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Abstract. This paper considers a joint survival and mixed-effects model to explain
the survival time from longitudinal data and high-dimensional covariates. The longitudi-
nal data is modeled using a nonlinear effects model, where the regression function serves
as a link function incorporated into a Cox model as a covariate. In that way, the longitudi-
nal data is related to the survival time at a given time. Additionally, the Cox model takes
into account the inclusion of high-dimensional covariates. The main objectives of this re-
search are two-fold: first, to identify the relevant covariates that contribute to explaining
survival time, and second, to estimate all unknown parameters of the joint model. For
that purpose, we consider the maximization of a Lasso penalized likelihood. To tackle the
optimization problem, we implement a pre-conditioned stochastic gradient to handle the
latent variables of the nonlinear mixed-effects model associated with a proximal operator
to manage the non-differentiability of the penalty. We provide relevant simulations that
showcase the performance of the proposed variable selection and parameters’ estimation
method in the joint modeling of a Cox and logistic model.

Keywords. Joint model, non-linear mixed effects model, Cox model, high dimension,
preconditioned stochastic gradient, proximal operator

1 Introduction

A very current issue in many fields is better understanding the interactions between de-
pendent dynamic phenomena. For example, in medicine, this may involve the dynamics
of a patient’s tumors in oncology and the effects of anti-cancer treatments administered
to the patient. Another example in plant science is the dynamics of plant development in
a plot and the spread of an epidemic disease or pests in that plot. The phenomena con-
sidered are often complex, both in terms of their modes of interaction and their temporal
and spatial dynamics. Moreover, these phenomena are often observed in populations of
heterogeneous or structured individuals, such as patients or plants.

Mathematical modeling has proven to be a powerful tool for understanding the inter-
actions between multiple dynamic phenomena. It also allows for considering variabilities
present in the observed population of individuals. Joint modeling of several phenomena
has demonstrated its effectiveness in several fields, including medicine, pharmacology,
and biology ([13]). A particular case of joint models concerns the simultaneous model-
ing of longitudinal data and survival data observed on the same individual. In this type
of joint model, longitudinal data are often modeled by a mixed-effects model ([17, 4]),
and survival data by a survival model such as the Cox model ([3]). The latter allows for
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modeling the instantaneous risk of the survival variable as a function of covariates. It is
also possible to include longitudinal data modeling as a covariate in the Cox model via a
linking function. The objective is then to estimate the model parameters from the obser-
vations and to select relevant covariates. Several authors have proposed such approaches
([26], [19], [14]). Due to the presence of latent variables in the mixed-effects model, in-
ference by maximum likelihood can be made via Expectation Maximization (EM) like
algorithms ([26], [11], [20], [7]). The EM-type algorithms, such as the classical Stochas-
tic Approximation Expectation Maximization (SAEM), are the most classical approaches
for inferring parameters in the presence of latent variables. They have been developed
for estimation in general latent variable models. They are particularly easy to implement
in the context of a curved exponential family based on sufficient statistics of the model.
Moreover, theoretical convergence results have been established in this context. However,
when the model does not belong to the exponential family, which is the case in our context,
the methodology is not generic in practice, and the theoretical results fail.

Some exponentialization trick has then been proposed to face this restrictive assump-
tion of the curved exponential family. It consists in considering some unknown param-
eters as random population variables. However, [5] have shown that, in general, the pa-
rameter returned by the SAEM on the modified model is not a maximum likelihood of
the initial model, and they have suggested the use of this exponentialization trick with
variances of the new random population variables that decrease as the iterations of the
algorithm progress. This approach also has limitations in practice due to complex algo-
rithmic settings and tuning. The gradient-based methods are another type of approach,
often omitted for estimating parameters in latent models. Recently, [2] suggested using
a preconditioned stochastic gradient algorithm to deal with parameter estimation in the
presence of latent variables. This approach is particularly interesting when considering a
model that does not belong to the exponential family, as is the case for the joint model. [2]
showed that this algorithm performs well for the nonlinear logistic growth mixed-effects
model, which can be used to represent some longitudinal data. Note that Bayesian numer-
ical methods have also been proposed in parallel ([18], [21], [13]).

Besides, in many applications, current technological means allow for collecting high-
dimensional explanatory covariates. These may include, for example, genetic markers or
omics data. In addition to the wealth of information provided by these covariates, they
also generate difficulties in the statistical analysis of models as it is necessary to adapt
statistical and numerical approaches to their high dimensionality. One possible approach
is to consider a penalized estimator, such as the Lasso ([12], [27]), and adapted numerical
methods, such as stochastic proximal gradient ([1], [9]).

