# A sex- and stage-structured population dynamics model for pest control using the sterile insect technique 

Crésus Kounoudji, Suzanne Touzeau, Frédéric Grognard, Louise van<br>Oudenhove, Ludovic Mailleret

## - To cite this version:

Crésus Kounoudji, Suzanne Touzeau, Frédéric Grognard, Louise van Oudenhove, Ludovic Mailleret. A sex- and stage-structured population dynamics model for pest control using the sterile insect technique. MPDEE 2023 - Mathematical Population Dynamics, Ecology and Evolution, Apr 2023, Marseille, France. hal-04144139

## HAL Id: hal-04144139 <br> https://hal.inrae.fr/hal-04144139

Submitted on 8 Aug 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

# A sex- and stage-structured model for pest control using the sterile insect technique 


C. Kounoudji, S. Touzeau ${ }^{1,2}$, F. Grognard ${ }^{2}$, L. van Oudenhove ${ }^{1}$, L. Mailleret ${ }^{1,2^{*}}$

## Fruit flies

- widespread polyphagous dipteran insects that lay their eggs in fruits
- Ceratitis capitata : citrus, stone fruits...
- Drosophila suzukii : berries, cherries...

- after hatching, maggots develop inside fruits, entailing massive damage
- make them unfit for consumption
- may cause early fruit drop
- create entry points for diseases



## Fruit flies control

- control of fruit flies has long relied on chemicals
- sustainability and health issues
- development of resistant flies
- more stringent state regulations (EU)

- alternative eco-friendly control means include
- crop sanitation, mass trapping
- biological control through natural enemies

- taking advantage of sexual mode of reproduction through the sterile insect technique


## Sterile Insect Technique (SIT)

- flood agricultural plots with factory produced sterilized males
- prevent matings between wild males and wild females


SIT is like a football game with so many people on the ground you simply cannot find your teammates ${ }^{1}$

## Outline

- SIT model in an agricultural context relevant to fruit flies
- access to reliable estimates of crop damage caused by the larvae
- analyze influence of sterile male introductions on model dynamics and damage levels
- study if and how sterile male pattern of introduction can be optimized


## Fruit flies life cycle



## Model diagram

- 4 stages: eggs/larvae $L$, unmated females $V$, males $M$, mated females $F^{1}$



## Mating model

- frequency dependent mating probability ${ }^{1}$
- \# males $M$ abundant females $V$ mated at rate $v_{F}$
- \# males $M$ limiting mating proba. $\frac{\gamma M}{V}, V$ mating rate $\frac{\gamma M}{V} v_{F}$

- overall mating rate per unmated females $V$

$$
v_{F} \min \left(\frac{\gamma M}{V}, 1\right)
$$

## Population dynamics model

$$
\left\{\begin{array}{l}
\dot{L}=r\left(1-\frac{L}{K}\right) F-v_{L} L-\mu_{L} L \\
\dot{M}=p v_{L} L-\mu_{M} M \\
\dot{V}=(1-p) v_{L} L-v_{F} \min \left(\frac{\gamma M}{V}, 1\right) V-\mu_{F} V \\
\dot{F}=v_{F} \min \left(\frac{\gamma M}{V}, 1\right) V-\mu_{F} F
\end{array}\right.
$$

- in an agricultural context, the insect pest settles in crops at high densities s.t.

$$
\eta_{0}=\frac{r(1-p) v_{L} v_{F}}{\mu_{F}\left(\mu_{F}+v_{F}\right)\left(\mu_{L}+v_{L}\right)}>1
$$

- in that case, the positive equilibrium of the saturated submodel is GAS for the full model (Anguelov et alii, 2017)
- thus the min(.) necessarily saturates to 1 after some transient times


