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Abstract: Colletotrichum gloeosporioides is a species complex of agricultural importance as it causes
anthracnose disease on many crop species worldwide, and strong impact regionally on Water Yam
(Dioscorea alata) in the Caribbean. In this study, we conducted a genetic analysis of the fungi complex
in three islands of the Lesser Antilles—Guadeloupe (Basse Terre, Grande Terre and Marie Galante),
Martinique and Barbados. We specifically sampled yam fields and assessed the genetic diversity
of strains with four microsatellite markers. We found a very high genetic diversity of all strains
on each island, and intermediate to strong levels of genetic structure between islands. Migration
rates were quite diverse either within (local dispersal) or between islands (long-distance dispersal),
suggesting important roles of vegetation and climate as local barriers, and winds as an important
factor in long-distance migration. Three distinct genetic clusters highlighted different species entities,
though there was also evidence of frequent intermediates between two clusters, suggesting recurrent
recombination between putative species. Together, these results demonstrated asymmetries in gene
flow both between islands and clusters, and suggested the need for new approaches to anthracnose
disease risk control at a regional level.

Keywords: Colletotrichum gloeosporioides complex; Caribbean; biogeography; yam anthracnose;
archipelago; pathogen dispersal

1. Introduction

Colletotrichum is a widespread pathogen of cultivated plants [1], causing anthracnose
disease or fruit rot or stem dieback on many crops worldwide [2–4]. Its ubiquity in both
wild [5] and cultivated environments [6] is probably increased by its relatively complex
ecology, with lifestyles ranging from casual commensal endophyte [7] to parasitic pathogen,
biotrophic to necrotrophic phases [8] and organizing as multiple species complexes [9]
with blurring degrees of gene flow and varying levels of host ranges and agressivity on
their incipient hosts [10–12]. It has long been regarded through the lens of pathogen–host
interaction pairs, with a transient historical redefinition as morpho-species complexes
(formally changing recognized species from the thousands down to twelve clearly iden-
tified morphs [13]). Current classification trends are building on bar-code-like sequence
approaches to systematic [1,14,15], and identified species are reformulated progressively
and their total number is increasing back (currently within the hundreds) [16]. Many issues
regarding characterizing the species at more ecologically relevant levels remain, and these
might at least partially be assessed via regular population genetic analysis and identifying
polymorphisms segregation pools both at local and regional scales.

Studies of the genetic structure of populations have shown a fairly high dependency on
the kind of marker in use. In this regard, studies of populations of Colletotrichum gloeosporioides
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did not escape this technological pitfall: early studies with isozymes demonstrated a
quasi lack of structure within hosts and stronger albeit still low levels between strains
sampled on different hosts [17], thus feeding the prevalent view of species as coupled
host–pathogen pairs. With markers progressively increasing the fine-scale definition of
polymorphisms (e.g., [18–21]), greater levels of population structure was consequently
described, suggesting the prevalence of panmixy and admixing [22,23], sometimes the
structure with low migration between populations [24] over large geographical scales [25]
before the signature of isolation by distance is met (but see [26]). It is also documented
that the local diversity is associated with breeding programs and lacking in wild hosts
(e.g., [27]). Overall, populations of the species C. gloeosporioides demonstratingly behave as
huge panmictic units with few barriers to gene flow, as studies over long-distance dispersal
also suggest [26].

In contrast, many biological processes are susceptible to very local influences, espe-
cially for generalist fungi with important asexual multiplication, from clonal selection
to competition [6] or biases in host response and even vegetation structure [28]. While
long-distance dispersal with wind allows for huge genetic admixture [29,30], reliance on
rain dispersal at a local scale via conidia in Colletotrichum deeply changes the nature of
pathogen propagation [31], with most conidia only spreading up to within a meter from
the initial necrosis [32]. Vegetation might thus behave as a propagation filter, either as a
direct barrier, or as differentially allowing for strain dispersal if asymmetry exists in asexual
propagule multiplication based on host strain affinity. This might eventually also affect
global disease prevalence, as suggested for example by producers strategical shift from
more sensitive species and varieties to less susceptible ones [33] or adoption of varietal
admixtures as more resilient [34]. In traditional agricultural landscapes dominated by the
mosaic of fields with very different, diverse and patchy feral and neighbouring [6,35] or
even wild floras [5], the nature of pathogen intra-species diversity itself is thus expected to
be dramatically high for generalists such as Colletotrichum.

