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Key Points:

• Novel approach for regional calibration of a distributed hydrologic model using learnable and non-linear
descriptors-to-parameters mappings

• Original combination of numerical adjoint model and neural network Jacobian: accurate gradients enable
high-dimensional optimization

• Extensive case study in flash-flood-prone Mediterranean region shows effective regionalization of high-resolution
model with neural network

Abstract
Estimating spatially distributed hydrological parameters in ungauged catchments poses a challenging regionalization
problem and requires imposing spatial constraints given the sparsity of discharge data. A possible approach is to
search for a transfer function that quantitatively relates physical descriptors to conceptual model parameters. This
paper introduces a Hybrid Data Assimilation and Parameter Regionalization (HDA-PR) approach incorporating
learnable regionalization mappings, based on either multi-linear regression or artificial neural networks (ANNs),
into a differentiable hydrological model. This approach demonstrates how two differentiable codes can be linked
and their gradients chained, enabling the exploitation of heterogeneous data sets across extensive spatio-temporal
computational domains within a high-dimensional regionalization context, using accurate adjoint-based gradients.
The inverse problem is tackled with a multi-gauge calibration cost function accounting for information from multiple
observation sites. HDA-PR was tested on high-resolution, hourly and kilometric regional modeling of 126 flash-flood-
prone catchments in the French Mediterranean region. The results highlight a strong regionalization performance of
HDA-PR especially in the most challenging upstream-to-downstream extrapolation scenario with ANN, achieving
median Nash-Sutcliffe efficiency (NSE) scores from 0.6 to 0.71 for spatial, temporal, spatio-temporal validations,
and improving NSE by up to 30% on average compared to the baseline model calibrated with lumped parameters.
Multiple evaluation metrics based on flood-oriented hydrological signatures also indicate that the use of an ANN
leads to better performances than a multi-linear regression in a validation context. ANN enables to learn a non-
linear descriptors-to-parameters mapping which provides better model controllability than a linear mapping for
complex calibration cases.

1 Introduction

Irrespective of their type and complexity, hydrological models are more or less empirical and uncertain represen-
tations of multiscale coupled hydrological processes whose observability is limited. Hydrological model parameters
are in general effective quantities that cannot be directly measured. Instead, they are typically inferred through a
calibration procedure aimed primarily at obtaining satisfactory streamflow simulations (e.g., Beven (2001); Kirch-
ner (2006); Gupta et al. (2006); Vrugt et al. (2008)). In most cases, this optimization problem is a difficult ill-posed
inverse problem faced with the equifinality (Beven, 2001) of feasible solutions, which can be further interpreted as
model structural equifinality and spatial equifinality in the context of spatially sparse observations compared to
model controls (see for example discussions in Garambois et al. (2020)). Most calibration approaches enable the
estimation of low-dimensional spatially uniform model parameters for a single gauged catchment, which may lead
to piecewise constant and discontinuous parameters fields for several adjacent gauged catchments treated separately
in optimization for instance. Moreover, parameter sets determined through calibration are not transferable to un-
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gauged locations although the latter represent the majority of the global land surface (Fekete & Vörösmarty, 2007;
Hannah et al., 2011). Therefore, prediction in ungauged basins remains a “grand challenge” (Sivapalan, 2003) in
hydrology (Hrachowitz et al., 2013), which hinders the development of effective high-resolution models adapted to
the simulation of hydrological extremes in a context of high data uncertainty (e.g., for Mediterranean flash floods
in Garambois et al. (2015); Jay-Allemand et al. (2024)).

The estimation of hydrological model parameters in ungauged regions is performed with so-called regional-
ization approaches that exploit and transfer hydrological information from gauged to ungauged catchments using
various descriptors of catchments physical properties (see reviews in Blöschl et al. (2013); Samaniego et al. (2010);
Hrachowitz et al. (2013); Beck et al. (2020)). The most widely used approach in early regionalization studies involves
independent catchment-by-catchment calibrations, followed by multiple regression or interpolation techniques to
transfer the calibrated parameter sets from gauged to ungauged locations (Abdulla & Lettenmaier, 1997; Seibert,
1999; Parajka et al., 2005; Razavi & Coulibaly, 2013; Parajka et al., 2013) and can be called post-regionalization
(Samaniego et al., 2010). This approach presumes that the variability of calibrated model parameters through the
catchments is related, for instance, to spatial proximity (Widén-Nilsson et al., 2007; Oudin et al., 2008), and phys-
ical or climatic similarity (Oudin et al., 2010; Beck et al., 2016). Statistical learning methods, including machine
learning models and artificial neural networks (ANNs), have also been applied in post-regionalization to explore
the relationships between physical descriptors and calibrated parameter sets at gauged locations (e.g., Bastola
et al. (2008); Saadi et al. (2019); Wang et al. (2023)). However, post-regionalization approaches are limited to
lumped parameters, thus ignoring within-catchment variabilities (see reviews in Samaniego et al. (2010); Razavi
and Coulibaly (2013)), except when calibrated parameters correspond to tuning factors of physical pedotranfer
functions or hydraulic frictions correspondence tables (see Garambois et al. (2015) for details). The identification
of transfer functions in post-regionalization is complicated by the uncertainty of estimated parameter sets, while
spatial proximity is mostly applicable to densely gauged river networks and regions (Oudin et al., 2008; Reichl et
al., 2009). Moreover, incorporating a statistical learning process, especially unsupervised learning approaches, in
the post-regionalization step can exacerbate existing issues such as parameter biases induced by data measurement
errors (Kavetski et al., 2006a). A regionalized calibration simultaneously exploiting the information of multiple
gauges, within spatial clusters defined a priori from descriptors, is performed in Huang et al. (2019) over Norway
using climatic similarity. The parameters calibrated over multiple gauges of a climatic zone are applied to ungauged
catchments of the same zone. This approach does not account for hydrological heterogeneity within the catchments
or within the regional clusters determined by physical similarity, which can have a major impact on forecasting, in
particular for extreme floods (Garambois et al., 2015; Jay-Allemand et al., 2024).

The simultaneous regionalization approach involves optimizing a transfer function between physical descriptors
and model parameters (cf. Hundecha and Bárdossy (2004); Götzinger and Bárdossy (2007); Bastola et al. (2008);
Samaniego et al. (2010)). In this case and contrarily to post-regionalization, the descriptors-to-parameters mapping
is the first trainable operator of the forward hydrological model. This approach enables overcoming most of the
aforementioned problems and has been applied in several studies. For instance, it has been used for regionalizing
semi-distributed models such as HBV in Hundecha and Bárdossy (2004) or in Götzinger and Bárdossy (2007) who
introduced monotonicity and Lipschitz condition into the optimization problem to constrain the inferred spatial
fields. A multiscale parameter regionalization (MPR) method, combining descriptors maps, spatial upscalings
functions and regionalization transfer functions in the form of multivariate mappings from descriptors, has been
proposed by Samaniego et al. (2010). This method is implemented within a spatially distributed multiscale hydro-
logical model (mHM) and later applied to over 400 European catchments at 0.25◦ spatial resolution in Rakovec et
al. (2016). The MPR approach, providing consistent (seamless) parameter and flux fields across scales (Samaniego
et al., 2017), imposes a spatial regularization effect through a strong constraint in the forward model (upscaling laws
and regionalization transfer functions). Such a regularization is needed when working with spatially distributed
hydrological models and spatially sparse discharge data leading to overparameterized optimization problems. Like-
wise, De Lavenne et al. (2019) discussed regularization and calibration from nested gauges for semi-lumped models
and proposed a sequential optimization strategy from upstream sub-basins to downstream basins with upstream
parameters relaxation. In the case of a fully distributed model calibrated with a variational data assimilation
(VDA) algorithm, overparameterization issues are typically addressed using classical regularization with a back-
ground term (Jay-Allemand et al., 2020) or with a physiographic regularization term (Jay-Allemand et al., 2024)
in the cost function. This approach induces weak constraints on the optimization problem and is not sufficient for
effective spatial extrapolation to ungauged basins.

The MPR method of Samaniego et al. (2010) has also been used with other gridded hydrological models in
large sample applications. For example, Mizukami et al. (2017) calibrate the VIC model at a resolution of 0.125◦

over 531 headwater catchments (area < 2, 000 km2) in the contiguous US area, using a lumped regionalization
approach. Another example is Beck et al. (2020), who calibrate the HBV model at 0.05◦ resolution over 4,229
headwater catchments (area < 5, 000 km2) worldwide. In their study, they categorize the catchments into three
climatic groups and perform tenfold cross-validation using 90% of the gauged catchments. While these studies
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applied MPR deterministically, in Lane et al. (2021), the MPR method is applied within the generalized likelihood
uncertainty estimation (GLUE) framework, with a high-resolution HRU model (DECIPHeR framework proposed
by Coxon et al. (2019)) at daily time resolution over a large sample of 437 catchments in the UK. However, the
routing module in this study is calibrated separately with a simple random sampling approach. In Mizukami et al.
(2017), the runoff routing model is a gamma distribution function with two parameters that are “directly calibrated
for each basin”. The same remark can be made for Beck et al. (2020), with HBV discharge modeling at a daily
time step on headwater catchments without any routing modeling. Therefore, those regionalization studies focus on
lumped rainfall-runoff modeling at a daily time step for mostly headwater catchments whose characteristic response
time scale might be shorter, or on more complex spatially distributed land surface modeling (LSM, including soil
moisture and evaporation modeling in addition to river discharge) applied at regional or country scale still at a
daily time step (mHM, e.g., Boeing et al. (2022), or VIC).