## Reduced model

- in what follows, we therefore concentrate on the simpler form

$$
\left\{\begin{array}{l}
\dot{L}=r\left(1-\frac{L}{K}\right) F-v_{L} L-\mu_{L} L \\
\dot{M}=p v_{L} L-\mu_{M} M \\
\dot{V}=(1-p) v_{L} L-v_{F} V-\mu_{F} V \\
\dot{F}=v_{F} V-\mu_{F} F
\end{array}\right.
$$

- assuming that the basic reproduction number

$$
\eta_{0}=\frac{r(1-p) v_{L} v_{F}}{\mu_{F}\left(\mu_{F}+v_{F}\right)\left(\mu_{L}+v_{L}\right)}>1
$$

## Model diagram (with sterile males)

- 5th stage: sterile males $M_{s}$ (= constant for now)

$M_{S}$ divert a part of unmated females $V$ to mated-with-sterile females


## Model with sterile males

- only a proportion $\frac{M}{M+M_{s}}$ of matings yield egg-laying females

$$
\left\{\begin{array}{l}
\dot{L}=r\left(1-\frac{L}{K}\right) F-v_{L} L-\mu_{L} L \\
\dot{M}=p v_{L} L-\mu_{M} M \\
\dot{V}=(1-p) v_{L} L-v_{F} V-\mu_{F} V \\
\dot{F}=v_{F} \frac{M}{M+M_{S}} V-\mu_{F} F
\end{array}\right.
$$

## Analysis: equilibria

- equilibria are solutions of

$$
\left\{\begin{array}{l}
F=\frac{v_{L}+\mu_{L}}{r\left(1-\frac{L}{K}\right)} L  \tag{i}\\
M=\frac{p \nu_{L}}{\mu_{M}} L \\
V=\frac{(1-p) v_{L}}{v_{F}+\mu_{F}} L \\
F=\frac{v_{F}}{\mu_{F}} \frac{M}{M+M_{s}} V
\end{array}\right.
$$

- so that ( $0,0,0,0$ ) is always an equilibrium
- and, using (i), (ii) and (iii) in (iv), other equilibria must verify

$$
\frac{v_{L}+\mu_{L}}{r\left(1-\frac{L}{K}\right)}=\frac{v_{F}}{\mu_{F}} \frac{\frac{p v_{L}}{\mu_{M}} L}{\frac{p v_{L}}{\mu_{M}} L+M_{S}} \frac{(1-p) v_{L}}{v_{F}+\mu_{F}}
$$

## Analysis: equilibria

- rearranging, other equilibria must verify

$$
1=\eta_{0}\left(1-\frac{L}{K}\right) \frac{\frac{p v_{L}}{\mu_{M}} L}{\frac{p V_{L}}{\mu_{M}} L+M_{s}} \Leftrightarrow M_{s}=\frac{p v_{L}}{\mu_{M}} L\left(\eta_{0}-1-\frac{\eta_{0}}{K} L\right)
$$

- RHS term is a concave parabola in $L$, with roots: 0 , and: $K\left(1-\frac{1}{\eta_{0}}\right)>0$
- if $M_{s}$ larger than max of parabola: no equilibrium other than 0
- if $M_{S}$ smaller than max of parabola, there exists two positive equilibria with $0<L_{1}^{*}<L_{2}^{*}<K$

Equilibria computation

larvae $L$

## Analysis: stability

- Jacobian matrix is 4D

$$
J=\left(\begin{array}{cccc}
-\frac{r}{K} F-\mu_{L}-v_{L} & 0 & 0 & r\left(1-\frac{L}{K}\right) \\
p v_{L} & -\mu_{M} & 0 & 0 \\
(1-p) v_{L} & 0 & -\left(v_{F}+\mu_{F}\right) & 0 \\
0 & v_{F} \frac{M_{s}}{\left(M+M_{s}\right)^{2}} V & v_{F} \frac{M}{\left(M+M_{s}\right)} & -\mu_{F}
\end{array}\right)
$$

