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Abstract. Estimating spatially distributed hydrological parameters in ungauged catchments poses a challenging regionalization

problem and requires imposing spatial constraints given the sparsity of discharge data. A possible approach is to search for a

transfer function that quantitatively relates physical descriptors to conceptual model parameters. This paper introduces a Hybrid

Data Assimilation and Parameter Regionalization (HDA-PR) approach incorporating learnable regionalization mappings, based

on either multivariate regressions or neural networks, into a differentiable hydrological model. It enables the exploitation of

heterogeneous datasets across extensive spatio-temporal computational domains within a high-dimensional regionalization

context, using accurate adjoint-based gradients. The inverse problem is tackled with a multi-gauge calibration cost function

accounting for information from multiple observation sites. HDA-PR was tested on high-resolution, hourly and kilometric

regional modeling of two flash-flood-prone areas located in the South of France. In both study areas, the median Nash-Sutcliffe

efficiency (NSE) scores ranged from 0.52 to 0.78 at pseudo-ungauged sites over calibration and validation periods. These

results highlight a strong regionalization performance of HDA-PR, improving NSE by up to 0.57 compared to the baseline

model calibrated with lumped parameters, and achieving a performance comparable to the reference solution obtained with

local uniform calibration (median NSE from 0.59 to 0.79). Multiple evaluation metrics based on flood-oriented hydrological

signatures are also employed to assess the accuracy and robustness of the approach. The regionalization method is amenable

to state-parameter correction from multi-source data over a range of time scales needed for operational data assimilation, and

it is adaptable to other differentiable geophysical models.

1 Introduction

Irrespective of their type and complexity, hydrological models are more or less empirical and uncertain representations of mul-

tiscale coupled hydrological processes whose observability is limited. Hydrological model parameters are in general effective

quantities that cannot be directly measured. Instead, they are typically inferred through a calibration procedure aimed primarily

at obtaining satisfactory streamflow simulations (e.g., Beven (2001); Kirchner (2006); Gupta et al. (2006); Vrugt et al. (2008)).

In most cases, this optimization problem is a difficult ill-posed inverse problem faced with the equifinality (Beven, 2001) of

feasible solutions, which can be further interpreted as model structural equifinality and spatial equifinality in the context of
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spatially sparse observations compared to model controls (see for example discussions in Garambois et al. (2020)). Most cali-

bration approaches enable the estimation of spatially uniform model parameters for a single gauged catchment, but this leads to

piecewise constant and discontinuous parameters fields for adjacent catchments. Moreover, parameter sets determined through

calibration are not transferable to ungauged locations although the latter represent the majority of the global land surface

(Fekete and Vörösmarty, 2007; Hannah et al., 2011). Therefore, prediction in ungauged basins remains a “grand challenge”

(Sivapalan, 2003) in hydrology (Hrachowitz et al., 2013), which hinders the development of effective high-resolution models

adapted to the simulation of hydrological extremes in a context of high data uncertainty (e.g., for Mediterranean flash floods in

Garambois et al. (2015); Jay-Allemand et al. (2022b)).

The estimation of hydrological model parameters in ungauged regions is performed with so-called regionalization ap-

proaches that exploit and transfer hydrological information from gauged to ungauged catchments using various descriptors

of catchments physical properties (see reviews in Blöschl et al. (2013); Samaniego et al. (2010); Hrachowitz et al. (2013);

Beck et al. (2020)). The most widely used approach in early studies for regionalization involved independent catchment-by-

catchment calibrations, followed by multiple regression or interpolation techniques to transfer the calibrated parameter sets

from gauged to ungauged locations (Abdulla and Lettenmaier, 1997; Seibert, 1999; Parajka et al., 2005; Razavi and Coulibaly,

2013; Parajka et al., 2013) and can be called post-regionalization (Samaniego et al., 2010). This approach presumes that

the variability of calibrated model parameters through the catchments have relations based, for instance, on spatial prox-

imity (Widén-Nilsson et al., 2007; Oudin et al., 2008), and physical or climatic similarity (Oudin et al., 2010; Beck et al.,

2016). Statistical learning methods have also been applied in post-regionalization to explore the relationships between phys-

ical descriptors and calibrated parameter sets at gauged locations (e.g., Saadi et al. (2019); Wang et al. (2023)). However,

post-regionalization approaches are limited to lumped parameters, thus ignoring within-catchment variabilities (see reviews

in Samaniego et al. (2010); Razavi and Coulibaly (2013)), except when calibrated parameters correspond to tuning factors

of physical pedotranfer functions or hydraulic frictions correspondence tables (see Garambois et al. (2015) for details). The

identification of transfer functions in post-regionalization is complicated by the uncertainty of estimated parameter sets, while

spatial proximity is more adapted to densely gauged river networks and regions (Oudin et al., 2008; Reichl et al., 2009).

Moreover, incorporating a statistical learning process, especially unsupervised learning approaches, in the post-regionalization

step can exacerbate existing issues such as parameter biases induced by data measurement errors (Kavetski et al., 2006). A

regionalized calibration simultaneously exploiting the information of multiple gauges, within spatial clusters defined a priori

from descriptors, is performed in Huang et al. (2019) over Norway using climatic similarity. The parameters calibrated over

multiple gauges of a climatic zone are applied to ungauged catchments of the same zone. This approach does not account for

hydrological heterogeneity within the catchments or within the regional clusters determined by physical similarity, which can

have a major impact on the forecasting of extreme floods in particular (Garambois et al., 2015; Jay-Allemand et al., 2022b).

The simultaneous regionalization approach involves optimizing a transfer function between physical descriptors and model

parameters (cf. Hundecha and Bárdossy (2004); Götzinger and Bárdossy (2007); Bastola et al. (2008); Samaniego et al. (2010)).

In this case and contrarily to post-regionalization, the descriptors-to-parameters mapping is the first optimizable operator of the

forward hydrological model. It enables to overcome most of the aforementioned problems and has been applied in several stud-

2



ies. For instance, it has been used for regionalizing semi-distributed models such as: HBV in Hundecha and Bárdossy (2004)

or in Götzinger and Bárdossy (2007) who introduced monotonicity and Lipschitz condition into the optimization problem to

constrain the inferred spatial fields; TOPMODEL in Bastola et al. (2008) who used an Artificial Neural Network (ANN)-

based mapping between catchment descriptors and model parameters (both their value and their uncertainty as quantified by

a posterior covariance matrix). A multiscale parameter regionalization (MPR) method, combining descriptors maps, upscal-

ings functions and regionalization transfer functions in the form of multivariate mappings from descriptors, and implemented

within a spatially distributed multiscale hydrological model (mHm), has been proposed by Samaniego et al. (2010), and later

applied to over 400 European catchments at 0.25◦ spatial resolution in Rakovec et al. (2016). This approach imposes a spatial

regularization effect that is needed when working with spatially distributed hydrological models and spatially sparse discharge

data (see regularization for semi-lumped model calibration from multiple nested gauges in De Lavenne et al. (2019)). The

MPR method from Samaniego et al. (2010) has also been used with other gridded hydrological models in large sample appli-

cations. For example, Mizukami et al. (2017) calibrate the VIC model at a resolution of 0.125◦ over 531 headwater catchments

(area< 2,000 km2) in the continguous US area, using a lumped regionalization approach. Another example is Beck et al.