In this paper, we consider a joint model which combines, through a link function, a
nonlinear mixed effect model for longitudinal data and a Coxmodel for the survival times,
including covariates of high dimension. Our work aims to select the relevant variables
among the high-dimensional covariates in the Cox model part of the joint model based
on the whole dataset and then to estimate the model’s unknown parameters. For that pur-
pose, we propose an estimate for model parameters, which include a Lasso penalization
for the regression parameter of the Cox model. To calculate this estimate in practice, we
develop an algorithm combining a preconditioned stochastic gradient to deal with the la-
tent variables in the joint model out of the exponential family and a proximal gradient to
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handle the non-differentiability of the Lasso penalty used for variable selection in the Cox
model part. The proposed algorithm is easy to implement in general joint models without
assuming that model density belongs to the curved exponential family.

The paper is organized as follows. In Section 2, we detail the joint model constructed
from a nonlinear mixed effects model for longitudinal data and a Cox model for survival
data, with high-dimensional covariates and a link function. In Section 3, we present the
proposed inference method based on a Lasso penalized estimator and numerical proce-
dure based on a stochastic proximal gradient algorithm. Finally, we illustrate the method-
ology in Section 4 through a simulation study. The paper ends with a conclusion.

2 Joint survival and mixed-effects model

We consider N individuals and study, for each individual i, the survival time Ti, corre-
sponding to the duration until the occurrence of an event of interest, and longitudinal
data, more precisely repeated observations J times denoted by Yi,j with i P t1, . . . , Nu
and j P t1, . . . , Ju. Note that our work can easily be generalized to the case where there
are different number of longitudinal observations for each individual of the population.
The following describes the joint model we considered.

2.1 Survival model

The survival time Ti of individual i is the time between a fixed initial moment and the
occurrence of an event of interest. It is a positive random variable. To characterize the
distribution of Ti, we use the hazard function defined by:

hiptq :“ lim
dtÑ0

Ppt ď Ti ă t ` dt|Ti ě tq

dt
; @t ě 0. (1)

The Cox model ([3]) is one of the most classical models in survival analysis. It allows
us to relate the hazard function of the survival time Ti to covariates Ui P R

p with p being
the number of covariates. In our approach, we will consider the high-dimensional setting
with a large number of covariates, such as p is very large with respect toN . The Coxmodel
for individual i is written as follows:

hpt|Uiq “ h0ptq exppβTUiq, (2)

with β P R
p a regression parameter and h0 the baseline hazard function that characterizes

a common behavior in the observed population. In the sequel, we will consider a para-
metric baseline function denoted by hθbase where θbase P R

b are its parameters. Therefore,
the Cox model’s unknown parameters are β and θbase.

In addition to the covariates, we consider explaining some of the survival time variabil-
ity using the longitudinal data dynamic, which will be modeled using a nonlinear mixed
effects model. Let us present the mixed-effects model before explaining the integration of
this new component into the Cox model.
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2.2 Nonlinear mixed-effects model

The longitudinal data are observed J times for each individual i P t1, . . . , Nu. Let us de-
noted byYi,j the j-th observation of the i-th individual for j P t1, . . . , Ju and i P t1, . . . , Nu.
We model this longitudinal observation using a nonlinear function m that depends on in-
dividual parameters represented by the latent variable Zi as follows:

#

Yi,j “ mptj ;Ziq ` εi,j ; εi,j „
i.i.d.

N p0, σ2q,

Zi „
i.i.d.

N pµ,Γq.
@1 ď i ď N, 1 ď j ď J (3)

where, tj is the j-th observation time, and εi,j is an additive noise assumed centered Gaus-
sian with unknown variance σ2. The latent variable Zi describes the inter-individual vari-
ability of the population. It is assumed that Zi follows a Gaussian distribution with un-
known expectation µ and variance Γ. The unknown parameters of the nonlinear mixed-
effects model are therefore µ,Γ, and σ2.

Let us introduce in the following the link function, which will combine the two previ-
ous models by modeling the influence of the dynamic of the longitudinal observation of
the hazard function.

2.3 Joint survival and mixed-effects model

We assume that the hazard of the survival time is related to the longitudinal data dynamic
through the link function m as follows:

hpt|Mpt,Ziq, Uiq “ hθbaseptq exppβTUi ` αmpt,Ziqq, @t ě 0, (4)

whereMpt;Ziq “ tmps;Ziq|@s, 0 ď s ă tu describes the past values of the longitudinal dy-
namic up to time t. The parameter α represents the influence of the longitudinal dynamic
on the survival data. The joint model can be written as follows:

$

’

&

’

%

hpt|Mpt,Ziq, Uiq “ hθbaseptq exppβTUi ` αmpt,Ziqq
Yi,j “ mptj ;Ziq ` εi,j

Zi „
i.i.d.

N pµ,Γq ; εi,j „
i.i.d.