- but with non-negative off-diagonal elements at equilibria

$$
J^{*}=\left(\begin{array}{cccc}
\bullet & 0 & 0 & + \\
+ & \bullet & 0 & 0 \\
+ & 0 & \bullet & 0 \\
0 & + & + & \bullet
\end{array}\right)
$$

## Analysis: stability

- 0 equilibrium is always LAS, thanks to a nice block-triangular structure

$$
J_{0}^{*}=\left(\begin{array}{ccc|c}
-\left(\mu_{L}+v_{L}\right) & 0 & 0 & r \\
p v_{L} & -\mu_{M} & 0 & 0 \\
(1-p) v_{L} & 0 & -\left(v_{F}+\mu_{F}\right) & 0 \\
\hline 0 & 0 & 0 & -\mu_{F}
\end{array}\right)
$$

- for positive equilibria built on $L_{1}^{*}$ and $L_{2}^{*}$

Equilibria computation

- strong clues for fold bifurcation at

$$
M_{s}=\overline{M_{s}}=\frac{p v_{L}}{4 \mu_{M}} \frac{\left(\eta_{0}-1\right)^{2}}{\eta_{0}} K
$$

- so that, given 0 is always LAS, $E_{1}^{*}$ would be a saddle and $E_{2}^{*}$ would be LAS


## Analysis: stability of $E_{i}^{*}$

- use the special structure of the Jacobian: a Metzler matrix

$$
J=\left(\begin{array}{cc}
\ddots & \geq 0 \\
\geq 0 & \ddots
\end{array}\right)
$$

- Bowong's lemma ${ }^{1}$

Let J be a Meztler matrix that can be decomposed into blocks as

$$
J=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

Then $J$ is stable if and only if $A$ and $D-C A^{-1} B$ are stable Metzler matrices

## Analysis: stability of $E_{i}^{*}$

- express $J$ in function of $L^{*}$

$$
J=\left(\begin{array}{cc|cc}
\frac{-\eta_{0}\left(\mu_{L}+v_{L}\right) \frac{p \nu_{L}}{\mu_{M}} L^{*}}{\frac{p_{L}}{\mu_{M}} L^{*}+M_{s}} & 0 & 0 & r\left(1-\frac{L^{*}}{K}\right) \\
p v_{L} & -\mu_{M} & 0 & 0 \\
\hline(1-p) v_{L} & 0 & -\left(\mu_{F}+v_{F}\right) & 0 \\
0 & \frac{\eta_{0} \mu_{F}\left(\mu_{L}+v_{L}\right) M_{s} L^{*}}{r\left(\frac{p_{L}}{\mu_{M}} L^{*}+M_{s}\right)^{2}} & \frac{v_{F} \frac{p_{L}}{\mu_{M}} L^{*}}{\frac{p_{L}}{\mu_{M}} L^{*}+M_{s}} & -\mu_{F}
\end{array}\right)
$$

- so that
- and

$$
B=\left(\begin{array}{cc}
0 & r\left(1-\frac{L^{*}}{K}\right) \\
0 & 0
\end{array}\right), C=\left(\begin{array}{cc}
(1-p) v_{L} & 0 \\
0 & \frac{\eta_{0} \mu_{F}\left(\mu_{L}+v_{L}\right) M_{s} L^{*}}{r\left(\frac{\nu_{L}}{\mu_{M}} L^{*}+M_{s}\right)^{2}}
\end{array}\right), \text { and } D=\left(\begin{array}{cc}
-\left(\mu_{F}+v_{F}\right) & 0 \\
\frac{v_{F} p_{L}}{\mu_{M}} L^{*} & -\mu_{F}
\end{array}\right)
$$

