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Key Points:

• New Hybrid Data Assimilation and Parameter Regionalization (HDA-PR) approach
• Original combination of numerical adjoint model and neural network Jacobian, enabling high-dimensional
spatialized optimization

• Effective regionalization of high-resolution hydrological model for flash floods in the Mediterranean
region

Abstract
Estimating spatially distributed hydrological parameters in ungauged catchments poses a challenging re-
gionalization problem and requires imposing spatial constraints given the sparsity of discharge data. A
possible approach is to search for a transfer function that quantitatively relates physical descriptors to con-
ceptual model parameters. This paper introduces a Hybrid Data Assimilation and Parameter Regionalization
(HDA-PR) approach incorporating learnable regionalization mappings, based on either multivariate regres-
sions or neural networks, into a differentiable hydrological model. It enables the exploitation of heterogeneous
datasets across extensive spatio-temporal computational domains within a high-dimensional regionalization
context, using accurate adjoint-based gradients. The inverse problem is tackled with a multi-gauge cali-
bration cost function accounting for information from multiple observation sites. HDA-PR was tested on
high-resolution, hourly and kilometric regional modeling of two flash-flood-prone areas located in the South
of France. In both study areas, the median Nash-Sutcliffe efficiency (NSE) scores ranged from 0.52 to 0.78 at
pseudo-ungauged sites over calibration and validation periods. These results highlight a strong regionaliza-
tion performance of HDA-PR, improving NSE by up to 0.57 compared to the baseline model calibrated with
lumped parameters, and achieving a performance comparable to the reference solution obtained with local
uniform calibration (median NSE from 0.59 to 0.79). Multiple evaluation metrics based on flood-oriented
hydrological signatures are also employed to assess the accuracy and robustness of the approach. The re-
gionalization method is amenable to state-parameter correction from multi-source data over a range of time
scales needed for operational data assimilation, and it is adaptable to other differentiable geophysical models.

1 Introduction

Irrespective of their type and complexity, hydrological models are more or less empirical and uncertain
representations of multiscale coupled hydrological processes whose observability is limited. Hydrological
model parameters are in general effective quantities that cannot be directly measured. Instead, they are
typically inferred through a calibration procedure aimed primarily at obtaining satisfactory streamflow sim-
ulations (e.g., Beven (2001); Kirchner (2006); Gupta et al. (2006); Vrugt et al. (2008)). In most cases, this
optimization problem is a difficult ill-posed inverse problem faced with the equifinality (Beven, 2001) of
feasible solutions, which can be further interpreted as model structural equifinality and spatial equifinality
in the context of spatially sparse observations compared to model controls (see for example discussions in
Garambois et al. (2020)). Most calibration approaches enable the estimation of spatially uniform model
parameters for a single gauged catchment, but this leads to piecewise constant and discontinuous parameters
fields for adjacent catchments. Moreover, parameter sets determined through calibration are not transfer-
able to ungauged locations although the latter represent the majority of the global land surface (Fekete
& Vörösmarty, 2007; Hannah et al., 2011). Therefore, prediction in ungauged basins remains a “grand
challenge” (Sivapalan, 2003) in hydrology (Hrachowitz et al., 2013), which hinders the development of ef-
fective high-resolution models adapted to the simulation of hydrological extremes in a context of high data

Corresponding author: Ngo Nghi Truyen Huynh, ngo-nghi-truyen.huynh@inrae.fr

–1–



uncertainty (e.g., for Mediterranean flash floods in Garambois et al. (2015); Jay-Allemand, Demargne, et al.
(2022)).

The estimation of hydrological model parameters in ungauged regions is performed with so-called region-
alization approaches that exploit and transfer hydrological information from gauged to ungauged catchments
using various descriptors of catchments physical properties (see reviews in Blöschl et al. (2013); Samaniego
et al. (2010); Hrachowitz et al. (2013); Beck et al. (2020)). The most widely used approach in early studies
for regionalization involved independent catchment-by-catchment calibrations, followed by multiple regres-
sion or interpolation techniques to transfer the calibrated parameter sets from gauged to ungauged locations
(Abdulla & Lettenmaier, 1997; Seibert, 1999; Parajka et al., 2005; Razavi & Coulibaly, 2013; Parajka et
al., 2013) and can be called post-regionalization (Samaniego et al., 2010). This approach presumes that
the variability of calibrated model parameters through the catchments have relations based, for instance, on
spatial proximity (Widén-Nilsson et al., 2007; Oudin et al., 2008), and physical or climatic similarity (Oudin
et al., 2010; Beck et al., 2016). Statistical learning methods have also been applied in post-regionalization
to explore the relationships between physical descriptors and calibrated parameter sets at gauged locations
(e.g., Saadi et al. (2019); Wang et al. (2023)). However, post-regionalization approaches are limited to
lumped parameters, thus ignoring within-catchment variabilities (see reviews in Samaniego et al. (2010);
Razavi and Coulibaly (2013)), except when calibrated parameters correspond to tuning factors of physical
pedotranfer functions or hydraulic frictions correspondence tables (see Garambois et al. (2015) for details).
The identification of transfer functions in post-regionalization is complicated by the uncertainty of estimated
parameter sets, while spatial proximity is more adapted to densely gauged river networks and regions (Oudin
et al., 2008; Reichl et al., 2009). Moreover, incorporating a statistical learning process, especially unsuper-
vised learning approaches, in the post-regionalization step can exacerbate existing issues such as parameter
biases induced by data measurement errors (Kavetski et al., 2006). A regionalized calibration simultane-
ously exploiting the information of multiple gauges, within spatial clusters defined a priori from descriptors,
is performed in Huang et al. (2019) over Norway using climatic similarity. The parameters calibrated over
multiple gauges of a climatic zone are applied to ungauged catchments of the same zone. This approach does
not account for hydrological heterogeneity within the catchments or within the regional clusters determined
by physical similarity, which can have a major impact on the forecasting of extreme floods in particular
(Garambois et al., 2015; Jay-Allemand, Demargne, et al., 2022).

