} = r \left(1 - \frac{L}{K}\right) F - v_L L - \mu_L L \\ \dot{M} = p v_L L - \mu_M M \\ \dot{V} = (1 - p) v_L L - v_F V - \mu_F V \\ \dot{F} = v_F \frac{M}{M + M_S} V - \mu_F F \end{cases}$$

Analysis: equilibria

• equilibria are solutions of

$$F = \frac{v_L + \mu_L}{r(1 - \frac{L}{K})}L$$
 (i)

$$M = \frac{pv_L}{\mu_M}L$$
 (ii)

$$V = \frac{(1-p)v_L}{v_F + \mu_F} L \qquad \text{(iii)}$$

$$F = \frac{v_F}{\mu_F} \frac{M}{M + M_s} V \qquad (iv)$$

- so that (0,0,0,0) is always an equilibrium
- and, using (i), (ii) and (iii) in (iv), other equilibria must verify

$$\frac{v_L + \mu_L}{r\left(1 - \frac{L}{K}\right)} = \frac{v_F}{\mu_F} \frac{\frac{pv_L}{\mu_M}L}{\frac{pv_L}{\mu_M}L + M_s} \frac{(1 - p)v_L}{v_F + \mu_F}$$

Analysis: equilibria

• rearranging, other equilibria must verify

$$1 = \eta_0 \left(1 - \frac{L}{K} \right) \frac{\frac{pv_L}{\mu_M} L}{\frac{pv_L}{\mu_M} L + M_s} \Leftrightarrow M_s = \frac{pv_L}{\mu_M} L \left(\eta_0 - 1 - \frac{\eta_0}{K} L \right)$$

- RHS term is a concave parabola in L, with roots: 0, and: $K\left(1-\frac{1}{\eta_0}\right) > 0$
- if M_s larger than max of parabola: no equilibrium other than 0
- if M_s smaller than max of parabola, there exists two positive equilibria with $0 < L_1^* < L_2^* < K$

Analysis: stability

• Jacobian matrix is 4D 😨

$$J = \begin{pmatrix} -\frac{r}{K}F - \mu_L - \nu_L & 0 & 0 & r\left(1 - \frac{L}{K}\right) \\ p\nu_L & -\mu_M & 0 & 0 \\ (1 - p)\nu_L & 0 & -(\nu_F + \mu_F) & 0 \\ 0 & \nu_F \frac{M_s}{(M + M_s)^2}V & \nu_F \frac{M}{(M + M_s)} & -\mu_F \end{pmatrix}$$

but with non-negative off-diagonal elements at equilibria

$$J^* = \begin{pmatrix} \bullet & 0 & 0 & + \\ + & \bullet & 0 & 0 \\ + & 0 & \bullet & 0 \\ 0 & + & + & \bullet \end{pmatrix}$$

Analysis: stability

• 0 equilibrium is always LAS, thanks to a nice block-triangular structure

$$J_0^* = \begin{pmatrix} -(\mu_L + \nu_L) & 0 & 0 & r \\ p\nu_L & -\mu_M & 0 & 0 \\ (1-p)\nu_L & 0 & -(\nu_F + \mu_F) & 0 \\ \hline 0 & 0 & 0 & -\mu_F \end{pmatrix}$$

- for positive equilibria built on L_1^* and L_2^*
 - strong clues for fold bifurcation at $M_s = \overline{M_s} = \frac{pv_L}{4\mu_M} \frac{(\eta_0 - 1)^2}{\eta_0} K$
 - so that, given 0 is always LAS, E_1^* would be a saddle and E_2^* would be LAS

Analysis: stability of E_i^*

• use the special structure of the Jacobian: a Metzler matrix

$$J = \begin{pmatrix} \ddots & \ge 0 \\ \ge 0 & \ddots \end{pmatrix}$$

• Bowong's lemma¹

Let J be a Meztler matrix that can be decomposed into blocks as

$$J = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

Then J is stable if and only if A and $D - CA^{-1}B$ are stable Metzler matrices

Analysis: stability of E_i^*

• express J in function of L^*

$$J = \begin{pmatrix} \frac{-\eta_0(\mu_L + \nu_L)\frac{p\nu_L}{\mu_M}L^*}{\frac{p\nu_L}{\mu_M}L^* + M_s} & 0 & 0 & r\left(1 - \frac{L^*}{K}\right) \\ \frac{p\nu_L}{(1-p)\nu_L} & -\mu_M & 0 & 0 \\ (1-p)\nu_L & 0 & -(\mu_F + \nu_F) & 0 \\ 0 & \frac{\eta_0\mu_F(\mu_L + \nu_L)M_sL^*}{r(\frac{p\nu_L}{\mu_M}L^* + M_s)^2} & \frac{\nu_F\frac{p\nu_L}{\mu_M}L^*}{\frac{p\nu_L}{\mu_M}L^* + M_s} & -\mu_F \end{pmatrix}$$

• so that

$$A = \begin{pmatrix} \frac{-\eta_0(\mu_L + \nu_L)\frac{p\nu_L}{\mu_M}L^*}{\frac{p\nu_L}{\mu_M}L^* + M_s} & 0\\ \frac{p\nu_L}{\sum_{\text{Sex- and Stage-structured SIT model} - MPDEE 2023 \text{ Marseille}} \end{pmatrix}$$
 is Metzler stable