## Stability of $E_{i}^{*}$

- further computations show
- and

$$
\begin{aligned}
\operatorname{det}\left(D-C A^{-1} B\right) & =-\mu_{F}\left(\mu_{F}+v_{F}\right)\left[\left(1-\frac{L^{*}}{K}\right)\left(1+\frac{M_{s}}{\frac{\mu_{L}}{\mu_{M}} L^{*}+M_{s}}\right)-1\right] \\
& =-\frac{\mu_{F}\left(\mu_{F}+v_{F}\right)}{\eta_{0}}\left(\eta_{0}-1-\frac{2 \eta_{0} L^{*}}{K}\right)
\end{aligned}
$$

given that $M_{s}=\frac{p v_{L}}{\mu_{M}} L^{*}\left(\eta_{0}-1-\frac{\eta_{0} L^{*}}{K}\right)$ at equilibrium $E_{i}^{*}$

## Stability of $E_{i}^{*}$

- and this is it: the slope of the parabola at $L_{i}^{*}$ is

Equilibria computation

$$
\frac{d M_{s}}{d L}=\frac{p v_{L}}{\mu_{M}}\left(\eta_{0}-1-\frac{2 \eta_{0} L_{i}^{*}}{K}\right)
$$

slope sign at $L^{*}$ sets $\operatorname{det}\left(D-C A^{-1} B\right)$ sign

- at $E_{2}^{*}, \frac{d M_{s}}{d L}<0$ which implies: $\operatorname{det}\left(D-C A^{-1} B\right)>0$ and $\operatorname{tr}\left(D-C A^{-1} B\right)<0^{1}$ from Bowong's lemma, $J\left(E_{2}^{*}\right)$ is thus stable and $E_{2}^{*}$ is LAS
- at $E_{1}^{*}, \frac{d M_{s}}{d L}>0$ which implies: $\operatorname{det}\left(D-C A^{-1} B\right)<0$ from Bowong's lemma, $E_{1}^{*}$ is unstable


## Bifurcation diagram



- thanks to the cooperativity of the model
- when $M_{S}>\overline{M_{S}}, 0$ equilibrium is GAS
- when $M_{S}<\overline{M_{S}}$ trajectories converge to either 0 or $E_{2}^{*}$


## $M_{s}<M_{S}$ : bi-stability






## $M_{s}>M_{S}: 0$ is GAS






## Mated females invade

- 0 is still GAS, but...



## Mated females invade

- but GAS is not always enough






## Larvae vs. population size

- total population not a very good proxy for larvae population / crop damage



## Model with pulsed $M_{s}$ introductions

- same equations as before, but $M_{s}$ is dynamic

$$
\left\{\begin{array}{l}
\dot{M}_{s}=-\mu_{M} M_{s} \\
M_{s}\left(k T^{+}\right)=M_{s}(k T)+\sigma T
\end{array} \quad \forall t \in(k T,(k+1) T)\right.
$$

- classical trick to compare different introduction regimes for given introduction rate $\sigma^{1}$




## Numerical experiments: pulses

- which introduction strategy works best: late introductions situation



## Numerical experiments: pulses

- which introduction strategy works best: early introduction situations



## Conclusion

- sex- and stage- structured model of Anguelov et alii in a SIT context
- quite thorough mathematical analysis
- Metzler matrices and cooperativity tools
- showed importance of stage-structure consideration
- dynamics are very different depending on initial condition
- larvae density (damage) poorly correlates with total population size
- introduction strategy
- timing is the essence
- early, and not late introductions
- if not possible, small and frequent introductions perform best by far
- SIT most efficient in a preventive context


## Perspectives

- quantify basins of attraction in the bistable cases
- account for multiple female matings in the model
- provide mathematical grounds for the results on $T$ / introduction strategies
- address complementary questions of biological interest, e.g.
- what happens if sterile males are not that sterile?

Marine Courtois will give insights on this topic wednesday at 11 AM

## Thank you



Acknowledgements

- Ecophyto Ceratis Corse
- ANR Suzukiiss:me


## ÉCOPHYTO

RÉDUIRE ET AMÉLIORER L'UTILISATION DES PHYTOS
anr ${ }^{\circ}$