The simultaneous regionalization approach involves optimizing a transfer function between physical
descriptors and model parameters (cf. Hundecha and Bárdossy (2004); Götzinger and Bárdossy (2007);
Bastola et al. (2008); Samaniego et al. (2010)). In this case and contrarily to post-regionalization, the
descriptors-to-parameters mapping is the first optimizable operator of the forward hydrological model. It
enables to overcome most of the aforementioned problems and has been applied in several studies. For
instance, it has been used for regionalizing semi-distributed models such as: HBV in Hundecha and Bárdossy
(2004) or in Götzinger and Bárdossy (2007) who introduced monotonicity and Lipschitz condition into
the optimization problem to constrain the inferred spatial fields; TOPMODEL in Bastola et al. (2008)
who used an Artificial Neural Network (ANN)-based mapping between catchment descriptors and model
parameters (both their value and their uncertainty as quantified by a posterior covariance matrix). A
multiscale parameter regionalization (MPR) method, combining descriptors maps, upscalings functions and
regionalization transfer functions in the form of multivariate mappings from descriptors, and implemented
within a spatially distributed multiscale hydrological model (mHm), has been proposed by Samaniego et
al. (2010), and later applied to over 400 European catchments at 0.25◦ spatial resolution in Rakovec et al.
(2016). This approach imposes a spatial regularization effect that is needed when working with spatially
distributed hydrological models and spatially sparse discharge data (see regularization for semi-lumped model
calibration from multiple nested gauges in De Lavenne et al. (2019)). The MPRmethod from Samaniego et al.
(2010) has also been used with other gridded hydrological models in large sample applications. For example,
Mizukami et al. (2017) calibrate the VIC model at a resolution of 0.125◦ over 531 headwater catchments
(area < 2, 000 km2) in the continguous US area, using a lumped regionalization approach. Another example
is Beck et al. (2020), who calibrate the HBV model at 0.05◦ resolution over 4,229 headwater catchments
(area < 5, 000 km2) worldwide. In their study, they categorize the catchments into three climatic groups
and perform tenfold cross-validation using 90% of the gauged catchments. While these studies applied
MPR deterministically, in Lane et al. (2021), the MPR method is applied within the generalized likelihood
uncertainty estimation (GLUE) framework, with a high-resolution HRU model (DECIPHeR framework) at
daily time resolution over a large sample of 437 catchments in the UK. However, the routing module in
this study is calibrated separately with a simple random sampling approach. In Mizukami et al. (2017), the
runoff routing model is a gamma distribution function with two parameters that were “directly calibrated
for each basin”. Therefore, those regionalization approaches essentially focus on runoff production, at a daily
time step for mostly headwater catchments whose characteristic response/concentration time scale might be
shorter. The same remark can be made for Beck et al. (2020) who work at daily time step on headwater
catchments, simply without modeling routing.
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In all the above studies, state of the art optimization algorithms are used, especially Shuffle Complex
Evolution algorithm (SCE) (Duan et al., 1992) in Mizukami et al. (2017), or Distributed Evolutionary
Algorithms (DEAP) (Fortin et al., 2012) in Beck et al. (2020), or the GLUE framework with a random
sampling approach in Lane et al. (2021). Those algorithms are applicable with low-dimensional controls
only, which limits the affordable number of descriptors and the spatialization of regional transfer parameters
(that are lumped in all methods above), and more importantly, which limits the affordable complexity of
the regionalization operator. Nevertheless, gradient-based algorithms are efficient approaches for solving
high dimensional inverse problems, and their potential has been demonstrated in optimization of spatial
parameters of hydraulic models (Monnier et al., 2016), or spatially distributed hydrological models (Castaings
et al., 2009; Jay-Allemand et al., 2020). They crucially need accurate estimates of cost gradients, i.e.
gradients of the cost (objective) function with respect to the sought parameters, which can be spatialized and
of large dimension. Such gradients can be computed with an adjoint model for example obtained by source
code differentiation in Castaings et al. (2009); Monnier et al. (2016); Jay-Allemand et al. (2020). Note that a
key property of neural networks is their differentiability, which makes them compatible with variational data
assimilation frameworks (Monnier et al., 2016) and hence suggests them as promising candidate to derive
flexible regionalization functions. In the context of hydrological modeling of ungauged basins, achieving
such a flexible regionalization is desirable to adequately represent the multi-scale variabilities of the physical
system. It would also maximize the extraction of information from large sets of physical descriptors and
hydrological response observations, while accounting for data and modeling uncertainties.

A novel approach called HDA-PR (Hybrid Data Assimilation and Parameter Regionalization) is pre-
sented in this article. HDA-PR relies on seamless regional optimization algorithms for learning complex
transfer functions between physical descriptors and conceptual parameters of spatially distributed hydrolog-
ical models, applicable at high-resolution with spatial constraints of various rigidity to address the spatial
equifinality issue. It is designed to exploit the informative content of massive heterogeneous datasets over
large spatio-temporal computational domains, and is therefore adapted to solving high-dimensional inverse
problems. Our approach leverages information from multi-site river flow observations and high-resolution
data on a 1 km2 and 1 h resolution grid, relying on the original combination of the following ingredients:

• Learnable regionalization functions via the introduction into the direct hydrological model of an ex-
plicit tunable mapping between heterogeneous physical descriptors and spatially distributed unknown
conceptual parameters. This mapping allows estimating parameter values while imposing a con-
straint on their spatial variability, via the use of physical descriptors and a priori knowledge. Multi-
variate polynomial regressions and neural networks are employed to learn such a complex nonlinear
descriptors-parameters mapping.

• A differentiable spatially distributed hydrological model into which the regionalization operators have
been implemented. This enables the computation of accurate, spatially-distributed gradients of the
calibration cost (objective) function, with respect to the sought regionalization parameters, which can
be of high dimension. Obtaining accurate gradients for such high-dimensional parameters is crucially
needed for optimization algorithms.

The original combination of the above ingredients amounts to introducing regionalization transfer func-
tions into a variational data assimilation (VDA) algorithm (similar to the tunable differentiable mappings in
hydraulic VDA algorithms (Monnier et al., 2016; Garambois et al., 2020)) dedicated to spatially distributed
hydrological modeling and high-dimensional inverse problems. This has seldom been investigated especially
for regional hydrological learning from multi-site data. The strength of HDA-PR lies in its capability to learn
complex relation between physical descriptors and conceptual parameters of spatially distributed models in
the context of structural and spatial parametric equifinality. Additionally, our approach aims at ensuring
that the hybrid data assimilation algorithm, which integrates an explainable learning process, produces
results that can be physically interpreted (see Larnier and Monnier (2020); Höge et al. (2022); Fablet et
al. (2021); Althoff et al. (2021)). It is able to enhance calibration scores with deep learning from large
heterogeneous datasets while maintaining the interpretability of physics-based hydrological models. The
evaluation procedure adopted in this work considers challenging regionalization problems with multi-gauge
settings in flash-flood-prone areas and multiple evaluation metrics including flood event hydrological signa-
tures (Huynh et al., 2023). We address the following aspects of the HDA-PR approach: (i) performance
at gauged and ungauged sites; (ii) factors determining the performance; and (iii) spatial patterns of the
regionalized parameters in relation to information extraction from physical descriptors.

The remaining sections of this paper are organized as follows: Section 2 describes the HDA-PR algo-
rithms and the SMASH spatially distributed hydrological assimilation platform into which they have been
implemented. In Section 3, we present the case studies based on two contrasted areas and analyze the
performance of HDA-PR using different regionalization mappings. Subsequently, in Section 4, we discuss
compelling findings based on the results from the previous section. Finally, in Section 5, we conclude our
work and outline potential future research directions.
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2 Forward-Inverse Algorithms

This section presents the forward model and inverse algorithms of the proposed HDA-PR method. An
algorithm flowchart is provided in Figure 1 to help in global understanding.

Figure 1. Flowchart of the forward-inverse algorithm used in HDA-PR. The forward hydrological model is a

gridded model (spatio-temporal regular grid at 1 km2 and 1 h) using GR operators.