In all the above studies, state of the art optimization or sampling algorithms are used, especially the Shuffle
Complex Evolution algorithm (SCE) (Duan et al., 1992) in Mizukami et al. (2017), or the Distributed Evolutionary
Algorithms (DEAP) (Fortin et al., 2012) in Beck et al. (2020), or the GLUE framework with a random sampling
approach in Lane et al. (2021). Those algorithms are applicable with low-dimensional controls only, which limits
the affordable number of descriptors and the spatialization of regional transfer parameters (that are lumped in
all methods above), and more importantly, which limits the affordable complexity of the regionalization operator.
Higher complexity regionalization mappings achieved with neural networks have been shown promising for daily
lumped modeling over large samples with pure long short-term memory (LSTM) hydrological model structure
(e.g., Kratzert et al. (2018); Hashemi et al. (2022)), or hybrid structures including physical laws (e.g., Jiang et
al. (2020); Feng et al. (2022); Tsai et al. (2021)). Nevertheless, the need for spatially distributed modeling and
for higher spatio-temporal resolution (e.g., hourly and kilometric scales) is crucial to capture spatial variability in
rainfall, land use, soil properties, and hydrological processes which lumped models fail to represent (e.g., Clark
et al. (2015); Melsen et al. (2016)). The integration of an ANN-based regionalization operator into a spatially
distributed differentiable hydrological model with routing remains a difficulty. Even though this comes with the
challenge of high-dimensional parameter spaces, which significantly increases the complexity and computational cost
of the optimization process, gradient-based algorithms are efficient approaches for solving such high-dimensional
inverse problems, and their potential has been demonstrated in optimization of spatial parameters of differentiable
hydraulic models (Monnier et al., 2016), or spatially distributed differentiable hydrological models (Castaings et
al., 2009; Jay-Allemand et al., 2020; Colleoni et al., 2022). They crucially need accurate estimates of cost gradients,
i.e., gradients of the cost (objective) function with respect to the sought parameters, which can be spatialized and
of large dimension. Such gradients can be computed with an adjoint model for example obtained by Fortran source
code differentiation in Castaings et al. (2009); Monnier et al. (2016); Jay-Allemand et al. (2020); Colleoni et al.
(2022). Note that a key property of neural networks is their differentiability, which makes them compatible with
VDA frameworks that rely on differentiable geophysical models (cf. Monnier et al. (2016); Feng et al. (2022); Song
et al. (2024)). Moreover, the intrinsic capability of neural networks to extract multi-level information from large
data set (LeCun et al., 2015) and to perform non-linear multivariate regressions (e.g., Gemperline et al. (1991))
makes them promising candidates to learn effective non-linear descriptors-to-parameters regionalization functions
for spatially distributed differentiable hydrological modeling.

A novel approach called HDA-PR (Hybrid Data Assimilation and Parameter Regionalization) is presented
in this article. The word “hybrid” refers to the incorporation of machine learning methods into a deterministic
hydrological model for parameter regionalization. HDA-PR relies on seamless regional optimization algorithms for
learning complex transfer functions between physical descriptors and conceptual parameters of spatially distributed
hydrological models, applicable at high-resolution with spatial constraints of various rigidity to address the spatial
equifinality issue. It is designed to exploit the informative content of massive heterogeneous data sets over large
spatio-temporal computational domains, and is therefore adapted to solving high-dimensional inverse problems.
Our approach leverages information from multi-site river flow observations and high-resolution data on a 1 km2

and 1 h resolution grid, relying on the original combination of the following ingredients:

• Learnable regionalization functions via the introduction into the direct hydrological model of an explicit
tunable mapping between heterogeneous physical descriptors and spatially distributed conceptual parameters.
This mapping allows estimating parameter values while imposing a constraint on their spatial variability,
via the use of physical descriptors and a priori knowledge. Multivariate polynomial regressions and neural
networks are employed to learn such a complex non-linear descriptors-to-parameters mapping.

• A differentiable spatially distributed hydrological model into which the regionalization operators have been
implemented. This enables the computation of accurate, spatially-distributed gradients of the calibration
cost (objective) function, with respect to the sought regionalization parameters, which can be of high dimen-
sion. Obtaining accurate gradients for such high-dimensional parameters is crucially needed for optimization
algorithms.
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The original combination of the above ingredients amounts to introducing regionalization transfer functions
into a VDA algorithm (similar to the tunable differentiable mappings in hydraulic VDA algorithms (Monnier et
al., 2016; Garambois et al., 2020)) dedicated to spatially distributed hydrological modeling and high-dimensional
inverse problems. This has seldom been investigated especially for regional hydrological learning from multi-site
data. The strength of HDA-PR lies in its capability to learn complex relations between physical descriptors and
conceptual parameters of spatially distributed models in the context of structural and spatial parametric equifinality.
Additionally, our approach aims at ensuring that the hybrid data assimilation algorithm, which integrates an
explainable learning process, produces results that can be physically interpreted (Larnier & Monnier, 2020; Höge
et al., 2022; Fablet et al., 2021; Althoff et al., 2021). It is able to enhance calibration scores with deep learning
from large heterogeneous data sets while maintaining their physical interpretability.

The research questions investigated in this article are the following:

• Does the embedding of neural network-based regionalization transfer functions within a spatially distributed
differentiable hydrological model enable using VDA to extract relevant information from physical descriptors
and discharge time series at multiple gauges? And does it provide effective spatial constraints to avoid
spatial overparameterization in the inverse problem, leading to effective and interpretable regional maps of
conceptual hydrological parameters for modeling gauged and ungauged catchments?

• How do neural networks compare, in terms of modeling performances in calibration and spatio-temporal
extrapolation, to a simple multi-gauge calibration approach with spatially uniform model parameters or to a
linear multivariate regression on physical descriptors, that is, transfer functions of an equivalent complexity
to the one used by, for example, Beck et al. (2020)?

To assess the proposed HDA-PR approach and to study the research questions above, the evaluation procedure
adopted in this work considers challenging regionalization problems over a relatively large set of 126 flash-flood
prone catchments in the French Mediterranean region, for an hourly and kilometric distributed hydrological model.
It is a high-resolution hydrological modeling problem compared to existing studies with daily rainfall-runoff or
LSM models for regional to continental coverage. Moreover, it is a difficult case because of very sudden and non-
linear hydrological responses with significant spatial variabilities (e.g., Garambois et al. (2015)). Performances are
assessed by means of multiple evaluation metrics including flood event hydrological signatures (Huynh, Garambois,
Colleoni, & Javelle, 2023). We address the following aspects of the HDA-PR approach: (i) performance at gauged
and ungauged sites during calibration and validation time periods; (ii) factors determining the performance; and
(iii) spatial patterns of the regionalized parameters in relation to information extraction from physical descriptors.

The remaining sections of this paper are organized as follows: section 2 describes the HDA-PR algorithms and
the SMASH spatially distributed hydrological assimilation platform into which they have been implemented. In
section 3, we present the case studies based on two calibration setups and analyze the performance of HDA-PR
using different regionalization mappings. Subsequently, in section 4, we discuss compelling findings based on the
results from the previous section. Finally, in section 5, we conclude our work and outline potential future research
directions.

2 Forward-Inverse Algorithms

This section presents the forward model and inverse algorithms of the proposed HDA-PR method. An algorithm
flowchart is provided in Figure 1 to help in global understanding.

First, the differentiable forward model consists in: (i) a parsimonious and robust spatially distributed GR-
like conceptual hydrological model structure, composed of GR hydrological operators (“Génie Rural” lumped
models cf. Perrin et al. (2003)) applied at pixel scale for runoff generation, and a simple pixels-to-pixel routing
scheme, the whole hydrological model being differentiable (Jay-Allemand et al., 2020; Colleoni et al., 2022); and (ii)
regionalization operators, consisting of either multivariate polynomial regressions or neural networks, for mapping
descriptors onto hydrological model parameters. The calibration cost function adapted to multi-site (and potentially
multi-source) observations is then defined. The inverse optimization algorithms, that use the spatially distributed
gradients of the cost function with respect to model parameters, are capable of dealing with high-dimensional inverse
problems such as encountered with tunable parameters of regionalization descriptors-to-parameters mappings.

The core strength of HDA-PR is the use of differentiable descriptors-to-parameters transfer functions, especially
in the form of neural networks, and the capability to automatically compute accurate cost gradients. The latter
enables the use of gradient-based variational optimization algorithms with high-dimensional regional parameter
vectors. The method is applicable to any differentiable forward model as well as to multi-source heterogeneous
data sets, and hence constitutes a powerful data assimilation framework.
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Figure 1. Flowchart of the forward-inverse algorithm used in HDA-PR. The forward hydrological model is a gridded

model (spatio-temporal regular grid at 1 km2 and 1 h) using GR operators (Perrin et al., 2003).

2.1 Forward Model with Regionalization

First, let Ω ⊂ R2 denote a 2D spatial domain that can contain multiple catchments, both gauged and ungauged,
with a minimum of one gauged catchment, and t > 0 the physical time. In what follows, the vector of spatial
coordinates over Ω is denoted x. The number of active cells within the spatial domain Ω is noted Nx. A 2D flow
directions map DΩ is obtained from terrain elevation processing and will be used for runoff routing, with the only
condition that a unique point in the regular mesh TΩ has the highest drainage area.