Our lab recently developed microsatellite marker sets for C. gloeosporioides, with lo-
cal historical strain records demonstrating high levels of polymorphism [36], confirming
previous regional analysis [37]. Given the high-resolution ability of these markers, we
investigated the existence of a potentially lower-scale structure of polymorphism in the
Lesser Antilles, with a focus on the naturally constraining archipelago structure of the
environment. We focused on C. gloeosporioides complex s.l. sampled from Yam varieties
(Dioscorea alata L.) without investigating taxonomic identity beyond testing C. gloeospori-
oides/C. acutatum boundaries [38]. Our questions were thus: is C. gloeosporioides genetically
diverse within the Lesser Antilles geographical context and does geography impact it?
What is the influence of migration in C. gloeosporioides in the region? Does it organize in
distinct genetic clusters/putative species?

2. Materials and Methods

From November to December 2015, we collected information on farm management
practices and varietal diversity from yam producers and sampled their yam fields for
necroses on leaves in four islands of the Lesser Antilles: Barbados, Guadeloupe (with both
tropical humid Basse Terre and dry Grande Terre areas considered distinct populations due
to climate and altitude contrasts, see [39] for geographic details) and its high farming depen-
dency Marie Galante and Martinique. We collected 15 necrotic yam leaves in sample fields
(except for in Barbados, where yam plots were bigger and we increased sampling effort to
25 necrotic leaves for the sake of field size representativeness) during the day and placed
them in Eppendorfs filled with 2 mL of autoclaved V8 solutions. In the lab, we rinsed each
collected necrosis for 1 min in hypochlorite solution, followed by a 1 min bath in alcohol,
before two further rinsing steps of 1 min in distilled water [6]. We then placed necroses on
Petri dishes with S media to facilitate the growth of Colletotrichum strains. After 5 days, we
verified whether fungi belonged to the C. gloeosporioides complex based on conidia morphol-
ogy and placed study strains in V8 liquid culture media for three days at room temperature,
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then kept microtubes refrigerated at 4 ◦C for a few days before multiplication and DNA ex-
traction. The prevalence of C. gloeosporioides was very diverse in the sample fields, and was
on average 48.26% (range 7–88%). In 2016, DNA extractions were conducted from the V8
solutions, using a FastDNA kit (MP Biomedicals, Irvine, CA, USA) using Lysing Matrix A
for fungal cell lysis. Beforehand, we amplified via PCR the CaInt2, CgInt and ITS4 region to
confirm prior visual assessment by microscopy [38]. Every study strain correctly amplified
the expected fragment for C. gloeosporioides. Nevertheless, 3 strains also amplified fragments
diagnosing C. acutatum, and were further dismissed from the study sample. We genotyped
the strains for 4 microsatellite loci recently developed in the lab (markers Cg150, Cg68, Cg71,
Cg92) [36], with the following forward and reverse primers, respectively: TACCAGGGGTG-
GCAGCTC and GGTCCAGGGACTCAAGCTC for Cg150, TGGTCTGCTTCTCGACACTG
and AGCCAAGAGACCAAGCAAGA for Cg68, TGATGGTTGTCATGGGATTC and GAT-
CATGTCTCCATCCGCTC for Cg71 and CATTTTCCACAGCCCACAC and GCAGCAGGT-
GTGAGAAGAGA for Cg92. Genotypic stability was verified by randomly retesting with
secondary independent PCR amplification. The primers had PCR conditions consisting of
a denaturation stage at 95 ◦C for 5 min followed by 40 cycles at 95 ◦C for 30 s, 59 ◦C for
30 s, 72 ◦C for 30 s (more details in [36]).

The sample size was 560 sample strains in total from 58 yam fields, from 16 fields in
Guadeloupe (10.38 ± 6.6 strains per field, range 1–22), 18 fields in Martinique
(4.70 ± 3.2 strains per field, range 1–12) and 24 fields in Barbados (11.75 ± 5.5 strains
per field, range 2–22). Since there was a dramatic variation in strains sampled by fields,
the field was not further analyzed as a structuring level for genetic diversity. Genetic
analysis was run with hierfstat [40] in R [41]. We report here allelic diversity at each study
locus, population structure indices: Hs, local gene diversity; Ht, total gene diversity; Ht

′,
gene diversity corrected for sampling size; Dst, genetic distance among populations; Dst

′,
genetic distance among populations, corrected for sampling size; Fst, indice of structura-
tion; Fst

′, indice of structuration, corrected for sampling size; Dest, shared genetic diversity
among population, or Jost indice. We estimated migration rates with the following formula:
Nm = [(1/Fst)− 1]/2, adapted from Wright [42] by correcting for ploidy level (C. gloeosporioides
species being haploid, we divided by 2 where 4 is used in diploid populations, see [43]).
Lastly, we conducted a principal component analysis on individual genotypes frequencies
(centered, unscaled matrix) with hierfstat [40], to explore potential clustering occurring in
our dataset.