First, the differentiable forward model consists in: (i) a parsimonious and robust GR-like conceptual hy-
drological model structure (Perrin et al., 2003) that is spatially distributed and differentiable (Jay-Allemand
et al., 2020); and (ii) regionalization operators, consisting of either multivariate polynomial regressions or
neural networks, for mapping descriptors onto hydrological model parameters. The calibration cost function
adapted to multi-site (and potentially multi-source) observations is then defined. The inverse optimization
algorithms, that use the spatially distributed gradients of the cost function with respect to model parame-
ters, and are capable of dealing with high-dimensional inverse problems such as encountered with tunable
parameters of regionalization descriptors-parameters mappings, are then detailed.

The core strength of HDA-PR is the use of differentiable descriptors-to-parameters transfer functions,
especially in the form of neural networks, and the capability to automatically compute accurate cost gradi-
ents. The latter enables the use of gradient-based variational optimization algorithms with high-dimensional
regional parameter vectors. The method is applicable to any differentiable forward model as well as to
multi-source heterogeneous datasets, and hence constitutes a powerful data assimilation framework.

2.1 Forward Model with Regionalization

First, let Ω ⊂ R2 denote a 2D spatial domain that can contain multiple catchments, both gauged and
ungauged, with a minimum of one gauged catchment, and t > 0 the physical time. In what follows, the
vector of spatial coordinates over Ω is denoted x. The number of active cells within the spatial domain Ω is
noted Nx. A 2D flow directions map DΩ is obtained from terrain elevation processing and will be used for
runoff routing, with the only condition that a unique point in the regular mesh TΩ has the highest drainage
area.

Consider observed discharge time series Q∗
g(t) at NG observation cells of coordinates xg ∈ Ω, g = 1..NG

(NG ≥ 1). For each observation cell, the corresponding gauged upstream sub-catchment is noted Ωg so

that Ωung = Ω \
(
∪NG
g=1Ωg

)
is the remaining ungauged part of the whole spatial domain Ω. Note that this

definition is suitable for the general regionalization case dealing with spatially independent and/or nested
gauged catchments.

Then, the forward modelM can be defined as a multivariate function obtained by partially composing
a hydrological model Mrr with a regionalization operator FR to compute hydrological parameters θ such
that:

M =Mrr ( . , θ = FR ( . )) (1)
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Let us now introduce and detail the hydrological model and the regionalization operator along with their
input variables.

The rainfall and potential evapotranspiration fields are respectively noted P (x, t) and E (x, t), ∀x ∈ Ω.
The hydrological model Mrr is a dynamic operator projecting the input fields P (x, t) and E (x, t), given
an input drainage plan DΩ (x), onto the discharge field Q (x, t) and states fields h (x, t) such that, ∀(x, t′) ∈
Ω× [0, t]:

U (x, t) = (h,Q) (x, t) =Mrr [(DΩ,θ)(x); (P ,E)(x, t′),h(x, 0), t] (2)

where θ is the Nθ-dimensional vector of model parameters 2D fields that we aim to estimate regionally with
the new algorithms proposed below, and h is the NS-dimensional vector of internal model states. In this
study, the distributed hydrological model Mrr is a parsimonious GR4-like conceptual structure (Perrin et
al., 2003), which is the spatialized “S-GR4” structure presented in Colleoni et al. (2023). The hydrological
parameters vector ∀x ∈ Ω is:

θ (x) = (cp(x), cft(x), kexc(x), lr(x))
T

where the four spatially varying parameter fields are the capacity of the production reservoir (cp in [mm]),
the capacity of the transfer reservoir (cft in [mm]), the parameter (kexc in [mm/dt]) of the non-conservative
water exchange flux, and the linear routing parameter (lr in [min]).

In order to constrain and explain these spatial fields of conceptual model parameters θ(x) from descrip-
tors D(x), we introduce a regionalization operator FR that is a descriptors-to-parameters mapping such
that:

θ (x) = FR(D (x) ,ρ), ∀x ∈ Ω (3)

with D the ND-dimensional vector of physical descriptor maps covering Ω, and ρ the vector of tunable
regionalization parameters that is defined below.

Two types of regionalization operators are used in HDA-PR (see Figure 1):

1. A set P of multivariate polynomial regression operators for each parameter of the forward hydrological
model (Equation 2):

θ(x,D,ρ) := P (D(x),ρ) ≡
[
(θk(x,D,ρk))

Nθ

k=1

]T
, ∀x ∈ Ω;

θk(x,D,ρk) := sk

(
αk,0 +

ND∑
d=1

αk,dD
βk,d

d (x)

)
, ∀k ∈ [1..Nθ]

(4)

with sk(z) = lk + (uk − lk)/ (1 + e−z) , ∀z ∈ R, a transformation based on a Sigmoid function with
values in ]lk, uk[, thus imposing bound constraints in the direct hydrological model such that lk <
θk(x) < uk, ∀x ∈ Ω. The lower and upper bounds lk and uk, associated to each parameter field θk of
the hydrological model (Equation 2) are assumed spatially uniform for simplicity here. The regional
control vector to be estimated in this case is:

ρ ≡
[
(ρk)

Nθ

k=1

]T
≡
[(

αk,0, (αk,d, βk,d)
ND

d=1

)Nθ

k=1

]T
(5)

2. An ANN denoted N , consisting of a multilayer perceptron, aimed at learning the descriptors-to-
parameters mapping such that:

θ(x,D,ρ) := N (D(x),W , b) ,∀x ∈ Ω (6)

where W and b are respectively weights and biases of the neural network composed of NL dense layers.
The architecture of the neural network and the forward propagation is detailed in Appendix B and
Equation B2. Note that an output layer consisting of a scaling transformation based on the Sigmoid
function (cf. Equation B1) enables to impose lk < θk(x) < uk, ∀x ∈ Ω, i.e., bound constraints on the
kth-hydrological parameters. The regional control vector in this case is:

ρ ≡ [W , b]
T ≡

[
(W j , bj)

NL

j=1

]T
(7)

For each regionalization operator (Equation 4 or 6), the regional calibration problem consists in opti-
mizing (in a sense defined below) the regionalization control ρ (Equation 5 or 7) that can be of relatively
high dimension since it is proportional to the number of descriptors (ND), the number of model parameters
(Nθ), and the degree of spatialization of the regional controls. Optimization algorithms adapted to the high-
dimensional problems of interest, taking advantage of accurate spatially distributed gradients computation
with the adjoint of the forward model, are detailed thereafter. Importantly, note that by definition of the
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mathematical model and given the numerical implementation rules followed, the forward model is differ-
entiable. This is a necessary condition for computing cost gradients with respect to spatially distributed
hydrological parameters and obtain those of regional controls, as needed for solving the optimization problem.
This is a key idea and property of our proposed algorithms.

The numerical resolution of the ODE (Ordinary Differential Equation)-based operator of the forward
hydrological model (Equation 2) relies on an explicit expression of its solution, approximated on the regular
mesh TΩ of constant step dx with a fixed time step dt. All physical descriptors are mapped onto model grid
for simplicity here.

Note that adding an upscaling operator after the regionalization scheme (as done in Samaniego et al.
(2010)) is feasible in HDA-PR under the condition that it is differentiable (at least numerically), and is a
potentially interesting topic for further research, as is improving observation operators. In both cases one
could use algebraic expressions or neural networks in the HDA-PR assimilation framework.

