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¢ The determinants of biodiversity patterns can be understood using macroevolutionary ana-
lyses. The integration of fossils into phylogenies offers a deeper understanding of processes
underlying biodiversity patterns in deep time. Cycadales are considered a relict of a once more
diverse and globally distributed group but are restricted to low latitudes today. We still know
little about their origin and geographic range evolution.

¢ Combining molecular data for extant species and leaf morphological data for extant and
fossil species, we study the origin of cycad global biodiversity patterns through Bayesian total-
evidence dating analyses. We assess the ancestral geographic origin and trace the historical
biogeography of cycads with a time-stratified process-based model.

e Cycads originated in the Carboniferous on the Laurasian landmass and expanded in Gond-
wana in the Jurassic. Through now-vanished continental connections, Antarctica and Green-
land were crucial biogeographic crossroads for cycad biogeography. Vicariance is an essential
speciation mode in the deep and recent past. Their latitudinal span increased in the Jurassic
and restrained toward subtropical latitudes in the Neogene in line with biogeographic infer-
ences of high-latitude extirpations.

¢ We show the benefits of integrating fossils into phylogenies to estimate ancestral areas of
origin and to study evolutionary processes explaining the global distribution of present-day
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relict groups.

Introduction

Extinction is an important process shaping biodiversity. Given the
pervasiveness of extinction in deep time, comparative studies of
living organisms offer a limited window on evolutionary patterns
and processes, especially when looking at geological timescales
(Crisp ez al.,, 2011; Marshall, 2017). In the past three decades, an
extended toolbox has been developed for macroevolutionary ana-
lyses of dated phylogenies (Nee ez al, 1992, 1994; Morlon, 2014).
However, even if some neontological approaches seem to be
robust in the absence of extinct lineages (Morlon et al, 2011;
Beaulieu & O’Meara, 2015; Condamine et /., 2020), studies have
shown that integrating fossil information can greatly improve
macroevolutionary inferences (Slater et al, 2012; Fritz
et al., 2013; Hunt & Slater, 2016; Oliveros ez al., 2020). Recogni-
tion of the fundamental importance of fossils in macroevolution-
ary studies has led to the development of new methods that use
the fossil record to infer diversification dynamics (Silvestro
et al., 2014, 2018a; Mitchell ez al, 2019), as well as methods to
intertwine fossils in molecular phylogenies (Zhang ez al, 20165
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Gavryushkina ez al,, 2017). This has led to a modest fossil renais-
sance in macroevolution (King er al, 2017; Slater er al, 2017),
which may have important implications in our understanding of
the geographic patterns and processes underlying global diversity
and distribution, especially for ancient groups like plants (Crisp
et al., 2011; Mao et al.,, 2012; May et al., 2021).

Despite the expansion of statistical methods, the plant fossil
record remains particularly problematic and yet central to macroe-
volutionary analyses. Different plant organs tend to fossilize sepa-
rately (Bateman & Hilton, 2009), and the phylogenetic
informativeness of plant fossils varies between organ types (Bate-
man & Simpson, 1998; Coiro & Barone Lumaga, 2018; Coiro
et al, 2020a) and conservation modes, as well as within and
between different clades. This complicates both the taxonomic
assignment of plant fossils and the estimate of stratigraphic ranges.
However, this has not discouraged people from using generic-level
occurrences to infer macroevolutionary dynamics at different
scales (vascular plants: Silvestro ez al, 2015; ferns: Lehtonen
et al., 2017; conifers: Condamine et 4/, 2020). Even if such inves-
tigations are probably robust, the possibility of systematic error
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introduced by misinterpretation of the fossil record cannot be
excluded. Integrating plant fossils during phylogenetic reconstruc-
tion represents an alternative. Total-evidence dating (Ronquist
et al., 2012) with the fossilized birth-death (FBD) model (Heath
et al., 2014; Zhang et al., 2016) has been used to estimate both
phylogenetic relationships and divergence times in many fossil-
rich plant groups (Grimm ez al, 2015; Larson-Johnson, 20165
Renner ¢t al., 2016; May et al., 2021; Zhang et al., 2022). These
analyses take advantage of well-preserved fossils or well-
understood relationships between fossil and extant taxa to improve
phylogenetic and divergence time inferences.

Among plants, cycads (order Cycadales) include > 360 extant
species (Govaerts ez al., 2021) of which 68% are threatened with
extinction (IUCN, 2022). Originating in the
(Hermsen ez al., 2006; Condamine er al, 2015), cycads are
widely considered quintessential ‘living fossils’, due to their

Paleozoic

supposed long-term morphological stasis and their apparent
dominance in the fossil record followed by a decline toward the
present. Indeed, cycad evolution was thought to have reached its
pinnacle in the Middle Jurassic, with a subsequent decline in
morphological and taxonomic diversity (Niklas ez 2/, 1983), pos-
sibly driven by competition with the angiosperms (Norstog &
Nichols, 1997) or the decline of nonavian dinosaurs (Mustoe,
2007; Butler et al., 2009). This decline is thought to have led to a
depauperate modern cycad flora (Harris, 1961). The idea of
cycad diversity as a relic from the Mesozoic has been challenged
on molecular grounds, since the extant species diversity is
inferred to be the result of Miocene-Pleistocene radiations in
most genera (Treutlein & Wink, 2002; Nagalingum ez 4/, 2011;
Salas-Leiva et al, 2013; Condamine et al, 2015; Liu et al.,
2022). Despite this, the old ‘living fossil’ viewpoint still con-
tinues to influence some views on the evolution of the group
(Zhang er al., 2015; Nackey ez al., 2018), its biotic interactions
in deep time (Cai et al., 2018; Salzman ez al., 2020), and its geo-
graphic origin and range expansion (Salas-Leiva e 4/, 2013).

Our poor understanding of the cycad fossil record hinders test-
ing hypotheses about their macroevolutionary trajectories and
especially their historical biogeography. The relationships of the
main Mesozoic taxa are still poorly understood (Hermsen
et al., 2006; Coiro & Pott, 2017), and it remains unclear whether
many genera represent biological rather than purely taxonomic
units (Pott ez al.,, 2007). Fossil cycads representing reproductive
structures are rare and have been often overlooked or have little
or unclear phylogenetic value, though better-preserved specimens
have led to fruitful insights (Spencer et al, 2017; Rothwell
et al., 2022; Elgorriaga & Aktinson, 2023). Although the leaf
record is much more abundant, it is also poorly understood.
Recently, the cycadalean nature of one of the most common leaf
taxa from the Mesozoic, Nilssonia Brongniart, has been ques-
tioned on chemical grounds (Vajda et 4/, 2017). Similarly, the
Early Cretaceous leaf Mesodescolea S.Archang., thought to be the
closest relative of extant Stangeria Hook. ex Hook.f., has been
reinterpreted as an angiosperm leaf (Coiro ez al., 2020b). Even if
some of the extant genera start to be recognized in sediments as
old as the Eocene (Hill, 1978; Carpenter, 1991; Kvacek, 2002;
Su et al., 2014; Erdei et al., 2018), many Cenozoic leaf fossils
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defy any attempt of classification into the extant cycad groups,
such as Eostangeria Barthel from the Paleocene of North America
and Europe, Eocene of Germany, and Miocene of Bulgaria
(Barthel, 1976; Kvacek & Manchester, 1999; Uzunova
et al., 2001), and Pseudodioon Erdei, Agkun et Barone Lumaga
from the Miocene of Turkey (Erdei et al., 2009). Moreover, the
Mesozoic genus Ctenis Lindl. & Hutt. is present in the Eocene of
Oregon (Erdei & Manchester, 2015), a locality where cycads are
absent today. Likewise, Dioonopsis Horiuchi & Kimura, with
three species from the Paleocene of Japan and Eocene of North
America (Horiuchi & Kimura, 1987; Erdei et al, 2012), has
been linked with the extant genus Dioon Lindl. based on general
leaf morphology (Moretti ez al., 1993) as well as phylogenetic
analyses of anatomy and morphology (Hermsen er al, 20065
Martinez ez al., 2012), but this link has been recently questioned
(Barone Lumaga ez al, 2015; Erdei & Manchester, 2015; Erdei
et al., 2019). Given the age of cycads and long branches subtend-
ing radiations of extant genera, the uncertainties in fossil place-
ments hinder any macroevolutionary inferences that would be
based solely on dated phylogenies (Crisp ez al., 2011).