(2020), who calibrate the HBV model at 0.05◦ resolution over 4,229 headwater catchments (area< 5,000 km2) worldwide.

In their study, they categorize the catchments into three climatic groups and perform tenfold cross-validation using 90% of the

gauged catchments. While these studies applied MPR deterministically, in Lane et al. (2021), the MPR method is applied within

the generalized likelihood uncertainty estimation (GLUE) framework, with a high-resolution HRU model (DECIPHeR frame-

work) at daily time resolution over a large sample of 437 catchments in the UK. However, the routing module in this study is

calibrated separately with a simple random sampling approach. In Mizukami et al. (2017), the runoff routing model is a gamma

distribution function with two parameters that were “directly calibrated for each basin”. Therefore, those regionalization ap-

proaches essentially focus on runoff production, at a daily time step for mostly headwater catchments whose characteristic

response/concentration time scale might be shorter. The same remark can be made for Beck et al. (2020) who work at daily

time step on headwater catchments, simply without modeling routing.

In all the above studies, state of the art optimization algorithms are used, especially Shuffle Complex Evolution algorithm

(SCE) (Duan et al., 1992) in Mizukami et al. (2017), or Distributed Evolutionary Algorithms (DEAP) (Fortin et al., 2012) in

Beck et al. (2020), or the GLUE framework with a random sampling approach in Lane et al. (2021). Those algorithms are appli-

cable with low-dimensional controls only, which limits the affordable number of descriptors and the spatialization of regional

transfer parameters (that are lumped in all methods above), and more importantly, which limits the affordable complexity of

the regionalization operator. Nevertheless, gradient-based algorithms are efficient approaches for solving high dimensional in-

verse problems, and their potential has been demonstrated in optimization of spatial parameters of hydraulic models (Monnier

et al., 2016), or spatially distributed hydrological models (Castaings et al., 2009; Jay-Allemand et al., 2020). They crucially

need accurate estimates of cost gradients, i.e. gradients of the cost (objective) function with respect to the sought parameters,

which can be spatialized and of large dimension. Such gradients can be computed with an adjoint model for example obtained

by source code differentiation in Castaings et al. (2009); Monnier et al. (2016); Jay-Allemand et al. (2020). Note that a key

property of neural networks is their differentiability, which makes them compatible with variational data assimilation frame-
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works (Monnier et al., 2016) and hence suggests them as promising candidate to derive flexible regionalization functions. In

the context of hydrological modeling of ungauged basins, achieving such a flexible regionalization is desirable to adequately

represent the multi-scale variabilities of the physical system. It would also maximize the extraction of information from large

sets of physical descriptors and hydrological response observations, while accounting for data and modeling uncertainties.

A novel approach called HDA-PR (Hybrid Data Assimilation and Parameter Regionalization) is presented in this article.

HDA-PR relies on seamless regional optimization algorithms for learning complex transfer functions between physical de-

scriptors and conceptual parameters of spatially distributed hydrological models, applicable at high-resolution with spatial

constraints of various rigidity to address the spatial equifinality issue. It is designed to exploit the informative content of

massive heterogeneous datasets over large spatio-temporal computational domains, and is therefore adapted to solving high-

dimensional inverse problems. Our approach leverages information from multi-site river flow observations and high-resolution

data on a 1 km2 and 1 h resolution grid, relying on the original combination of the following ingredients:

– Learnable regionalization functions via the introduction into the direct hydrological model of an explicit tunable map-

ping between heterogeneous physical descriptors and spatially distributed unknown conceptual parameters. This map-

ping allows estimating parameter values while imposing a constraint on their spatial variability, via the use of physical

descriptors and a priori knowledge. Multivariate polynomial regressions and neural networks are employed to learn such

a complex nonlinear descriptors-parameters mapping.

– A differentiable spatially distributed hydrological model into which the regionalization operators have been imple-

mented. This enables the computation of accurate, spatially-distributed gradients of the calibration cost (objective)

function, with respect to the sought regionalization parameters, which can be of high dimension. Obtaining accurate

gradients for such high-dimensional parameters is crucially needed for optimization algorithms.

The original combination of the above ingredients amounts to introducing regionalization transfer functions into a variational

data assimilation (VDA) algorithm (similar to the tunable differentiable mappings in hydraulic VDA algorithms (Monnier et al.,

2016; Garambois et al., 2020)) dedicated to spatially distributed hydrological modeling and high-dimensional inverse problems.

This has seldom been investigated especially for regional hydrological learning from multi-site data. The strength of HDA-PR

lies in its capability to learn complex relation between physical descriptors and conceptual parameters of spatially distributed

models in the context of structural and spatial parametric equifinality. Additionally, our approach aims at ensuring that the

hybrid data assimilation algorithm, which integrates an explainable learning process, produces results that can be physically

interpreted (see Larnier and Monnier (2020); Höge et al. (2022); Fablet et al. (2021); Althoff et al. (2021)). It is able to enhance

calibration scores with deep learning from large heterogeneous datasets while maintaining the interpretability of physics-based

hydrological models. The evaluation procedure adopted in this work considers challenging regionalization problems with multi-

gauge settings in flash-flood-prone areas and multiple evaluation metrics including flood event hydrological signatures (Huynh

et al., 2023). We address the following aspects of the HDA-PR approach: (i) performance at gauged and ungauged sites;

(ii) factors determining the performance; and (iii) spatial patterns of the regionalized parameters in relation to information

extraction from physical descriptors.
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The remaining sections of this paper are organized as follows: Section 2 describes the HDA-PR algorithms and the SMASH

spatially distributed hydrological assimilation platform into which they have been implemented. In Section 3, we present the

case studies based on two contrasted areas and analyze the performance of HDA-PR using different regionalization mappings.

Subsequently, in Section 4, we discuss compelling findings based on the results from the previous section. Finally, in Section 5,

we conclude our work and outline potential future research directions.

2 Forward-Inverse Algorithms

This section presents the forward model and inverse algorithms of the proposed HDA-PR method. An algorithm flowchart is

provided in Figure 1 to help in global understanding.

Figure 1. Flowchart of the forward-inverse algorithm used in HDA-PR. The forward hydrological model is a gridded model (spatio-temporal

regular grid at 1 km2 and 1 h) using GR operators.