2.2 Calibration Cost Function

A calibration cost function is defined to measure the misfit between simulated and observed discharge
time series, respectively noted Qg(t) and Q∗

g(t), for g ∈ 1..NG gauged cells. In order to measure the
discrepancy between observed and simulated quantities from multiple observation sites, we consider the cost
function:

J =

NG∑
g=1

wgJ
∗
g (8)

with wg a weighting function explained afterwards, J∗
g a local quadratic metric “at the station”, here 1−NSE

or 1 − KGE2 (see Appendix A). This cost function is a differentiable and convex function, involving the
response of the direct model. It depends on the control vector ρ through the direct model M (Equa-
tion 1) composed of the regionalization operator FR (Equation 3) and the direct hydrological model Mrr

(Equation 2).

The multi-site calibration corresponds to NG > 1 while NG = 1 is the classical single-gauge calibration.
For NG > 1, the weighting wg is defined such that

∑NG

g=1 wg = 1 and is simply set here as wg = 1
NG

, which
represents the average cost over multiple gauges.

2.3 Regional Calibration Algorithms

The inverse problem is written as the following convex optimization problem of the regional control
vector ρ:

ρ̂ = argmin
ρ

J (U (ρ)) (9)

The regional calibration aims to (i) reduce the misfit between observed and simulated discharges at spatially
sparse gauging stations, as evaluated by Equation 8, while (ii) determining hydrological parameter maps
θ(x), relevant for modeling at ungauged sites, thus benefiting from the information extracted from physical
descriptors and the spatial constraint induced by the regional transfer functions whose parameters ρ are
optimized. The regionalization operator can be expressed as either (i) a multi-polynomial mapping FR ≡ P
(Equation 4), or (ii) an artificial neural network FR ≡ N (Equation 6). In both cases, the regional control
vector ρ to optimize is large, and gradient based optimization methods adapted to high-dimensional inverse
problems are employed.

2.3.1 Optimization Algorithm for Polynomial Regionalization

In this case, the forward model includes the polynomial descriptors-to-parameters mapping (Equation 4),
i.e., FR ≡ P and the regional control vector is:

ρ := [αk,0, (αk,d, βk,d)]
T
,∀(k, d) ∈ [1..Nθ]× [1..ND]

The optimization problem, represented in Equation 9, is solved using the L-BFGS-B algorithm (limited-
memory Broyden–Fletcher–Goldfarb–Shanno bound-constrained) (Zhu et al., 1997). This algorithm is spe-
cially adapted to high-dimensional parameter spaces, and in this study, there are no bound constraints on
the values of αk,., whereas the exponents βk,d are simply sought between 0.5 and 2. This algorithm requires
the gradient of the cost function with respect to the sought parameters ∇ρJ . This gradient is computed by
solving the adjoint model, which is obtained by automatic differentiation using the Tapenade engine (Hascoet
& Pascual, 2013). The entire process is implemented in the SMASH Fortran source code, where the full
forward model M ≡ Mrr (.,P (.)) is a composition of both the hydrological model and the polynomial
descriptors-to-parameters mapping.

The background value ρ∗, used as a starting point for the optimization, is set using a spatially uniform
solution θ̄

∗
, which is obtained by a simple global optimization algorithm (Michel, 1989) of the inverse problem
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(Equation 9) whereM≡Mrr and ρ := θ, as follows:

ρ∗ ≡
[
αk,0 = s−1

k

(
θ̄k

∗)
, (αk,d = 0, βk,d = 1)

]T
,∀(k, d) ∈ [1..Nθ]× [1..ND]

where s−1
k (z) = ln

(
z−lk
uk−z

)
is the inverse Sigmoid.

The termination criterion is determined based on the satisfaction of at least one of the following criteria:

• Maximum number of iterations;
• Cost function criterion: J(i)−J(i+1)

max(|J(i)|,|J(i+1)|,1)
≤ ϵ× 106 (e.g., ϵ ≈ 2.22× 10−16);

• Gradient criterion: ||∇ρJ
(i)||∞ ≤ 10−12

where J (i), ||∇ρJ
(i)||∞ are respectively the cost value and its projected gradient at iteration i, and ϵ repre-

sents the machine precision.

2.3.2 Optimization Algorithm for Neural Network-based Regionalization

In this case, the forward model includes a descriptors-to-parameters mapping performed with a neu-
ral network, i.e., FR ≡ N and the regional control vector is ρ := [W , b]

T
. The optimization problem

(Equation 9) can typically be solved using Adam optimization algorithm (Kingma & Ba, 2014), an efficient
stochastic gradient descent algorithm able to adapt the learning rate based upon the first and the approxi-
mation of the second moments of the gradients for fast convergence, and only requiring first order gradients
of the cost function. In the present case, the cost function writes as:

J (U (ρ)) = J
(
Q∗,Mrr(. , θ = N (D,ρ))

)
(10)

This formulation of the cost function highlights its dependency on the forward modelM≡Mrr (.,N (.)),
which is composed of two components in its numerical implementation: (i) an ANN implemented in Python,
which produces the output θ used as input by (ii) the hydrological model Mrr implemented in Fortran.
In order to optimize J , its gradients with respect to ρ are required. The main technical difficulty here
is to achieve a “seamless flow of gradients” through back-propagation. To overcome this, we divide the
gradients into two parts and apply the chain rule with analytical derivation and numerical code differentiation
(cf. hybrid VDA course in Monnier (2021) and references therein). First, ∇θJ can be computed via the
automatic differentiation applied to the Fortran code corresponding toMrr. Then,∇ρθ is simply obtained by
analytical calculus applicable given the explicit architecture of the ANN, consisting of a multilayer perceptron.
Finally, the two gradients can be combined as ∇ρJ = ∇θJ.∇ρθ. The termination criterion is determined
by a specified number of iterations in the optimization algorithm. A detailed explanation of the network
architecture, backward propagation, and the optimization process can be found in Appendix B.

3 Data and Numerical Experiment

3.1 Study Area and Experimental Design

The performance of HDA-PR using various regional optimization algorithms is evaluated based on high-
resolution regional modeling of two flash-flood-prone areas located in the South of France (Figure 2). They
are characterized by contrasted physical properties and catchments behaviors. The modeling approach is
applied to each regional domain that contains multiple gauges downstream of both nested and independent
catchments, used together in the optimization process through the multi-site cost function.

In order to examine the spatio-temporal extrapolation capabilities of HDA-PR, an a priori partition of
the available discharge stations is made into calibration sites and pseudo-ungauged catchments for validation.
We selected as gauged stations for regionalization those with good local model performances (i.e., “donor”
catchments with potentially lower modeling error). Discharge time series at gauged sites are also split into a
calibration and a validation period. A set of 7 physical descriptors (Table 1) available over the whole French
territory is used following Odry (2017) and Jay-Allemand, Demargne, et al. (2022). Note that this setup
is sufficient to assess the regionalization performance of the proposed algorithms while keeping the present
article concise. The issue of selecting the most relevant information (multi-source observations of hydrological
responses and physical descriptors) is intentionally left for future research since it requires several upgrades
to the algorithms (dedicated observation operators, descriptors selection layers, etc.). It is worth noting that
prior to the optimization process, all descriptors are standardized between 0 and 1 through min-max scaling.