Few phylogenetic analyses have included fossil cycads (Herm-
sen et al., 2006; Martinez ez al., 2012). Although these pioneer-
ing works have merits, they still present many issues. First, the
inferred topology is invariably incompatible with the topology of
extant cycads obtained using molecular data, a conflict that calls
into question the relationship retrieved between fossil and extant
taxa (Coiro & Pott, 2017). Second, these analyses were con-
ducted using generic-level taxa, even though paleobotanical prac-
tice may lead to the creation of heterogeneous, nonmonophyletic
genera for practical use (Harris, 1961). Third, they included gen-
era with uncertain cycadalean affinities, such as the seed fern-like
Ticoa S.Archang. and Kurtziana Frenguelli, or the angiosperm
Mesodescolea S.Archang. (Coiro er al, 2020b). Fourth, they
included both leaf and stem taxa, each scored for only a few non-
overlapping and limited characters, which can create conflicting
phylogenetic signals that cannot be disentangled.

Here, we study the macroevolutionary processes underlying the
assembly of global diversity and distribution of cycads by reconcil-
ing fossils and phylogeny through Bayesian total-evidence analysis.
Based on morphological analyses of leaves, 60 fossil cycad species
were integrated in a single phylogenetic inference performed with
c. 87% of all extant species for which both morphological and
molecular data were collected. The extant cycad distribution is
highly disjunct today with sister genera located on different conti-
nents (Fig. 1), such as Encephalartos Lehm. (Africa) and Lepidoza-
mia Regel (Australia) or ZamiaL. + Microcycas A.DC. (Americas),
and Szangeria (Africa). We assess the roles of dispersal, extinction,
and vicariance in establishing the current cycad distribution by
inferring the ancestral geographic origin and tracing the historical
biogeography with a time-stratified and tectonic-informed
process-based model. We also tested the effect of treating fossil
ranges as fundamentally ambiguous by scoring absences as
unknown. Given their appearance in the fossil record in the Paleo-
zoic and limited dispersal ability, a Pangean origin and vicariance
events during the breakup of ancient supercontinents are expected.
Moreover, the latitudinal span of extant cycads is currendy
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Fig. 1 Global distribution of Cycadales. (a) Species richness of the 10 extant cycad genera across continents. (b) IUCN threat categories for 337 extant
cycad species (redrawn from IUCN, 2022). (c) Map showing the extant distribution of cycad diversity (red areas) and sampled fossil localities (purple dots),
indicating broader geographic distribution in the past.

restricted to subtropical latitudes, but fossils indicate wider latitu-
dinal distribution in the Mesozoic (Harris, 1926; Smoot
et al., 1985; Hermsen ez al., 2006; Fig. 1), suggesting high-latitude

extirpations (Meseguer & Condamine, 2020). We finally infer the
latitudinal span of cycads through time to test the hypothesis of
poleward extinctions in the Cenozoic.
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Materials and Methods

Global cycad diversity and distribution

The World Checklist of Vascular Plants (WCVP; Govaerts
et al., 2021) lists 362 recognized species of Cycadales. However,
new cycad species are regularly described each year (Calonje
et al., 2021; Pérez-Farrera et al., 2021a,b, 2022; Martinez-Dom-
inguez et al., 2022), so that there are now 370 cycad species (The
World List of Cycads: http://cycadlist.org/, Calonje ez al., 2022).
From the WCVP data, we extracted the distribution range of
each species (‘geographic_area’) to categorize their continental
distribution for biogeographic analyses (to be described later).

Molecular phylogenetics

We sampled 321 extant species out of 370 recognized species,
including all genera and a species sampling across all genera as fol-
lows: Bowenia Hook. ex Hook.f. 2/2, Ceratozamia Brongn. 33/38,
Cycas L. 104/118, Dioon 13/18, Encephalartos 65/65, Lepidozamia
212, Macrozamia Miq. 27141, Microcycas 1/1, Stangeria 1/1, and
Zamia 74/84. This results in 86.8% (321/370) of the total species
richness. Ginkgo biloba L. was added as an outgroup, which is
recognized as the sister lineage of cycads (Liu ez al, 2022; Yang
et al., 2022). The molecular matrix was assembled from sequences
available on GenBank. We included 18 loci including plastidial
(matK, rbcl), mitochondrial (26S), and nuclear genome
sequences (AC3, F3H, GroES, RPB1, SAMS, CyAG, HTS,
WRKY4, 408, 5.8S, LiSH, GTP, PHYP, HZP, and PEX4).

We aligned the noncoding genes using MarrT 7.110 (Katoh &
Standley, 2013) with the E-INS-i algorithm, while we aligned
the coding genes using the OMM MACSE pipeline (omm_mac-
se_v11.05.sif; Ranwez et al, 2018), which includes nucleotides
and amino acid alignment steps combined with several cleaning
steps (including HMMCLEANER). All the resulting alignments
were checked for codon stops and eventually refined by eye with
MEsQuITE 3.7 (Maddison & Maddison, 2021). All gene align-
ments were concatenated into a nucleotide supermatrix. The final
molecular matrix contained 11 895 nucleotides.

We performed maximum likelihood (ML) to reconstruct phy-
logenetic relationships of extant species. ML inference was imple-
mented with IQ-TRee 2.2.0 (Minh ez al, 2020) using
MODELFINDER to select the best-fit partition scheme and the best-
fitting substitution model for each partition (-m MFP+ MERGE,
Chernomor et al., 2016; Kalyaanamoorthy et 4l., 2017). For Iq-
TREE analyses, we estimated the most likely tree with 100 separate
ML searches, as well as 100 searches, which after initial model
optimization on a parsimony tree used 100 random tree topolo-
gies as starting trees for each search. As recommended, we opti-
mized ML searches to avoid local optima by (1) increasing the
number of unsuccessful iterations before stopping tree optimiza-
tion to 500 (-nstop 500), and (2) decreasing the perturbation
strength for randomized NNI to 0.2 (-pers 0.2). Branch supports
were evaluated with 1000 ultrafast bootstraps (UFBS; Hoang
et al., 2018), with strong UFBS values >95% considered as
strong support.
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Sampling fossils and morphological data

We generated a matrix of 31 morphological characters covering
leaf morphology and cuticular anatomy, based on literature and
direct observations (Supporting Information Methods S1;
Table S1; Notes S1). We then scored characters for 60 species of
fossil cycad leaves, including macrofossils and dispersed cuticles,
as well as for the extant taxa of the molecular matrix. Coding was
based on observations of the specimens or descriptions and
photographs of the specimens available in the literature (Greguss,
1968; Mickle ez al., 2011; Barone Lumaga e al., 2015; Coiro &
Pott, 2017; Vovides et al, 2018; Erdei e al, 2019; Coiro
et al., 2020a, 2021; Glos ez al., 2022).