3. Results
3.1. Genetic Diversity

The extant of genetic diversity was very high for all populations, with the four loci
demonstrating high allelic richness (42 alleles for Cg150, 50 alleles for Cg68, 54 alleles for
Cg71 and 76 alleles for Cg92), a high share of these alleles among islands (see Figure 1,
though islands with lower prevalence such as Basse Terre and Marie Galante have lower
allelic diversity levels overall) and greater diversity in Barbados in general (Table 1).
Most alleles were nevertheless rare (low frequency), resulting in an important number
of diagnostic alleles for islands, and rarefied allele estimates averaged between 2 and 3
(Table 1).

As a consequence of this dramatic diversity level, most strains were characterized
by a unique genotype, and we counted only 20 multilocus genotypes shared among
Colletotrichum samples, up to 61 strains in total. Most identical multilocus genotypes
occurred in pairs or triplets (mean clonality level = 3.05 ± 1.80, range 2–8). Clonality
was thus representing about 10.89% of total samples, spread similarly among islands.
Interestingly, few clones were actually sampled within fields (two clones in Barbados, one
clone in Basse Terre, two clones in Grande Terre and two clones in Martinique), while
many clones were distributed in different fields within populations (a situation found nine
times in Barbados, three times in Basse Terre, three times in Grande Terre and three times
in Martinique). In a few cases, clones we sampled between different populations: three
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times between fields in Basse Terre and Grande Terre, and once between Grande Terre and
Barbados. The latter situations probably represented recent migration events.
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Figure 1. Variation in allelic diversity among study islands. Example from locus Cg150, truncated for
alleles over #25 (all are rare alleles mostly from Barbados).

Table 1. Summary statistics for allelic diversity and genetic structure among study islands. Number
of alleles (A), number of diagnostic alleles (not shared in other islands) (D) and rarefied allele numbers
(R) are indicated for each study locus. Fst (p-values of testing difference from 0 as superscripts) and
confidence intervals (95% CI) are produced. Populations behaving as panmictic locally (95% CI
includes 0) are indicated in bold. We give statistics for both Guadeloupe globally, or each Guadelou-
pean area individually (Basse-Terre, Grande-Terre and Marie Galante). Global Fst value is 0.095 with
95% CI [0.0285–0.168]. NS indicate non-significant departure from 0.

Cg150
(42 Alleles Total)

Cg68
(50 Alleles Total)

Cg71
(54 Alleles Total)

Cg92
(76 Alleles Total) Fst 95% CI

A D R A D R A D R A D R

Barbados 33 17 2.76 41 26 2.77 35 24 2.80 61 37 2.79 0.0016 NS −0.0425–0.0232
Guadeloupe 22 8 2.66 20 8 2.61 12 4 2.20 37 13 2.81 0.1606 <0.001 0.1010–0.2424

Basse Terre 8 0 2.69 6 0 2.54 2 0 1.25 10 0 2.78 0.2381 <0.001 0.0385–0.5275
Grande Terre 20 5 2.66 18 7 2.48 11 2 2.35 35 9 2.86 0.0832 NS 0.0136–0.1387

Marie Galante 9 0 2.62 5 0 2.8 3 1 3.00 10 1 2.79 −0.0745 NS −0.1022–0.0610
Martinique 12 1 2.23 6 0 2.54 22 13 2.84 11 1 2.25 0.1357 <0.001 0.0174–0.2492

Since allelic diversity was shared among populations, with the exception of diagnostic
alleles, and actually reached reasonably high levels everywhere, all loci had important
impacts on the structuration of genetic diversity in the Archipelago (local allelic richness
was important, but always lower than expected as a single theoretical panmictic population:
Hs was lower than Ht or Ht

′, and both Dst and Dst
′ show an important share variation

between populations for all loci, Table 2). As a result, both Fst, Fst
′ and Jost Dest estimates
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give evidence of a geographical effect of Archipelago condition, with signs of moderate to
strong genetic structuring of C. gloeosporioides (Table 2).

Table 2. Population structure statistics by locus. Ho and Fis cannot be documented for haploid species.