Consider observed discharge time series Q∗
g(t) at NG observation cells of coordinates xg ∈ Ω, g = 1..NG

(NG ≥ 1). For each observation cell, the corresponding gauged upstream sub-catchment is noted Ωg so that

Ωung = Ω \
(
∪NG
g=1Ωg

)
is the remaining ungauged part of the whole spatial domain Ω. Note that this definition is

suitable for the general regionalization case dealing with spatially independent and/or nested gauged catchments.

Then, the forward model M can be defined as a multivariate function obtained by partially composing a
hydrological modelMrr with a regionalization operator FR to compute hydrological parameters θ such that:

M =Mrr ( . , θ = FR ( . )) (1)

Let us now introduce and detail the hydrological model and the regionalization operator along with their input
variables.

The rainfall and potential evapotranspiration fields are respectively noted P (x, t) and E (x, t), ∀x ∈ Ω. The
hydrological model Mrr is a dynamic operator projecting the input fields P (x, t) and E (x, t), given an input
drainage plan DΩ (x), onto an output field U(x, t), which comprises the discharge field Q (x, t) and state fields
h (x, t). This is such that, for all (x, t′) ∈ Ω× [0, t]:

U (x, t) = (h,Q) (x, t) =Mrr [(DΩ,θ)(x); (P ,E)(x, t′),h(x, 0), t] (2)

where θ is the Nθ-dimensional vector of model parameters 2D fields that we aim to estimate regionally with the
new algorithms proposed below, and h is the NS-dimensional vector of internal model states. In this study, the
distributed hydrological model Mrr is a parsimonious GR4-like conceptual structure (Perrin et al., 2003), which
is the spatialized “S-GR4” structure presented in the documentation of SMASH (Colleoni et al., 2024). The
hydrological parameters vector ∀x ∈ Ω is:

θ (x) = (cp(x), ct(x), kexc(x), llr (x))
T

where the four spatially varying parameter fields are the capacity of the production reservoir (cp in [mm]), the
capacity of the transfer reservoir (ct in [mm]), the parameter (kexc in [mm/dt]) of the non-conservative water
exchange flux, and the linear routing parameter (llr in [min]).
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In order to constrain and explain these spatial fields of conceptual model parameters θ(x) from descriptors
D(x), we introduce a regionalization operator FR that is a descriptors-to-parameters mapping such that:

θ (x) = FR(D (x) ,ρ), ∀x ∈ Ω (3)

with D the ND-dimensional vector of physical descriptor maps covering Ω, and ρ the vector of tunable regional-
ization parameters that is defined below.

Two types of regionalization operators are used in HDA-PR (see Figure 1):

1. A set P of multivariate polynomial regression operators for each parameter of the forward hydrological model
(Equation 2):

θ(x,D,ρ) := P (D(x),ρ) ≡
[
(θk(x,D,ρk))

Nθ

k=1

]T
, ∀x ∈ Ω;

θk(x,D,ρk) := sk

(
αk,0 +

ND∑
d=1

αk,dD
βk,d

d (x)

)
, ∀k ∈ [1..Nθ]

(4)

with sk(z) = lk + (uk − lk)/ (1 + e−z) , ∀z ∈ R, a transformation based on a Sigmoid function with values in
]lk, uk[, thus imposing bound constraints in the direct hydrological model such that lk < θk(x) < uk, ∀x ∈ Ω.
The lower and upper bounds lk and uk, associated to each parameter field θk of the hydrological model
(Equation 2) are assumed spatially uniform for simplicity here. The regional control vector to be estimated
in this case is:

ρ ≡
[
(ρk)

Nθ

k=1

]T
≡
[(

αk,0, (αk,d, βk,d)
ND

d=1

)Nθ

k=1

]T
(5)

2. An ANN denoted N , consisting of a multilayer perceptron, aimed at learning the descriptors-to-parameters
mapping such that:

θ(x,D,ρ) := N (D(x),W , b) ,∀x ∈ Ω (6)

where W and b are respectively weights and biases of the neural network composed of NL dense layers.
The architecture of the neural network and the forward propagation is detailed in Appendix B and Equa-
tion B2. Note that an output layer consisting of a scaling transformation based on the Sigmoid function
(cf. Equation B1) enables the imposition of bound constraints on the kth-hydrological parameters, i.e.,
lk < θk(x) < uk, ∀x ∈ Ω. The regional control vector in this case is:

ρ ≡ [W , b]
T ≡

[
(W j , bj)

NL

j=1

]T
(7)

For each regionalization operator (Equation 4 or 6), the regional calibration problem consists in optimizing
(in a sense defined below) the regionalization control ρ (Equation 5 or 7) that can be of relatively high dimension
since it is proportional to the number of descriptors (ND), the number of model parameters (Nθ), and the degree
of spatialization of the regional controls. Optimization algorithms adapted to the high-dimensional problems of
interest, taking advantage of accurate spatially distributed gradients computation with the adjoint of the forward
model, are detailed thereafter. Importantly, note that by definition of the mathematical model (differentiable
hydrological model, cf. Jay-Allemand et al. (2020), combined with embedded neural networks or polynomial
regionalization functions which are differentiable) and given the numerical implementation rules followed, the
forward numerical model is differentiable. This is a necessary condition for computing cost gradients with respect
to spatially distributed hydrological parameters and obtain those of regional controls, as needed for solving the
optimization problem. This is a key idea and property of our proposed algorithms.

The numerical resolution of the ordinary differential equation (ODE)-based operator of the forward hydrological
model (Equation 2) relies on an explicit expression of its solution, approximated on the regular mesh TΩ of constant
step dx with a fixed time step dt. All physical descriptors are mapped onto model grid for simplicity here.

Note that adding an upscaling operator after the regionalization scheme (as done in Samaniego et al. (2010))
is feasible in HDA-PR under the condition that it is differentiable (at least numerically), and is a potentially
interesting topic for further research, as is improving observation operators. In both cases one could use algebraic
expressions or neural networks in the HDA-PR assimilation framework.

2.2 Calibration Cost Function

A calibration cost function is defined to measure the misfit between simulated and observed discharge time
series, respectively noted Qg(t) and Q∗

g(t), for g ∈ 1..NG gauged cells. In order to measure the discrepancy between
observed and simulated quantities from multiple observation sites, we consider the cost function:

J =

NG∑
g=1

wgJ
∗
g (8)
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with wg a weighting function explained afterwards, J∗
g a local quadratic metric “at the station”, here 1 − NSE

or 1 − KGE2 (the latter being only used in validation in the case study of section 3, see Appendix A). This
NSE-based calibration cost function is a quadratic differentiable and convex function, involving the response of
the direct model. It depends on the control vector ρ through the direct model M (Equation 1) composed of the
regionalization operator FR (Equation 3) and the direct hydrological modelMrr (Equation 2).

The multi-site calibration corresponds to NG > 1 while NG = 1 is the classical single-gauge calibration. For
NG > 1, the weighting wg is defined such that

∑NG

g=1 wg = 1.

2.3 The VDA Algorithm

The VDA aims at estimating the unknown input parameter ρ of the descriptors-to-parameters transfer func-
tions FR embedded into the hydrological model Mrr and predicting hydrological parameters θ(x),∀x ∈ Ω from
physical descriptors maps D(x), by minimizing the discrepancy between the modeled and observed discharges at
multiple gauges. The cost function J (U (ρ)) to optimize depends on the regional control ρ through the response
U (ρ) =Mrr (., θ = FR (ρ)) of the forward model that combines the hydrological modelMrr and the regionaliza-
tion operator FR. The VDA inverse problem is written as the following convex optimization problem of the control
vector ρ:

ρ̂ = argmin
ρ

J (U (ρ)) (9)

The calibration of this regional control ρ aims to (i) reduce the misfit between observed and simulated discharges
at spatially sparse gauging stations, as evaluated by Equation 8, while (ii) determining the hydrological parameter
maps θ(x) for discharge modeling at any ungauged sites, thereby benefiting from the information extracted from
physical descriptors D(x), and spatial constraints induced by the regional transfer functions, whose parameters
ρ are being optimized. The regionalization operator can be expressed as either (i) a multi-polynomial mapping
FR ≡ P (Equation 4), or (ii) an artificial neural network FR ≡ N (Equation 6). For both formulations of the
regionalization operator, the regional control vector ρ to optimize is large, and gradient-based optimization methods
adapted to high-dimensional inverse problems are employed and detailed thereafter.

Note that the inverse problem 9 is a VDA optimization problem in the sense that it seeks to optimally
combines observations (here discharge series Q∗

g=1..NG
at NG multiple gauges) with a model (here of Equation 1).

While the NSE-based cost function defined earlier is not built upon explicit probabilistic assumptions, it can be
shown (Kavetski et al., 2006a) that the minimization in Equation 9 is equivalent to maximizing the posterior
density p (ρ|Q∗) of the parameter ρ given observations Q∗ under the assumptions of independent and identically
distributed Gaussian errors at each gauge, spatially independent errors and no prior information. This probabilistic
interpretation highlights a set of assumptions that could certainly be improved upon, and opens the way for more
advanced probabilistic models that would explicitly recognize the various sources of uncertainty affecting the model
and the surrounding data (forcings and responses). This is further discussed in section 4.