N p0, σ2q.
@1 ď i ď N, 1 ď j ď J (5)

The unknown parameters for the joint model include the parameters of the Cox model
and those of the nonlinear mixed effects model, as well as the link function parameter of
the joint model. We note θ “ pθbase, β, µ,Γ, σ

2, αq P Θ the vector of unknown parameters
with Θ Ă R

d being the parameter space. In the following section, we propose an estima-
tion method for these parameters.

3 Inference method

Note that there is often censoring in survival analysis, which leads to partially observed
data: survival times are not directly observed. Available information is censored times
and indicators, making the estimation task more complex. For the sake of simplicity,
since we focus on the high-dimensional covariates selection task, we will not consider
censoring in our approach for the moment. However, it will be part of further work.
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3.1 Definition of the marginal likelihood

We consider the maximum likelihood estimator to infer the joint model parameters. In the
context of latent variable models, the marginal likelihood, denoted by Lmarg, is obtained
by integrating the complete likelihood over the latent variables, which are not observed.
Let D “ pY,Tq be the observed variables:

Lmargpθ;Dq “

ż

fθpD,ZqdZ “

ż

gθpD|ZqpθpZqdZ (6)

where fθ, gθ, pθ are respectively the density of the pair pD,Zq, the density of Z condition-
ally to D, the density of Z. Due to the integral, it is difficult to directly compute the
maximum of the marginal likelihood, which does not have an analytical form in this la-
tent variable model. Therefore, we will use numerical methods to solve this maximization
problem.

3.2 Definition of the penalized estimator for variable selection

We introduce a penalty and consider a penalized maximum likelihood estimator to deal
with the high dimension of the covariates. We aim to select relevant variables among
the covariates of the survival model. We use the Lasso (Least Absolute Shrinkage and
Selection Operator) procedure which was initially proposed for linear regression models
([25]) and the Cox model ([24]). This method enables us to handle high-dimensional data
and select a subset of explanatory covariates from a large collection. We consider a Lasso
penalty which only depends on the parameter β:

penpθq “ }β}1 “
p

ÿ

k“1

|βk| ,

Our goal is then to maximize the logarithm of the marginal likelihood where the
penalty is integrated as follows. Let us define the penalized maximum likelihood esti-
mator by:

θ̂ “ argmax
θPΘ

plogLmargpθ;Dq ´ λ penpθqq , (7)

where Θ denotes the parameter space and where λ is a positive parameter called the reg-
ularization parameter. The larger the value of λ, the more β will be constrained to have
zero components. Conversely, the smaller the value of λ, the more free the components of
β will be. It is customary to determine the value of λ using cross-validation ([25]).

Usually, when we deal with latent variables, since the marginal likelihood is non-
analytic, classical methods used to infer the unknown parameters are Expectation Maxi-
mization like algorithme ([16]). The inconvenience of these procedures is that it is well-
adapted to models belonging to the curved exponential family, which is not the case for
the joint model we consider. Recently [2] have proposed a preconditioned stochastic gra-
dient descent for estimation in a latent variable model adapted to general latent variables
models. Moreover due to the non-differentiability of the considered penalty, we will use
a proximal algorithm as proposed by [1] and [9]. Thus, we add a proximal gradient in the
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procedure proposed in [2] and implement a preconditioned stochastic proximal gradient
algorithm to calculate the estimator.

3.3 Implementation of the inference procedure

We deal simultaneously both with unobserved random effects of the mixed-effects model
and the penalty term by implementing a preconditioned stochastic proximal gradient,
called SPG-FIM in the sequel. A forward–backward splitting algorithm such that a Stochas-
tic Proximal Gradient can compute the estimate 7. The latter has a stochastic approach
to replace missing data with simulations. The algorithm is divided into three steps; a re-
alization of the latent variables is sampled with a first step called Simulation, which uses
a Metropolis-Hastings sampler ([10]). The second step is the classical gradient descent
on the approximate complete likelihood, the Forward step. Following the procedure pro-
posed in [2], we have chosen to use a preconditioning of the gradient with an estimate
of the Fisher information matrix. The latter is updated during the iterations using the
estimate proposed by [6]. The last step, called Backward, deals with the penalty term. We
apply the classical proximal operator ([15, 22], defined below

Proxpenpβq “ argmin
β1PRp

ˆ

penpβ 1q `
1

2
}β ´ β 1}

2

2

˙

. (8)

With the Lasso penalty, the proximal operator has an explicit form:

pProxLassopβqqi “

$

&

%

0 si |βi| ă λ

βi ´ λ si βi ě λ

βi ` λ si βi ď ´λ

; @i P t1, ..., pu. (9)

The Backward step corresponds to the application of the proximal operator on the
result of the Forward step.

As the penalty only depends on β, the proximal operator selects the β components
that seem to be the most explanatory of the data. It computes a sparse solution for β but
also applies shrinkage on the non-zero components so that the Lasso estimator is biased.
Therefore, we detail a method to obtain an unbiased estimator in what follows.