Hs Ht Ht
′ Dst Dst

′ Fst Fst
′ Dest

cg150 0.852 0.922 0.940 0.070 0.088 0.076 0.093 0.593
cg68 0.866 0.925 0.940 0.059 0.074 0.064 0.079 0.550
cg71 0.752 0.850 0.874 0.098 0.122 0.115 0.140 0.493
cg92 0.889 0.937 0.950 0.048 0.060 0.052 0.064 0.545

Overall 0.840 0.909 0.926 0.069 0.086 0.076 0.093 0.537

3.2. Estimates of Migration and Gene Flow

Since there was overall evidence of genetic structure in the islands (Table 2), we
calculated pairwise Fst values between study populations. There was indeed variation in the
extant of genetic structuration between islands (Table 3), and interestingly, the differences
were not consistent with geographic distance: for example, Barbados demonstrated smaller
values with Grande Terre and Marie Galante than with closer Martinique. Alternately,
geographically close populations had greater values (example: Basse Terre and Basse Terre,
Table 3). Lastly, both Grande Terre and Marie Galante populations hinted to behaving as a
single panmictic population with recurrent propagule exchange.

Table 3. Pairwise Fst values between study populations, and corresponding migration estimates.
Fst values below diagonal, and migration estimates above diagonal and in bold. The diagonal
indicates intra-population values for both Fst and migration between fields within islands. Overall
population structure was significantly different from 0 (p > 0.001).

Barbados Guadeloupe Martinique
Basse Terre Grande Terre Marie Galante

Barbados 332.8
0.0015 3.38 7.05 33.98 5.54

Basse Terre 0.129 1.60
0.238 9.15 5.39 1.71

Grande Terre 0.066 0.052 5.50
0.083 57.97 2.70

Marie Galante 0.0145 0.085 −0.0087 67.17
−0.0075 4.41

Martinique 0.083 0.226 0.156 0.102 3.18
0.136

We estimated migration rates based on pairwise Fst and values indicated a broad
variation in the number of migrating spores both within and between islands (Table 3).
These estimates suggest different processes, as migration between islands reflects the long-
distance dispersal and relative contribution of other genetic pools to local gene admixtures,
while migration estimates within islands reflect the ease with which spores can establish via
local dispersal, operating through altitude, climatic and vegetation constraints. Estimating
the average number of spores contributing to genetics and mating pools allowed us to
envision how gene flows link the different islands (Figure 2). Some flows are indeed much
lower than others, and there were strong asymmetries in the contribution of migration
between islands.

Overall, the dispersal within islands followed two contrasting trends: situations where
local dispersal was lower on average than long-distance migration (Basse Terre especially,
but also Grande Terre, and the similar but less marked Martinique), and situations where lo-
cal dispersal was greater than long-distance migration (Barbados, Marie Galante) (Figure 2).
We can safely assume that genetic dynamics for C. gloeosporioides complex in the Lesser
Antilles follow a metapopulation pattern with both source and sinks of strains. Since
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the pattern does not reflect the physical distance between islands (and does not hint at
isolation by distance), alternative hypotheses need to be developed, among which climate
and vegetation act as a local dispersal barrier, and winds as a major driver of gene flow for
long-distance dispersal (see discussion).
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Figure 2. Gene flow for Colletotrichum gloeosporioides among study islands. Upper values repre-
sent pairwise Fst estimates between populations. Lower values are estimated annual number of
migrant spores among islands. Flows are encoded both via colour (light grey = low migration rate,
dark grey = intermediate migration rate, black = high migration rate) and dash lines (small dash
line = low migration rate, medium dash line = intermediate migration rate, plain line = high migration
rate). Significant gene flows are thus Barbados to Marie-Galante and Marie Galante to Grande Terre.
Auto-arrows represent flow within populations (yam fields within island) and follow the colour code
described above. Islands are not following geographic arrangement for the sake of clarity (actual
geographic arrangement on the right map). Scale for Guadeloupe (Upper Island) is 20 km, scale for
Martinique (lower left) is 15 km, and scale for Barbados (lower right) is 10 km. Islands are grossly at
scale comparatively to each other. Scale for the Lesser Antilles is 200 km.