The first zone is located in the Eastern Mediterranean region and is called “MedEst”. 9 gauged catch-
ments are used for calibration while 6 others are considered as pseudo-ungauged for validation. The second
zone is located in the Ardèche region and called “Ardèche”. 14 catchments are considered as gauged while
7 are considered as pseudo-ungauged. Both study areas constitute challenging cases, with contrasted hy-
drological properties including steep topography and very heterogeneous soils and bedrock (e.g., Garambois
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Figure 2. Two study areas on the map on France: Ardèche (left) and MedEst (right). For each area, the gauged

catchments (red) are used for multi-site calibration while the pseudo-ungauged catchments (blue) are used for spatial

validation.

Table 1. Descriptors used as input data for regionalization methods.

Notation Type Description Unit Source

d1 Topography Slope ◦ Odry (2017)
d2 Morphology Drainage density - Organde et al. (2013)
d3 Influence Percentage of basin area in karst zone % Caruso et al. (2013)
d4 Land use Forest cover rate % CLC European Union (2012)
d5 Land use Urban cover rate % CLC European Union (2012)
d6 Hydrogeology Potential available water reserve mm Poncelet (2016)
d7 Hydrogeology High storage capacity basin rate % Finke et al. (1998)

et al. (2015)). They are affected by intense rainfall that trigger non linear flash flood responses. Moreover,
the MedEst area is the most difficult to model because of the significant proportion of karstic zones. The
selection of catchments is based on the availability of long time series with high quality of observed flow
and limited anthropogenic impacts. The SMASH model is run on a dx = 1 km spatial grid at dt = 1 h
time step. It is forced by: (i) observed rainfall grids based on hourly ANTILOPE J+1 radar-gauge rainfall
reanalysis from Météo-France (Champeaux et al., 2009); (ii) potential evapotranspiration (PET) estimated
using the formula of Oudin et al. (2005); and (iii) temperature data from SAFRAN reanalysis produced by
Météo-France on a 8x8 km2 spatial grid (Quintana-Segúı et al., 2008) downscaled to a 1x1 km2 spatial grid.

For each study area, we perform multi-site regional calibration methods using gauged catchments. The
chosen calibration metric is the NSE, computed using data from multiple gauges over a ten-year period
(2006-2016). The following calibration methods are compared:

• Local calibrations for each gauge, both with spatially uniform (i.e., ρ ≡ θ̄) and full spatially distributed
controls (i.e., ρ ≡ θ (x)), that are respectively under and over parameterized hydrological optimiza-
tion problems. These represent reference performances, denoted “Uniform (local)” and “Distributed
(local)”.

And multi-gauge regional calibrations with:

• lumped model parameters (i.e., ρ ≡ θ̄) which somehow represents “level 0” regionalization, denoted
“Uniform (regionalization)”;

• a multivariate linear mapping (i.e., ρ ≡ [αk,0, (αk,d, 1)]
T
), denoted “Multi-linear (regionalization)”;

• a multivariate polynomial mapping (i.e., ρ ≡ [αk,0, (αk,d, βk,d)]
T
), denoted “Multi-polynomial (region-

alization)”;
• a multilayer perceptron (i.e., ρ ≡ [W , b]

T
), denoted “ANN (regionalization)”.
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To ensure robust validation, model performances are assessed in terms of spatial validation, tempo-
ral validation, and spatio-temporal validation, with a validation period covering two years from 2016 to
2018. Various evaluation metrics are also used, including multiple hydrological signatures-based metrics
from Huynh et al. (2023).

3.2 Regional Learning Performance

In this section, the regional learning performance is analyzed with primary focus on the MedEst re-
gion, which represents the most challenging study area. First, Figure 3 suggests that using lumped model
parameters θ̄ leads to a poor performance in simulating discharges, whereas the other three regional learn-
ing methods result in similar signals with remarkably improved performance, in both the gauged and the
pseudo-ungauged catchments.

Figure 3. Study area: MedEst. One year of observed and simulated discharges (in m3/s) obtained with four multi-

gauge regional calibration methods at one gauged (Y4615020) and one pseudo-ungauged catchment (Y5215020).

Given the complexity and heterogeneity of the region, it is unsurprising that lumped model parameters
regionalization is unable to accurately reproduce contrasted hydrological responses. Figure 4 demonstrates
that the three regionalization methods incorporating information from physical descriptors lead to largely
superior performance when compared to the Uniform baseline for the calibration catchments. For example,
the NSE scores increase from 0.3 to more than 0.7 in catchment Y5615030, or from 0.4 to more than 0.75 in
catchment Y5615010. In addition, these three methods yield relatively high scores in the pseudo-ungauged
catchments used for spatial validation (e.g., in Y5215020 where the NSE score has been improved from 0.36
up to 0.83 in the case of ANN). Note that some stations have many missing data: for instance, 32 % of
the data are missing for catchment Y5106610, and 21 % for catchment Y5005210. This may affect the NSE
scores and at least partly explain the poor validation performances for all methods.

We now focus on the global results in both study areas, Ardèche and MedEst, as presented in Figure 5.
This figure summarizes the NSE scores for the two local calibration methods (spatially uniform and spatially
distributed calibrations) and the four regionalization methods. A rapid interpretation reveals that in the
Ardèche area, making the model parameters vary in space seems unnecessary, given the already good per-
formance of the lumped parameters (Uniform) methods in the context of a less complex area. However, it is
worth noting that the three regionalization methods also achieve satisfying results, with the median efficien-
cies (NSE) exceeding 0.65 in both gauged and pseudo-ungauged catchments during the validation period.
This suggests that while not necessary, using a non-uniform regionalization approach does not deteriorate
the performance in spatial or temporal validation. In contrast and as evidenced in the preceding figures, sig-
nificant disparities in efficiency scores are observed among the regionalization methods in the MedEst area,
where the multivariate regressions and ANN outperform the uniform regionalization baseline calibrated with
lumped model parameters. The three methods demonstrate promising results, achieving median NSE scores
above 0.72, 0.51, 0.76 and 0.61 (compared to 0.6, 0.41, 0.2 and 0.16 for the baseline) respectively, across
calibration, spatial validation, temporal validation and spatio-temporal validation. Specifically, when consid-
ering temporal validation, the ANN reaches a median NSE score of approximately 0.9 with eight out of nine
stations exceeding a score of 0.8, which is comparable to the performance of the local calibration reference
with spatially distributed controls.

In order to obtain a more robust evaluation criterion adapted to flood modeling, we consider validation in
terms of multiple evaluation metrics based on hydrological signatures for flood events, which are computed
via an automated segmentation algorithm proposed by Huynh et al. (2023). Turning the focus back to
MedEst, the three non-uniform regionalization methods, with a particular focus on the ANN, demonstrate
their ability to outperform the uniform regionalization (lumped model parameters), in both temporal and
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Figure 4. Study area: MedEst. Radial plots of the NSE (optimal value = 1) in gauged catchments (left) and

pseudo-ungauged catchments (right) during the calibration period for four multi-gauge regional calibration methods.