2.3.1 Optimization Algorithm for Polynomial Regionalization

In this case, the forward model includes the polynomial descriptors-to-parameters mapping (Equation 4), i.e.,
FR ≡ P and the regional control vector is:

ρ := [αk,0, (αk,d, βk,d)]
T
,∀(k, d) ∈ [1..Nθ]× [1..ND]

The optimization problem, represented in Equation 9, is solved using the L-BFGS-B algorithm (limited-memory
Broyden–Fletcher–Goldfarb–Shanno bound-constrained) (Zhu et al., 1997). This algorithm is specially adapted to
the high-dimensional parameter space, and in this study, there are no bound constraints on the values of αk,.,
whereas the exponents βk,d are simply sought between 0.5 and 2. This algorithm requires the gradient of the cost
function with respect to the sought parameters∇ρJ . This gradient is computed by a single run of the adjoint model,
which is obtained by automatic differentiation (AD) using the Tapenade engine (Hascoet & Pascual, 2013). The
entire process is implemented in the SMASH Fortran source code, where the full forward modelM≡Mrr (.,P (.))
is a composition of both the hydrological model and the polynomial descriptors-to-parameters mapping.

The background value ρ∗, used as a starting point for the optimization, is set using a spatially uniform solution
θ̄
∗
, which is obtained by a simple global optimization algorithm (Michel, 1989) of the inverse problem (Equation 9)

whereM≡Mrr and ρ := θ̄, as follows:

ρ∗ ≡
[
αk,0 = s−1

k

(
θ̄k

∗)
, (αk,d = 0, βk,d = 1)

]T
,∀(k, d) ∈ [1..Nθ]× [1..ND]

where s−1
k (z) = ln

(
z−lk
uk−z

)
is the inverse Sigmoid.

The termination criterion is determined based on the satisfaction of at least one of the following criteria:
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• Maximum number of iterations;
• Cost function criterion: J(i)−J(i+1)

max(|J(i)|,|J(i+1)|,1)
≤ ϵ× 106 (e.g., ϵ ≈ 2.22× 10−16);

• Gradient criterion: ||∇ρJ
(i)||∞ ≤ 10−12

where J (i), ||∇ρJ
(i)||∞ are respectively the cost value and its projected gradient at iteration i, and ϵ represents the

machine precision.

2.3.2 Optimization Algorithm for Neural Network-based Regionalization

In this case, the forward model includes a descriptors-to-parameters mapping performed with a neural network,
i.e., FR ≡ N and the regional control vector is ρ := [W , b]

T
. The optimization problem (Equation 9) can typically

be solved using the Adam optimization algorithm (Kingma & Ba, 2014), an efficient stochastic gradient descent
algorithm able to adapt the learning rate based upon the first and the approximation of the second moments of
the gradients for fast convergence, and only requiring the first order gradients of the cost function. In the present
case, the cost function writes as:

J (U (ρ)) = J
(
Q∗,Mrr(. , θ = N (D,ρ))

)
(10)

This formulation of the cost function highlights its dependency on the forward model M ≡ Mrr (.,N (.)),
which is composed of two components in its numerical implementation: (i) an ANN implemented in Python, which
produces the output θ used as input by (ii) the hydrological model Mrr implemented in Fortran. In order to
optimize J , its gradients with respect to ρ are required. The main technical difficulty here is to achieve a “seamless
flow of gradients” through back-propagation. To overcome this, we divide the gradients into two parts and apply
the chain rule with analytical derivation and numerical code differentiation (cf. hybrid VDA course in Monnier
(2021) and references therein). First, ∇θJ can be computed via the automatic differentiation (AD) applied to
the Fortran code corresponding to Mrr. Then, ∇ρθ is simply obtained by analytical calculus applicable given
the explicit architecture of the ANN, consisting of a multilayer perceptron. Finally, the two gradients can be
combined as ∇ρJ = ∇θJ.∇ρθ, where the AD-based Fortran code and the neural network are connected via a
Python-Fortran interface (here with f90wrap wrapper (Kermode, 2020)). The background value ρ∗ in this case is
randomly initialized using a specific method, which will be discussed later. The termination criterion is determined
by a specified number of training epochs in the optimization algorithm. A detailed explanation of the network
architecture, backward propagation, and the optimization process can be found in Appendix B.

3 Data and Numerical Experiment

3.1 Study Area and Experimental Design

The performance of HDA-PR in terms of discharge modeling but also in terms of its capability to extract
information from data to estimate conceptual model parameters is analyzed over the French Mediterranean region.
The performance of three regionalization methods is compared: a simple multi-gauge calibration approach for
spatially uniform model parameters (Uniform), and two variants of HDA-PR. This first variant (Multi-linear) uses
linear multivariate regression on physical descriptors, i.e., transfer functions of the same complexity as those of
Beck et al. (2020). The second variant (ANN) uses a multilayer perceptron, which corresponds to a more complex
mapping.

The SMASH model is run on a dx = 1 km spatial grid at dt = 1 h time step. It is forced by: (i) observed
rainfall grids based on hourly ANTILOPE J+1 radar-gauge rainfall reanalysis from Météo-France (Champeaux et
al., 2009); (ii) potential evapotranspiration (PET) estimated using the formula of Oudin et al. (2005); and (iii)
temperature data from SAFRAN reanalysis produced by Météo-France on a 8×8 km2 spatial grid (Quintana-Segúı
et al., 2008) downscaled to a 1 × 1 km2 spatial grid. The evaluation is performed on a flash-flood-prone area
known as the Mediterranean arc (and called ArcMed hereafter), situated in the South of France, as indicated in
Figure 2. Covering an approximate land area of 100,000 km2, ArcMed comprises 126 flash-flood-prone catchments,
including both nested and independent ones, representing about 26,000 km2 of combined drainage area. These
catchments have been selected based on the availability of long time series with high-quality observed flow data
and minimal anthropogenic impacts. ArcMed is known for its diverse hydrological properties and contrasted
catchment behaviors, including steep topography and very heterogeneous soils and bedrock (e.g., Garambois et al.
(2015)). The area is affected by intense rainfall events that trigger non-linear flash flood responses, presenting a very
challenging modeling scenario, in particular due to the significant presence of karstic zones. This evaluation data
set is quite extensive considering the high-resolution, which is made necessary by the fast and small-scale non-linear
processes characterizing the flash floods occurring in the area. The resulting spatio-temporal computational domain
is quite large (> 26, 000 pixels× 35, 000 time steps). By comparison, regionalization studies in the literature often
make use of larger regions and more numerous catchments, but also of much coarser models typically running at a
daily time step and coarser spatial resolution.
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Figure 2. Map of France highlighting the ArcMed study area, covering 150,000 km2 (100,000 km2 excluding sea),

comprising 126 catchments categorized as 38 catchments located upstream, 33 intermediate catchments, 24 catchments

positioned downstream, and 31 independent catchments, representing a total drainage area of 26,000 km2.

A set of 7 physical descriptors (Table 1) available over the whole French territory is used following Odry (2017)
and Jay-Allemand et al. (2024). Note that this setup is sufficient to assess the regionalization performance of the
proposed algorithms while keeping the present article concise. The issue of selecting the most relevant information
for multi-source observations of hydrological responses and the most adequate descriptors layers is intentionally
left for future research since it requires additional complementary modules to the proposed framework. It is worth
noting that prior to the optimization process, all descriptors are standardized between 0 and 1 through min-max
scaling.

Table 1. Descriptors used as input data for regionalization methods.

Notation Type Description Unit Source

d1 Topography Slope ◦ Odry (2017)
d2 Morphology Drainage density - Organde et al. (2013)
d3 Influence Percentage of basin area in karst zone % Caruso et al. (2013)
d4 Land use Forest cover rate % CORINE Land Cover (2012)
d5 Land use Urban cover rate (including artificial

and non-vegetated areas)
% CORINE Land Cover (2012)

d6 Hydrogeology Potential available water reserve mm Poncelet (2016)
d7 Hydrogeology High storage capacity basin rate % Finke et al. (1998)

To evaluate the performance of HDA-PR, we employ two spatial cross-validation setups which involve (i)
calibrating the model on 38 upstream gauges (upstream calibration) and (ii) calibrating the model on 24 down-
stream gauges (downstream calibration). The upstream calibration poses a greater challenge due to the smaller
catchments’ areas, resulting in a lower integrative effect on non-linear hydrological processes and potentially more
hydrological variabilities within and between basins. Consequently, this setup represents a more demanding inter-
polation scenario compared to the downstream calibration, which involves larger basins, as demonstrated later with
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calibration results. These two calibration setups, along with a temporal validation scheme based on a two-period
split, will facilitate the study of information extraction from discharge time series and from physical descriptors.
For each calibration setup, we apply the different multi-site regional calibration methods using the set of gauges
from the calibration catchments, while the remaining gauges from the validation catchments are used for spatial
and spatio-temporal validation purposes. The weighting in Equation 8 can be set as wg = 1

NG
, representing the

average cost over multiple gauges, since the gauges used for calibration in each setup, have the same number of
observations (up to sporadic missing values), and share the same nature (either downstream or upstream), thus
have similar information accumulation along the flow paths. The chosen calibration metric is the NSE, computed
using data from multiple gauges over a four-year period P1 (August 2016 to July 2020) with a one-year warm-up
period (August 2016 to July 2017). The following calibration methods are compared:

• Local calibrations for each gauge, both with spatially uniform (i.e., ρ ≡ θ̄, lumped parameters for each
gauge) and full spatially distributed parameters (i.e., ρ ≡ θ (x)), which are respectively under- and over-
parameterizations of the studied spatially distributed hydrological model. These approaches represent refer-
ence or benchmark performances, denoted as “Uniform (loc)” and “Distributed (loc)”.