First, the differentiable forward model consists in: (i) a parsimonious and robust GR-like conceptual hydrological model

structure (Perrin et al., 2003) that is spatially distributed and differentiable (Jay-Allemand et al., 2020); and (ii) regionalization

operators, consisting of either multivariate polynomial regressions or neural networks, for mapping descriptors onto hydro-

logical model parameters. The calibration cost function adapted to multi-site (and potentially multi-source) observations is

then defined. The inverse optimization algorithms, that use the spatially distributed gradients of the cost function with respect

to model parameters, and are capable of dealing with high-dimensional inverse problems such as encountered with tunable

parameters of regionalization descriptors-parameters mappings, are then detailed.

The core strength of HDA-PR is the use of differentiable descriptors-to-parameters transfer functions, especially in the

form of neural networks, and the capability to automatically compute accurate cost gradients. The latter enables the use of
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gradient-based variational optimization algorithms with high-dimensional regional parameter vectors. The method is applicable

to any differentiable forward model as well as to multi-source heterogeneous datasets, and hence constitutes a powerful data

assimilation framework.

2.1 Forward Model with Regionalization

First, let Ω⊂ R2 denote a 2D spatial domain that can contain multiple catchments, both gauged and ungauged, with a minimum

of one gauged catchment, and t > 0 the physical time. In what follows, the vector of spatial coordinates over Ω is denoted x.

The number of active cells within the spatial domain Ω is noted Nx. A 2D flow directions map DΩ is obtained from terrain

elevation processing and will be used for runoff routing, with the only condition that a unique point in the regular mesh TΩ has

the highest drainage area.

Consider observed discharge time series Q∗g(t) at NG observation cells of coordinates xg ∈ Ω, g = 1..NG (NG ≥ 1). For

each observation cell, the corresponding gauged upstream sub-catchment is noted Ωg so that Ωung = Ω \
(
∪NGg=1Ωg

)
is the

remaining ungauged part of the whole spatial domain Ω. Note that this definition is suitable for the general regionalization case

dealing with spatially independent and/or nested gauged catchments.

Then, the forward modelM can be defined as a multivariate function obtained by partially composing a hydrological model

Mrr with a regionalization operator FR to compute hydrological parameters θ such that:

M=Mrr ( . , θ = FR ( . )) (1)

Let us now introduce and detail the hydrological model and the regionalization operator along with their input variables.

The rainfall and potential evapotranspiration fields are respectively noted P (x,t) and E (x,t), ∀x ∈ Ω. The hydrological

modelMrr is a dynamic operator projecting the input fields P (x,t) and E (x,t), given an input drainage plan DΩ (x), onto

the discharge fieldQ(x,t) and states fields h(x,t) such that, ∀(x,t′) ∈ Ω× [0, t]:

U (x,t) = (h,Q)(x,t) =Mrr [(DΩ,θ)(x); (P ,E)(x,t′),h(x,0), t] (2)

where θ is theNθ-dimensional vector of model parameters 2D fields that we aim to estimate regionally with the new algorithms

proposed below, and h is the NS-dimensional vector of internal model states. In this study, the distributed hydrological model

Mrr is a parsimonious GR4-like conceptual structure (Perrin et al., 2003), which is the spatialized “S-GR4” structure presented

in Colleoni et al. (2023). The hydrological parameters vector ∀x ∈ Ω is:

θ (x) = (cp(x), cft(x),kexc(x), lr(x))
T

where the four spatially varying parameter fields are the capacity of the production reservoir (cp in [mm]), the capacity of the

transfer reservoir (cft in [mm]), the parameter (kexc in [mm/dt]) of the non-conservative water exchange flux, and the linear

routing parameter (lr in [min]).

In order to constrain and explain these spatial fields of conceptual model parameters θ(x) from descriptors D(x), we

introduce a regionalization operator FR that is a descriptors-to-parameters mapping such that:

θ (x) = FR(D (x) ,ρ), ∀x ∈ Ω (3)
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withD the ND-dimensional vector of physical descriptor maps covering Ω, and ρ the vector of tunable regionalization param-

eters that is defined below.

Two types of regionalization operators are used in HDA-PR (see Figure 1):

1. A set P of multivariate polynomial regression operators for each parameter of the forward hydrological model (Equa-

tion 2):

θ(x,D,ρ) := P (D(x),ρ)≡
[
(θk(x,D,ρk))

Nθ
k=1

]T
, ∀x ∈ Ω;

θk(x,D,ρk) := sk

(
αk,0 +

ND∑
d=1

αk,dD
βk,d
d (x)

)
, ∀k ∈ [1..Nθ]

(4)

with sk(z) = lk+(uk−lk)/(1 + e−z) , ∀z ∈ R, a transformation based on a Sigmoid function with values in ]lk,uk[, thus

imposing bound constraints in the direct hydrological model such that lk < θk(x)< uk, ∀x ∈ Ω. The lower and upper

bounds lk and uk, associated to each parameter field θk of the hydrological model (Equation 2) are assumed spatially

uniform for simplicity here. The regional control vector to be estimated in this case is:

ρ≡
[
(ρk)

Nθ
k=1

]T
≡
[(
αk,0,(αk,d,βk,d)

ND
d=1

)Nθ
k=1

]T
(5)

2. An ANN denoted N , consisting of a multilayer perceptron, aimed at learning the descriptors-to-parameters mapping

such that:

θ(x,D,ρ) :=N (D(x),W ,b) ,∀x ∈ Ω (6)

whereW and b are respectively weights and biases of the neural network composed ofNL dense layers. The architecture

of the neural network and the forward propagation is detailed in Appendix B and Equation B2. Note that an output layer

consisting of a scaling transformation based on the Sigmoid function (cf. Equation B1) enables to impose lk < θk(x)<

uk, ∀x ∈ Ω, i.e., bound constraints on the kth-hydrological parameters. The regional control vector in this case is:

ρ≡ [W ,b]
T ≡

[
(W j ,bj)

NL
j=1

]T
(7)

For each regionalization operator (Equation 4 or 6), the regional calibration problem consists in optimizing (in a sense de-

fined below) the regionalization control ρ (Equation 5 or 7) that can be of relatively high dimension since it is proportional

to the number of descriptors (ND), the number of model parameters (Nθ), and the degree of spatialization of the regional

controls. Optimization algorithms adapted to the high-dimensional problems of interest, taking advantage of accurate spatially

distributed gradients computation with the adjoint of the forward model, are detailed thereafter. Importantly, note that by defi-

nition of the mathematical model and given the numerical implementation rules followed, the forward model is differentiable.

This is a necessary condition for computing cost gradients with respect to spatially distributed hydrological parameters and ob-

tain those of regional controls, as needed for solving the optimization problem. This is a key idea and property of our proposed

algorithms.
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The numerical resolution of the ODE (Ordinary Differential Equation)-based operator of the forward hydrological model

(Equation 2) relies on an explicit expression of its solution, approximated on the regular mesh TΩ of constant step dx with a

fixed time step dt. All physical descriptors are mapped onto model grid for simplicity here.