3.3. Genetic Clusters

Congruently with high levels of dispersal, clustering was not really altered by geogra-
phy, yet three independent genetic clusters emerged from our data, reflecting three sam-
pled Colletotrichum species from C. gloeosporioides complex in yam fields in the Caribbean
(Figure 3). Preliminary sequence analysis indicates that one of them is C. siamense, and a
second one is a currently undefined species (S. Guyader, personal communication) (work
in progress). All islands presented their share from two clusters (origins are interspersed
in both), in approximately similar proportions save for Martinique which demonstrated
no samples from the leftward cluster (Figure 3). Interestingly, one cluster (on the left)
is separated and stands alone, possibly as a true species and genetically isolated from
the other clusters (though this might otherwise be due to lack of sampling), while two
clusters seemed interconnected by numerous intermediate strains, strongly suggesting that
recombination between strains from both clusters is occurring at high enough frequency.
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Figure 3. Genetic clusters based on genotypic composition of study strains. Black colour illustrates
Guadeloupean strains, blue colour strains from Martinique and orange strains from Barbados. Labels
represent sample field, so that different strains may share the same label if they were sampled together
in the same field.

4. Discussion

Our results showed astonishingly high levels of genetic diversity of C. gloeosporioides
complex sampled on Yam in fields of three Caribbean islands from the Lesser Antilles
(Guadeloupe—Basse Terre, Grande Terre, Marie Galante, Martinique and Barbados). Allelic
diversity was rich enough to demonstrate both diagnostic alleles, sometimes to field level,
and importantly shared genetic components between islands. Clonality was nevertheless
relatively low, suggesting asexual multiplication is not contributing strongly to the local
structure at the field level, but that contamination occurs via many sources, most probably
from local vegetation. Genetic structure was strong, indicating that study populations
indeed function as distinct entities at least partially, yet also highlighted the importance
of long-distance migration (wind dispersal between distant islands), often with rates
greater than local dispersal (suggesting factors such as vegetation and local climate are
impeding propagation locally). Lastly, PCA highlighted three distinct genetic clusters,
indicative of the sampling of three putative species within the complex, with one cluster
fully differentiated while two clusters exhibited numerous intermediate genotypes thus
hinting to casual recombination between strains. Clusters were sampled in all the study
islands. We will discuss these results in the light of anthracnose disease management
on yams.

Genetic diversity levels were high, as expected given the propensity of microsatellite
markers to mutate. Furthermore, at field and population levels, allelic diversity was
more important than clonality, and most sampled strains had distinct genotypes. This
study is confirming earlier results based on RAPD markers in the same patho-system
(Yam/Colletotrichum) [37] or in other crops [26]. This stands in sharp contrast to most
crop diseases, where strains are fairly homogenous, genetically speaking, when epidemics
declare regionally (e.g., [44–46]). Here, clonality accounted only for approximately 10% of
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strains, and clones were often sampled as few units (multilocus genotype shared between a
few strains only, three on average). Moreover, clones were more often sampled between
than within fields (thus confirming the importance of dispersal as a structuring factor for
genetics in the species complex, see below). Most importantly, a low level of clonality
between strains is indicative of a high prevalence of sexuality and recombination compared
to asexual multiplication, despite a high capacity for multiplication via conidia from
necroses. The observation would occur if broad strain reservoirs accumulating fungi
diversity and local contamination dynamics co-occur, which seems to be the case with
Colletotrichum as prevalence in natural flora was shown to be particularly high [5]. This
pattern of diversity is at odds with most fungal diseases, where pathogenic strains are often
genetically homogenous and spread regionally on susceptible cultivars. In our case, the
genetic pool of strains is highly diverse, and as a result, putative aggressive strains can
declare new epidemics at any time. We should expect direct consequences for agriculture,
since this means the pool of potentially pathogenic strains is dramatic, and efforts toward
pyramiding resistance genes in varietal breeding may be circumvented faster [47], thus
reducing the durability of disease management via increased disease resistance. A possible
solution to this issue would be carefully planned varietal turnover at a regional level, to
reduce local pathogenic load impact and decrease anthracnose risk.