Bayesian total-evidence analyses

Estimates of divergence times were carried out under a Bayesian
total-evidence dating approach with the FBD model, which expli-
citly models the speciation, extinction, fossilization, and sampling
processes (Heath er al, 2014; Zhang et al, 2016; Gavryushkina
et al., 2017). For this analysis, the outgroup (Ginkgo biloba) was
removed, to avoid issues with the long unsampled fossil history of
this lineage. Bayesian inferences were performed with MRBAYES
3.2.7a, with the six molecular partitions as estimated by Model-
Finder in IQ-TREE and set to have their own evolutionary model.
Models of sequence evolution were set with the reversible-jump
Markov Chain Monte Carlo (MCMC) with the gamma rate for
site heterogeneity and the proportion of invariable sites (Huelsen-
beck ez al., 2004). We also set one partition for all the morpholo-
gical characters. Morphological evolution was computed with the
Markov-k model (Lewis, 2001) with the correction for variable
characters and a gamma-distributed rate variation across charac-
ters. Variable gamma rates were chosen as the preferred model to
analyze the different partitions. Substitution model parameters
(rates, gamma shape, and invariable sites) were unlinked between
partitions. Two runs of eight incrementally heated MCMC start-
ing from a random tree were performed.

The dating was conducted using the independent gamma
rates (IGR) model in which tree branches have their own evolu-
tionary rates (equivalent to the uncorrelated lognormal relaxed
clock; Drummond ez 4/, 2006). The IGR clock with an expo-
nential prior for the variance parameter was used for the mole-
cular partitions (prsez clockvarpr= igr) with an exponential prior
on the variance of the gamma distribution from which the
branch lengths are drawn in the IGR model (prser
igrvarpr= exp(10)), while a strict clock was used for morphol-
ogy. The mean clock rate (mean substitution rate per site per
million years (Myr)) is assigned a lognormal prior (prser
clockratepr=lognorm(-6,0.5)); giving a mean ¢ 0.001 substitu-
tion rate per site per Myr.

Since preliminary analyses failed to converge without topologi-
cal constraints, we enforced the best IQ-TREE topology for
extant species with partial constraints, meaning that the place-
ment of fossil taxa is inferred while the topology of extant species
remained fixed. The 60 fossil taxa were added as tips based on
single specimens or multiple specimens from the same locality.
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We assign priors for the fossil ages based on the geological time
scale. This typical step in total-evidence dating aims at calibrating
the fossil taxa instead of the internal nodes of the tree. Uncer-
tainty about the dating of the fossiliferous localities was imple-
mented as a uniform distribution for the age of the fossil tips, for
example, Bowenia johnsonii R.S.Hill, K.E.Hill, Carpenter et Jor-
dan is an early Eocene fossil that translates into wuniform
(47.8,56). Sources for the fossil ages are listed in Table S2. The
speciation, extinction, fossilization, and sampling processes are
explicitly modelled using the FBD process: prser brienspr=clock:
Jossilization (Heath er al., 2014; Zhang et al., 2016). The three
FBD parameters were set as follows: (1) the fossilization prior
with a beta distribution: prset fossilizationpr= beta(1,1); (2) the
speciation rate with an exponential prior: prser speciationpr= exp
(10); and (3) the relative extinction rate with a beta prior: prser
extinctionpr=beta(1,1). The sampling strategy of extant taxa was
set to diversity (prset samplestrat= diversity) with sampling frac-
tion set to 0.87 (prset sampleprob= 0.87), wherein fossils are
sampled randomly and can be tips or ancestors (Zhang
et al., 2016). A uniform prior was set on the tree age, bounded by
the lowest age of the Lopingian at 259.1 million years ago (Ma)
(that correspond to the older fossils assignable with confidence to
the cycads) and the upper age of the Famennian at 358.9 million
years ago (Ma) (that correspond to some of the oldest stem seed
plants): prset trecagepr= uniform(259.1,358.9).

The total-evidence dating was finally run for 50 million MCMC
generations with trees and associated model parameters sampled
every 50 000 generations. All the analyses were carried out on the
CIPRES science gateway (Miller ez af, 2010). We performed the
analyses three times to ensure repeatability of the results. Conver-
gence diagnostics were checked for each analysis (i.e. average stan-
dard deviation of split frequencies (ASDSF) < 0.05, potential scale
reduction factor (PSRF) close to 1.0) as well as the effective sample
size (ESS) >200 in TracCER 1.7.1 (Rambaut ez 4/, 2018). A con-
sensus tree was obtained after discarding 25% of the generations as
burn-in to compute posterior probability (PP), median age, and
95% highest posterior density (HPD) for each node.

Representing uncertainty in fossil placement

We used RoguePlots (Klopfstein & Spasojevic, 2019) to inves-
tigate the uncertainty in the fossil placement of some taxa,
namely the members of the two genera Dioonopsis Horiuchi &
Kimura and Eostangeria Barthel. These were selected for their
importance as calibrations (Dioonopsis) and their uncertain rela-
tionship in the literature (Eostangeria). From the posterior dis-
tribution of trees from the constrained analysis, we generated
tree summaries to show the placement of these taxa on the
consensus phylogeny.

Estimating ancestral latitudes

The latitudinal span of the Cycadales throughout their evolution-
ary history was reconstructed using the directional Brownian—
Motion method of Silvestro ez al. (2018b) with the variable trend
implemented in Zhang ez al. (2022). Mean latitude for the extant
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genera was obtained using occurrence data obtained from the
Global Biodiversity Information Facility (GBIF). These occur-
rences were obtained by querying the different genera using the
function occ_search from the R package RGBIF (Chamberlain
et al., 2019), and then cleaned using the function clean_coordi-
nates from the R package COORDINATECLEANER (Zizka et al,
2019). Further cleaning of occurrences was done manually. This
resulted in mean latitude estimates for 207 extant taxa. Paleolati-
tudes for the fossil taxa were obtained using the paleolatitude cal-
culator (van Hinsbergen er al, 2015). Approximate position of
the fossil localities was queried, and the average age of the local-
ities was used to obtain paleolatitudes from the model. This
resulted in 48 fossils with constrained paleolaticudes. The
MCMC was run for 100 000 generations using 100 trees ran-
domly sampled from the posterior sample. Traits were rescaled
by 10 to help convergence.

Estimating historical biogeography

We estimated the ancestral areas of origin and geographic range
evolution for Cycadales using the ML approach of dispersal—
extinction—cladogenesis (DEC, Ree & Smith, 2008) as imple-
mented in the C++ version (Beeravolu & Condamine, 2016), as
well as the R package BIOGEOBEARS (Matzke, 2018). To infer the
biogeographic history of a clade, DEC requires a time-calibrated
tree (i.e. the consensus tree obtained from the Bayesian TED ana-
lysis), the current distribution of each species, a set of geographic
areas, and a time-stratified geographic model that is represented
by connectivity matrices for specified time intervals spanning the
entire evolutionary history of the group.