Note that adding an upscaling operator after the regionalization scheme (as done in Samaniego et al. (2010)) is feasible in

HDA-PR under the condition that it is differentiable (at least numerically), and is a potentially interesting topic for further

research, as is improving observation operators. In both cases one could use algebraic expressions or neural networks in the

HDA-PR assimilation framework.

2.2 Calibration Cost Function

A calibration cost function is defined to measure the misfit between simulated and observed discharge time series, respectively

noted Qg(t) and Q∗g(t), for g ∈ 1..NG gauged cells. In order to measure the discrepancy between observed and simulated

quantities from multiple observation sites, we consider the cost function:

J =

NG∑
g=1

wgJ
∗
g (8)

with wg a weighting function explained afterwards, J∗g a local quadratic metric “at the station”, here 1−NSE or 1−KGE2

(see Appendix A). This cost function is a differentiable and convex function, involving the response of the direct model.

It depends on the control vector ρ through the direct model M (Equation 1) composed of the regionalization operator FR
(Equation 3) and the direct hydrological modelMrr (Equation 2).

The multi-site calibration corresponds to NG > 1 while NG = 1 is the classical single-gauge calibration. For NG > 1, the

weighting wg is defined such that
∑NG
g=1wg = 1 and is simply set here as wg = 1

NG
, which represents the average cost over

multiple gauges.

2.3 Regional Calibration Algorithms

The inverse problem is written as the following convex optimization problem of the regional control vector ρ:

ρ̂= argmin
ρ
J (U (ρ)) (9)

The regional calibration aims to (i) reduce the misfit between observed and simulated discharges at spatially sparse gauging

stations, as evaluated by Equation 8, while (ii) determining hydrological parameter maps θ(x), relevant for modeling at un-

gauged sites, thus benefiting from the information extracted from physical descriptors and the spatial constraint induced by

the regional transfer functions whose parameters ρ are optimized. The regionalization operator can be expressed as either (i) a

multi-polynomial mapping FR ≡ P (Equation 4), or (ii) an artificial neural network FR ≡N (Equation 6). In both cases, the

regional control vector ρ to optimize is large, and gradient based optimization methods adapted to high-dimensional inverse

problems are employed.
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2.3.1 Optimization Algorithm for Polynomial Regionalization

In this case, the forward model includes the polynomial descriptors-to-parameters mapping (Equation 4), i.e., FR ≡ P and the

regional control vector is:

ρ := [αk,0,(αk,d,βk,d)]
T
,∀(k,d) ∈ [1..Nθ]× [1..ND]

The optimization problem, represented in Equation 9, is solved using the L-BFGS-B algorithm (limited-memory Broy-

den–Fletcher–Goldfarb–Shanno bound-constrained) (Zhu et al., 1997). This algorithm is specially adapted to high-dimensional

parameter spaces, and in this study, there are no bound constraints on the values of αk,., whereas the exponents βk,d are simply

sought between 0.5 and 2. This algorithm requires the gradient of the cost function with respect to the sought parameters∇ρJ .

This gradient is computed by solving the adjoint model, which is obtained by automatic differentiation using the Tapenade

engine (Hascoet and Pascual, 2013). The entire process is implemented in the SMASH Fortran source code, where the full for-

ward modelM≡Mrr (.,P (.)) is a composition of both the hydrological model and the polynomial descriptors-to-parameters

mapping.

The background value ρ∗, used as a starting point for the optimization, is set using a spatially uniform solution θ̄∗, which is

obtained by a simple global optimization algorithm (Michel, 1989) of the inverse problem (Equation 9) whereM≡Mrr and

ρ := θ, as follows:

ρ∗ ≡
[
αk,0 = s−1

k

(
θ̄k
∗) ,(αk,d = 0,βk,d = 1)

]T
,∀(k,d) ∈ [1..Nθ]× [1..ND]

where s−1
k (z) = ln

(
z−lk
uk−z

)
is the inverse Sigmoid.

The termination criterion is determined based on the satisfaction of at least one of the following criteria:

– Maximum number of iterations;

– Cost function criterion: J(i)−J(i+1)

max(|J(i)|,|J(i+1)|,1)
≤ ε× 106 (e.g., ε≈ 2.22× 10−16);

– Gradient criterion: ||∇ρJ
(i)||∞ ≤ 10−12

where J (i), ||∇ρJ
(i)||∞ are respectively the cost value and its projected gradient at iteration i, and ε represents the machine

precision.

2.3.2 Optimization Algorithm for Neural Network-based Regionalization

In this case, the forward model includes a descriptors-to-parameters mapping performed with a neural network, i.e., FR ≡N
and the regional control vector is ρ := [W ,b]

T . The optimization problem (Equation 9) can typically be solved using Adam

optimization algorithm (Kingma and Ba, 2014), an efficient stochastic gradient descent algorithm able to adapt the learning

rate based upon the first and the approximation of the second moments of the gradients for fast convergence, and only requiring

first order gradients of the cost function. In the present case, the cost function writes as:

J (U (ρ)) = J
(
Q∗,Mrr(. , θ =N (D,ρ))

)
(10)

9



This formulation of the cost function highlights its dependency on the forward modelM≡Mrr (.,N (.)), which is com-

posed of two components in its numerical implementation: (i) an ANN implemented in Python, which produces the output θ

used as input by (ii) the hydrological modelMrr implemented in Fortran. In order to optimize J , its gradients with respect to

ρ are required. The main technical difficulty here is to achieve a “seamless flow of gradients” through back-propagation. To

overcome this, we divide the gradients into two parts and apply the chain rule with analytical derivation and numerical code

differentiation (cf. hybrid VDA course in Monnier (2021) and references therein). First, ∇θJ can be computed via the auto-

matic differentiation applied to the Fortran code corresponding toMrr. Then, ∇ρθ is simply obtained by analytical calculus

applicable given the explicit architecture of the ANN, consisting of a multilayer perceptron. Finally, the two gradients can be

combined as ∇ρJ =∇θJ.∇ρθ. The termination criterion is determined by a specified number of iterations in the optimiza-

tion algorithm. A detailed explanation of the network architecture, backward propagation, and the optimization process can be

found in Appendix B.

3 Data and Numerical Experiment

3.1 Study Area and Experimental Design

The performance of HDA-PR using various regional optimization algorithms is evaluated based on high-resolution regional

modeling of two flash-flood-prone areas located in the South of France (Figure 2). They are characterized by contrasted physical

properties and catchments behaviors. The modeling approach is applied to each regional domain that contains multiple gauges

downstream of both nested and independent catchments, used together in the optimization process through the multi-site cost

function.

Figure 2. Two study areas on the map on France: Ardèche (left) and MedEst (right). For each area, the gauged catchments (red) are used for

multi-site calibration while the pseudo-ungauged catchments (blue) are used for spatial validation.
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In order to examine the spatio-temporal extrapolation capabilities of HDA-PR, an a priori partition of the available discharge

stations is made into calibration sites and pseudo-ungauged catchments for validation. We selected as gauged stations for

regionalization those with good local model performances (i.e., “donor” catchments with potentially lower modeling error).