• and

$$B = \begin{pmatrix} 0 & r\left(1 - \frac{L^*}{K}\right) \\ 0 & 0 \end{pmatrix}, \ C = \begin{pmatrix} (1-p)v_L & 0 \\ 0 & \frac{\eta_0\mu_F(\mu_L + v_L)M_sL^*}{r(\frac{pv_L}{\mu_M}L^* + M_s)^2} \end{pmatrix}, \text{ and } D = \begin{pmatrix} -(\mu_F + v_F) & 0 \\ \frac{v_F\frac{pv_L}{\mu_M}L^*}{\frac{pv_L}{\mu_M}L^*} & -\mu_F \end{pmatrix}$$

Stability of E_i^*

• further computations show

$$D - CA^{-1}B = \begin{pmatrix} -(\mu_F + \nu_F) & \frac{\mu_F(\mu_F + \nu_F)\left(1 - \frac{L^*}{K}\right)\left(\frac{p\nu_L}{\mu_M}L^* + M_s\right)}{\nu_F \frac{p\nu_L}{\mu_M}L^*} \\ \frac{\nu_F \frac{p\nu_L}{\mu_M}L^*}{\frac{p\nu_L}{\mu_M}L^* + M_s} & \mu_F\left(\frac{M_S\left(1 - \frac{L^*}{K}\right)}{\frac{p\nu_L}{\mu_M}L^* + M_s} - 1\right) \end{pmatrix} \text{ is Metzler}$$

and

$$\det(D - CA^{-1}B) = -\mu_F(\mu_F + v_F) \left[\left(1 - \frac{L^*}{K} \right) \left(1 + \frac{M_s}{\frac{pv_L}{\mu_M}L^* + M_s} \right) - 1 \right]$$
$$= -\frac{\mu_F(\mu_F + v_F)}{\eta_0} \left(\eta_0 - 1 - \frac{2\eta_0 L^*}{K} \right)$$

given that $M_s = \frac{pv_L}{\mu_M} L^* \left(\eta_0 - 1 - \frac{\eta_0 L^*}{K}\right)$ at equilibrium E_i^*

Stability of E_i^*

• and this is it: the slope of the parabola at L_i^* is

$$\frac{dM_s}{dL} = \frac{pv_L}{\mu_M} \left(\eta_0 - 1 - \frac{2\eta_0 L_i^*}{K} \right)$$

slope sign at L^* sets det $(D - CA^{-1}B)$ sign

- at E_2^* , $\frac{dM_s}{dL} < 0$ which implies: $\det(D CA^{-1}B) > 0$ and $\operatorname{tr}(D CA^{-1}B) < 0^1$ from Bowong's lemma, $J(E_2^*)$ is thus stable and E_2^* is LAS
- at E_1^* , $\frac{dM_s}{dL} > 0$ which implies: det $(D CA^{-1}B) < 0$ from Bowong's lemma, E_1^* is unstable

Sex- and stage-structured SIT model - MPDEE 2023 Marseille

1 follows from det $(D - CA^{-1}R) > 0$

Bifurcation diagram

sterile males M_s

- thanks to the cooperativity of the model
 - when $M_S > \overline{M_S}$, 0 equilibrium is GAS
 - when $M_S < \overline{M_S}$ trajectories converge to either 0 or E_2^* Sex- and stage-structured SIT model - MPDEE 2023 Marseille

 $M_s < M_S$: bi-stability

 $M_s > \overline{M_S}$: 0 is GAS

Mated females invade

• 0 is still GAS, but...

Sex- and stage-structured SIT model - MPDEE 2023 Marseille

Mated females invade

• but GAS is not always enough

Sex- and stage-structured SIT model - MPDEE 2023 Marseille

Larvae vs. population size

• total population not a very good proxy for larvae population / crop damage

Model with pulsed M_s introductions

• same equations as before, but M_s is dynamic

$$\begin{cases} \dot{M}_s = -\mu_M M_s & \forall t \in (kT, (k+1)T) \\ M_s(kT^+) = M_s(kT) + \sigma T \end{cases}$$

• classical trick to compare different introduction regimes for given introduction rate $\sigma^{\,1}$

Numerical experiments: pulses

• which introduction strategy works best: late introductions situation

max. Larvae at end of program

Sex- and stage-structured SIT model - MPDEE 2023 Marseille

Numerical experiments: pulses

• which introduction strategy works best: early introduction situations

max. Larvae at end of program

Sex- and stage-structured SIT model - MPDEE 2023 Marseille

Conclusion

- sex- and stage- structured model of Anguelov *et alii* in a SIT context
 - quite thorough mathematical analysis
 - Metzler matrices and cooperativity tools
- showed importance of stage-structure consideration
 - dynamics are very different depending on initial condition
 - larvae density (damage) poorly correlates with total population size
- introduction strategy
 - timing is the essence
 - $\circ~$ early, and not late introductions
 - if not possible, small and frequent introductions perform best by far
 - SIT most efficient in a preventive context

Perspectives

- quantify basins of attraction in the bistable cases
- account for multiple female matings in the model
- provide mathematical grounds for the results on *T* / introduction strategies
- address complementary questions of biological interest, *e.g.*
 - what happens if *sterile* males are not *that sterile*?

Marine Courtois will give insights on this topic wednesday at 11 AM

Thank you

Acknowledgements

- Ecophyto Ceratis Corse
- ANR Suzukiiss:me