• Multi-gauge regional calibration approaches with:

– lumped model parameters over the whole domain (i.e., ρ ≡ θ̄), representing “level 0” regionalization,
denoted as “Uniform (reg)”;

– a multivariate linear mapping (i.e., ρ ≡ [αk,0, (αk,d, 1)]
T
), referred to as “Multi-linear (reg)”, which rep-

resents the classical regionalization mapping with the same complexity as the transfer functions of Beck
et al. (2020) and without upscaling laws;

– a multilayer perceptron (i.e., ρ ≡ [W , b]
T
), denoted as “ANN (reg)”, representing the core novelty of the

HDA-PR framework.

Note that the multivariate linear mapping above is a particular case of the polynomial mapping presented in
section 2.1, obtained by forcing exponents βk,d to one. General polynomial mappings have been studied (see
Huynh, Garambois, Colleoni, Renard, Roux, Demargne, and Javelle (2023)) but are not further considered in this
paper for the sake of conciseness. To ensure robust validation, model performances are assessed in terms of spatial,
temporal, and spatio-temporal validations, with a temporal validation period P2 covering two years from August
2020 to July 2022. Various evaluation metrics, including multiple hydrological signature-based metrics presented
in Huynh, Garambois, Colleoni, and Javelle (2023), are also employed.

3.2 Regional Learning Performance and Computational Efficiency

In this section, the regional learning performance is analyzed over the whole ArcMed region. Before a thorough
evaluation of performance is performed, Figure 3 provides several examples of observed and simulated discharges at
randomly selected gauges, and compares them to observations. For these examples, using lumped model parameters
θ̄ leads to a poor performance in simulating discharges. By contrast, the other two regional learning methods result
in improved performance, in both calibration and validation catchments. Given the complexity and heterogeneity
of the region, it is unsurprising that lumped model parameters regionalization is unable to accurately reproduce
such contrasted hydrological responses.

Figure 4 focuses on global NSE scores (see Figure 5 for KGE scores), i.e., the calibration metric, over the whole
ArcMed region, for the two local calibration methods (spatially uniform and spatially distributed calibrations) and
the three regionalization methods (Uniform, Multi-linear, and ANN). Overall, it suggests that the regionalization
methods incorporating information from physical descriptors and imposing model parameters spatialization (Multi-
linear and ANN) lead to superior performance when compared to the spatially Uniform baseline. This trend
is particularly noticeable in the more challenging calibration-validation scenario using only upstream gauges for
calibration. Furthermore, the enhanced efficiency of ANN-based regionalization is evident from global performance
comparisons against the Multi-Linear approach, considering both upstream and downstream basin sets used in
regional optimization.

In calibration (“Cal”), median NSE scores for the upstream calibration on 38 catchments are 0.7 and 0.75 for Multi-
linear and ANN regionalization methods, representing a marked improvement compared to 0.57 for the Uniform
approach. By contrast, for the downstream calibration, the median NSE scores are much closer: 0.8 and 0.81
for Multi-linear and ANN regionalization methods versus 0.76 for the Uniform approach. This indicates that the
improvement obtained with the former two regionalization methods is smaller for the downstream calibration than
for the upstream one. Moreover, the NSE performance for the Uniform approach is already quite close to that
of the reference local calibrations in the downstream case, leaving little room for improvement with Multi-linear
and ANN regionalization methods. Overall, these results suggest that the multi-gauge calibration problem poses a
more challenging interpolation issue on upstream gauges than on downstream gauges. Thus, the regional calibration
problem incorporating descriptors is more demanding on smaller-sized catchments with lower integrative effects and
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Figure 3. Observed and simulated discharges (in m3/s) at several locations during the validation period P2, using three

multi-gauge regional calibration methods (columns) within the first calibration setup, where upstream catchments are used

for calibration on P1. The first row hence corresponds to temporal validation assessments, while the subsequent three rows

correspond to spatio-temporal validation assessments.

potentially higher non-linear responses across basins. In terms of temporal validation (“T Val”) for both upstream
and downstream cases, the same ranking as in calibration is observed with the three regionalization methods.
Specifically, the ANN achieves a median NSE score of 0.69 (resp. 0.71) compared to 0.6 and 0.44 (resp. 0.69
and 0.68) for Multi-linear and Uniform in the upstream calibration setup (resp. downstream calibration setup).
In spatial validation (“S Val”), which assesses the potential of regionalization methods for ungauged basins, the
ANN demonstrates the best performance in the upstream calibration setup, while similar performances (similar
medians and interquartile ranges) of the three regionalization methods are observed in the downstream setup.
Moving on to the most complex evaluation for the extrapolation capability of HDA-PR, spatio-temporal validation
(“S-T Val”), results consistently show the efficiency of the ANN, improving the NSE scores by 0.11 (resp. 0.18)
in upstream setup and by 0.02 (resp. 0.04) in downstream setup compared to Multi-linear (resp. Uniform). In
summary, multi-linear regression leads to slightly better median performances in spatial validation, while ANN
performs best in temporal and spatio-temporal validations in the downstream calibration setup. However, in
the upstream calibration case, the ANN demonstrates superior performance in calibration and for all validation
scenarios. This result highlights the capability of ANN to outperform (at least in terms of scoring metrics up to
this point) classical regionalization approaches using lumped model parameters and multi-linear regression in the
most challenging extrapolation scenario (i.e., upstream calibration).

We now delve into a more detailed analysis of NSE performances in validation catchments categorized by
their nature (upstream, downstream, intermediate, or independent) for both calibration setups: upstream and
downstream, as illustrated in Figure 6 (see Figure 7 for KGE scores). In the downstream calibration setup, no clear
ranking appears. Regarding the upstream calibration setup, the median NSE is systematically higher with ANN
regionalization, with less spread (interquartile range) in all basin classes except for the 33 intermediate catchments,
which show a slightly smaller first quartile compared to Multi-linear. Moreover, significantly higher performances
are achieved with ANN in spatio-temporal validation. This is particularly notable on a relatively limited number
of smaller-sized catchments in the calibration, indicating an effective extraction of information from both discharge
data and descriptors. This effectiveness becomes evident when the model is tested on the validation catchments,
which are more numerous, may or may not be nested and have varied areas. Overall, the performances obtained
with both upstream and downstream descriptor-based calibrations show the relevance of regionalization with ANN.
Indeed, ANN performs best in the upstream setup. ANN performance is not always the highest in the downstream
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Figure 4. Boxplots of NSE scores (optimal value = 1) across calibration and validation catchments for both calibration

setups which are upstream (top) and downstream (bottom), compared to reference solutions obtained by local calibration

methods (Uniform (loc) and Distributed (loc)). From left to right: results are displayed for calibration catchments on period

P1 (“Cal”), validation catchments on P1 for spatial validation (“S Val”), calibration catchments on P2 for temporal validation

(“T Val”), and validation catchments on P2 for spatio-temporal validation (“S-T Val”). The numbers in parentheses indicate

the count of catchments included in each boxplot.

setup, but it remains very similar to other regionalization approaches. The complex and highly-parameterized
nature of the ANN hence does not seem to result in a deterioration of performances in validation, even when this
complexity may not be necessary.

To quantify how much the ANN-based regionalization approach improves the model performance compared
to multi-linear regression and spatially uniform parameters regionalization, we compute the improvement rate
in terms of NSE of the ANN relative to the other methods. We focus on the upstream calibration setup and
evaluate improvement rates of ANN versus the two simpler approaches (Uniform and Multi-linear) in spatial and
spatio-temporal validation, as illustrated in the maps of Figure 8. Comparing to Uniform, the ANN yields positive
improvement rates at more than 80% of validation catchments on P1, with a median improvement rate of around
0.25 (see the boxplot in the top left panel of Figure 8). Transitioning to P2, the variation of improvement rates
among catchments becomes more significant. Catchments that exhibited positive improvement rates during P1
generally maintain positive or enhanced rates, whereas some of those with negative rates either worsen or remain
unchanged. Although the median improvement rate of NSE reaches 0.3, the interquartile range and whiskers visibly
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Figure 5. Boxplots of KGE scores (optimal value = 1) across calibrated (with NSE cost function) and validation

catchments for both calibration setups (upstream (top) and downstream (bottom)), compared to reference solutions obtained

by local calibration methods (Uniform (loc) and Distributed (loc)). From left to right: results are displayed for calibration

catchments on period P1 (“Cal”), validation catchments on P1 for spatial validation (“S Val”), calibration catchments on

P2 for temporal validation (“T Val”), and validation catchments on P2 for spatio-temporal validation (“S-T Val”). The

numbers in parentheses indicate the count of catchments included in each boxplot.

expand, as indicated by the boxplot in the bottom left panel of Figure 8. Regarding the improvement rates of
ANN versus Multi-linear, we observe similar trends in the variation of improvement rates among catchments across
the two periods. While the number of catchments with high improvement rates is generally reduced, more than
65% of catchments still exhibit positive rates on both periods. Nevertheless, it is apparent that some catchments
(situated in the southeast region of the map and known for their complex hydrological behaviours including karstic
effects and more difficulties in hydrological modeling) display negative improvement rates of the ANN versus both
Uniform and Multi-linear approaches. This discrepancy may stem from difficulties in extrapolating effective model
parameters from the considered physical descriptors at these locations with the ANN. This could be improved
by using other descriptors and/or stronger constraints, for example, on the sensitive exchange parameter kexc as
discussed later.

In order to obtain a more robust evaluation criterion adapted to flood modeling, we consider validation in
terms of multiple evaluation metrics based on hydrological signatures for flood events, which are computed via an
automated segmentation algorithm proposed by Huynh, Garambois, Colleoni, and Javelle (2023). This evaluation
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Figure 6. Comparison of NSE scores (optimal value = 1) across validation catchments categorized by their nature (up-

stream, downstream, intermediate, or independent) for both calibration setups (upstream (top) and downstream (bottom)).