Discharge time series at gauged sites are also split into a calibration and a validation period. A set of 7 physical descriptors

(Table 1) available over the whole French territory is used following Odry (2017) and Jay-Allemand et al. (2022b). Note

that this setup is sufficient to assess the regionalization performance of the proposed algorithms while keeping the present

article concise. The issue of selecting the most relevant information (multi-source observations of hydrological responses and

physical descriptors) is intentionally left for future research since it requires several upgrades to the algorithms (dedicated

observation operators, descriptors selection layers, etc.). It is worth noting that prior to the optimization process, all descriptors

are standardized between 0 and 1 through min-max scaling.

Table 1. Descriptors used as input data for regionalization methods.

Notation Type Description Unit Source

d1 Topography Slope ◦ Odry (2017)

d2 Morphology Drainage density - Organde et al. (2013)

d3 Influence Percentage of basin area in karst zone % Caruso et al. (2013)

d4 Land use Forest cover rate % CLC European Union (2012)

d5 Land use Urban cover rate % CLC European Union (2012)

d6 Hydrogeology Potential available water reserve mm Poncelet (2016)

d7 Hydrogeology High storage capacity basin rate % Finke et al. (1998)

The first zone is located in the Eastern Mediterranean region and is called “MedEst”. 9 gauged catchments are used for

calibration while 6 others are considered as pseudo-ungauged for validation. The second zone is located in the Ardèche region

and called “Ardèche”. 14 catchments are considered as gauged while 7 are considered as pseudo-ungauged. Both study areas

constitute challenging cases, with contrasted hydrological properties including steep topography and very heterogeneous soils

and bedrock (e.g., Garambois et al. (2015)). They are affected by intense rainfall that trigger non linear flash flood responses.

Moreover, the MedEst area is the most difficult to model because of the significant proportion of karstic zones. The selection

of catchments is based on the availability of long time series with high quality of observed flow and limited anthropogenic

impacts. The SMASH model is run on a dx= 1 km spatial grid at dt= 1 h time step. It is forced by: (i) observed rainfall

grids based on hourly ANTILOPE J+1 radar-gauge rainfall reanalysis from Météo-France (Champeaux et al., 2009); (ii) po-

tential evapotranspiration (PET) estimated using the formula of Oudin et al. (2005); and (iii) temperature data from SAFRAN

reanalysis produced by Météo-France on a 8x8 km2 spatial grid (Quintana-Seguí et al., 2008) downscaled to a 1x1 km2 spatial

grid.

For each study area, we perform multi-site regional calibration methods using gauged catchments. The chosen calibration

metric is the NSE, computed using data from multiple gauges over a ten-year period (2006-2016). The following calibration

methods are compared:
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– Local calibrations for each gauge, both with spatially uniform (i.e., ρ≡ θ̄) and full spatially distributed controls (i.e.,

ρ≡ θ (x)), that are respectively under and over parameterized hydrological optimization problems. These represent

reference performances, denoted “Uniform (local)” and “Distributed (local)”.

And multi-gauge regional calibrations with:

– lumped model parameters (i.e., ρ≡ θ̄) which somehow represents “level 0” regionalization, denoted “Uniform (region-

alization)”;

– a multivariate linear mapping (i.e., ρ≡ [αk,0,(αk,d,1)]
T ), denoted “Multi-linear (regionalization)”;

– a multivariate polynomial mapping (i.e., ρ≡ [αk,0,(αk,d,βk,d)]
T ), denoted “Multi-polynomial (regionalization)”;

– a multilayer perceptron (i.e., ρ≡ [W ,b]
T ), denoted “ANN (regionalization)”.

To ensure robust validation, model performances are assessed in terms of spatial validation, temporal validation, and spatio-

temporal validation, with a validation period covering two years from 2016 to 2018. Various evaluation metrics are also used,

including multiple hydrological signatures-based metrics from Huynh et al. (2023).

3.2 Regional Learning Performance

In this section, the regional learning performance is analyzed with primary focus on the MedEst region, which represents the

most challenging study area. First, Figure 3 suggests that using lumped model parameters θ̄ leads to a poor performance in

simulating discharges, whereas the other three regional learning methods result in similar signals with remarkably improved

performance, in both the gauged and the pseudo-ungauged catchments.

Figure 3. Study area: MedEst. One year of observed and simulated discharges (inm3/s) obtained with four multi-gauge regional calibration

methods at one gauged (Y4615020) and one pseudo-ungauged catchment (Y5215020).

Given the complexity and heterogeneity of the region, it is unsurprising that lumped model parameters regionalization is un-

able to accurately reproduce contrasted hydrological responses. Figure 4 demonstrates that the three regionalization methods

incorporating information from physical descriptors lead to largely superior performance when compared to the Uniform base-

line for the calibration catchments. For example, the NSE scores increase from 0.3 to more than 0.7 in catchment Y5615030,
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or from 0.4 to more than 0.75 in catchment Y5615010. In addition, these three methods yield relatively high scores in the

pseudo-ungauged catchments used for spatial validation (e.g., in Y5215020 where the NSE score has been improved from 0.36

up to 0.83 in the case of ANN). Note that some stations have many missing data: for instance, 32 % of the data are missing for

catchment Y5106610, and 21 % for catchment Y5005210. This may affect the NSE scores and at least partly explain the poor

validation performances for all methods.

Figure 4. Study area: MedEst. Radial plots of the NSE (optimal value = 1) in gauged catchments (left) and pseudo-ungauged catchments

(right) during the calibration period for four multi-gauge regional calibration methods.

We now focus on the global results in both study areas, Ardèche and MedEst, as presented in Figure 5. This figure sum-

marizes the NSE scores for the two local calibration methods (spatially uniform and spatially distributed calibrations) and the

four regionalization methods. A rapid interpretation reveals that in the Ardèche area, making the model parameters vary in

space seems unnecessary, given the already good performance of the lumped parameters (Uniform) methods in the context of

a less complex area. However, it is worth noting that the three regionalization methods also achieve satisfying results, with the

median efficiencies (NSE) exceeding 0.65 in both gauged and pseudo-ungauged catchments during the validation period. This

suggests that while not necessary, using a non-uniform regionalization approach does not deteriorate the performance in spatial

or temporal validation. In contrast and as evidenced in the preceding figures, significant disparities in efficiency scores are

observed among the regionalization methods in the MedEst area, where the multivariate regressions and ANN outperform the

uniform regionalization baseline calibrated with lumped model parameters. The three methods demonstrate promising results,

achieving median NSE scores above 0.72, 0.51, 0.76 and 0.61 (compared to 0.6, 0.41, 0.2 and 0.16 for the baseline) respec-

tively, across calibration, spatial validation, temporal validation and spatio-temporal validation. Specifically, when considering

temporal validation, the ANN reaches a median NSE score of approximately 0.9 with eight out of nine stations exceeding a

score of 0.8, which is comparable to the performance of the local calibration reference with spatially distributed controls.
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Figure 5. Comparison of NSE scores across gauged and pseudo-ungauged catchments during the calibration (top) and validation (bottom)

periods for two local calibration methods and four regionalization methods in both study areas. The numbers in parentheses indicate the

number of catchments included in each boxplot.