Migration rates were reasonably high, yet varied considerably between constitutive
populations, segregating situations where the intra-deme dispersal was lower than long-
distance migration, and conversely, situations where local dispersal was greater than
migration. Overall, these results suggest strong metapopulation dynamics [48], with some
key populations contributing heavily in genetic composition at broader scales (such is the
case of Barbados in our study). Monitoring these source populations, especially for strain
aggressiveness, may be an important strategy in disease control and management [49].
Long-distance dispersal was shown to occur in the region (Mexico to Trinidad, see [30]),
and dispersal may not. Our results suggest intra-population dispersal may be fairly low:
the population of Basse Terre has the lowest local dispersal, for example. This population
is geographically characterized by denser tropical humid and altitude vegetation, possibly
implying that forested vegetation increase the viscosity of the landscape in terms of spore
dispersal (trees as spore traps hypothesis [50]), or increased local adaptation requirements
compared to drier areas, or both. If this hypothesis holds scrutiny, then a simple disease
control strategy might be to increase recourse to trees in agriculture, for example planting
more hedges, and even the field if vegetation margins can become inoculum sources fol-
lowing fungi establishment [35]. Lastly, long-distance dispersal is an important driver of
the system. The Caribbean region is subjected to hurricane seasonality (during the rainy
season), so that Colletotrichum species may be seen as “storm riders” and following domi-
nant winds (northwards) as migration roads. This reinforces the importance of monitoring
source populations for disease risk estimation. A further hypothesis regarding wind-based
long-distance dispersal, not accounted for in the case of anthracnose to the best of our
knowledge, is that the Caribbean region is also casually and seasonally subjected to sand
mists originating from Sahelian West Africa (during the dry season, or Lent) [51]. Since sand
mists are known to help fungal spores travel in addition to sand [52], West Africa could
be another region contributing to the genetics of Colletotrichum species in the Caribbean,
and this phenomenon should be the focus of further research, especially focusing on Ivory
Coast where D. alata is also the dominant yam cultivated as in the Caribbean islands [53].
In summary, long-distance dispersal is a very important component of anthracnose dynam-
ics [30], and can possibly jeopardize management and control practices. Possible solutions
may involve creating agriculture environments with decreased dispersal, such as greater
recourse to hedges and forested areas.

Principal component analysis yielded three genetic clusters representing putative
species on yams, all grossly distributed in sampled islands, and broadly coexisting locally
at field level, though one species seemed not sampled in Martinique. Interestingly, one
of these clusters is standing apart, while the two others show signs of genetic admixing
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and recombination for a significant number of sample strains. It is worth noticing that
Colletotrichum spp. are known to casually recombine [54,55] and that species delineation,
as in other fungi, is sometimes a blurry concept. In our initial dataset, three strains
amplified both fragments allegedly delineating two species complexes (C. gloeosporioides and
C. acutatum) [55], though both are known to be closely related and are sometimes a source
of taxonomic confusion if the shape of conidia is the only criterion. Here, our results show
that recombination might be more frequent between putative species within complexes (as
an approximation, 40/560~7.14%, nearly the same level as clonality in the study sample)
Colletotrichum species are indeed notoriously hard to define, and while the approach
of morpho-species developed by von Arx [13] allows gross delineation of complexes,
current standing involves sequencing to reach ‘adequate’ taxonomic evaluation. Our results
nevertheless suggest that none of morpho-species and sequencing approaches [56] would
be fair enough to delimit real species entities, and will be either too liberal (morpho-species
line) or possibly too conservative (sequencing/barcoding) in assessing the real diversity of
Colletotrichum species (and therefore, overestimate diversity in the Genus). Our team usually
favours a morpho-species approach to understand the ecology of C. gloeosporioides species
complex (e.g., [5,6,36]), and we thus call for more flexibility and inclusion of a diversity of
stances and viewpoints regarding the complex issue of Colletotrichum genus worldwide.
Evaluating the frequency of recombination events both within species complexes and
between species complexes is a promising avenue of research in our quest to understand
the biology of these important crop pests.

5. Conclusions

Strains from the C. gloeosporioides complex sampled in Water Yam fields in the Lesser
Antilles were genetically highly diverse and demonstrated a dominance of sexual reproduc-
tion over clonality and asexual multiplication. Lesser Antilles populations are structured,
with important long-distance migration, viscosity in local dispersal probably due to vege-
tation acting as natural barriers. Some populations (Barbados) are propagule sources at
a regional scale. Three species coexist on Yams, but there is strong evidence of recombi-
nation between some of them, furthering the importance of sex events in the dynamics of
recombination in the Genus and increasing diversity in rich reservoir pools, thus raising
anthracnose disease risk. Potential metapopulation functioning in the Caribbean suggests
that anthracnose control will be difficult to sustain only by increasing genetic resistance in
varieties, though potential solutions exist to manage risk include: i/careful monitoring of
strain skill in inoculating yams aggressively, especially in source populations; ii/increasing
viscosity of dispersal in the landscape by increasing vegetation/tree cover; and iii/a re-
gional varietal scheme allowing rotation of cultivars with different resistance levels to avoid
local matching of Colletotrichum strains and yams.
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