We first defined a set of geographic areas based on paleogeo-
graphic knowledge as follows: (1) West Palearctic, defined as
Western Europe to the Urals, (2) East Palearctic, defined as east
of the Urals, above 3000 m in the Himalayas and north of
Sichuan in China, (3) West Nearctic, defined as Western North
America including the Rocky Mountains, (4) East Nearctic,
defined as North America east of the Rocky Mountains, (5) Cen-
tral America, going from the northern border of Mexico south-
ward to the border between Panama and Colombia, (6)
Caribbean Islands, excluding Trinidad and Tobago, (7) South
America, defined as all countries from Colombia to Argentina
and including Trinidad and Tobago, (8) Africa, defined as the
whole African continent and Arabian Peninsula but excluding
the islands in the Indian Ocean, (9) Madagascar, defined as the
island of Madagascar and all other Indian Ocean islands in the
vicinity, (10) India, defined as the area below 3000 m from N'W
Pakistan to the border with Myanmar, (11) Indonesia and Walla-
cea, defined as Myanmar, SE Asia, southern China, western
Indonesia to Lydekker’s Line; including the Lesser Sunda Islands
but excluding Timor, Wetar and associated islands, which are
Australasian in origin, and (12) Australasia, defined as everywhere
east of Lydekker’s Line but including Timor, Wetar and small
nearby islands. Furthermore, there is evidence for the ancient
(Triassic) presence of cycads in Antarctica (e.g. Antarcticycas
schopfii Smoot, Taylor, et Delevoryas emend. Hermsen, T. N.
Taylor, E. L. Taylor, et Stevenson, Smoot et al., 1985; Hermsen
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et al., 2006), and Greenland (e.g. Anthrophyopsis crassinervis
Nathorst (Harris, 1926, 1932)). To reflect their increasingly
recognized role in global plant biogeography (e.g. Estrella e al.,
2019), we added Antarctica and Greenland to the geographic
areas to consider the possibility that cycads colonized these conti-
nents. We choose these 14 areas to test biogeographic hypotheses
and estimate implications from the breakup of ancient Mesozoic
supercontinents, whereas Wallace’s bioregions do not capture tec-
tonic and geological changes.

Relying on the WCVP (Govaerts er al., 2021), the geographic
distribution for all extant cycad species (column ‘geographi-
c_area’ in the database) was categorized by coding the presence or
absence of each species in each of the above-defined areas. We
also used data available in the literature (e.g. http://cycadlist.org/,
Calonje ez al., 2022). Occurrences of introduced species or mar-
ginally entering an area were not considered. Similarly, we coded
the 60 fossil species of our dataset. However, fossil data provide
evidence on the past geographic presence of taxa, but not about
geographic absence due to the incompleteness of the fossil record.
In BioGeoBEARS, but not yet in DECX, one can include this
information by coding the geographic range of fossils with miss-
ing data ¥ instead of true absence (useAmbiguities= TRUE
option). Coding presence in region A and unknown presence or
absence in other regions mean that any geographic range includ-
ing A will have tip likelihood of 1, and any geographic range
excluding A will have a tip likelihood of 0. Fossil lineages thus
represent a positive constraint on ancestral range estimates, which
is conservative because it gives more weight to large ranges than
to single-area ranges. However, in most empirical analyses like in
cycads, many species occur only in a single area, and a few are
widespread. Hence, we performed the analyses with the positive
constraint strategy, using 2’ for fossil species, and ran it again
with the assumption that fossil ranges are the true ranges. We
then compared the effects of these assumptions on ancestral range
estimates. An overview of the global geographic distribution of
extant and extinct Cycadales is presented in Fig. 1.

A time-stratified geographic model was built using connectiv-
ity matrices that consider paleogeographic changes through time
(Beeravolu & Condamine, 2016). Connectivity matrices specify
constraints on area connectivity by coding 0 if any two areas are
not connected or 1 if they are connected at a given period based
on paleogeographic reconstructions (e.g. Blakey, 2008; Seton
et al., 2012; Kocsis & Scotese, 2021). We created connectivity
matrices to represent major changes in tectonic conditions that
may have affected cycad distribution and to define biological
plausibility of ranges over time. For instance, there are wide dis-
junctions between Australasia and North America such that no
species is found on both. We did not add dispersal constraints
because setting the values for dispersal rates between regions
through time is subjective, and it has been shown that dispersal
probability categories had minor effects on ancestral state esti-
mates (Chacon & Renner, 2014). We assumed a dispersal matrix
with equal rates between areas. The time-slicing protocol intro-
duced by Upchurch e al. (2002) is followed here. Four time
slices were selected to construct the time-stratified model and cor-
respond to the major geological periods. The first covers the
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Carboniferous to the Late Triassic (358.9—201.3 Ma), corre-
sponding to the assembly of Pangea (Kocsis & Scotese, 2021).
The second ranges from the Early Jurassic to the Late Cretaceous
(201.3-66 Ma), which represents the breakup of Pangea into
Gondwana and Laurasia (Blakey, 2008; Seton er al, 2012).
There are two time slices for the Cenozoic: one covers the Paleo-
gene (6623 Ma), and the other encompasses the Neogene to the
present, corresponding to the tectonic plate motion to current
positions. These time slices were designated because: (1) they are
based on the major periods with important geological changes
(Seton et al., 2012; Miiller et al., 2016; Kocsis & Scotese, 2021);
(2) subdivision of the Mesozoic into two time slices allows testing
of biogeographic hypothesis (e.g. supercontinent breakups,
Ezcurra & Agnolin, 2012); and (3) subdivision of the Cenozoic
into Paleogene and Neogene with the latter witnessing the estab-
lishment of the present terrestrial biodiversity (Fine &
Ree, 2006) and marked by a modern plate configuration (Kocsis
& Scotese, 2021) and the establishment of the present climate
regime during a long cooling process (Westerhold ez al., 2020).

We used the most likely ancestral range estimates to count the
biogeographic events such as dispersals ‘into’ and ‘out of’ a region
as well as local extinctions (extirpations from a region). Biogeo-
graphic events can occur at nodes (cladogenesis) and along
branches (anagenesis). We made a custom R script to retrieve the
biogeographic events and calculate their timing across the phylo-
geny (see Data availability). Following previous studies (e.g.
Antonelli ez al., 2018; Meseguer & Condamine, 2020), anage-
netic events were dated at middle points of branches and con-
strained by the time-stratified geographic model to account for
appearances and disappearances of regions and connectivities
between them through time.

Results

Total-evidence phylogeny of cycads

The ML phylogeny of cycads recovers generic relationships in
agreement with the literature (Fig. S1) and is generally robust
(UFBS >95, Fig. S2). However, many nodes within the extant
genera remain unresolved. This topology served as backbone
topological constraints to improve convergence of Bayesian infer-
ences. After checking for convergence of the Bayesian total-
evidence analyses (ASDSF=0.013; on average PSRF=10.9999
and ESS=0623 for all parameters; #n=94), the consensus tree
shows an extant-genus topology in agreement with previous stu-
dies and that most cycad fossils are not closely related to the
extant groups (Figs 2, S3, S4). Indeed, only five fossil taxa are
strongly associated with Cycadaceae (i.e. are included in a clade
with Cycas with PP = 1) including the extinct genus Paracycas and
the two Cycas fossil species, and 18 are strongly associated with
Zamiaceae (Fig. 3). Many relationships based on morphological
comparative analyses are retrieved, that is, Ceratozamia hoffman-
nii Ertinghausen and Ceratozamia floersheimensis (Engelhardt)
Kvacek form a clade with Ceratozamia (PP = 1), Macrozamia aus-
tralis Carpenter is sister to Macrozamia (PP =1), and Lepidoza-
mia hopeites (Cookson) L. Johnson and Lepidozamia foveolata are
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: / Macrozamia
Zamiaceae (27/41 species)