Algorithm 1 provides the steps of the stochastic proximal gradient, where pγkqkě1 is a

step size such that @k P N, γk P r0, 1s,
8

ÿ

k“1

γk “ 8 and
8
ÿ

k“1

γ2
k ă 8.
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Algorithm 1: Stochastic proximal gradient with FIM precondition-
ning (SPG-FIM)

Require :Number of iterations K ě 1 ; sequence of step-size pγkqkě1

1 Initialize Starting point θ0 P R
d, ∆0

2 for k “ 1 to K do
3 ‚ Simulation step :

4 Draw Z
pkqusing a single step of a Hastings Metropolis

procedure
5 ‚ Gradient computation :

6 Compute vk “
1

N

N
ÿ

i“1

∇ log fθkpDiZ
pkq
i q

7 ‚ FIM computation :
8 ‚ Compute the stochastic approximation

9 @i P t1, ..., Nu,∆
pkq
i “ p1 ´ γkq∆

pk´1q
i ` γk∇ log fθkpDiZ

pkq
i q

10 ‚ Compute the FIM :

11 FIMk “
1

N

N
ÿ

i“1

∆
pkq
i

`

∆
pkq
i

˘T

12 ‚ Gradient descent :
13 ‚ Forward step : ωk`1 “ θk ´ γkFIM´1

k vk
14 ‚ Backward step :

15 θk`1 “ Proxγkpenpωk`1q “ argmin
θ1PΘ

"

γkpenpθ1q `
1

2
}ωk`1 ´ θ1}

2

2

*

16 end

17 return θ̂ “ θK

4 Simulation study

We generated data according to the joint model presented previously in Equation 5. We
consider N “ 100 individuals, each individual being observed J “ 20 times. We use the
classical logistic function in the nonlinear mixed effect model detailed in Equation 3:

m : t ÞÑ
Z1

1 ` exp

ˆ

Z2 ´ t

Z3

˙ , (10)

where Z1 represents the asymptotical maximum value of the curve, Z2 represents the
value of the sigmoid’s midpoint, and Z3 represents the logistic growth rate. We model for
each individual i the corresponding individual parameter Zi P R

3 through a Gaussian ran-
dom variable with expectation µ P R

3 and a diagonal variance Γ “ diagpγ2
1, γ

2
2 , 0q meaning

that the third parameter µ3 is modeled as a fixed effect. We consider a fixed Weibull base-
line defined as ha,bptq “ ba´btb´1, where a “ 80 and b “ 35 are fixed (i.e. not estimated) in
the simulation study.

We fix p “ 100 and choose the vector β such that the first four components are equal to
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p´2,´1, 1, 2q and the rest are equal to zero. Additionally, we generate the matrix of covari-
ates U withN rows and p columns, following a uniform distribution Ui,l „ Upr´1, 1sq; @i P
1, ..., N, l P 1, ..., p. We choose finally the link function parameter α “ 11.11. All the pa-
rameter values are detailed in Table 4.

Parameter µ1 µ2 µ3 γ2
1 γ2

2 σ2 α

True value 0.3 90 7.5 2.5 10´3 20 10´3 11.11

Parameter β1 β2 β3 β4 β5 . . . βp

True value -2 -1 1 2 0 . . . 0

Table 1: True parameter values used for the simulation

We focus in this simulation study on the selection of variables and on the inference
of the parameters of the mixed-effect model as well as α the multiplicative parameter of
the Cox model. The proximal operator (9) has a shrinking effect on the estimator after its
application, meaning that the values found for β are smaller than expected. Therefore as it
is usually the case the estimator of β is biased. We thus divide the inference into two steps,
an exploratory one that allows us to select the support of the vector β through a Lasso
penalization estimation, and a second step of inference without penalization, where we
have restricted the number of covariates with respect to the selected support. We conduct
the following inference methodology:

‚ Run the SPG-FIM algorithm in order to compute

θ̂Lassopλq “ argmax
θPΘ

plogLmargpθ;Dq ´ λ penLassopθqu ,

for different values of λ on a fixed grid.

‚ Select the best regularization parameter such that λm “ argmin
λ

BICpλq according

to the BIC criterion (see [23]):

BICpλq “ ´2 logpLmargpθ̂Lassopλq;Dqq ` k logpNq

where k is the number of non-zeros components in β. Note that the quantityLmargpθ;Dq “
ż

Z

fθpD,ZqdZ is computed by approximating the integral using a Monte-Carlo pro-

cedure.

‚ Choose the reduced support of β according to the estimate θ̂Lassopλmq obtained pre-
viously from a run of the SPG-FIM (Algorithm 1).

‚ Compute θ̂MLE the maximum likelihood estimate in the reduced model without the
penalty term and therefore without bias with the SG-FIM (SPG-FIM without the
Backward step).
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