In order to obtain a more robust evaluation criterion adapted to flood modeling, we consider validation in terms of multiple

evaluation metrics based on hydrological signatures for flood events, which are computed via an automated segmentation al-

gorithm proposed by Huynh et al. (2023). Turning the focus back to MedEst, the three non-uniform regionalization methods,

with a particular focus on the ANN, demonstrate their ability to outperform the uniform regionalization (lumped model param-

eters), in both temporal and spatio-temporal validation, as shown in Figure 6. The relative errors (median over flood events) of

simulated signatures using these three regionalization methods are around 0.2 compared to more than 0.8 for the uniform base-

line in temporal validation, and between 0.2 and 0.6 compared to more than 0.7 for the baseline in spatio-temporal validation.

Especially, in the case of ANN, the error in simulating the peak flow is drastically reduced from 0.85 and 0.91 (for the baseline)

to 0.28 and 0.43, respectively, in temporal and spatio-temporal validation. It is noteworthy that these flood signatures-based

metrics were not included in the cost function during the calibration process, which further supports the robustness and power

of the regionalization methods, particularly the one based on the ANN. It thus underscores the potential of such approaches for

enhancing flash flood forecasting system.

Finally, Figure 7-b shows the parameter maps obtained with the three non-uniform regionalization methods, that can be

physically interpreted. In general, the spatial patterns of the drainage density (d2) in Figure 7-a are easily observable in the

distributed parameter maps in the two regression cases, as evidenced by strong correlations between this descriptor and the four

model parameters. Such correlations can be quantified using one-to-one parameter-descriptor correlation matrices (Figure 7-

c). The relations between the model parameters and physical descriptors are not limited to linear and polynomial forms in the

ANN case, leading to parameter maps that are quite distinct from the regression-based ones. Furthermore, it is noteworthy that
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Figure 6. Study area: MedEst. Relative error (RE, optimal value = 0) of 4 flood event signatures: base flow (Ebf), flood flow (Eff), runoff

coefficient (Erc) and peak flow (Epf), evaluated using n_event= 49 flood events at gauged catchments for temporal validation (Temp Val)

and n_event= 19 flood events at pseudo-ungauged catchments for spatio-temporal validation (Spatio-Temp Val).

the ANN can identify stronger correlations (compared to both regression cases) for the routing parameter (lr) and the transfer

parameter (cft) with the karst index (d3). For Ardèche, parameter maps show a reduced variability (see Figure C4-b), and the

ANN identifies maps and relations between descriptors and parameters which are similar to those found in both regression

cases (see Figure C4-c). This finding suggests that the ANN can effectively approximate the multi-linear regression when

dealing with areas like Ardèche, where it does not necessitate more intricate mappings. This demonstrates the robustness and

flexibility of the ANN, which proves to be efficient not only in complex study areas but also in simpler ones.

The corresponding figures in this section depicting the results in Ardèche can be found in Appendix C. The following

section focuses on results more specific to the optimization process and provide insights on the use of multivariate regressions

and ANN in both study areas.

4 Discussions

Learning the spatial variability of conceptual hydrological parameters may be difficult to achieve with simple regionalization

methods (e.g., based on multi-linear regression). However, while complex regional mappings can reduce the misfit between

observed and simulated hydrological responses, their ability to produce physically interpretable results may be questioned.

This section presents compelling findings and insightful observations obtained from the calibration using HDA-PR, with a

particular focus on the learning process in the case of ANN.

When calibrating a model with gradient-based optimization algorithms, it is important to discuss the descent of the cost

function. This analysis enables understanding how optimization algorithms converge towards the global or local minimum
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Figure 7. Study area: MedEst. Sub-figure a: Maps of input descriptors (d1-d7), whose information is provided in Table 1. Sub-figure b:

Calibrated hydrological parameters (kexc, lr, cft, cp) maps for three non-uniform regionalization methods. Sub-figure c: Linear correlation

between descriptor and parameter for the three regionalization methods.

of the cost function, and identifying potential trade-offs between model flexibility and overparameterization, in addition to

validation results. Similar results are observed in both study areas, including the descent of the cost function J and its projected

gradient ∇ρJ , which are represented in Figure 8 for the MedEst area.

It is apparent that the cost functions in the two regression methods start from a more optimal point (approximately 0.46) than

the ANN since they use a uniform background solution obtained by a global optimization method, as mentioned in 2.3.1.

Furthermore, they converge after around 200 iterations and remain monotonous throughout the optimization process. The

polynomial regression approach achieves a slightly lower cost than the linear approach, due to the fact that it has nearly twice

the number of parameters (Table 2), while the ANN, with a significantly larger number of parameters, can achieve a lower cost

despite starting from a higher cost. Moreover, the ANN cost function in the left panel of Figure 8 is not monotonous throughout

iterations: it shows localized increases for several instances within the first 100 iterations.

The variability of the projected cost gradient shown in the right panels of Figure 8 suggests that the surface of the cost function

is more complex for ANN than for the two regressions. This is confirmed by the gradient values in the right panels of Figure 8:

multi-linear regression lead to projected gradients that are marginally higher than those of multi-polynomial regression but

much higher than those of ANN. This discrepancy can be attributed to the complexity of the regionalization mapping in each
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Figure 8. Study area: MedEst. The descent of the cost J = 1−NSE (left) and projected gradient ||∇ρJ ||∞ (right) for the three non-uniform

regionalization methods.

Table 2. Number of parameters in the control vector for the four regionalization methods studied, where Nθ = 4 and ND = 7. A detailed

calculation of the total number of parameters for the ANN is provided in Table B1. The last two columns show the ratios between the number

of parameters in the four methods studied and the fully distributed calibration method (i.e., ρ≡ θ(x)), which was overparameterized and

unable to perform regionalization.

Mapping Coefficient Exponent Total parameters % (MedEst) % (Ardèche)

Uniform Nθ.1 = 4 0 4 0.03 0.04

Multi-linear Nθ(ND + 1) = 32 0 32 0.21 0.29

Multi-polynomial Nθ(ND + 1) = 32 Nθ.ND = 28 60 0.39 0.54

ANN 6276 40.3 56.48

Fully distributed: Nθ.Nx. Remind that Nx is the number of active cells within the spatial domain Ω.

case, with the ANN being the most complex. Moreover, jumps in the projected gradient (bottom right panel) suggest that the

solutions of the ANN can explore different paths and avoid getting stuck in local minima: there are four instances (around

iterations 5, 90, 130, and 210) where significant changes occur in the control vector space (biases and weights) to locate the

optimum. This property could be essential in tackling equifinality and reach robust global optimum even with different starting

points.