Lepidozamia
(2/2 species)

Encephalartos
(65/65 species)

Bowenia 7
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(33/38 species)
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(74/84 species)
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Fig. 2 Bayesian total-evidence dated phylogeny of Cycadales. This chronogram is the resulting consensus tree from the MrBayes analyses performed with
the fossilized-birth-death model and an uncorrelated relaxed molecular clock. The tree includes 321 extant species and 60 extinct species with median
divergence times along with 95% Highest Posterior Density (blue bars) for each node. C, Carboniferous; J, Jurassic; K, Cretaceous; N, Neogene; P, Permian;
Pg, Paleogene; T, Triassic.
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Fig. 3 Ages of extant genera and fossil placements. (a) Phylogenetic relationships for extant (genera are collapsed) and extinct cycads with support values
(Posterior Probability indicated when >0.3). Node support for extant genera is only indicated when < 1. (b) Posterior distributions for the crown ages of the
extant genera. Eo, Eocene; M, Miocene; N, Neogene; O, Oligocene; Pg, Paleogene. Ma, million years ago.

sister to Lepidozamia (PP =0.82 and 0.89, respectively). Species
of the genus Eostangeria Barthel are retrieved in a clade with
extant Stangeria, though with lower levels of support (PP =0.57;
Fig. S5). Likewise, extinct species of the genus Bowenia are
retrieved in a clade with extant Bowenia with high support
(PP =0.95), and sister to genus Eobowenia with maximal support
(PP=1). The relationships between fossil taxa are less strongly
supported than the relationships between fossil and extant taxa.
There are 27 fossil species along the stem Cycadaceae and 10 fos-
sil species along the stem Zamiaceae; most of them have low node
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support (PP <0.5). Nonetheless, clades’ PP>0.5 are retrieved
for several groups of fossil taxa, indicating that even a small mor-
phological matrix can contain some phylogenetic informativeness
(Fig. 3).

The fossil leaves Dioonopsis praespinulosa (Hollick) Erdei,
Manchester et Kvacek and Dioonopsis macrophylla (Potbury)
Erdei, Manchester et Kvacek, which have been previously asso-
ciated with extant Dioon and even used as calibrations for mole-
cular dating (Nagalingum ez /., 2011; Condamine ez al.,, 2015;
Gutiérrez-Ortega et al., 2018), are not related to Dioon nor
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Zamiaceae, but are nested in an extinct clade including Crenis
species along the stem branch of Cycadaceae (Fig. S5).

Our analyses do not support the monophyly of any fossil cycad
genus (Fig. 3). The genus Pseudoctenis Seward, defined as having
broadly attached multiveined leaflets like Crenis but lacking ana-
stomoses, is wildly polyphyletic. It includes taxa related to the
Zamiaceae (i.e. Pseudoctenis species A from the Late Jurassic of
France and Pseudoctenis crassa S.Archang. & Baldoni from the
Early Cretaceous of Argentina (Archangelsky & Baldoni, 1972)),
taxa nested among species assigned to Ctenis (Pseudoctenis dentata
S.Archang. & Baldoni from the Early Cretaceous of Argentina),
as well as two clades including respectively Pseudoctenis species
from the Jurassic as well as the genus Pseudopterophyllum Florin,
and Pseudoctenis species from the Cretaceous and the genus Jiru-
sia Bayer. A relationship between the Early Cretaceous Pseudocte-
nis ornata A.Archang., R.Andreis, S.Archang. & A.Artabe, and
the Miocene Pseudodioon akioly Erdei, Agkun & Barone Lumaga
is also retrieved (0.59). Interestingly, the type species of the genus
(Pseudoctents eathiensis (Richards) Seward) does not receive appre-
ciable support for any placement.

The phylogenetic analysis finds some evidence (although not
strong) of a long-lasting lineage of cycads that did not leave any
extant representatives. This clade includes the mostly Mesozoic
genus Crenis together with the Cenozoic genera Prerostoma Hill
and Dioonopsis Horiuchi & Kimura (supported with PP = 0.64).
Such a lineage was postulated on comparative grounds because
of the presence of peculiar H-anastomoses in the venation of
these leaves, a character absent in all extant cycads (Erdei & Man-
chester, 2015). However, not all members of the lineage retrieved
here possess anastomoses (i.e. Pseudoctenis dentata).

Total-evidence dating of cycads

Using the FBD model, the Bayesian dating analyses estimate the
divergence between Zamiaceae and Cycadaceae ¢ 330 Ma at the
boundary between the Early and Late Carboniferous (Fig. 2; 95%
HPD =296.2-358.9 Ma). These results place the split at an older
date than the previous node-dating analyses (Table 1). The origin
of the crown-group Zamiaceae is estimated at 183.5 Ma between
the Late Triassic and the Late Jurassic (95% HPD=159.8—
236.3 Ma). Bowenia is inferred to have split from its sister clade c
155.6 Ma between the Early Jurassic and the Early Cretaceous
(95% HPD=130.9-197 Ma). Zaminae (genera Ceratozamia,
Stangeria, Zamia, and Microcycas) appears to have an older crown
age than Encephalartinae (genera Encephalartos, Lepidozamia,
Macrozamia), with the former clade originating at 143.7 Ma
between the Jurassic and Early Cretaceous (95% HPD =118.8—
187.3 Ma), and the latter originating at 81.3 Ma between the Early
Cretaceous and the Paleocene (95% HPD =63.2-111.5Ma). A
Cretaceous age is inferred for the divergence between Microcycas
and Zamia (95% HPD = 65.7-119.3 Ma).

Genus crown ages inferred in our analyses are summarized in
Table 2. Even though we do retrieve a relatively young origin of
extant species diversity (Fig. 3), the hypothesis of a synchronous
radiation of the extant genera is weakened in our analysis. Based
on a sample of 100 random trees from the posterior, a repeated
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Table 1 Ages for the main cycad clades retrieved in our analysis and
compared with ages reported from the node-calibration analysis of Conda-
mine et al. (2015).

Ages (Ma) from
Condamine
etal. (2015)

Ages (Ma) from the total-
evidence dating

Cycad clades Median Min  Max  Median Min  Max

Cycadales 274.5 235.0 3324 3304 296.2 358.9
Zamiaceae 156.1 107.0 2079 1835 159.8 236.3
Zaminae 107.8 743 147.7 143.7 118.8 187.3
Encephalartinae 56.2 393 821 813 63.2 1115
Ceratozamia- 84.9 55.0 1189 131.0 112.1 160.4
Stangeria
Encephalartos- 39.1 339 550 672 51.7 102.1
Lepidozamia
Zamia-Microcycas 57.0 342 845 905 65.5 119.3
Cycas 17.6 10.1 29.1 24.4 18.1 40
Bowenia 55 08 146 328 18.7 472
Dioon 15.4 75 246 321 19.4  50.9
Ceratozamia 19.2 95 332 222 165 31.6
Encephalartos 10.5 62 163 211 142  35.45
Macrozamia 9.1 5.1 153 186 11.7 288
Lepidozamia 10.9 32 231 253 156.7 343
Zamia 14.6 9 221 26.3 184 372

For the latter study, only ages from the analysis with the full fossil dataset
and the birth-death tree prior are reported. Min and max ages represent
the upper and lower boundary of the 95% Highest Posterior Density. Ma,
million years ago.

measurement ANOVA retrieves significant differences between
the crown ages of the genera (P<0.0001). Post hoc testing finds
significant differences between the mean ages of most genera

(Table 2).