Figure 5. Comparison of NSE scores across gauged and pseudo-ungauged catchments during the calibration (top)

and validation (bottom) periods for two local calibration methods and four regionalization methods in both study

areas. The numbers in parentheses indicate the number of catchments included in each boxplot.

spatio-temporal validation, as shown in Figure 6. The relative errors (median over flood events) of simulated
signatures using these three regionalization methods are around 0.2 compared to more than 0.8 for the
uniform baseline in temporal validation, and between 0.2 and 0.6 compared to more than 0.7 for the baseline
in spatio-temporal validation. Especially, in the case of ANN, the error in simulating the peak flow is
drastically reduced from 0.85 and 0.91 (for the baseline) to 0.28 and 0.43, respectively, in temporal and
spatio-temporal validation. It is noteworthy that these flood signatures-based metrics were not included in
the cost function during the calibration process, which further supports the robustness and power of the
regionalization methods, particularly the one based on the ANN. It thus underscores the potential of such
approaches for enhancing flash flood forecasting system.

Finally, Figure 7-b shows the parameter maps obtained with the three non-uniform regionalization
methods, that can be physically interpreted. In general, the spatial patterns of the drainage density (d2) in
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Figure 6. Study area: MedEst. Relative error (RE, optimal value = 0) of 4 flood event signatures: base flow (Ebf),

flood flow (Eff), runoff coefficient (Erc) and peak flow (Epf), evaluated using n event = 49 flood events at gauged

catchments for temporal validation (Temp Val) and n event = 19 flood events at pseudo-ungauged catchments for

spatio-temporal validation (Spatio-Temp Val).

Figure 7-a are easily observable in the distributed parameter maps in the two regression cases, as evidenced
by strong correlations between this descriptor and the four model parameters. Such correlations can be
quantified using one-to-one parameter-descriptor correlation matrices (Figure 7-c). The relations between
the model parameters and physical descriptors are not limited to linear and polynomial forms in the ANN
case, leading to parameter maps that are quite distinct from the regression-based ones. Furthermore, it
is noteworthy that the ANN can identify stronger correlations (compared to both regression cases) for the
routing parameter (lr) and the transfer parameter (cft) with the karst index (d3). For Ardèche, parameter
maps show a reduced variability (see Figure C4-b), and the ANN identifies maps and relations between
descriptors and parameters which are similar to those found in both regression cases (see Figure C4-c). This
finding suggests that the ANN can effectively approximate the multi-linear regression when dealing with
areas like Ardèche, where it does not necessitate more intricate mappings. This demonstrates the robustness
and flexibility of the ANN, which proves to be efficient not only in complex study areas but also in simpler
ones.

The corresponding figures in this section depicting the results in Ardèche can be found in Appendix C.
The following section focuses on results more specific to the optimization process and provide insights on
the use of multivariate regressions and ANN in both study areas.

4 Discussions

Learning the spatial variability of conceptual hydrological parameters may be difficult to achieve with
simple regionalization methods (e.g., based on multi-linear regression). However, while complex regional
mappings can reduce the misfit between observed and simulated hydrological responses, their ability to
produce physically interpretable results may be questioned. This section presents compelling findings and
insightful observations obtained from the calibration using HDA-PR, with a particular focus on the learning
process in the case of ANN.

When calibrating a model with gradient-based optimization algorithms, it is important to discuss the
descent of the cost function. This analysis enables understanding how optimization algorithms converge
towards the global or local minimum of the cost function, and identifying potential trade-offs between
model flexibility and overparameterization, in addition to validation results. Similar results are observed in
both study areas, including the descent of the cost function J and its projected gradient ∇ρJ , which are
represented in Figure 8 for the MedEst area.

It is apparent that the cost functions in the two regression methods start from a more optimal point (ap-
proximately 0.46) than the ANN since they use a uniform background solution obtained by a global opti-
mization method, as mentioned in 2.3.1. Furthermore, they converge after around 200 iterations and remain
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Figure 7. Study area: MedEst. Sub-figure a: Maps of input descriptors (d1-d7), whose information is provided in

Table 1. Sub-figure b: Calibrated hydrological parameters (kexc, lr, cft, cp) maps for three non-uniform regionalization

methods. Sub-figure c: Linear correlation between descriptor and parameter for the three regionalization methods.

Figure 8. Study area: MedEst. The descent of the cost J = 1 − NSE (left) and projected gradient ||∇ρJ ||∞
(right) for the three non-uniform regionalization methods.

monotonous throughout the optimization process. The polynomial regression approach achieves a slightly
lower cost than the linear approach, due to the fact that it has nearly twice the number of parameters
(Table 2), while the ANN, with a significantly larger number of parameters, can achieve a lower cost despite
starting from a higher cost. Moreover, the ANN cost function in the left panel of Figure 8 is not monotonous
throughout iterations: it shows localized increases for several instances within the first 100 iterations.
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Table 2. Number of parameters in the control vector for the four regionalization methods studied, where Nθ = 4

and ND = 7. A detailed calculation of the total number of parameters for the ANN is provided in Table B1. The last

two columns show the ratios between the number of parameters in the four methods studied and the fully distributed

calibration method (i.e., ρ ≡ θ(x)), which was overparameterized and unable to perform regionalization.

Mapping Coefficient Exponent Total parameters % (MedEst) % (Ardèche)

Uniform Nθ.1 = 4 0 4 0.03 0.04
Multi-linear Nθ(ND + 1) = 32 0 32 0.21 0.29

Multi-polynomial Nθ(ND + 1) = 32 Nθ.ND = 28 60 0.39 0.54
ANN 6276 40.3 56.48

Fully distributed: Nθ.Nx. Remind that Nx is the number of active cells within the spatial domain Ω.

The variability of the projected cost gradient shown in the right panels of Figure 8 suggests that the surface
of the cost function is more complex for ANN than for the two regressions. This is confirmed by the gradient
values in the right panels of Figure 8: multi-linear regression lead to projected gradients that are marginally
higher than those of multi-polynomial regression but much higher than those of ANN. This discrepancy
can be attributed to the complexity of the regionalization mapping in each case, with the ANN being the
most complex. Moreover, jumps in the projected gradient (bottom right panel) suggest that the solutions
of the ANN can explore different paths and avoid getting stuck in local minima: there are four instances
(around iterations 5, 90, 130, and 210) where significant changes occur in the control vector space (biases and
weights) to locate the optimum. This property could be essential in tackling equifinality and reach robust
global optimum even with different starting points.

To alleviate the vanishing gradient problem inherent in the ANN, we employed several techniques
commonly used in the machine learning community. First, we applied Xavier initialization (Glorot & Bengio,
2010) to the weights, maintaining a reasonable magnitude of the gradients. Second, we utilized the ReLU
activation function or its variants in the hidden layers, enabling the gradient to flow more freely through the
network. Third, we varied the number of hidden layers between 2 and 4, striking a balance between network
flexibility and exacerbation of the vanishing gradient problem. Ultimately, we employed a relatively high
initial learning rate (e.g., 0.005) to prevent the gradients from shrinking excessively during training.