From left to right: results are displayed for validation catchments on period P1 for spatial validation (“S Val”) and validation

catchments on P2 for spatio-temporal validation (“S-T Val”). The numbers in parentheses indicate the count of catchments

included in each boxplot.

is based on the relative error of three flood event signatures: flood runoff coefficient (Erc), flood flow (Eff), and
peak flow (Epf), computed on a total of 1,737 flood events selected from the entire study area over a six-year period
from August 2016 to July 2022. In the upstream calibration setup, the two non-uniform regionalization methods,
and in particular the ANN, demonstrate their ability to outperform the uniform regionalization (using lumped
model parameters) in both calibration and validation, as illustrated in Figure 9. For example, the relative errors
(median over flood events) of simulated peak flows using ANN are around 0.4, compared to over 0.6 (for the uniform
baseline) and 0.5 (for Multi-linear) in spatio-temporal validation (upstream calibration setup). In the downstream
calibration setup, although the ANN does not markedly outperform the Multi-linear and Uniform regionalizations,
it still achieves the best scores in terms of flood event signatures in both calibration and validation. For example,
in spatio-temporal validation of the peak flow, ANN achieves a median relative error of 0.47, while Uniform and
Multi-linear have median relative errors of 0.58 and 0.52. It is noteworthy that these flood signatures-based metrics
were not included in the cost function during the calibration process, which further supports the robustness and
power of the regionalization methods, particularly the one based on ANN. It thus underscores the potential of
HDA-PR for enhancing flash flood forecasting systems.

Finally, we discuss the computational efficiency of HDA-PR in terms of memory allocation and computation
time. The SMASH numerical code, which incorporates the proposed HDA-PR algorithms, enables parallel compu-
tations using the openMP library (Dagum & Menon, 1998) and simple decomposition of the spatial domain, thus
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Figure 7. Comparison of KGE scores (optimal value = 1) across validation catchments categorized by their nature (up-

stream, downstream, intermediate, or independent) for both calibration setups (upstream (top) and downstream (bottom)).

From left to right: results are displayed for validation catchments on period P1 for spatial validation (“S Val”) and validation

catchments on P2 for spatio-temporal validation (“S-T Val”). The numbers in parentheses indicate the count of catchments

included in each boxplot.

reducing CPU computational time. Additionally, we have implemented sparse rainfall storage to mitigate memory
consumption, which is crucial for running the adjoint model (whose memory usage has also been improved using a
checkpointing technique) at each evaluation of the gradient, especially across expansive spatio-temporal domains.
Note that the gridded atmospheric data constitutes a significant portion of memory usage across all methods. The
CPU and memory computational costs of the different calibration runs over a relatively large computational domain
are given in Table 2, demonstrating that the application of the method on larger domains such as at a country
scale is feasible.

Table 2. Computation time for optimizing different regionalization mappings, where Nθ = 4 and ND = 7. Each calibration

approach is performed on an AMD Opteron(TM) Processor 6276 at 2.5 GHz, running in parallel across 6 CPUs. The values

are presented for the downstream calibration setup, with similar performance for the upstream case.

Mapping Number of
parameters

Memory usage
(GB)

Optimization
algorithm

Iterations Time (h)

Uniform 4 10.97 SBS 11 16.94
Multi-linear 32 10.98 L-BFGS-B 250 157.24

ANN 6276 11.29 Adam 350 184.45
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Figure 8. Comparison of NSE improvement rates in spatial and spatio-temporal validation for HDA-PR with ANN

mapping versus uniform (left) and multi-linear (right) mappings, utilizing models calibrated with upstream catchments.

Results are shown across validation catchments positioned downstream, intermediate, and independent for spatial validation

on period P1 (top) and spatio-temporal validation on period P2 (bottom). The improvement rate at a catchment i is

calculated as ri =
NSEi

ANN−NSEi
□

|NSEi
□
| , where □ represents either multi-linear or uniform mapping.

3.3 Interpretation of the Learning Process and Inferred Parameters

A key feature of the proposed HDA-PR algorithm pertains to the differentiability of the forward spatially
distributed model, including the ANN or Multi-Linear regionalization mappings (cf. section 2.1), which allows
obtaining the gradient ∇θJ of the cost function with respect to the hydrological model parameters. This gradient
facilitates the computation of ∇ρJ necessary for optimizing the regional control vector ρ using algorithms tailored
for high-dimensional inverse problems (cf. section 2.3), while maintaining a “physical” interpretation. Spatial maps
of the cost gradient with respect to hydrological model parameters (which also represents the local sensitivity of
the model parameters), at a background value θ∗ = FR(.,ρ

∗) corresponding to the control value ρ∗ at the first
iteration of the optimization process (cf. section 2.3.1 and section 2.3.2), are shown in Figure 10: ∇θJ(θ

∗)(x) =(
∂J(θ∗)
∂cp

, ∂J(θ∗)
∂ct

, ∂J(θ∗)
∂kexc

, ∂J(θ∗)
∂llr

)
(x)). The figure displays the maps for the downstream calibration setup, chosen

for enhanced visualization compared to smaller basin sizes utilized in the upstream calibration setup. For both
regionalization mappings (ANN or Multi-Linear), the initial cost gradient (sensitivity) at different points θ∗ in
model parameter space for each mapping, indicates a high sensitivity to the non-conservative exchange parameter
kexc, which is coherent with global and local sensitivity analysis from Huynh, Garambois, Colleoni, and Javelle
(2023) on a comparable model structure without regionalization mapping. Interestingly, the gradient maps (for the
first optimization iteration) of the forward model containing descriptors-to-parameters mappings show the spatial
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Figure 9. Relative error (optimal value = 0) of three flood event signatures—flood runoff coefficient (Erc), flood flow (Eff),

and peak flow (Epf)—for both calibration setups: upstream (top) and downstream (bottom). The evaluation is based on a

total of 1,737 flood events, with 1,124 selected during the calibration period P1 and 613 selected during the validation period

P2, across 126 catchments. From left to right: results are displayed for calibration catchments on P1 (“Cal”), validation

catchments on P1 for spatial validation (“S Val”), calibration catchments on P2 for temporal validation (“T Val”), and

validation catchments on P2 for spatio-temporal validation (“S-T Val”). The numbers in parentheses indicate the count of

flood events included in each boxplot.

trends that will be obtained in the following optimization iteration, since a positive gradient should result in a
parameter increase and conversely (if ∇ρθ is of the same sign as ∇θJ plotted here since ∇ρJ = ∇θJ.∇ρθ). Note
that due to the high dimension of ρ and its non-physical meaning for ANN weights and biases, ∇ρθ cannot be
plotted in a simple manner and, more importantly, cannot be “physically” interpreted like ∇θJ . Moreover, these
maps of ∇θJ interestingly contain the footprint of physical descriptor patterns (along with the footprint of model
structure and multi-site discharge observations and cost function formulation); they indicate sensitivity “hot spots”,
which could be useful in future works for tailoring descriptor processing and choice, as well as for studying other
information sources, tailoring cost functions, parameter bounds, and regularizations of the forward-inverse problem.

When calibrating a model with gradient-based optimization algorithms, it is also important to discuss the
descent of the cost function. This analysis enables understanding how optimization algorithms converge towards
the global or local minimum of the cost function, and identifying potential trade-offs between model flexibility and
overparameterization, thereby completing validation results. The descent of the cost function J is represented in
Figure 11. It is apparent that the cost functions in the Multi-linear case start from a more optimal point than the
ANN (approximately 0.37 in downstream calibration setup and 0.58 in upstream calibration setup) since they use a
uniform background solution obtained by a global optimization method, as mentioned in section 2.3.1. Furthermore,
they converge after around 200 iterations and remain monotonous throughout the optimization process. The ANN,
with a significantly larger number of parameters (Table 2), can achieve a lower cost despite starting from a higher
cost. Moreover, the ANN cost function in Figure 11 is not monotonous throughout training epochs: it shows
localized increases for several instances within the first 100 epochs. This result can be attributed to the complexity
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Figure 10. Spatially distributed cost gradients ∇θJ (θ∗
□) to conceptual hydrological parameters used in the optimiza-

tion process (of ρ using ∇ρJ = ∇θJ.∇ρθ) showed for downstream calibration (for the sake of visibility) at initial points

θ∗
Multi-linear := P(.,ρ∗

Multi-linear) and θ∗
ANN := N (.,ρ∗

ANN), where ρ∗
Multi-linear (resp. ρ∗

ANN) is the background value of the

multi-linear regression (resp. ANN) mapping. Note that the cost gradient values are obtained for the active cells within the

gauged partition, i.e., cells contributing to the simulated discharge at gauges (downstream here) where the observation cost

function J is evaluated.

of the regionalization mapping in each case, suggesting that the surface of the cost function is more complex for ANN
than for multi-linear mapping. Moreover, the Adam algorithm used to optimize the ANN enables the exploration
of different paths to locate the optimum, therefore avoiding getting stuck in local minima, where significant changes
occur in the control vector space (biases and weights). This property could be essential in tackling equifinality and
reach robust global optimum even with different starting points.