Historical biogeography and latitudinal distribution through
time

When including both extant and extinct cycads (Fig. S6), the
DEC analyses estimated a most likely ancestral origin for Cyca-
dales in Western and Eastern Palearctic (Fig. 4, relative
probability =0.192). The second-best inference included only
Western Palearctic (relative probability=0.166), and the third
best encompassed Western-Eastern Palearctic and Greenland
(relative probability =0.140). Only geographic areas of Laurasia
are recovered as part of the estimated ancestral ranges for the
cycad origin (cumulative relative probabilicy=0.788). When
including only extant cycads (Fig. S7), the DEC analyses found a
widely Pangean origin with the most likely range comprising
Western—Eastern Palearctic, Eastern Nearctic, Africa, and Antarc-
tica. Without fossils, there was higher uncertainty at the root
ancestral range. There were 22 and 10 ‘equally likely’ ancestral
ranges (i.e. ranges having a log-likelihood lower than 2 units
compared with the most likely range) for the root when excluding
and including fossils, respectively. Generally, the discrepancies of
biogeographic inferences between the two analyses are found in
the deep nodes (e.g. crowns of Zamiaceae, Zaminae, and Ence-
phalartinae; Fig. 4; Table 2). These results were robust when
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Fig. 4 Historical biogeography of cycads. Estimates of ancestral areas were performed with a time-stratified model in Dispersal-Extinction-Cladogenesis
(DEC) with fossils included (a) and with fossils excluded (b). The extant genera have been collapsed to focus on deep-time biogeography (for details within
each genus, see Supporting Information Fig. S6 when fossils are included and Fig. S7 when fossils are excluded). The bottom-right corner legend indicates
colored areas used in this study corresponding to colored squares for each node, representing inferred ancestral area(s) with the DEC model, and colored
circles for fossil species representing known distributions (except for extant genera with one or two species only). The red-highlighted shades show the
cycad expansion into Gondwana during the Jurassic and Cretaceous. The bottom-left corner map represents the global paleogeography in the Jurassic
(180 million years ago (Ma)). Paleomap used with permission © 2020 Colorado Plateau Geosystems Inc. Arrows indicate fossil species illustrated. Pictures
from Mario Coiro. C, Carboniferous; N, Neogene; Perm, Permian; Pg, Paleogene.
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(b) Local extinctions by regions (with fossils)
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Fig. 5 Biogeographic processes explaining the global distribution pattern of cycads. The number of dispersal events into a region and out of a region as well
as the number of local extinctions (extirpations) are compared between analyses including fossils (a, b) and analyses excluding fossils (c, d). Area names:
WP, West Palearctic; EP, East Palearctic; WN, West Nearctic; EN, East Nearctic; CA, Central America; WI, Caribbean Islands; SA, South America; AF, Africa;

IN, India; WA, Southeast Asia; AU, Australasia; GR, Greenland; AN, Antarctica.

coding fossil geographic ranges with missing data instead of true
absence (Figs S8, S9) and with uncertainties in fossil placements
and age estimates (Fig. S10).

Using ancestral estimates, we extracted biogeographic pro-
cesses (dispersals, local extinctions (= extirpations), and vicar-
iance) explaining the geographic range evolution in cycads. Since
determining which area the dispersal event came from with an
ancestral range including two or more areas is challenging, we
counted one dispersal event per area of the ancestral range that
likely leads to an overestimation of dispersal events. Comparing
biogeographic processes between the phylogenies including or
excluding fossils, we found differences in the extent and number
of events (Fig. 5). Dispersal events were separated into two cate-
gories: dispersal into a region and dispersal out of a region
(Fig. 5a,c). We estimated 25 dispersals into high-latitude regions
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with fossils included, but only 5 when fossils are excluded. We
further found 40 dispersals into low-latitude regions compared
with 26 when fossils are excluded. Moreover, we estimated 77
dispersals out of high-latitude regions with fossils included, while
only 17 when fossils are excluded. We also recovered 61 disper-
sals out of low-latitude regions compared with 33 when fossils
are excluded. Despite these discrepancies, there are also similari-
ties such as the role of the Indomalayan region as a source of dis-
persal as well as Central and South America to a lesser extent, or
East Palearctic and Australasia as sinks of diversity.

The biogeographic analyses revealed numerous vicariance
events (Fig. 4), with 32 events inferred with fossils and 20 events
without fossils. Local extinctions, or extirpations (Figs 5b,d,
S11), are fifth as often inferred when fossils are included (130)
than when they are excluded (22). Among extirpations, we found
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Fig. 6 Reconstruction of the latitudinal span
of cycads during geological times. This
estimate has been obtained using the —40
method of Silvestro et al. (2018b) as
implemented in Zhang et al. (2022). Gray
polygon represents the reconstructed span,
black dots represent the paleolatitude and

age of fossil tips, while black triangles show
the latitude of extant species. C,
Carboniferous; J, Jurassic; K, Cretaceous; N,
Neogene; P, Permian; Pg, Paleogene; Tr,
Triassic.

85 high-latitude and 45 low-latitude extirpations when including
fossils, while there are only 13 and 9 when fossils are excluded.

The analysis of latitudinal distribution indicates a mid-to-low
northern latitude origin of the Cycadales (Fig. 6). A similar lati-
tudinal range is maintained until the Late Jurassic, when the
group spreads to high latitudes in the Southern Hemisphere.
During the Cretaceous and Paleogene, the group persists at mid-
to-high latitudes in both Hemispheres. A contraction between
the end of the Paleogene (Oligocene) and the mid-Miocene leads
to the current subtropical to tropical distribution.

Discussion

Our results show that the integration of fossils as tips in a total-
evidence phylogeny of cycads provides a more complete view of
their macroevolutionary history. Here, we discuss the conse-
quence of our results on cycad phylogeny and how this new phy-
logenetic hypothesis informs us on the biogeographic history
processes explaining global cycad biodiversity.

Phylogeny of cycads

Our study shows the feasibility and advantages of the total-
evidence approach for cycads, and it allows us to reach insights
that would be impossible using other approaches. Our analyses
provide new insights into long-standing issues with the cycad
phylogeny. Most Triassic and Early to Middle Jurassic cycad
leaves are not particularly closely related to extant cycad families,
contrary to previous suggestions based on morphology (Hermsen
et al., 2006; Martinez et al., 2012) or morphology + molecules
(Coiro & Pott, 2017). Previous studies may have been swayed by
the coding of polyphyletic genera as single taxa, and the inclusion
of only a few characters relating to leaf morphology and anatomy.
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The polyphyletic nature of fossil leaf genera in Cycadales is
revealed in our analyses, particularly for the genus Pseudoctenis
(Pott et al., 2007). This suggests that the use of generic-level ana-
lyses as a proxy for species-level dynamics (Roy ez al, 1996)
should be viewed with caution. Coding of taxa at the level of sin-
gle species and the implementation of the FBD prior could repre-
sent a more promising avenue in groups with a poorly
understood fossil record and without many whole-plant recon-
structions, a widespread situation in land plants.