One can also inquire about the way the different regionalization mappings transfer information from
physical descriptors to hydrological parameters. For instance, how can we ensure that HDA-PR effectively
uses the physical patterns provided by descriptor maps to constrain the estimation of meaningful spatial
parameter maps? To address this question, it is worth noting that the “safest” approach is to use multi-
linear regression, which corresponds to a simple weighted average of the descriptor patterns. In the case of
multi-polynomial regression, the risk of losing physical properties may arise when the polynomial degree is
unbounded. To mitigate this risk, this study imposed bounds on the polynomial degree, 0.5 ≤ βk,d ≤ 2, as
mentioned earlier in 2.3.1. The ANNs, however, pose the most complicated case, where the control vector
(that is, the weights and biases) consists of numerous parameters that are difficult to physically constrain.
Our hands-on experience indicates that a multilayer perceptron with two or three hidden layers is sufficient
for learning the parameters of a parsimonious conceptual distributed hydrological model without under- or
over-extracting the physical information of the input descriptors. Note that the number of neurons in each
layer must be reasonable, which should not exceed

√
ND.Nx based on our experiments.

Regarding regionalization over larger areas, such as for large basins or at country scales, for dealing with
significant physical heterogeneity, an increased flexibility in the regional mapping might be needed. This
can be achieved through the use of spatialized regional controls, for example as done in regional calibration
for catchment clusters determined with a similarity measure (Huang et al., 2019). In the proposed HDA-PR
framework, the definition of transfer functions allows considering flexible mappings, as well as spatialized
regional controls through masked descriptor maps, for each hydrological parameter independently or jointly.
This enables the exploration of transfer functions on a clustering of the spatial domain, for example into sub-
regions or hydrological response units (HRU). This would certainly be necessary to circumvent the rigidity
of the linear or multi-linear mappings, but maybe not for a flexible one such as the ANN. In this work, the
capabilities of HDA-PR have been successfully demonstrated in a high-dimensional and challenging high-
resolution flash-flood modeling context. Determining effective physical descriptor sets from large databases
as well as finding optimal spatial flexibility represent interesting research avenues for constructing optimal
regional data assimilation approaches.
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5 Conclusion

A Hybrid Data Assimilation and Parameter Regionalization (HDA-PR) approach has been introduced
in this study. We investigated the potential of incorporating learnable regionalization mappings, including
multi-variate polynomial regressions and neural networks, into a differentiable high-resolution hydrological
model. To the best of our knowledge, we present the first implementation of ANNs within this context,
enabling a seamless regionalization in hydrology. Effective optimization algorithms capable of performing
high-dimensional optimizations from multi-source data have been obtained with:

• effective regional transfer functions of adaptable complexity, enabling the use of information from
heterogeneous data sources, with flexible formulations and various degrees of spatial rigidity;

• a differentiable forward hydrological model, embedding the regional mappings, that enables accurate
computation of spatially distributed gradients of the multi-gauge cost function - which is crucially
needed in the context of sparse observations (i.e., cost evaluation locations), and relatively small
gradient values and spatial variability;

• optimization algorithms, adapted to high dimensional problems, with seamless flow of cost gradients,
especially when combined with physical descriptors and spatial gradients, which efficiently enhance
the transferability of geophysical properties from gauged to ungauged locations.

HDA-PR has been tested on two very challenging regional optimization cases from multi-gauge discharge
and descriptors maps, with a high-resolution conceptual hydrological modeling at 1 km2. The results obtained
on both zones, and especially on the most challenging MedEst case, highlight the effectiveness of HDA-PR
that utilizes physical descriptors, surpassing the performance of a uniform regionalization method with
lumped model parameters. Notably, the ANN exhibited superior performance, even comparable to the
reference benchmarks, thereby establishing its remarkable capability in challenging modeling scenarios as well
as its capacity to collapse to a simpler mapping in less challenging ones. The median NSE scores of all HDA-
PR methods (including multivariate regressions and ANN) are greater than 0.75 in calibration in both study
areas, whereas the scores in spatio-temporal validation exceed 0.6 in MedEst (versus 0.85 for the the local
distributed calibration which represents the upper limit) and exceed 0.65 in Ardèche (versus 0.8). Various
flood event signatures computed from Huynh et al. (2023) are also used as validation metrics to demonstrate
the robustness of HDA-PR, where the three regionalization methods using descriptors outperform the uniform
regionalization method. For instance, when considering spatio-temporal validation across 19 flood events in
MedEst, these three methods yield median relative errors of the peak flow below 0.6, whereas the uniform
method yields errors exceeding 0.9.

This research and the proposed algorithms open several perspectives. Immediate work focuses on: (i)
the testing and improvement of HDA-PR for application at national scales and on other continents; (ii)
study of effective descriptor selection along with multi-gauge cost functions explicitly accounting for data
uncertainties, and optimal spatial clustering of regional controls, for example into HRU; (iii) study of a global
Bayesian estimator to improve the first-guess determination, especially with the multi-polynomial mapping.
Adding a learnable descriptors selection and ingestion layer on top of the regionalization transfer functions
would enable the exploration of even larger databases including categorical data. HDA-PR can be extended
to state and composite parameters-states optimization which could be very interesting for multi-scale DA
and real time model correction from multi-source and multi-site data. Finally, the method is transposable to
regionalization of differentiable integrated hydrological-hydraulic networks models (e.g., Pujol et al. (2022))
and could be used to explore regionalization potential from cocktails of in-situ and satellite data, including the
forthcoming SWOT (Surface Water and Ocean Topography satellite mission) observations of water surfaces
variabilities of worlwide larger rivers. In general, its applicability extends beyond hydrological models and
can be adapted to other geophysical models.

A Metrics

Denote Q(t) and Q∗(t) being the simulated and observed discharge time series. The hydrological cost
functions studied are:

• observation cost function based on the Nash-Sutcliffe Efficiency (NSE):

1−NSE =

∑T
t=t∗ (Q

∗(t)−Q(t))
2∑T

t=t∗

(
Q∗(t)−Q∗

)2
• observation cost function based on the Kling-Gupta Efficiency (KGE):

1−KGE2 = a1 (r (Q
∗(t),Q(t))− 1)

2
+ a2 (β (Q∗(t),Q(t))− 1)

2
+ a3 (α (Q∗(t),Q(t))− 1)

2

with r, β and α being respectively measures of the correlation, bias and variability of observation with
respect to simulated discharge time series;

∑3
i=1 ai = 1. This function is quadratic and differentiable.
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B Incorporating ANN into the differentiable hydrological model

This appendix details the neural network design and the derivation of hydrological cost gradients for
the ANN-based regionalization algorithm.

A simple ANN denoted N , consisting of NL fully connected (dense) layers, intends to learn the
descriptors-to-parameters field mapping in the 2D spatial domain, from D(x) ∈ RND to θ(x) ∈ RNθ ,∀x ∈ Ω
(Figure B1).