Figure 11. The descent of the cost function J = 1 − NSE for both Multi-linear and ANN approaches across both

calibration setups.
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Finally, Figure 12-b shows the optimized parameter maps obtained with the two non-uniform regionalization
methods across both calibration setups, that can be physically interpreted. In the downstream calibration setup, the
spatial patterns of the drainage density descriptor (d2) and the potential water reserve descriptor (d6) in Figure 12-a
are easily observable in the distributed parameter maps in the multi-linear regression case, as evidenced by strong
correlations between these descriptors and the capacity of the production store (cp), the capacity of the transfer
store (ct), and the non-conservative water exchange (kexc). Such correlations can be quantified using one-to-one
parameter-descriptor correlation matrices as depicted in Figure 12-c. Correlations are smaller in the ANN case
than in the Multi-linear case: this suggests that the parameter maps derived with the former go beyond a simple
linear combination of descriptors, and hence include some degree of non-linearity.

Overall, the obtained regional hydrological parameter maps, together with the performances in interpolation
and spatio-temporal extrapolation cases (as shown in section 3.2), demonstrate the relevance of the intrinsic spatial
constraint introduced by the descriptors-to-parameters mappings. These mappings result in a regularizing effect
for the overparameterized calibration problem in distributed hydrological modeling from sparse discharge data.

Figure 12. Analysis of input descriptors and output model parameters for two regionalization methods (Multi-linear

and ANN) across both calibration setups (upstream and downstream): (a) Spatial distribution of physical descriptors (d1-

d7), details provided in Table 1; (b) Spatial distribution of calibrated hydrological parameters (cp, ct, kexc, llr ) with µ

and σ indicating their spatial average and standard deviation over the active cells within the spatial domain Ω; (c) Linear

correlation between descriptors and parameters over the active cells within the spatial domain Ω.
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4 Discussions

Learning the spatial variability of conceptual hydrological parameters may be difficult to achieve with simple
regionalization methods (e.g., based on multi-linear regression). However, while complex regional mappings can
reduce the misfit between observed and simulated hydrological responses, their ability to produce physically inter-
pretable results may be questioned. The various regionalization mappings define the way information is transferred
from physical descriptors to hydrological parameters. It is important to ensure that HDA-PR effectively uses the
physical patterns provided by descriptor maps to constrain the estimation of meaningful parameter maps. To ad-
dress this question, it is worth noting that the “safest” approach is to use multi-linear regression, which corresponds
to a simple weighted average of the descriptor patterns. The case of multi-polynomial regression was not included
in the case study of this paper, but was tested by Huynh, Garambois, Colleoni, Renard, Roux, Demargne, and
Javelle (2023) in a sub-region of the French Mediterranean area. In this case, the risk of losing physical properties
may arise when the polynomial degree is unbounded. To mitigate this risk, we propose imposing bounds on the
polynomial degree, 0.5 ≤ βk,d ≤ 2. ANNs, however, pose the most complicated scenario, where the control vector
(that is, the weights and biases) consists of numerous parameters that are difficult to physically constrain. Our
hands-on experience indicates that a multilayer perceptron with two or three hidden layers is sufficient for learning
the parameters of a parsimonious conceptual distributed hydrological model without under- or over-extracting the
physical information of the input descriptors. Note that the number of neurons in each layer must be reasonable,
and should not exceed

√
ND.Nx based on our experiments. Next, to alleviate the vanishing gradient problem

inherent to the ANN, we employed several techniques commonly used in the machine learning community. First,
we applied Xavier initialization (Glorot & Bengio, 2010) to the weights, maintaining a reasonable magnitude of
the gradients. Second, we utilized the ReLU activation function or its variants in the hidden layers, enabling the
gradient to flow more freely through the network. Third, we varied the number of hidden layers between 2 and 4,
striking a balance between network flexibility and exacerbation of the vanishing gradient problem. Ultimately, we
employed a relatively high initial learning rate (e.g., from 0.003 to 0.005) to prevent the gradients from shrinking
excessively during training.

While the ANN approach showed superior performance in the upstream calibration setup, its performance
did not exhibit significant improvement in the downstream scenario, where the Uniform approach already yielded
quite satisfactory results compared to local calibration references. It is worth noting that while “extreme” setups
such as upstream-only and downstream-only calibrations are useful in the academic context of this paper, mixed
setups that combine both, as well as include independent catchments, are likely to be employed in practice. For
example, a calibration setup with a random selection of catchments was tested in Huynh, Garambois, Colleoni,
Renard, Roux, Demargne, and Javelle (2023); Huynh, Garambois, Colleoni, Renard, and Roux (2023) for a subset
of the 126 catchments presented in this paper. Furthermore, the performance of calibration setups that use nested
gauges could be improved by adapting the cost function for better selecting and weighting information between
calibration gauges and flow signal parts (e.g., with differentiable flood signatures-based algorithm for calibration
(Huynh, Garambois, Colleoni, & Javelle, 2023)), as well as by accounting for data and structural uncertainties in
this cost function (Kuczera et al., 2010; Renard et al., 2010).

Regarding regionalization over larger areas, such as for large basins or at country scales, an increased flexibility
in the regional mapping might be needed to deal with significant physical heterogeneity. For instance, one may
wish to use different transfer functions for different clusterings of the spatial domain (e.g., into sub-regions or
hydrological response units (HRU)). This can be achieved through the use of spatialized regional controls, for
example as done in regional calibration for catchment clusters determined with a similarity measure (Huang et al.,
2019). In the proposed HDA-PR framework, mappings that vary with regions or HRU can be obtained by including
indicators of such regions/HRUs in the list of descriptors. This additional flexibility would certainly be necessary
to circumvent the rigidity of the multi-linear mapping, but maybe not for a flexible mapping such as the ANN
one. Another interesting research avenue is to develop an automatic identification of effective physical descriptors
from large databases as well as identification of optimal spatial flexibility for constructing effective regional data
assimilation approaches.

Applying HDA-PR to a non-differentiable hydrological model, which is the most common case encountered,
may not be possible as the method requires accurate gradients of the simulated hydrological response with respect to
the model parameters. This becomes particularly demanding for spatially distributed models, where the parameter
space is high-dimensional and the gradient values are typically small as found here. In such cases, obtaining
accurate gradients is essential, and these can be obtained by solving the numerical adjoint model, as implemented
in our SMASH platform. However, to our knowledge, it would be possible to approach model output gradients
to its parameters using a finite differences approach (e.g., Gupta and Razavi (2018)) in the case of weakly non-
linear model and low-dimensional parameters, such as for a parsimonious and lumped model. Yet, even in this
case, the gradient accuracy may still be insufficient for successful application of HDA-PR. A promising way to
extend HDA-PR to other traditional, mathematically differentiable model structures is to implement them within
platforms that support forward numerical model differentiation, such as SMASH or PyTorch (Ansel et al., 2024).
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This approach still requires a differentiable hydraulic routing model (e.g., Pujol et al. (2022)), whose gradients can
be combined with the spatialized hydrological model gradients using the chain rule, or requires the development of a
differentiable, GPU-compatible, spatially distributed routing model. It is also worth noting that many hydrological
models are based on ordinary differential equations (ODEs) or partial differential equations (PDEs) (e.g., Kavetski
et al. (2006b)), and differentiability can often be achieved by making slight modifications to non-differentiable
operators. For instance, replacing a unit hydrograph with a differentiable Nash-cascade, as done in the “GR4
state-space” model (Santos et al., 2018), is one such approach.

Finally, an important research avenue is the development of a probabilistic framework to quantify the uncer-
tainties surrounding the application of HDA-PR. Several challenges need to be addressed for this purpose, some
of them being related to the spatialized nature of the hydrologic model, while others are more specific to the large
dimensionality induced by the regionalization mappings, in particular the ANN one. First, accounting for the
uncertainty affecting the forcing and response data used in calibration requires a modification of the cost function
based on data error models. Such models need to be parsimonious (e.g., to represent spatialized rainfall errors using
a controlled number of parameters, Mustafa et al. (2018)), yet recognize the specificities of some data acquisition
procedures (for instance, the partly systematic nature of rating curve errors affecting streamflow, Horner et al.
(2018)). Second, since the structural errors made by the hydrologic model are varying in space, a probabilistic
model describing structural uncertainty would need to be regionalized, as is the hydrologic model itself. Third,
estimation tools need to be able to cope with the high dimensionality of the estimation problem. For instance, the
use of Markov chain Monte Carlo (MCMC) methods will certainly require methods that can take advantage of the
differentiable implementation of HDA-PR (Hoffman & Gelman, 2014) and of parallel computing capabilities (Laloy
& Vrugt, 2012; Syed et al., 2022). Alternatively, the search of regionalization mappings that retain the flexibility
provided by ANNs while being more parsimonious is another promising perspective.

5 Conclusion

A Hybrid Data Assimilation and Parameter Regionalization (HDA-PR) approach has been introduced in this
study. We investigated the potential of incorporating learnable regionalization mappings, including multivariate
polynomial regressions and neural networks, into a differentiable high-resolution hydrological model. To the best of
our knowledge, we present the first implementation of ANNs within this context, enabling a seamless regionalization
in hydrology. Effective optimization algorithms capable of performing high-dimensional optimizations from multi-
source data have been obtained with:

• effective regional transfer functions of adaptable complexity, enabling the use of information from heteroge-
neous data sources, with learning of a non-linear multivariate mapping in the case of the ANN, and providing
effective spatial constraint of varied flexibility;

• a differentiable forward hydrological model, embedding the regional mappings, that enables accurate com-
putation of spatially distributed gradients of the multi-gauge cost function - which is crucially needed in the
context of sparse observations (i.e., cost evaluation locations), and relatively small gradient values;

• optimization algorithms, adapted to high-dimensional problems, with seamless flow of cost gradients, espe-
cially when combined with physical descriptors and spatial gradients, which efficiently enhance the transfer-
ability of geophysical properties from gauged to ungauged locations.