Our results validate some previous suggestions of relatedness
between fossil taxa and extant genera (Hill, 1978; Carpen-
ter, 1991; Kvacek, 2002; Su ez al., 2014; Erdei ez al., 2018; Hill
et al., 2019a). Previously puzzling forms, such as Eostangeria
(Barthel, 1976; Kvacek & Manchester, 1999; Uzunova et al,
2001), appear to represent transitional forms between the
Zamia-Microcycas clade and the extremely derived genus Szan-
geria, combining the epidermal anatomy of the former with the
unique macromorphology of the latter (i.e. leaflets with pinnate
venation). This contrasts with the idea of Eostangeria as a separate
lineage in the Zamiaceae that converged with Stangeria. The tree
also confirms the relationship between the Mesozoic genus Para-
cycas Harris and extant Cycas. The genus Eobowenia is confirmed
as sister to extant Bowenia, strengthening inferences on its
understory habit based on comparison with other fossil and
extant species of this lineage (Hill ez 4/, 2019b).

Another important result is the emergence of the hypothesis of
an entirely extinct clade spanning the Triassic to the Miocene,
including both common Mesozoic forms assigned to Ctenis and
controversial Cenozoic fossils such as Pterostoma (Florin, 1933;
Harris, 1964). The morphology of the leaves in this clade differs
from that of the two extant families mostly in the presence of H
or N anastomoses. This clade includes Dioonopsis validating
results based on comparative investigations (Barone Lumaga
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et al., 2015; Erdei & Manchester, 2015), and weighing strongly
against its use as a calibration for the age of Dioon (e.g. Li et al.,
2019).

The phylogenetic distance between most fossil cycads and the
extant clades argues against the use of extant cycadalean ecophy-
siology to infer past preferences of fossil cycads (MCcEl-
wain, 1998), especially for members of the Ctenis clade. Indeed,
the only Crenis species for which we have a good paleoecological
understanding (Wing ez al, 1993) occupied a fern-dominated
open habitat on a peaty substrate, unlike any extant cycad. More
studies are needed to better understand the ecology of fossil
cycads and provide clues into the causes of their extinction.

Origin and early historical biogeography of cycads

Our dating analyses first show a more ancient Paleozoic age
for the origin of Cycadales (Carboniferous vs Permian or even
Triassic in molecular-only studies; Nagalingum et al, 2011;
Salas-Leiva et al, 2013; Condamine et al, 2015). Further-
more, our results indicate a much wider range in the ages of
crown-group genera (Fig. 3b). Despite clear limits in our study
(to be described later), this new phylogenetic framework allows
the estimation of the historical biogeography and latitudinal
range evolution of Cycadales. Nonetheless, we found that the
ancestral state estimates were robust when coding fossil geo-
graphic ranges with missing data instead of true absence and
when considering uncertainties in fossil placements and diver-
gence times.

To our knowledge, only one study attempted to reconstruct
the geographic origin of cycads with phylogenetic approaches,
showing an origin in Australia, China, and Mexico (Salas-Leiva
et al., 2013). However, such a geographic range is unlikely given
the nonadjacency of the three areas, an issue probably due to the
lack of a time-stratified geographic model. Here, by including
Antarctica and Greenland with now-vanished continental con-
nections, we relied on more accurate information from a paleo-
geographic perspective. We also compared the effect of
including the fossils into the ancestral estimates. We show
important discrepancies between the analyses including or not
the fossils as tips, particularly in deep nodes. This could be
expected given the long branches subtending radiations of extant
genera bearing little phylogenetic information in deep times,
supporting the view of Crisp ez al. (2011) that fossil lineages are
crucial to study historical biogeography. However, treating fossil
distributions as unknown did not impact the analysis dramati-
cally. This could be due to the high endemism of cycad species
(only 11 species out of 381 have more than one area for their
range), thus limiting the possibility of unobserved presence of
widespread fossil species.

Cycadales likely originated in the northern part of Pangea
(Laurasia). This result agrees with the most ancient cycad fossil
lineage, Crossozamia Pomel, described from the Permian of
China (Gao & Thomas, 1989). The Carboniferous was a time of
active mountain-building as the supercontinent Pangea coalesced
(von Raumer et 4l., 2003). The southern continents were united
as Gondwana, which collided with the West Palearctic and East
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Nearctic. This collision resulted in the Hercynian orogeny in
Palearctic, and the Alleghenian orogeny in Nearctic (von Raumer
et al., 2003). These mountain ranges could have limited cycad
distribution in northern Pangea. Contemporaneously, much of
present eastern Eurasian plate welded itself to the West Palearctic
along the Ural Mountains, which makes plausible an eastern
Laurasian origin for cycads. During the Carboniferous, global cli-
mate progressively cooled and dried, eventually culminating with
an extinction period known as the Carboniferous rainforest col-
lapse that drastically affected terrestrial biodiversity in Laurasia
(Sahney ez al., 2010) of which cycads survived. Cycads remained
in Laurasia (including Greenland), potentially constrained by the
Central Pangean Mountains in the Permian. By the Middle
Triassic, the Central Pangean mountains had been substantially
reduced in size, and by the earliest Jurassic ¢. 200 Ma the Pangean
range in West Palearctic was reduced to upland areas surrounded
by marine basins (Scotese & Schettino, 2017). In the Early Juras-
sic, our inferences suggest Zamiaceae and the Crenis clade inde-
pendently colonized Gondwana through East Nearctic and
Central America or Caribbean going to South America.

The role of Antarctica and Greenland

From the Jurassic until the end-Cretaceous, cycads expanded to
all continents through active dispersals into low-latitude regions
of Gondwana. Four ancient independent colonizations of Antarc-
tica were inferred between the Late Jurassic and Early Cretaceous
(two in the Ctenis clade between 174 and 147 Ma and 179 and
123 Ma; Eobowenia and Bowenia between 155 and 130 Ma;
Encephalartinae between 170 and 81 Ma). In line with the dense
fossil record of Patagonia (Artabe & Stevenson, 1999; Cineo
et al., 2010), our analyses indicate West Gondwana is a biogeo-
graphic crossroad for cycads with numerous (18) dispersals out of
South America. At that time, South America was connected to
Antarctica, itself connected to Australia (Blakey, 2008; Seton
et al., 2012; Kocsis & Scotese, 2021), thus creating a large land
bridge for terrestrial biodiversity.

The case of Encephalartinae illustrates well the impact of fos-
sils and how they help clarify their origins. The African genus
Encephalartos is sister to Lepidozamia endemic to Australia, sepa-
rated at the K/Pg boundary (67 Ma), and both are sister to
Macrozamia, which is also restricted to Australia and diverged in
the Late Cretaceous (81 Ma). Both Lepidozamia and Macrozamia
have fossil taxa distributed in Australia, and the Patagonian Auws-
trozamia stockeyi Wilf, D.Stevenson et Cuneo is thought to be
related to the Encephalartos- Lepidozamia clade (Wilf ez al., 2016).
However, no fossil taxon is known to be closely related to Ence-
phalartos. Our analyses suggest a widespread ancestor in Gond-
wana (including Antarctica) for Encephalartinae and the
common ancestor of Encephalartos and Lepidozamia. However,
this wide range does not include Africa, which was not connected
to other Gondwanan continents in the Late Cretaceous. We esti-
mated the colonization of Africa along the stem of Encephalartos
likely started from Australia and extended northward to South-
east Asia and passing through the East Palearctic, followed by
numerous Paleogene extirpations. If correct, we can expect to
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discover fossil taxa possibly related to Encephalartos in Cenozoic
deposits of Eurasia. However, the presence of fossils with poten-
tial affinities with Encephalartinae in South America could also
indicate a Western Gondwanan route, with dispersal to Africa via
Antarctica supported by the South African origin of Encephalartos
(Mankga ez al., 2020a). The lack of stomatal morphology in these
South American fossils unfortunately does not allow testing of
this hypothesis. Interestingly, the analyses without fossils recover
the same range for Encephalartos, but an Australasian origin for
Encephalartinae.