To alleviate the vanishing gradient problem inherent in the ANN, we employed several techniques commonly used in the

machine learning community. First, we applied Xavier initialization (Glorot and Bengio, 2010) to the weights, maintaining a

reasonable magnitude of the gradients. Second, we utilized the ReLU activation function or its variants in the hidden layers,

enabling the gradient to flow more freely through the network. Third, we varied the number of hidden layers between 2 and 4,
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striking a balance between network flexibility and exacerbation of the vanishing gradient problem. Ultimately, we employed a

relatively high initial learning rate (e.g., 0.005) to prevent the gradients from shrinking excessively during training.

One can also inquire about the way the different regionalization mappings transfer information from physical descriptors

to hydrological parameters. For instance, how can we ensure that HDA-PR effectively uses the physical patterns provided by

descriptor maps to constrain the estimation of meaningful spatial parameter maps? To address this question, it is worth noting

that the “safest” approach is to use multi-linear regression, which corresponds to a simple weighted average of the descriptor

patterns. In the case of multi-polynomial regression, the risk of losing physical properties may arise when the polynomial

degree is unbounded. To mitigate this risk, this study imposed bounds on the polynomial degree, 0.5≤ βk,d ≤ 2, as mentioned

earlier in 2.3.1. The ANNs, however, pose the most complicated case, where the control vector (that is, the weights and biases)

consists of numerous parameters that are difficult to physically constrain. Our hands-on experience indicates that a multilayer

perceptron with two or three hidden layers is sufficient for learning the parameters of a parsimonious conceptual distributed

hydrological model without under- or over-extracting the physical information of the input descriptors. Note that the number

of neurons in each layer must be reasonable, which should not exceed
√
ND.Nx based on our experiments.

Regarding regionalization over larger areas, such as for large basins or at country scales, for dealing with significant physical

heterogeneity, an increased flexibility in the regional mapping might be needed. This can be achieved through the use of

spatialized regional controls, for example as done in regional calibration for catchment clusters determined with a similarity

measure (Huang et al., 2019). In the proposed HDA-PR framework, the definition of transfer functions allows considering

flexible mappings, as well as spatialized regional controls through masked descriptor maps, for each hydrological parameter

independently or jointly. This enables the exploration of transfer functions on a clustering of the spatial domain, for example

into sub-regions or hydrological response units (HRU). This would certainly be necessary to circumvent the rigidity of the linear

or multi-linear mappings, but maybe not for a flexible one such as the ANN. In this work, the capabilities of HDA-PR have been

successfully demonstrated in a high-dimensional and challenging high-resolution flash-flood modeling context. Determining

effective physical descriptor sets from large databases as well as finding optimal spatial flexibility represent interesting research

avenues for constructing optimal regional data assimilation approaches.

5 Conclusions

A Hybrid Data Assimilation and Parameter Regionalization (HDA-PR) approach has been introduced in this study. We in-

vestigated the potential of incorporating learnable regionalization mappings, including multi-variate polynomial regressions

and neural networks, into a differentiable high-resolution hydrological model. To the best of our knowledge, we present the

first implementation of ANNs within this context, enabling a seamless regionalization in hydrology. Effective optimization

algorithms capable of performing high-dimensional optimizations from multi-source data have been obtained with:

– effective regional transfer functions of adaptable complexity, enabling the use of information from heterogeneous data

sources, with flexible formulations and various degrees of spatial rigidity;
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– a differentiable forward hydrological model, embedding the regional mappings, that enables accurate computation of

spatially distributed gradients of the multi-gauge cost function - which is crucially needed in the context of sparse

observations (i.e., cost evaluation locations), and relatively small gradient values and spatial variability;

– optimization algorithms, adapted to high dimensional problems, with seamless flow of cost gradients, especially when

combined with physical descriptors and spatial gradients, which efficiently enhance the transferability of geophysical

properties from gauged to ungauged locations.

HDA-PR has been tested on two very challenging regional optimization cases from multi-gauge discharge and descriptors

maps, with a high-resolution conceptual hydrological modeling at 1 km2. The results obtained on both zones, and especially

on the most challenging MedEst case, highlight the effectiveness of HDA-PR that utilizes physical descriptors, surpassing the

performance of a uniform regionalization method with lumped model parameters. Notably, the ANN exhibited superior perfor-

mance, even comparable to the reference benchmarks, thereby establishing its remarkable capability in challenging modeling

scenarios as well as its capacity to collapse to a simpler mapping in less challenging ones. The median NSE scores of all HDA-

PR methods (including multivariate regressions and ANN) are greater than 0.75 in calibration in both study areas, whereas the

scores in spatio-temporal validation exceed 0.6 in MedEst (versus 0.85 for the the local distributed calibration which represents

the upper limit) and exceed 0.65 in Ardèche (versus 0.8). Various flood event signatures computed from Huynh et al. (2023)

are also used as validation metrics to demonstrate the robustness of HDA-PR, where the three regionalization methods using

descriptors outperform the uniform regionalization method. For instance, when considering spatio-temporal validation across

19 flood events in MedEst, these three methods yield median relative errors of the peak flow below 0.6, whereas the uniform

method yields errors exceeding 0.9.

This research and the proposed algorithms open several perspectives. Immediate work focuses on: (i) the testing and im-

provement of HDA-PR for application at national scales and on other continents; (ii) study of effective descriptor selection

along with multi-gauge cost functions explicitly accounting for data uncertainties, and optimal spatial clustering of regional

controls, for example into HRU; (iii) study of a global Bayesian estimator to improve the first-guess determination, especially

with the multi-polynomial mapping. Adding a learnable descriptors selection and ingestion layer on top of the regionalization

transfer functions would enable the exploration of even larger databases including categorical data. HDA-PR can be extended

to state and composite parameters-states optimization which could be very interesting for multi-scale DA and real time model

correction from multi-source and multi-site data. Finally, the method is transposable to regionalization of differentiable inte-

grated hydrological-hydraulic networks models (e.g., Pujol et al. (2022)) and could be used to explore regionalization potential

from cocktails of in-situ and satellite data, including the forthcoming SWOT (Surface Water and Ocean Topography satellite

mission) observations of water surfaces variabilities of worlwide larger rivers. In general, its applicability extends beyond

hydrological models and can be adapted to other geophysical models.

Appendix A: Metrics

DenoteQ(t) andQ∗(t) being the simulated and observed discharge time series. The hydrological cost functions studied are:

19



– observation cost function based on the Nash-Sutcliffe Efficiency (NSE):

1−NSE =

∑T
t=t∗ (Q∗(t)−Q(t))

2∑T
t=t∗

(
Q∗(t)−Q∗

)2

– observation cost function based on the Kling-Gupta Efficiency (KGE):

1−KGE2 = a1 (r (Q∗(t),Q(t))− 1)
2

+ a2 (β (Q∗(t),Q(t))− 1)
2

+ a3 (α(Q∗(t),Q(t))− 1)
2

with r, β and α being respectively measures of the correlation, bias and variability of observation with respect to simu-

lated discharge time series;
∑3
i=1 ai = 1. This function is quadratic and differentiable.