HDA-PR has been thoroughly evaluated with two calibration setups in the French Mediterranean region with a
high-resolution spatio-temporal hydrological modeling approach using multi-gauge discharge and descriptors maps.
The results obtained on both calibration setups, and especially on the most challenging calibration scenario using
only upstream gauges, highlight the effectiveness of HDA-PR that utilizes physical descriptors, surpassing the
performance of a uniform regionalization method with lumped model parameters. Moreover, the ANN exhibited
superior performance compared with multi-linear regression, that is, an approach with the same complexity as
transfer functions used in previous studies on descriptors-based regionalization with a seamless calibration scheme.
The NSE scores of HDA-PR with ANN in temporal validation surpass 0.7 for both calibration setups, which is
a fairly good performance compared to the reference benchmarks of around 0.78 (obtained in local calibration),
thereby establishing its remarkable capability in challenging modeling scenarios (i.e., upstream calibration) as well
as its capacity to collapse to a simpler mapping in less challenging ones (i.e., downstream calibration). Various
flood event signatures are also used as validation metrics to demonstrate the robustness of HDA-PR, where the two
regionalization methods using descriptors outperform the uniform regionalization method. Particularly, the ANN-
based mapping yields the best performance for all validation scenarios based on flood event signatures. Interestingly,
the ANN enables extracting information from physical descriptors and learning non-linear multivariate descriptors-
to-parameters mappings while providing better model controllability than a linear mapping for complex calibration
cases. The exploration of more complex data set and neural networks architecture, on top of other differentiable
flow models, represent a very promising axis for further research.
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This research and the proposed algorithms open several perspectives. Immediate work focuses on: (i) the test-
ing and improvement of HDA-PR for application at national scales and on other continents, such as its operational
application to estimate the regional hydrological model (at a 15-min temporal resolution) for the national flash flood
early warning system called Vigicrues Flash in France (Javelle et al., 2019; Piotte et al., 2020); (ii) study of effective
descriptor selection along with multi-gauge cost functions explicitly accounting for data uncertainties, and optimal
spatial clustering of regional controls, for example into HRU; (iii) information selection with a signature-based cost
function (Huynh, Garambois, Colleoni, & Javelle, 2023) and spatial weighting strategies for multi-site discharge
over river networks; (iv) implementation of a framework to quantify predictive uncertainty at both gauged and
ungauged sites.

HDA-PR can be extended to state and composite parameters-states optimization which could be very in-
teresting for multi-scale data assimilation and real time model correction from multi-source and multi-site data.
Adding a learnable feature extraction layer from images (CNN) or time series (LSTM) on top of the regionalization
transfer functions would enable the exploration of larger and richer databases including time varying data. Finally,
HDA-PR is transposable to regionalization of differentiable integrated hydrological-hydraulic networks models (e.g.,
Pujol et al. (2022)) and could be used to explore regionalization potential from cocktails of in-situ and satellite
data, including the unprecedented SWOT (Surface Water and Ocean Topography satellite mission) observations
of water surfaces variabilities of worldwide larger rivers. In general, the applicability of HDA-PR extends beyond
hydrological models and can be adapted to other geophysical models.

A Metrics

Let Q(t) and Q∗(t) be the simulated and observed discharge time series. The hydrological cost functions
studied are:

• observation cost function based on the Nash-Sutcliffe Efficiency (NSE):

1−NSE =

∑T
t=t∗ (Q

∗(t)−Q(t))
2∑T

t=t∗

(
Q∗(t)− Q̄

∗)2
• observation cost function based on the Kling-Gupta Efficiency (KGE):

1−KGE2 = a1 (r (Q
∗(t),Q(t))− 1)

2
+ a2 (β (Q∗(t),Q(t))− 1)

2
+ a3 (α (Q∗(t),Q(t))− 1)

2

with r, β and α being respectively measures of the correlation, bias and variability of observation with respect
to simulated discharge time series;

∑3
i=1 ai = 1. This function is quadratic and differentiable.

B Incorporating ANN into the Differentiable Hydrological Model

This appendix details the neural network design and the derivation of hydrological cost gradients for the
ANN-based regionalization algorithm.

A simple ANN denoted N , consisting of NL fully connected (dense) layers, intends to learn the descriptors-
to-parameters field mapping in the 2D spatial domain, from D(x) ∈ RND to θ(x) ∈ RNθ ,∀x ∈ Ω (Figure B1).

Table B1. Number of parameters of the ANN where ND = 7, NL = 4 and Nθ = 4.

Hidden layer 1 Hidden layer 2 Hidden layer 3 Output layer

Input shape (ND, ) (96, ) (48, ) (16, )
Number of neurons 96 48 16 Nθ

Number of parameters ND.96 + 96 = 768 96.48 + 48 = 4656 48.16 + 16 = 784 16.Nθ +Nθ = 68

Total parameters: 6276.

Let us consider an ensemble of layers where each layer is associated with its weight W j and bias bj . Then, an
input I of each layer is mapped to the input of the next layer by a linear function ϕj(I) = W jI + bj , and followed
by the ReLU activation function denoted δ, except for the last layer, which is followed by the Sigmoid activation
function denoted σ, ensuring that its outputs are between 0 and 1. Now an output Ox = σ ◦ ϕNL

(., x) ∈ [0, 1]Nθ of
the last layer is mapped to the range of the hydrological model parameters by a differentiable scaling function s:

θ(x) = s(Ox) = l + (u− l)⊙Ox (B1)
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Figure B1. The architecture of the ANN consists of three hidden layers followed by the ReLU activation function and

an output layer that uses the Sigmoid activation function in combination with a scaling function. In this particular case, we

have ND = 7, NL = 4 and Nθ = 4. The total number of trainable parameters is calculated in Table B1.

where l = (l1, ..., lNθ
) and u = (u1, ..., uNθ

) with the lower and upper bounds lk ∈ R and uk ∈ R, assumed spatially
uniform, defining the bound constraints of θk(x),∀(k, x) ∈ [1..Nθ] × Ω, in the direct hydrological model. The

notation “⊙” denotes the Hadamard product. Noting Ψj ≡

{
δ ◦ ϕj , j = 1..NL − 1

σ ◦ ϕj , j = NL

, the forward propagation of

the neural network N is defined as Equation B2.

θ(x) = N (D(x), .) = s ◦ΨNL
◦ΨNL−1 ◦ ... ◦Ψ1(D(x)),∀x ∈ Ω. (B2)

Here, the notation “◦” denotes the function composition operator.

Recall that our objective is the calibration problem of Equation 9 with respect to the regional control vector
ρ := [W , b], using the cost function of Equation 10. In such manner, different variants of stochastic gradient descent
algorithm are used and thus require the gradients of the cost function with respect to the weights and biases ∂J

∂ρj

for each layer, where ρj := [W j , bj ]. Since the forward modelM≡Mrr (.,N (.)) with θ being both the output of

N and the input ofMrr, we can write ∂J
∂ρj

= ∂J
∂θ

∂θ
∂ρj

. Then these two gradients are obtained as follows:

• The gradients ∂J
∂θ of the cost function with respect to the hydrological model parameters, computed by

solving the numerical adjoint model ofMrr;
• The gradients ∂θ

∂ρj
of the network output with respect to the weight and bias, computed using the chain rule

of composite functions of N .

Eventually, the backward propagation for updating the weights and biases, using for instance Adam optimizer, is
described in Algorithm 1.

Open Research
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Software Availability Statement. The proposed algorithms in the study were implemented into the SMASH source
code, Version 1.0.0-rc2.21, which is preserved at https://doi.org/10.5281/zenodo.8219280 (Colleoni et al.,
2024), available via GNU-3 license and developed openly at https://github.com/DassHydro/smash. Additionally,
the code for conducting the numerical experiments and analysis, Version 0.2.1, is preserved at https://doi.org/
10.5281/zenodo.11520804 (Huynh, 2024), available via MIT license and developed openly at https://github
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Algorithm 1 Adapted back-propagation using Adam optimizer

▷ Randomly initialized weights and biases ρ(0) =
(
ρ
(0)
1 , ...,ρ

(0)
NL

)
▷ Number of training epochs Nepo

for i = 1..Nepo do

▷ Forward propagation over the spatial domain θ ←
[(
N
(
D(x),ρ(i−1)

))
x∈Ω

]T
▷ Initial gradient accumulation ∇A← ∇θJ =

(
∂J
∂θ1

, ..., ∂J
∂θNθ

)
for j = NL..1 do

▷ Gradient computation ∂J
∂ρj
←
(

∂θ
∂ρj

)T
∇A

▷ Updated gradient accumulation ∇A← ∇A.
[
W

(i−1)
j

]T
▷ Updated weights and biases ρ

(i)
j ← ρ

(i−1)
j − η m(i)

(1−β1)

(√
v(i)

1−β2
+ϵ

) where:

m(i) ← β1m
(i−1) + (1− β1)

∂J
∂ρj

(
ρ
(i−1)
j

)
; v(i) ← β2v

(i−1) + (1− β2)
(

∂J
∂ρj

(
ρ
(i−1)
j

))2
β1 = 0.9 and β2 = 0.999 are the decay rates for first and second moments of gradients
ϵ = 10−8 is a small scalar
η is the learning rate that is a tuning parameter determining the step size of the optimization problem

end for
end for
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of predictions in ungauged basins–part 1: Runoff-hydrograph studies. Hydrology and Earth System Sciences,
17 (5), 1783–1795.
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(Doctoral dissertation). Retrieved from http://www.theses.fr/2016PA066550 (Thèse de doctorat dirigée
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