Likewise, Greenland was key in cycad biogeography. We
recovered five independent colonizations from the Late Triassic
(two in the Ctenis clade) to the Early Jurassic (in Zamiaceae).
Greenland was particularly prominent in ancestral range esti-
mates for Zamiaceae and acted as biogeographic crossroads for all
lineages of the backbone (14 dispersals out of Greenland). Our
study highlights the role of Antarctica and Greenland in biogeo-
graphic estimates as proposed previously (de la Estrella
et al., 2019). Indeed, Antarctica and Greenland were, separately,
sources of common ancestors until the Paleocene—Eocene transi-
tion, after which the local climate became unfavorable for plant
growth (Pross ez al., 2012; Suan ez al., 2017; Klages ez al., 2020).
Importantly, we estimated that nine vicariance events out of a
total of 31 involve Antarctica or Greenland, when added
together, with subsequent disjointed descending lineages. The
recognition of the role of Antarctica and Greenland in historical
biogeography has rarely been implemented in macroevolutionary
analyses. We argue that the incorporation of fossils allows reco-
vering the role of these continents, which is otherwise challenging
without them. However, our analyses excluding fossils did
recover the role of Antarctica in the early nodes of Zamiaceae,
but not of Greenland.

Our results including or excluding the fossils indicate similar
geographic origins for the crown of extant genera, except for
Cycas and  Ceratozamia. We find different ancestral ranges
because of the inclusion of one East Palearctic and two West
Palearctic fossils, respectively. For Ceratozamia, the discrepancy
is stronger because C. hofmannii (early Miocene of Austria) is
found within the extant genus, unlike a stem lineage for C. floer-
sheimensis (early Oligocene of Germany). Hence, we estimated a
broad Laurasian range from the early Oligocene to early Miocene
followed by geographic extirpations in the Neogene. Although
the impact of fossils is less obvious toward the present, extinct
taxa bear direct evidence of the presence of related extant repre-
sentatives that can occur in different regions. Including them can
alter the inference of evolutionary processes explaining their cur-
rent distribution pattern.

Within the most species-rich cycad genera, Cycas and Zamia
show a dynamic biogeographic history with multiple area coloni-
zations by range expansions and several vicariance events (11 for
Cycas and 6 for Zamia). Zamia colonized the Caribbean Islands
during the second emersion of the Aves Ridge 16 Ma (Garrocq
et al., 2021). Our analyses underestimate the number of allopa-
tric events because of the broad-scale analyses with continents as
biogeographic units. Finer-scale studies have already unveiled
evolutionary processes explaining extant species distribution

© 2023 The Authors
New Phytologist © 2023 New Phytologist Foundation

Research"15™

within genera and showing the role of allopatry (Calonje
et al., 2019; Mankga et al., 2020b; Habib ez al., 2022).

Evolution of the latitudinal gradient of cycad biodiversity

We complemented historical biogeography with ancestral lati-
tude estimates. Although the origin of cycads at high latitude
might be due to the poor record in tropical and equatorial lati-
tudes, our analysis clearly shows that cycads were heavily
impacted at the end of the Paleogene and in the mid-Miocene
(40 high-latitude extinction events vs 22 low-latitude extinction
events, Fig. S10). This period corresponds with the extinction of
the Crenis clade, as well as the disappearance of many relatives of
extant genera from Europe and North America. Interestingly,
many Cenozoic species of the Crenis clade are distributed at high
latitudes (Prerostoma in Australia and New Zealand, Dioonopsis in
Alaska). This pattern is reminiscent of the high-latitude refugium
hypothesis advanced for many fossil and extant groups (Bomfleur
et al., 2018), including ferns that cooccurred with Crenis in the
past (Wing ez al., 1993). Testing such a hypothesis on mechanis-
tic grounds could represent an interesting avenue for further
investigations.

Elevated extinction of gymnosperms during the Cenozoic has
been proposed as a partial explanation for the imbalance in spe-
cies richness between gymnosperms and angiosperms (Crisp &
Cook, 2011; Condamine et al., 2020), and are retrieved in ana-
lyses of both phylogenies (May ez a/., 2016) and the fossil record
(Crepet & Niklas, 2009). Whether such an elevated extinction
was driven by one or more events remains hard to infer, but
phylogeny-based diversification models unveil an increasing
extinction rate in cycads, with diversity decline starting 125 Ma
(Mazet ez al., 2022). The succession of many cooling events, in
the Maastrichtian (Linnert ez 2/., 2014), at the Eocene—Oligocene
transition (Houben ez 4/, 2012), the Oligocene—Miocene transi-
tion (Beddow et al, 2015), and the mid-Miocene transition,
leading to an Icehouse Earth, could have led high-latitude cycads
to extinction, and shifted the distribution of the group to more
subtropical and tropical latitudes (Meseguer & Condamine,
2020). The maximum latitudinal expansion of the group broadly
corresponds to a period of Greenhouse Earth with terrestrial eco-
systems extending to Antarctica and Greenland (Suan er al,
2017; Klages ez al., 2020).

Such periods of elevated extinction offer a better explanation
for the patterns of diversification of the extant genera. Even if the
origins of the crown groups of the extant genera appear not to be
entirely synchronous, the ages retrieved in the tree are still rela-
tively young. If this would go against the idea of a global ‘trigger’
for the radiation of the genera, it would be compatible with a per-
iod of elevated turnover. This would indicate that cycad evolu-
tion has been mainly influenced by abiotic factors (Barnosky,
2001; Benton, 2009). However, the influence of biotic factors
cannot be fully excluded: The distribution of the members of the
Ctenis clade in high-latitude environments might be a conse-
quence of competitive exclusion from lower-latitude environ-
ments, which might have predisposed the clade to eradication by
Neogene climatic change.
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Conclusion

Although our dated phylogeny includes a fraction of the known
fossil cycad diversity, this study represents a step forward in our
understanding of the global cycad biodiversity. Cycads originated
in the Carboniferous on the Laurasian landmass and colonized
Gondwana in the Jurassic. We revealed the crucial role of Antarc-
tica and Greenland as biogeographic crossroads and found
numerous vicariance events in the deep and recent past. Cycad
latitudinal range increased in the Jurassic but retreated toward
subtropical latitudes in the Neogene due to important high-
latitude extirpations. However, we remain cautious about our
biogeographic inferences. For instance, we were unable to incor-
porate taxa like Antarcticycas (Triassic of Antarctica) or Crossoza-
mia (Permian of China) because of the lack of preserved leaf
traits. We think that including more fossil cycad taxa can alter
phylogenetic relationships, which in turn can affect divergence
times and biogeographic inferences. Further studies are needed to
incorporate new cycad taxa to deepen our understanding of cycad
origin and range evolution. This species-based analysis represents
a starting point for building a more species-rich and character-
rich matrix that avoids the pitfall of previous analyses, namely the
use of polyphyletic operational taxonomic units. Such an effort
would require the reinvestigation of the fossil record of other
cycad organs, and the establishment of more whole-plant recon-
structions for this group.
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