Figure B1. The architecture of the ANN consists of three hidden layers followed by the ReLU activation function

and an output layer that uses the Sigmoid activation function in combination with a scaling function. In this particular

case, we have ND = 7, NL = 4 and Nθ = 4. The calculation of the total number of trainable parameters for this

architecture is detailed in Table B1.

Table B1. Number of parameters of the ANN where ND = 7, NL = 4 and Nθ = 4.

Hidden layer 1 Hidden layer 2 Hidden layer 3 Output layer

Input shape (ND, ) (96, ) (48, ) (16, )
Number of neurons 96 48 16 Nθ

Number of parameters ND.96 + 96 = 768 96.48 + 48 = 4656 48.16 + 16 = 784 16.Nθ +Nθ = 68

Total parameters: 6276.

Let us consider an ensemble of layers where each layer is associated with its weight W j and bias bj .
Then, an input I of each layer is mapped to the input of the next layer by a linear function ϕj(I) = W jI+bj ,
and followed by the ReLU activation function denoted δ, except for the last layer, which is followed by the
Sigmoid activation function denoted σ, ensuring that its outputs are between 0 and 1. Now an output
Ox = σ ◦ ϕNL

(., x) ∈ [0, 1]Nθ of the last layer is mapped to the range of the hydrological model parameters
by a differentiable scaling function s:

θ(x) = s(Ox) = l + (u− l)⊙Ox (B1)

where l = (l1, ..., lNθ
) and u = (u1, ..., uNθ

) with the lower and upper bounds lk ∈ R and uk ∈ R, assumed
spatially uniform, defining the bound constraints of θk(x),∀(k, x) ∈ [1..Nθ] × Ω, in the direct hydrological
model. The notation “⊙” denotes the Hadamard product.

Noting Ψj ≡

{
δ ◦ ϕj , j = 1..NL − 1

σ ◦ ϕj , j = NL

, the forward propagation of the neural network N is defined as

Equation B2.
θ(x) = N (D(x), .) = s ◦ΨNL

◦ΨNL−1 ◦ ... ◦Ψ1(D(x)),∀x ∈ Ω. (B2)

Here, the notation “◦” denotes the function composition operator.
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Recall that our objective is the calibration problem of Equation 9 with respect to the regional control
vector ρ := [W , b], using the cost function of Equation 10. In such manner, different variants of stochastic
gradient descent algorithm are used and thus require the gradients of the cost function with respect to the
weights and biases ∂J

∂ρj
for each layer, where ρj := [W j , bj ]. Since the forward model M ≡ Mrr (.,N (.))

with θ being both the output of N and the input of Mrr, we can write ∂J
∂ρj

= ∂J
∂θ

∂θ
∂ρj

. Then these two

gradients are obtained as follows:

• The gradients ∂J
∂θ of the cost function with respect to the hydrological model parameters, computed

by solving the numerical adjoint model ofMrr;
• The gradients ∂θ

∂ρj
of the network output with respect to the weight and bias, computed using the

chain rule of composite functions of N .

Eventually, the backward propagation for updating the weights and biases, using for instance Adam opti-
mizer, is described in Algorithm 1.

Algorithm 1 Adapted back-propagation using Adam optimizer

▷ Randomly initialized weights and biases ρ(0) =
(
ρ
(0)
1 , ...,ρ

(0)
NL

)
▷ Number of training iterations Nite

for i = 1..Nite do

▷ Forward propagation over the spatial domain θ ←
[(
N
(
D(x),ρ(i−1)

))
x∈Ω

]T
▷ Initial gradient accumulation ∇A← ∇θJ =

(
∂J
∂θ1

, ..., ∂J
∂θNθ

)
for j = NL..1 do

▷ Gradient computation ∂J
∂ρj
←
(

∂θ
∂ρj

)T
∇A

▷ Updated gradient accumulation ∇A← ∇A.
[
W

(i−1)
j

]T
▷ Updated weights and biases ρ

(i)
j ← ρ

(i−1)
j − η m(i)

(1−β1)

(√
v(i)

1−β2
+ϵ

) where:

m(i) ← β1m
(i−1) + (1− β1)

∂J
∂ρj

(
ρ
(i−1)
j

)
v(i) ← β2v

(i−1) + (1− β2)
(

∂J
∂ρj

(
ρ
(i−1)
j

))2
β1 = 0.9 and β2 = 0.999 are the decay rates for first and second moments of gradients
ϵ = 10−8 is a small scalar
η is the learning rate that is a tuning parameter determining the step size of the optimization problem

end for
end for

C Calibration results in case of Ardèche

This section provide several calibration/validation results obtained in the Ardèche area.

Figure C1. Study area: Ardèche. One year of observed and simulated discharges (in m3/s) obtained with four

multi-gauge regional calibration methods at one gauged (K0454020) and one pseudo-ungauged catchment (K0114020).
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Figure C2. Study area: Ardèche. Radial plots of the NSE (optimal value = 1) in gauged catchments (left) and

pseudo-ungauged catchments (right) during the calibration period for four multi-gauge regional calibration methods.

Figure C3. Study area: Ardèche. Relative error (RE, optimal value = 0) of 4 flood event signatures: base flow

(Ebf), flood flow (Eff), runoff coefficient (Erc), peak flow (Epf), evaluated using n event = 67 flood events at gauged

catchments for temporal validation (Temp Val) and n event = 29 flood events at pseudo-ungauged catchments for

spatio-temporal validation (Spatio-Temp Val).
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Figure C4. Study area: Ardèche. Sub-figure a: Maps of input descriptors (d1-d7), whose information is provided in

Table 1. Sub-figure b: Calibrated hydrological parameters (kexc, lr, cft, cp) maps for three non-uniform regionalization

methods. Sub-figure c: Linear correlation between descriptor and parameter for the three regionalization methods.
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Fablet, R., Chapron, B., Drumetz, L., Mémin, E., Pannekoucke, O., & Rousseau, F. (2021). Learning
variational data assimilation models and solvers. Journal of Advances in Modeling Earth Systems,
13 (10), e2021MS002572.
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Hrachowitz, M., Savenije, H., Blöschl, G., McDonnell, J., Sivapalan, M., Pomeroy, J., . . . Cudennec, C.
(2013). A decade of predictions in ungauged basins (pub)—a review. Hydrological Sciences Journal ,
58 (6), 1198-1255. doi: 10.1080/02626667.2013.803183

–19–

https://hess.copernicus.org/articles/5/1/2001/
https://hess.copernicus.org/articles/13/503/2009/
https://hess.copernicus.org/articles/13/503/2009/
https://smash.recover.inrae.fr
http://jmlr.org/papers/v13/fortin12a.html
https://www.sciencedirect.com/science/article/pii/S0022169419311448


Huang, S., Eisner, S., Magnusson, J. O., Lussana, C., Yang, X., & Beldring, S. (2019). Improvements of the
spatially distributed hydrological modelling using the hbv model at 1 km resolution for norway. Journal
of Hydrology , 577 , 123585. Retrieved from https://www.sciencedirect.com/science/article/

pii/S0022169419302495 doi: 10.1016/j.jhydrol.2019.03.051
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