Appendix B: Incorporating ANN into the differentiable hydrological model

This appendix details the neural network design and the derivation of hydrological cost gradients for the ANN-based regional-

ization algorithm.

A simple ANN denoted N , consisting of NL fully connected (dense) layers, intends to learn the descriptors-to-parameters

field mapping in the 2D spatial domain, fromD(x) ∈ RND to θ(x) ∈ RNθ ,∀x ∈ Ω (Figure B1).

Figure B1. The architecture of the ANN consists of three hidden layers followed by the ReLU activation function and an output layer that

uses the Sigmoid activation function in combination with a scaling function. In this particular case, we have ND = 7, NL = 4 and Nθ = 4.

The calculation of the total number of trainable parameters for this architecture is detailed in Table B1.

Let us consider an ensemble of layers where each layer is associated with its weight W j and bias bj . Then, an input I of

each layer is mapped to the input of the next layer by a linear function φj(I) =W jI+bj , and followed by the ReLU activation

function denoted δ, except for the last layer, which is followed by the Sigmoid activation function denoted σ, ensuring that
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Table B1. Number of parameters of the ANN where ND = 7, NL = 4 and Nθ = 4.

Hidden layer 1 Hidden layer 2 Hidden layer 3 Output layer

Input shape (ND, ) (96, ) (48, ) (16, )

Number of neurons 96 48 16 Nθ

Number of parameters ND.96 + 96 = 768 96.48 + 48 = 4656 48.16 + 16 = 784 16.Nθ +Nθ = 68

Total parameters: 6276.

its outputs are between 0 and 1. Now an output Ox = σ ◦φNL(.,x) ∈ [0,1]Nθ of the last layer is mapped to the range of the

hydrological model parameters by a differentiable scaling function s:

θ(x) = s(Ox) = l+ (u− l)�Ox (B1)

where l = (l1, ..., lNθ ) and u= (u1, ...,uNθ ) with the lower and upper bounds lk ∈ R and uk ∈ R, assumed spatially uniform,

defining the bound constraints of θk(x),∀(k,x) ∈ [1..Nθ]×Ω, in the direct hydrological model. The notation “�” denotes the

Hadamard product.

Noting Ψj ≡

δ ◦φj , j = 1..NL− 1

σ ◦φj , j =NL

, the forward propagation of the neural network N is defined as Equation B2.

θ(x) =N (D(x), .) = s ◦ΨNL ◦ΨNL−1 ◦ ... ◦Ψ1(D(x)),∀x ∈ Ω. (B2)

Here, the notation “◦” denotes the function composition operator.

Recall that our objective is the calibration problem of Equation 9 with respect to the regional control vector ρ := [W ,b],

using the cost function of Equation 10. In such manner, different variants of stochastic gradient descent algorithm are used and

thus require the gradients of the cost function with respect to the weights and biases ∂J
∂ρj

for each layer, where ρj := [W j ,bj ].

Since the forward modelM≡Mrr (.,N (.)) with θ being both the output of N and the input ofMrr, we can write ∂J
∂ρj

=

∂J
∂θ

∂θ
∂ρj

. Then these two gradients are obtained as follows:

– The gradients ∂J
∂θ of the cost function with respect to the hydrological model parameters, computed by solving the

numerical adjoint model ofMrr;

– The gradients ∂θ
∂ρj

of the network output with respect to the weight and bias, computed using the chain rule of composite

functions of N .

Eventually, the backward propagation for updating the weights and biases, using for instance Adam optimizer, is described in

Algorithm B1.

Appendix C: Calibration results in case of Ardèche

This section provide several calibration/validation results obtained in the Ardèche area.
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Algorithm B1 Adapted back-propagation using Adam optimizer

B Randomly initialized weights and biases ρ(0) =
(
ρ

(0)
1 , ...,ρ

(0)
NL

)
B Number of training iterations Nite

for i= 1..Nite do

B Forward propagation over the spatial domain θ←
[(
N
(
D(x),ρ(i−1)

))
x∈Ω

]T
B Initial gradient accumulation∇A←∇θJ =

(
∂J
∂θ1

, ..., ∂J
∂θNθ

)
for j =NL..1 do

B Gradient computation ∂J
∂ρj
←
(
∂θ
∂ρj

)T
∇A

B Updated gradient accumulation∇A←∇A.
[
W

(i−1)
j

]T
B Updated weights and biases ρ(i)

j ← ρ
(i−1)
j − η m(i)

(1−β1)

(√
v(i)

1−β2
+ε

) where:

m(i)← β1m
(i−1) + (1−β1) ∂J

∂ρj

(
ρ

(i−1)
j

)
v(i)← β2v

(i−1) + (1−β2)
(
∂J
∂ρj

(
ρ

(i−1)
j

))2

β1 = 0.9 and β2 = 0.999 are the decay rates for first and second moments of gradients

ε= 10−8 is a small scalar

η is the learning rate that is a tuning parameter determining the step size of the optimization problem

end for

end for

Figure C1. Study area: Ardèche. One year of observed and simulated discharges (in m3/s) obtained with four multi-gauge regional calibra-

tion methods at one gauged (K0454020) and one pseudo-ungauged catchment (K0114020).
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Figure C2. Study area: Ardèche. Radial plots of the NSE (optimal value = 1) in gauged catchments (left) and pseudo-ungauged catchments

(right) during the calibration period for four multi-gauge regional calibration methods.

Figure C3. Study area: Ardèche. Relative error (RE, optimal value = 0) of 4 flood event signatures: base flow (Ebf), flood flow (Eff), runoff

coefficient (Erc), peak flow (Epf), evaluated using n_event= 67 flood events at gauged catchments for temporal validation (Temp Val) and

n_event= 29 flood events at pseudo-ungauged catchments for spatio-temporal validation (Spatio-Temp Val).
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Figure C4. Study area: Ardèche. Sub-figure a: Maps of input descriptors (d1-d7), whose information is provided in Table 1. Sub-figure b:

Calibrated hydrological parameters (kexc, lr, cft, cp) maps for three non-uniform regionalization methods. Sub-figure c: Linear correlation

between descriptor and parameter for the three regionalization methods.

Code availability. The proposed algorithms were implemented into the SMASH platform, which is interfaced in Python (Jay-Allemand et al.,

2022a). The SMASH source code is licensed under GPL-3.0 and can be accessed at: https://github.com/DassHydro-dev/smash. Additionally,

the code for conducting the numerical experiments and analysis in this study is licensed under MIT and provided at: https://github.com/

nghi-truyen/Regionalization-Learning.
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